371 research outputs found

    Probability-dependent gain-scheduled control for discrete stochastic delayed systems with randomly occurring nonlinearities

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 John Wiley & Sons, Ltd.In this paper, the gain-scheduled control problem is addressed by using probability-dependent Lyapunov functions for a class of discrete-time stochastic delayed systems with randomly occurring sector nonlinearities. The sector nonlinearities are assumed to occur according to a time-varying Bernoulli distribution with measurable probability in real time. The multiplicative noises are given by means of a scalar Gaussian white noise sequence with known variances. The aim of the addressed gain-scheduled control problem is to design a controller with scheduled gains such that, for the admissible randomly occurring nonlinearities, time delays and external noise disturbances, the closed-loop system is exponentially mean-square stable. Note that the designed gain-scheduled controller is based on the measured time-varying probability and is therefore less conservative than the conventional controller with constant gains. It is shown that the time-varying controller gains can be derived in terms of the measurable probability by solving a convex optimization problem via the semi-definite programme method. A simulation example is exploited to illustrate the effectiveness of the proposed design procedures.This work was supported in part by the Leverhulme Trust of the UK, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the National Natural Science Foundation of China under Grants 61028008, 61134009, 61074016, 61104125 and 60974030, the Shanghai Natural Science Foundation of China under Grant 10ZR1421200, and the Alexander von Humboldt Foundation of Germany

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Composite Disturbance Filtering: A Novel State Estimation Scheme for Systems With Multi-Source, Heterogeneous, and Isomeric Disturbances

    Full text link
    State estimation has long been a fundamental problem in signal processing and control areas. The main challenge is to design filters with ability to reject or attenuate various disturbances. With the arrival of big data era, the disturbances of complicated systems are physically multi-source, mathematically heterogenous, affecting the system dynamics via isomeric (additive, multiplicative and recessive) channels, and deeply coupled with each other. In traditional filtering schemes, the multi-source heterogenous disturbances are usually simplified as a lumped one so that the "single" disturbance can be either rejected or attenuated. Since the pioneering work in 2012, a novel state estimation methodology called {\it composite disturbance filtering} (CDF) has been proposed, which deals with the multi-source, heterogenous, and isomeric disturbances based on their specific characteristics. With the CDF, enhanced anti-disturbance capability can be achieved via refined quantification, effective separation, and simultaneous rejection and attenuation of the disturbances. In this paper, an overview of the CDF scheme is provided, which includes the basic principle, general design procedure, application scenarios (e.g. alignment, localization and navigation), and future research directions. In summary, it is expected that the CDF offers an effective tool for state estimation, especially in the presence of multi-source heterogeneous disturbances

    Improved results on fuzzy H ∞ filter design for T-S fuzzy systems

    Get PDF
    The fuzzy H ∞ filter design problem for T-S fuzzy systems with interval time-varying delay is investigated. The delay is considered as the time-varying delay being either differentiable uniformly bounded with delay derivative in bounded interval or fast varying (with no restrictions on the delay derivative). A novel Lyapunov-Krasovskii functional is employed and a tighter upper bound of its derivative is obtained. The resulting criterion thus has advantages over the existing ones since we estimate the upper bound of the derivative of Lyapunov-Krasovskii functional without ignoring some useful terms. A fuzzy H ∞ filter is designed to ensure that the filter error system is asymptotically stable and has a prescribed H ∞ performance level. An improved delay-derivative-dependent condition for the existence of such a filter is derived in the form of linear matrix inequalities (LMIs). Finally, numerical examples are given to show the effectiveness of the proposed method. © 2010 Jiyao An et al

    State Estimation for Time-Delay Systems with Markov Jump Parameters and Missing Measurements

    Get PDF
    This paper is concerned with the state estimation problem for a class of time-delay systems with Markovian jump parameters and missing measurements, considering the fact that data missing may occur in the process of transmission and its failure rates are governed by random variables satisfying certain probabilistic distribution. By employing a new Lyapunov function and using the convexity property of the matrix inequality, a sufficient condition for the existence of the desired state estimator for Markovian jump systems with missing measurements can be achieved by solving some linear matrix inequalities, which can be easily facilitated by using the standard numerical software. Furthermore, the gain of state estimator can also be derived based on the known conditions. Finally, a numerical example is exploited to demonstrate the effectiveness of the proposed method

    Stochastic Processes with Applications

    Get PDF
    Stochastic processes have wide relevance in mathematics both for theoretical aspects and for their numerous real-world applications in various domains. They represent a very active research field which is attracting the growing interest of scientists from a range of disciplines.This Special Issue aims to present a collection of current contributions concerning various topics related to stochastic processes and their applications. In particular, the focus here is on applications of stochastic processes as models of dynamic phenomena in research areas certain to be of interest, such as economics, statistical physics, queuing theory, biology, theoretical neurobiology, and reliability theory. Various contributions dealing with theoretical issues on stochastic processes are also included

    Control optimization, stabilization and computer algorithms for space applications

    Get PDF
    Research of control optimization, stochastic stability, and air traffic control problem

    Nonfragile H

    Get PDF
    This paper is concerned with the nonfragile H∞ control problem for stochastic systems with Markovian jumping parameters and random packet losses. The communication between the physical plant and controller is assumed to be imperfect, where random packet losses phenomenon occurs in a random way. Such a phenomenon is represented by a stochastic variable satisfying the Bernoulli distribution. The purpose is to design a nonfragile controller such that the resulting closed-loop system is stochastically mean square stable with a guaranteed H∞ performance level γ. By using the Lyapunov function approach, some sufficient conditions for the solvability of the previous problem are proposed in terms of linear matrix inequalities (LMIs), and a corresponding explicit parametrization of the desired controller is given. Finally, an example illustrating the effectiveness of the proposed approach is presented
    corecore