517 research outputs found

    Robust Numerical Methods for Singularly Perturbed Differential Equations--Supplements

    Full text link
    The second edition of the book "Roos, Stynes, Tobiska -- Robust Numerical Methods for Singularly Perturbed Differential Equations" appeared many years ago and was for many years a reliable guide into the world of numerical methods for singularly perturbed problems. Since then many new results came into the game, we present some selected ones and the related sources.Comment: arXiv admin note: text overlap with arXiv:1909.0827

    Fully Adaptive Newton-Galerkin Methods for Semilinear Elliptic Partial Differential Equations

    Full text link
    In this paper we develop an adaptive procedure for the numerical solution of general, semilinear elliptic problems with possible singular perturbations. Our approach combines both a prediction-type adaptive Newton method and an adaptive finite element discretization (based on a robust a posteriori error analysis), thereby leading to a fully adaptive Newton-Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for different examples

    A Numerical Slow Manifold Approach to Model Reduction for Optimal Control of Multiple Time Scale ODE

    Full text link
    Time scale separation is a natural property of many control systems that can be ex- ploited, theoretically and numerically. We present a numerical scheme to solve optimal control problems with considerable time scale separation that is based on a model reduction approach that does not need the system to be explicitly stated in singularly perturbed form. We present examples that highlight the advantages and disadvantages of the method

    Asymptotic Expansions for Stationary Distributions of Perturbed Semi-Markov Processes

    Full text link
    New algorithms for computing of asymptotic expansions for stationary distributions of nonlinearly perturbed semi-Markov processes are presented. The algorithms are based on special techniques of sequential phase space reduction, which can be applied to processes with asymptotically coupled and uncoupled finite phase spaces.Comment: 83 page

    H ? filtering for stochastic singular fuzzy systems with time-varying delay

    Get PDF
    This paper considers the H? filtering problem for stochastic singular fuzzy systems with timevarying delay. We assume that the state and measurement are corrupted by stochastic uncertain exogenous disturbance and that the system dynamic is modeled by Ito-type stochastic differential equations. Based on an auxiliary vector and an integral inequality, a set of delay-dependent sufficient conditions is established, which ensures that the filtering error system is e?t - weighted integral input-to-state stable in mean (iISSiM). A fuzzy filter is designed such that the filtering error system is impulse-free, e?t -weighted iISSiM and the H? attenuation level from disturbance to estimation error is belowa prescribed scalar.Aset of sufficient conditions for the solvability of the H? filtering problem is obtained in terms of a new type of Lyapunov function and a set of linear matrix inequalities. Simulation examples are provided to illustrate the effectiveness of the proposed filtering approach developed in this paper
    • …
    corecore