147 research outputs found

    On Energy Efficiency of Switched-Capacitor Converters

    Get PDF
    published_or_final_versio

    IEEE Access Special Section Editorial: Recent Advances on Hybrid Complex Networks: Analysis and Control

    Get PDF
    Complex networks typically involve multiple disciplines due to network dynamics and their statistical nature. When modeling practical networks, both impulsive effects and logical dynamics have recently attracted increasing attention. Hence, it is of interest and importance to consider hybrid complex networks with impulsive effects and logical dynamics. Relevant research is prevalent in cells, ecology, social systems, and communication engineering. In hybrid complex networks, numerous nodes are coupled through networks and their properties usually lead to complex dynamic behaviors, including discrete and continuous dynamics with finite values of time and state space. Generally, continuous and discrete sections of the systems are described by differential and difference equations, respectively. Logical networks are used to model the systems where time and state space take finite values. Although interesting results have been reported regarding hybrid complex networks, the analysis methods and relevant results could be further improved with respect to conservative impulsive delay inequalities and reproducibility of corresponding stability or synchronization criteria. Therefore, it is necessary to devise effective approaches to improve the analysis method and results dealing with hybrid complex networks

    Guest Editorial Circuits and Systems for Smart Agriculture and Healthy Foods

    Get PDF
    This Special Issue of the IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS (JETCAS) is dedicated to Circuits and Systems applied to innovative products for the Agriculture and Food value chain

    Design and application of reconfigurable circuits and systems

    No full text
    Open Acces

    Recent Advances in Neural Recording Microsystems

    Get PDF
    The accelerating pace of research in neuroscience has created a considerable demand for neural interfacing microsystems capable of monitoring the activity of large groups of neurons. These emerging tools have revealed a tremendous potential for the advancement of knowledge in brain research and for the development of useful clinical applications. They can extract the relevant control signals directly from the brain enabling individuals with severe disabilities to communicate their intentions to other devices, like computers or various prostheses. Such microsystems are self-contained devices composed of a neural probe attached with an integrated circuit for extracting neural signals from multiple channels, and transferring the data outside the body. The greatest challenge facing development of such emerging devices into viable clinical systems involves addressing their small form factor and low-power consumption constraints, while providing superior resolution. In this paper, we survey the recent progress in the design and the implementation of multi-channel neural recording Microsystems, with particular emphasis on the design of recording and telemetry electronics. An overview of the numerous neural signal modalities is given and the existing microsystem topologies are covered. We present energy-efficient sensory circuits to retrieve weak signals from neural probes and we compare them. We cover data management and smart power scheduling approaches, and we review advances in low-power telemetry. Finally, we conclude by summarizing the remaining challenges and by highlighting the emerging trends in the field

    Education and Research Integration of Emerging Multidisciplinary Medical Devices Security

    Get PDF
    Traditional embedded systems such as secure smart cards and nano-sensor networks have been utilized in various usage models. Nevertheless, emerging secure deeply-embedded systems, e.g., implantable and wearable medical devices, have comparably larger “attack surface”. Specifically, with respect to medical devices, a security breach can be life-threatening (for which adopting traditional solutions might not be practical due to tight constraints of these often-battery-powered systems), and unlike traditional embedded systems, it is not only a matter of financial loss. Unfortunately, although emerging cryptographic engineering research mechanisms for such deeply-embedded systems have started solving this critical, vital problem, university education (at both graduate and undergraduate level) lags comparably. One of the pivotal reasons for such a lag is the multi-disciplinary nature of the emerging security bottlenecks. Based on the aforementioned motivation, in this work, at Rochester Institute of Technology, we present an effective research and education integration strategy to overcome this issue in one of the most critical deeply-embedded systems, i.e., medical devices. Moreover, we present the results of two years of implementation of the presented strategy at graduate-level through fault analysis attacks, a variant of side-channel attacks. We note that the authors also supervise an undergraduate student and the outcome of the presented work has been assessed for that student as well; however, the emphasis is on graduate-level integration. The results of the presented work show the success of the presented methodology while pinpointing the challenges encountered compared to traditional embedded system security research/teaching integration of medical devices security. We would like to emphasize that our integration approaches are general and scalable to other critical infrastructures as well
    corecore