7 research outputs found

    Distributed Power Allocation for Sink-Centric Clusters in Multiple Sink Wireless Sensor Networks

    Get PDF
    Due to the battery resource constraints, saving energy is a critical issue in wireless sensor networks, particularly in large sensor networks. One possible solution is to deploy multiple sink nodes simultaneously. Another possible solution is to employ an adaptive clustering hierarchy routing scheme. In this paper, we propose a multiple sink cluster wireless sensor networks scheme which combines the two solutions, and propose an efficient transmission power control scheme for a sink-centric cluster routing protocol in multiple sink wireless sensor networks, denoted as MSCWSNs-PC. It is a distributed, scalable, self-organizing, adaptive system, and the sensor nodes do not require knowledge of the global network and their location. All sinks effectively work out a representative view of a monitored region, after which power control is employed to optimize network topology. The simulations demonstrate the advantages of our new protocol

    Transport mechanism for wireless micro sensor network

    Get PDF
    Wireless sensor network (WSN) is a wireless ad hoc network that consists of very large number of tiny sensor nodes communicating with each other with limited power and memory constrain. WSN demands real-time routing which requires messages to be delivered within their end-to-end deadlines (packet lifetime). This report proposes a novel real-time with load distribution (RTLD) routing protocol that provides real time data transfer and efficient distributed energy usage in WSN. The RTLD routing protocol ensures high packet throughput with minimized packet overhead and prolongs the lifetime of WSN. The routing depends on optimal forwarding (OF) decision that takes into account of the link quality, packet delay time and the remaining power of next hop sensor nodes. RTLD routing protocol possesses built-in security measure. The random selection of next hop node using location aided routing and multi-path forwarding contributes to built-in security measure. RTLD routing protocol in WSN has been successfully studied and verified through simulation and real test bed implementation. The performance of RTLD routing in WSN has been compared with the baseline real-time routing protocol. The simulation results show that RTLD experiences less than 150 ms packet delay to forward a packet through 10 hops. It increases the delivery ratio up to 7 % and decreases power consumption down to 15% in unicast forwarding when compared to the baseline routing protocol. However, multi-path forwarding in RTLD increases the delivery ratio up to 20%. In addition, RTLD routing spreads out and balances the forwarding load among sensor nodes towards the destination and thus prolongs the lifetime of WSN by 16% compared to the baseline protocol. The real test bed experiences only slight differences of about 7.5% lower delivery ratio compared to the simulation. The test bed confirms that RTLD routing protocol can be used in many WSN applications including disasters fighting, forest fire detection and volcanic eruption detection

    A Novel Communication Approach For Wireless Mobile Smart Objects

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2007Telsiz ağlar gezgin kullanıcılara nerede olduklarına bağlı olmadan her yerde iletişim kurma ve bilgiye erişim imkanı sağlar. Hiçbir sabit altyapıya gerek duymadan bu imkanı sağlayan tasarsız ağların zaman içinde gelişmesiyle, askeri, ticari ve özel maksatlar için tercih edilir hale gelmiştir. Diğer yandan, bilimsel ve teknolojik gelişmeler ağ elemanlarını daha küçük ve ucuz hale getirdikçe birçok uygulamanın vazgeçilmez parçaları olmuşlardır. Bu ağ elemanları, taşıyıcılara (örneğin gemiler, uçaklar, büyük araçlar, arabalar, insanlar, hayvanlar, vb.) monteli nesneler veya kendi taşıyıcısı olan (aktörler, duyargalar) nesneler olabilir. Fakat bu ağ elemanları ve uygulamalarında bir takım zorluklar yaşanmaktadır. Bu tezde, gezgin tasarsız ve duyarga ağlardaki yaşanan zorlukları ve beklentileri dikkate alarak, gezgin tasarsız ve duyarga ağlar için yeni bir özgün, durumsuz veri akış yaklaşımı ve yönlendirme algoritması önerilmektedir. Durumsuz Ağırlıklı Yönlendirme (DAY, “Stateless Weighted Routing – SWR”) algoritması olarak adlandırdığımız bu algoritma, diğer yöntemlere göre daha az yönlendirme yükü, daha az enerji tüketimi, daha az yol oluşturma gecikmesi sağlamaktadır. Veri, varışa doğru, çoklu yollar üzerinden taşınmaktadır. Çoklu yol oluşturma, güvenirliği sağlamakta, boşluk problemini büyük oranda çözmekte ve en kısa yolu da içeren daha gürbüz yollar oluşmasını sağlamaktadır. DAY aynı zamanda büyük ölçekli ağlarda da uygulanabilir. Bu amaçla, birden fazla veri toplanma düğümü (sink) içeren sürümü olan Çoklu Veri Toplanma Düğümlü- Durumsuz Ağırlıklı Yönlendirme (ÇVTD-DAY - “Multiple Sink-Stateless Weighted Routing - MS-SWR”) yöntemi de büyük ölçekli tasarsız ve duyarga ağları için önerilmiştir. ÇVTD-DAY yöntemi, DAY yönteminde herhangi bir yöntemsel ve algoritmik değişiklik yapmadan birden fazla veri toplanma düğümünün olduğu ağlarda uygulanabilir. Hem DAY, hem ÇVTD-DAY’nin başarımı benzetimler ile ölçüldü. Elde edilen sonuçlar, DAY ‘nin gezgin tasarsız ve duyarga ağlar için istenenleri karşıladığını, karşılaştırılan diğer yöntemlere göre üstün olduğunu ve olası en iyi çözüme yakınlığını, öte yandan ÇVTD-DAY‘nin de büyük ölçekli ağlarda uygulanabilir olduğunu göstermektedir.Wireless networks provide mobile user with ubiquitous communication capability and information access regardless of location. Mobile ad hoc networks, that manage it without a need to infrastructure networks, as evolved in time, become more preferable for military, commercial and special purposes. On the other hand, technological advances made network components smaller and cheaper. These network components involves a wide variety of objects such as objects mounted on crafts/platforms (e.g. ships, aircrafts, trucks, cars, humans, animals), and objects that have their own platforms (e.g. actuators, sensor nodes). However, these network components and their involved applications exhibit some challenges to implement. By considering the challenges and expectations of mobile ad hoc networks and sensor network, we propose a novel stateless data flow approach and routing algorithm namely Stateless Weighted Routing (SWR) for mobile ad hoc and sensor networks. The SWR has low routing overhead providing very low energy consumption, and has low route construction delay than other proposed schemes. Multiple paths to the destination are established for data transmission. Constructing multiple paths provides reliability, eliminates the void problem substantially, and provides more robust routes including the shortest path. The SWR is applicable to large scale networks. We propose the multiple-sink version of the SWR that is namely MS-SWR, to be used in large scale ad hoc and sensor networks with multiple sinks. The MS-SWR can be used with multiple sinks without any functional and algorithmic modification in the SWR protocol. The performance of the SWR and the MS-SWR are evaluated by simulations. The performance of the system shows that the SWR satisfies the requirements of mobile ad hoc networks and outperforms the existing algorithms. The SWR is also tested against a hypothetic routing scheme that finds the shortest available path with no cost in order to compare the performance of the SWR against such an ideal case. Tests also indicate that MS-SWR is scalable for large scale networks.DoktoraPh

    Self-organizing Network Optimization via Placement of Additional Nodes

    Get PDF
    Das Hauptforschungsgebiet des Graduiertenkollegs "International Graduate School on Mobile Communication" (GS Mobicom) der Technischen Universität Ilmenau ist die Kommunikation in Katastrophenszenarien. Wegen eines Desasters oder einer Katastrophe können die terrestrischen Elementen der Infrastruktur eines Kommunikationsnetzwerks beschädigt oder komplett zerstört werden. Dennoch spielen verfügbare Kommunikationsnetze eine sehr wichtige Rolle während der Rettungsmaßnahmen, besonders für die Koordinierung der Rettungstruppen und für die Kommunikation zwischen ihren Mitgliedern. Ein solcher Service kann durch ein mobiles Ad-Hoc-Netzwerk (MANET) zur Verfügung gestellt werden. Ein typisches Problem der MANETs ist Netzwerkpartitionierung, welche zur Isolation von verschiedenen Knotengruppen führt. Eine mögliche Lösung dieses Problems ist die Positionierung von zusätzlichen Knoten, welche die Verbindung zwischen den isolierten Partitionen wiederherstellen können. Hauptziele dieser Arbeit sind die Recherche und die Entwicklung von Algorithmen und Methoden zur Positionierung der zusätzlichen Knoten. Der Fokus der Recherche liegt auf Untersuchung der verteilten Algorithmen zur Bestimmung der Positionen für die zusätzlichen Knoten. Die verteilten Algorithmen benutzen nur die Information, welche in einer lokalen Umgebung eines Knotens verfügbar ist, und dadurch entsteht ein selbstorganisierendes System. Jedoch wird das gesamte Netzwerk hier vor allem innerhalb eines ganz speziellen Szenarios - Katastrophenszenario - betrachtet. In einer solchen Situation kann die Information über die Topologie des zu reparierenden Netzwerks im Voraus erfasst werden und soll, natürlich, für die Wiederherstellung mitbenutzt werden. Dank der eventuell verfügbaren zusätzlichen Information können die Positionen für die zusätzlichen Knoten genauer ermittelt werden. Die Arbeit umfasst eine Beschreibung, Implementierungsdetails und eine Evaluierung eines selbstorganisierendes Systems, welche die Netzwerkwiederherstellung in beiden Szenarien ermöglicht.The main research area of the International Graduate School on Mobile Communication (GS Mobicom) at Ilmenau University of Technology is communication in disaster scenarios. Due to a disaster or an accident, the network infrastructure can be damaged or even completely destroyed. However, available communication networks play a vital role during the rescue activities especially for the coordination of the rescue teams and for the communication between their members. Such a communication service can be provided by a Mobile Ad-Hoc Network (MANET). One of the typical problems of a MANET is network partitioning, when separate groups of nodes become isolated from each other. One possible solution for this problem is the placement of additional nodes in order to reconstruct the communication links between isolated network partitions. The primary goal of this work is the research and development of algorithms and methods for the placement of additional nodes. The focus of this research lies on the investigation of distributed algorithms for the placement of additional nodes, which use only the information from the nodes’ local environment and thus form a self-organizing system. However, during the usage specifics of the system in a disaster scenario, global information about the topology of the network to be recovered can be known or collected in advance. In this case, it is of course reasonable to use this information in order to calculate the placement positions more precisely. The work provides the description, the implementation details and the evaluation of a self-organizing system which is able to recover from network partitioning in both situations

    Opportunistic cooperation in wireless networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Guaranteed delivery for geographical anycasting in wireless multi-sink sensor and sensor-actor networks

    Get PDF
    Abstract — In the anycasting problem, a sensor wants to report event information to one of sinks or actors. We describe the first localized anycasting algorithms that guarantee delivery for connected multi-sink sensor-actor networks. Let S(x) be the closest actor/sink to sensor x, and |xS(x) | be distance between them. In greedy phase, a node s forwards the packet to its neighbor v that minimizes the ratio of cost cost(|sv|) of sending packet to v (here we specifically apply hop-count and power consumption metrics) over the reduction in distance (|sS(s)|−|vS(v)|) to the closest actor/sink. A variant is to forward to the first neighbor on the shortest weighted path toward v. If none of neighbors reduces that distance then recovery mode is invoked. It is done by face traversal toward the nearest connected actor/sink, where edges are replaced by paths optimizing given cost. A hop count based and two variants of localized power aware anycasting algorithms are described. We prove guaranteed delivery property analytically and experimentally. I
    corecore