6,173 research outputs found

    Principal arc analysis on direct product manifolds

    Get PDF
    We propose a new approach to analyze data that naturally lie on manifolds. We focus on a special class of manifolds, called direct product manifolds, whose intrinsic dimension could be very high. Our method finds a low-dimensional representation of the manifold that can be used to find and visualize the principal modes of variation of the data, as Principal Component Analysis (PCA) does in linear spaces. The proposed method improves upon earlier manifold extensions of PCA by more concisely capturing important nonlinear modes. For the special case of data on a sphere, variation following nongeodesic arcs is captured in a single mode, compared to the two modes needed by previous methods. Several computational and statistical challenges are resolved. The development on spheres forms the basis of principal arc analysis on more complicated manifolds. The benefits of the method are illustrated by a data example using medial representations in image analysis.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS370 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Low-Dimensional Representation for Robust Partial Isometric Correspondences Computation

    Full text link
    Intrinsic isometric shape matching has become the standard approach for pose invariant correspondence estimation among deformable shapes. Most existing approaches assume global consistency, i.e., the metric structure of the whole manifold must not change significantly. While global isometric matching is well understood, only a few heuristic solutions are known for partial matching. Partial matching is particularly important for robustness to topological noise (incomplete data and contacts), which is a common problem in real-world 3D scanner data. In this paper, we introduce a new approach to partial, intrinsic isometric matching. Our method is based on the observation that isometries are fully determined by purely local information: a map of a single point and its tangent space fixes an isometry for both global and the partial maps. From this idea, we develop a new representation for partial isometric maps based on equivalence classes of correspondences between pairs of points and their tangent spaces. From this, we derive a local propagation algorithm that find such mappings efficiently. In contrast to previous heuristics based on RANSAC or expectation maximization, our method is based on a simple and sound theoretical model and fully deterministic. We apply our approach to register partial point clouds and compare it to the state-of-the-art methods, where we obtain significant improvements over global methods for real-world data and stronger guarantees than previous heuristic partial matching algorithms.Comment: 17 pages, 12 figure

    Chaotic saddles in nonlinear modulational interactions in a plasma

    Full text link
    A nonlinear model of modulational processes in the subsonic regime involving a linearly unstable wave and two linearly damped waves with different damping rates in a plasma is studied numerically. We compute the maximum Lyapunov exponent as a function of the damping rates in a two-parameter space, and identify shrimp-shaped self-similar structures in the parameter space. By varying the damping rate of the low-frequency wave, we construct bifurcation diagrams and focus on a saddle-node bifurcation and an interior crisis associated with a periodic window. We detect chaotic saddles and their stable and unstable manifolds, and demonstrate how the connection between two chaotic saddles via coupling unstable periodic orbits can result in a crisis-induced intermittency. The relevance of this work for the understanding of modulational processes observed in plasmas and fluids is discussed.Comment: Physics of Plasmas, in pres

    Characterizing dynamics with covariant Lyapunov vectors

    Full text link
    A general method to determine covariant Lyapunov vectors in both discrete- and continuous-time dynamical systems is introduced. This allows to address fundamental questions such as the degree of hyperbolicity, which can be quantified in terms of the transversality of these intrinsic vectors. For spatially extended systems, the covariant Lyapunov vectors have localization properties and spatial Fourier spectra qualitatively different from those composing the orthonormalized basis obtained in the standard procedure used to calculate the Lyapunov exponents.Comment: 4 pages, 3 figures, submitted to Physical Review letter

    Rank-preserving geometric means of positive semi-definite matrices

    Full text link
    The generalization of the geometric mean of positive scalars to positive definite matrices has attracted considerable attention since the seminal work of Ando. The paper generalizes this framework of matrix means by proposing the definition of a rank-preserving mean for two or an arbitrary number of positive semi-definite matrices of fixed rank. The proposed mean is shown to be geometric in that it satisfies all the expected properties of a rank-preserving geometric mean. The work is motivated by operations on low-rank approximations of positive definite matrices in high-dimensional spaces.Comment: To appear in Linear Algebra and its Application

    What is Time? A New Mathematico- Physical and Information Theoretic Approach

    Full text link
    A New Mathematico-Physical and Information Theoretic Approach Examination of the available hard core information to firm up the process of unification of quantum and gravitational physics leads to the conclusion that for achieving this synthesis, major paradigm shifts are needed as also the answering of `What is Time?' The object of this submission is to point out the means of achieving such a grand synthesis. Currently the main pillars supporting the edifice of physics are: (i) The geometrical concepts of space- time-gravitation, (ii) The dynamic concepts involving quantum of action, (iii) Statistical thermodynamic concepts, heat and entropy, (iv) Mathematical concepts, tools and techniques serving both as a grand plan and the means of calculation and last but not least v)Controlled observation, pertinent experimentation as the final arbiter. In making major changes the author is following Dirac's dictum "....make changes without sacrificing the existing superstructure". It is shown that time can be treated as a parameter rather than an additional dimension. A new entity called "Ekon" having the properties of both space and momentum is introduced along with a space called "Chalachala". The requisite connection with Einstein's formulation and mathematical aperatus required have been formulated which is highly suited for the purpose. The primacy of the Plancks quantum of action and its representation geometrically as a twist is introduced. The practical and numerical estimates have been made and applied to evaluation of the gravitational constant in a a seperate submission "Estimations of gravitational constant from CMBR data".Comment: 29 pages, pdf fil
    corecore