153 research outputs found

    A Magnetic Resonance Realization of Decoherence-Free Quantum Computation

    Full text link
    We report the realization, using nuclear magnetic resonance techniques, of the first quantum computer that reliably executes an algorithm in the presence of strong decoherence. The computer is based on a quantum error avoidance code that protects against a class of multiple-qubit errors. The code stores two decoherence-free logical qubits in four noisy physical qubits. The computer successfully executes Grover's search algorithm in the presence of arbitrarily strong engineered decoherence. A control computer with no decoherence protection consistently fails under the same conditions.Comment: 5 pages with 3 figures, revtex4, accepted by Physical Review Letters; v2 minor revisions to conten

    Quantum search algorithms, quantum wireless, and a low-complexity maximum likelihood iterative quantum multi-user detector design

    No full text
    The high complexity of numerous optimal classic communication schemes, such as the maximum likelihood (ML) multiuser detector (MUD), often prevents their practical implementation. In this paper, we present an extensive review and tutorial on quantum search algorithms (QSA) and their potential applications, and we employ a QSA that finds the minimum of a function in order to perform optimal hard MUD with a quadratic reduction in the computational complexity when compared to that of the ML MUD. Furthermore, we follow a quantum approach to achieve the same performance as the optimal soft-input soft-output classic detectors by replacing them with a quantum algorithm, which estimates the weighted sum of a function’s evaluations. We propose a soft-input soft-output quantum-assisted MUD (QMUD) scheme, which is the quantum-domain equivalent of the ML MUD. We then demonstrate its application using the design example of a direct-sequence code division multiple access system employing bit-interleaved coded modulation relying on iterative decoding, and compare it with the optimal ML MUD in terms of its performance and complexity. Both our extrinsic information transfer charts and bit error ratio curves show that the performance of the proposed QMUD and that of the optimal classic MUD are equivalent, but the QMUD’s computational complexity is significantly lower

    Error Avoiding Quantum Codes and Dynamical Stabilization of Grover's Algorithm

    Get PDF
    An error avoiding quantum code is presented which is capable of stabilizing Grover's quantum search algorithm against a particular class of coherent errors. This error avoiding code consists of states only which are factorizable in the computational basis. Furthermore, its redundancy is smaller than the one which is achievable with a general error correcting quantum code saturating the quantum Hamming bound. The fact that this code consists of factorizable states only may offer advantages for the implementation of quantum gates in the error free subspace

    Elementary Landscape Decomposition of the Test Suite Minimization Problem

    Get PDF
    Chicano, F., Ferrer J., & Alba E. (2011). Elementary Landscape Decomposition of the Test Suite Minimization Problem. In Proceedings of Search Based Software Engineering, Szeged, Hungary, September 10-12, 2011. pp. 48–63.Landscape theory provides a formal framework in which combinatorial optimization problems can be theoretically characterized as a sum of a special kind of landscape called elementary landscape. The decomposition of the objective function of a problem into its elementary components provides additional knowledge on the problem that can be exploited to create new search methods for the problem. We analyze the Test Suite Minimization problem in Regression Testing from the point of view of landscape theory. We find the elementary landscape decomposition of the problem and propose a practical application of such decomposition for the search.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This research has been partially funded by the Spanish Ministry of Science and Innovation and FEDER under contract TIN2008-06491- C04-01 (the M∗ project) and the Andalusian Government under contract P07- TIC-03044 (DIRICOM project)

    Quantum Algorithm for Molecular Properties and Geometry Optimization

    Get PDF
    It is known that quantum computers, if available, would allow an exponential decrease in the computational cost of quantum simulations. We extend this result to show that the computation of molecular properties (energy derivatives) could also be sped up using quantum computers. We provide a quantum algorithm for the numerical evaluation of molecular properties, whose time cost is a constant multiple of the time needed to compute the molecular energy, regardless of the size of the system. Molecular properties computed with the proposed approach could also be used for the optimization of molecular geometries or other properties. For that purpose, we discuss the benefits of quantum techniques for Newton's method and Householder methods. Finally, global minima for the proposed optimizations can be found using the quantum basin hopper algorithm, which offers an additional quadratic reduction in cost over classical multi-start techniques.Comment: 6 page

    Quantum Applications In Political Science

    Get PDF
    Undergraduate Research ScholarshipThis paper will show the current state of quantum computation and its application as a political science research method. It will look at contemporary empirical literature to assess the current state of the method in both political science and computer science. Then, by assessing the state of quantum computation, this paper will make predictions concerning quantum computation as a research tool and also assess its capability as a catalyst for international diplomacy and discourse. Quantum computation is an emerging technology with increasing scientific attention. This paper will use IBM’s quantum computer, accessed through the cloud, to model and execute quantum algorithms that show the utility for political science research. Furthermore, through the base mathematics of common quantum algorithms, this paper will show how these algorithms can be expanded. This paper finds that quantum computation is a valuable tool with remarkable potential. However, quantum computing has its limitations and currently resides in an important juncture that will decide whether technology involving it will be resigned as a niche theoretical tool or be continued to be developed into a mainstream technology.No embargoAcademic Major: World Politic
    corecore