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Quantum Algorithm for Molecular Properties and Geometry Optimization

Ivan Kassal∗ and Alán Aspuru-Guzik†

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
(Dated: August 13, 2009)

It is known that quantum computers, if available, would allow an exponential decrease in the
computational cost of quantum simulations. We extend this result to show that the computation
of molecular properties (energy derivatives) could also be sped up using quantum computers. We
provide a quantum algorithm for the numerical evaluation of molecular properties, whose time cost
is a constant multiple of the time needed to compute the molecular energy, regardless of the size of
the system. Molecular properties computed with the proposed approach could also be used for the
optimization of molecular geometries or other properties. For that purpose, we discuss the bene�ts
of quantum techniques for Newton's method and Householder methods. Finally, global minima for
the proposed optimizations can be found using the quantum basin hopper algorithm, which o�ers
an additional quadratic reduction in cost over classical multi-start techniques.

Applying ab initio methods of quantum chemistry
to particular problems often requires computing deriva-
tives of the molecular energy. For instance, obtaining a
molecule's electric properties relies on the ability to com-
pute derivatives with respect to external electromagnetic
�elds. Likewise, computing the gradient of the molecular
energy with respect to the nuclear coordinates is the most
commonly used method for the proper characterization of
potential energy surfaces and for optimizing the geome-
try of all but the smallest molecules. The computation of
these kinds of derivatives, known as molecular properties,
is nowadays a routine matter when it comes to low-order
derivatives or small systems (or both). This is largely
due to advances in analytical gradient techniques, which
allow for explicit property evaluation without resorting
to numerical di�erentiation [1, 2, 3, 4, 5, 6, 7].

Nevertheless, the computation of higher-order deriva-
tives is often prohibitively expensive, even though such
derivatives are often needed. For example, third- and
fourth-order anharmonic constants are sometimes re-
quired to accurately compute a vibrational absorption
spectrum [3] or e�ciently determine the location of tran-
sition states on complex potential energy surfaces [6].
Other properties of interest, such as hyperpolarizabilities,
Raman intensities, or vibrational circular dichroism, are
also cubic or quartic derivatives. In this report, we show
that quantum computers, once available, will be able to
bypass some of the high cost of computing these proper-
ties. In particular, we show that any molecular property
can be evaluated on a quantum computer using resources
that, up to a small constant, are equal to those required
to compute the molecular energy once. We have previ-
ously characterized the advantage of quantum computers
at both computing molecular energies [8, 9] and simulat-
ing chemical reaction dynamics [10], and the present work
extends our program to molecular properties.

This paper begins with a brief overview of classical
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techniques for the evaluation of molecular properties,
both numerical and analytical. We then introduce the
quantum algorithm for molecular properties, and discuss
its advantages and disadvantages with respect to classi-
cal techniques. We conclude with geometry optimization
as a particular example, and we show that it can bene�t
from an additional quadratic speed-up through Grover's
search [11].

I. THE CLASSICAL METHODS

Given an external perturbation µ, the total molecular
electronic energy can be expanded in a Taylor series

E(µ) = E(0) + µ>E(1) +
1
2
µ>E(2)µ + . . . (1)

where the coe�cients E(n) are called the molecular prop-

erties and describe the response of the system to the
applied perturbation [7]. We consider time-independent
properties, which can be obtained by di�erentiating the
energy at µ = 0,

E(n) =
dnE

dµn

∣∣∣∣
0

. (2)

Many examples of useful derivatives can be given. For in-
stance, the derivatives with respect to the electric �eld F
are the permanent electric dipole, the static polarizabil-
ity, and the static hyperpolarizabilities of various orders:

dE

dF

∣∣∣∣
0

= −d,
d2E

dF2

∣∣∣∣
0

= −α,
d3E

dF3

∣∣∣∣
0

= −β, . . . (3)

where the subscript denotes di�erentiation at F = 0.
The derivatives with respect to nuclear coordinates R
include the forces on the nuclei and the force constants,
while mixed derivatives can provide information such as
Raman intensities [2].
On a classical computer, an energy derivative can be

evaluated either numerically or analytically, and we dis-
cuss each approach in turn.
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Figure 1: Obtaining a numerical gradient of a function de-
�ned on a d-dimensional space classically requires sampling
the function d + 1 times, once at the origin and once at a
distance h along each of the axes. Shown above are the sam-
ple points for the cases d = 1 through d = 3. The quantum
gradient algorithm can evaluate many sample points in super-
position, producing the same calculated gradient using only
one call to the function.

Numerical derivative techniques rely on computing the
value of the energy at several discrete points, and then
using those values to estimate the true derivative. The
simplest technique is �nite di�erence, which for the �rst
derivative in one dimension is the familiar formula,

dE

dµ

∣∣∣∣
0

≈ E(h)− E(0)
h

. (4)

In d dimensions, computing the gradient requires at least
d+1 evaluations of the energy, once at the origin and once
at a distance h along each axis (Fig. 1). Similarly, eval-
uating higher-order derivatives requires the knowledge of
the energy on a particular grid, with at least dn+1 points
for the nth derivative.
While numerical gradient techniques usually require

minimal e�ort to implement, they are occasionally sus-
ceptible to numerical instability, due to the ill-posedness
of numerical di�erentiation in general [12]. This is partic-
ularly problematic when using �nite-precision arithmetic,
where various rounding errors can accumulate and be
ampli�ed upon division by the small number h. The fact
that small errors in the evaluated function can lead to
large errors in the derivative a�ects ab initio electronic
structure methods insofar as they usually involve long
calculations with many potential sources of error, includ-
ing rounding and quadrature.
By contrast, analytic derivative techniques are those

that compute the derivative by direct evaluation of an
analytic expression. They were introduced in quantum
chemistry by Pulay [1], and have since largely supplanted
numerical procedures. They are numerically more stable
and, more importantly, they are usually faster as well.
Analytic gradient formulas exist for just about all elec-

tronic structure techniques and for most kinds of pertur-
bations. To illustrate the argument and establish the cor-
rect scaling, we will describe the particularly simple case
of derivatives of fully variational wavefunctions. We start
by writing the molecular energy as a function E(µ,λ(µ))
of the external perturbation µ and the wavefunction pa-
rameters λ(µ). These parameters, such as the con�g-
uration interaction coe�cients, completely describe the
electronic wavefunction. Although λ(µ) is a function of
µ, for simplicity we will write only λ. The energy is

said to be fully variational with respect to λ if, for any
given µ, λ assumes the value λ∗ such that the variational
condition holds:

∂E(µ,λ)
∂λ

∣∣∣∣
∗

= 0, (5)

where ∗ indicates λ = λ∗. In that case we can write
E(µ) = E (µ,λ∗).
For fully variational wavefunctions, the gradient with

respect to µ is given by

dE(µ)
dµ

=
∂E(µ,λ)

∂µ

∣∣∣∣
∗

+
∂E(µ,λ)

∂λ

∣∣∣∣
∗

∂λ

∂µ
=

=
∂E(µ,λ)

∂µ

∣∣∣∣
∗

=
〈

λ∗
∣∣∣∣∂H∂µ

∣∣∣∣λ∗〉 (6)

where we have used the variational condition and the
Hellman-Feynman theorem. Since one need not know
the �rst-order wavefunction response ∂λ

∂µ , computing the

gradient is, to within a small constant factor [6], as hard
as computing the energy. That is, once |λ∗〉 is available,
calculating the expectation value of the Hamiltonian has
approximately the same computational cost as calculat-
ing its derivative. However, computing the second deriva-
tive matrix does require the knowledge of the �rst-order
wavefunction response. In fact, as a direct consequence of
Wigner's 2n+1 rule of perturbation theory, one needs to
know the �rst n wavefunction responses in order to calcu-
late the (2n + 1)th derivative. Computing the responses
often becomes the bottleneck, and it is what leads to a
higher asymptotic cost of higher-order derivatives. While
the gradient requires about the same resources as the en-
ergy, the second and third derivatives require resources
that scale as O(d) times the cost of computing the en-
ergy (where d is the number of degrees of freedom, i.e.,
the dimension of µ) [6]. This scaling comes about be-
cause O(d) time is required to compute the matrix ∂λ

∂µ .

Likewise, the scaling of the (2n+1)th derivative is O(dn),
because the bottleneck becomes the computation of the
nth order wavefunction response. In other words, the
computational cost of �nding the nth analytical deriva-
tive is O(dbn/2c), roughly a quadratic speed-up over the
O(dn) numerical methods of the same degree.
The fact that the scaling of derivative techniques, both

numerical and analytical, depends on d has meant that
these techniques are often restricted to small systems [29].
This is most acutely true of the molecular Hessian, which
is often beyond reach, even though the gradient is rou-
tinely accessible. We now show that if quantum com-
puters were available, the cost of the higher derivatives
would no longer be prohibitive.

II. THE QUANTUM ALGORITHM

The quantum algorithm for molecular properties is
based on Jordan's quantum gradient estimation algo-
rithm [13]. Jordan's method can numerically compute
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Classical Quantum

Derivative Numerical Analytical Numerical

dE
dµ

d + 1 O (1) 1
d
2E
dµ2 d2 + 1 O (d) 2
d
3E
dµ3 d3 + 1 O (d) 4

...
...

...
...

d
nE
dµn dn + 1 O

“
dbn/2c

”
2n−1

Table I: Time resources required by various techniques of com-
puting molecular properties, in terms of the cost of computing
the energy. For example, the entry �d + 1� means that com-
puting the property requires d+1 evaluations of the molecular
energy, while the entries in the �Analytical� column indicate
comparable computational e�ort. E is the total electronic
energy, µ is the external perturbation, and d is the dimen-
sion of µ. All the derivatives are evaluated at µ = 0. On
classical computers, the numerical scalings correspond to the
simplest �nite-di�erence scheme. Analytical techniques are
the ones that evaluate the derivative directly (the exponent
bn/2c comes from Wigner's 2n+1 rule). On a quantum com-
puter, the quantum gradient estimation algorithm is used. It
should be noted that on a quantum computer, the number of
evaluations of E needed for any derivative is independent of
d, and thus of the size of the system.

the gradient of any function F , given a black box (ora-
cle) that computes the value of F for an arbitrary input.
In particular, the algorithm can evaluate the gradient
using a single query to F , regardless of the number of
dimensions d of the domain of F . By contrast, the sim-
plest classical �nite-di�erence scheme would require d+1
queries to F (see Fig. 1). The speed-up is essentially
achieved by being able to sample along all the d dimen-
sions in superposition. We apply Jordan's algorithm to
the computation of molecular properties by specifying a
way to compute the energy on a quantum computer as
well as by outlining how to obtain higher derivatives. In
this section, we describe the algorithm, its application to
quantum chemistry, and �nally argue that a return to
numerical techniques for molecular properties would be
justi�ed if quantum computers became feasible.

We assume that the molecular energy is a smooth,

bounded function of the perturbation, E :
[
−h

2 ,
h
2

]d →
[Emin, Emax], where a small h is chosen so that E varies
su�ciently slowly over the domain. For convenience, we
express the perturbations in units such that h is unitless
and such that the bounds are the same along all of the
axes. We also assume that we have a black box for E,
which, given a perturbation µ, outputs the energy E(µ).
The precise nature of the algorithm inside the black box
is not important, so long as it can be implemented on
a quantum computer. In particular, any classical tech-
nique of electronic-structure theory can be converted into
a quantum algorithm [14]. In Sec. III, we will discuss
possible realizations of the black box, including the use
of quantum simulation algorithms, which o�er a signi�-

cant improvement over classical ones.
We begin by choosing the number n of bits of precision

that we desire in the �nal gradient. Jordan's algorithm
starts in an equal superposition on d registers of n qubits
each (nd qubits total) [14]:

1√
Nd

N−1∑
k1=0

· · ·
N−1∑
kd=0

|k1〉 · · · |kd〉 =
1√
Nd

∑
k

|k〉 , (7)

where N = 2n, the states |ki〉 are integers on n qubits
represented in binary, and |k〉 is a d-dimensional vector
of all the |k〉's.
We use this state as an input for the black box for E,

which will, for every integer-vector |k〉 in the superposi-
tion, append a phase proportional to the energy E(µ) at
perturbation µ = h(k−N/2)/N (where N is the vector
(N,N, . . . , N) and serves to center the sampling region on
the origin). To achieve maximum precision with fewest
qubits, one needs an estimate m of the largest magnitude
of any of the �rst derivatives of E. Then, the energy eval-
uated by the black box is scaled by a factor 2πN/hm.
Because the black box operates on all the terms in the
superposition at once, a single call results in the state

1√
Nd

∑
k

exp
[

2πiN
hm

E

(
h

N
(k−N/2)

)]
|k〉 ≈

≈ 1√
Nd

∑
k

exp
[

2πiN
hm

(
E(0) +

h

N
(k−N/2) · dE

dµ

∣∣∣∣
0

)]
|k〉 .

(8)

The neglect of terms quadratic in h and higher is a valid
approximation for su�ciently small h (the error caused
by higher-order terms is discussed in [13] and is only poly-
nomial). The �nal state is separable and equals

eiΦ(0)

√
Nd

N−1∑
k1=0

exp
[

2πi
m
k1

∂E

∂µ1

∣∣∣∣
0

]
|k1〉 · · ·

· · ·
N−1∑
kd=0

exp
[

2πi
m
kd

∂E

∂µd

∣∣∣∣
0

]
|kd〉 , (9)

with phase

Φ(0) = 2π
(
N

hm
E(0)− N

2m
· dE
dµ

∣∣∣∣
0

)
. (10)

Applying the inverse quantum Fourier transform [14]
to each of the d registers results in the gradient

eiΦ(0)

∣∣∣∣Nm ∂E

∂µ1

∣∣∣∣
0

〉
· · ·
∣∣∣∣Nm ∂E

∂µd

∣∣∣∣
0

〉
= eiΦ(0)

∣∣∣∣Nm dE

dµ

∣∣∣∣
0

〉
.

(11)
The scaling factor N/m ensures that N

m
dE
dµ is an integer-

vector with n bits of precision along each dimension. It
should be reiterated that a single call to E was made, as
opposed to the d+ 1 that would be needed in the case of
numerical di�erentiation by �nite di�erence.
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Overall, the gradient estimation algorithm produces
the transformation

|0〉 −→ eiΦ(0)

∣∣∣∣Nm dE

dµ

∣∣∣∣
0

〉
. (12)

We can compute the Hessian (and higher derivatives) by
iterating this algorithm. If, instead of making a call to
E(µ), the algorithm sought E(µ−ν) from the black box,
we would perform, at the cost of this single additional
subtraction,

|0〉 −→ eiΦ(ν)

∣∣∣∣Nm dE

dµ

∣∣∣∣
ν

〉
, (13)

with global phase

Φ(ν) = 2π
(
N

hm
E(ν)− N

2m
· dE
dµ

∣∣∣∣
ν

)
. (14)

Because we will be using this procedure as a subroutine,
it is important to remove (or �uncompute�) the global
phase, which would otherwise become a relative phase.
One additional evaluation of E (at ν) su�ces for this
uncomputation. Overall, this supplies another black box,

which, given ν, yields
∣∣∣Nm dE

dµ

∣∣∣
ν

〉
using only two calls to

the original black box for E. One can use the gradient
algorithm with this new black box, producing the state

eiΦ(2)(0)

∣∣∣∣ Nm(2)

d2E

dµ2

∣∣∣∣
0

〉
, (15)

which is a two-dimensional array of d2 quantum registers
containing all the elements of the Hessian matrix of E.
In addition, m(2) is an estimate for the magnitude of the
largest second derivative, and the phase is

Φ(2)(0) = 2π
(

N

hm(2)

dE

dµ

∣∣∣∣
0

− N
2m(2)

· d
2E

dµ2

∣∣∣∣
0

)
. (16)

Computing higher derivatives would require additional
factors of two in the number of required black box calls,
caused by the need to uncompute a global phase at each
step (this problem is a common feature when it comes
to recursing quantum algorithms [15]). Hence, evaluat-
ing the nth derivative requires 2n−1 queries to E, which,
although exponential in n, is much better than dn + 1,
which is the minimum number of function queries re-
quired to compute the derivative by classical �nite dif-
ference. We stress that the number of calls to E is inde-
pendent of d, and thus of the size of the system, for the
derivative of any order.
One could remark that the quantum gradient algo-

rithm is a numerical approach and that therefore, just
like classical numerical techniques, it would be a�ected
by numerical instability. This implies that the quantum
gradient algorithm cannot be used indiscriminately for
problems that feature errors that cannot be controllably

reduced through additional computational e�ort. For ex-
ample, �nite-precision arithmetic presents the same prob-
lems to quantum computers as it does to classical ones,
but the rounding errors can be brought under control by
using more digits of precision (as on classical computers).
Quantum chemistry techniques might present numerical
problems as well, insofar as they contain uncontrolled
sources of error. However, if the technique for comput-
ing the energy is numerically exact, that is to say, if the
error in the energy can be controllably reduced below any
level, the magnitude of the numerical error in the calcu-
lated derivative can likewise be made arbitrarily small.
Fortunately, quantum computers would make it possible
to e�ciently evaluate the numerically exact molecular
energy, meaning that numerical instability will not be a
problem. We turn to the topic of molecular energy eval-
uation next.

III. THE BLACK BOX FOR THE ENERGY

The application of Jordan's gradient algorithm to
chemical problems requires that there be a black box
that can compute the value of the ground-state molec-
ular energy at any value of the perturbation µ in the
neighborhood of µ = 0. Furthermore, to avoid numeri-
cal artifacts, this black box should be numerically exact,
allowing the error in the energy to be controllably re-
duced through additional computational work.
The problem of exact classical electronic structure

methods is that they generally have a computational cost
that scales exponentially with the size of the system. Al-
though these classical algorithms could also be used as
subroutines in the quantum gradient algorithm, there are
quantum electronic-structure algorithms that could avoid
the exponential scaling in many cases.
In particular, we have recently described a quantum

full CI algorithm [8] for computing the molecular ground
state energy to a given precision in O

(
M5
)
time [16],

whereM is the number of basis functions. This algorithm
could be easily recast as a subroutine that would function
as the black box for the energy. Several modi�cations
would have to be made, including the direct computa-
tion of the overlap integrals on the quantum computer,
rendering it possible to introduce the perturbation µ into
the calculation. Nevertheless, a quantum computer run-
ning the quantum FCI algorithm could be used to obtain
a molecular property of a system with basis size M in
O
(
M5
)
time, a dramatic improvement over the possibil-

ities of classical computers.
A more recent development is the real-space chemical

dynamics simulation algorithm [10, 17], based on Zalka's
earlier work [18]. It is known that simulating, to a given
precision, the exact dynamics of a system of P parti-
cles interacting under a pairwise interaction requires at
most O(P 2) time and O(P ) space, in contrast to the
classical exponential cost. If an eigenstate of the sys-
tem Hamiltonian were prepared as the initial state [19],
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the dynamics would only apply a phase to the wavefunc-
tion. This phase could be read out by the phase estima-
tion algorithm [14, 20, 21], forming the required energy
black box. Although the large prefactor of this algorithm
would make it slower for small molecules than the equiv-
alent quantum FCI calculation, it bene�ts from a supe-
rior asymptotic scaling as well as from the fact that only
minimal modi�cations would need to be made to insert
the perturbation µ into the calculation. For example,
simulations with di�erent nuclear coordinates proceed in
exactly the same way, while an electromagnetic �eld re-
quires only a small modi�cation of the simulated Hamil-
tonian [18].
It should be remarked that current quantum algo-

rithms for energy estimation, such as the ones mentioned
above, rely on quantum phase estimation, which has been
criticized as ine�cient [22] because its cost grows expo-
nentially with the number of bits of precision sought.
This could be signi�cant for gradient estimation, which
may require precise energy evaluations to avoid numerical
errors. To estimate the cost, we note that if the gradient
is desired to n bits of precision (as in Eq. 11), the black
box should evaluate the energy to

nE = log2

[
Emax − Emin

(mh/2n)(θ/2π)

]
≈ n+ log2

2π
θ

(17)

bits of precision [13], where cos2 θ is the desired success
probability of the algorithm. For example, with θ = π/8,
the algorithm succeeds 85% of the time and requires four
more digits of precision in the energy than is desired in
the gradient. The four additional digits present only
a constant overhead, meaning that the computation of
any molecular property at any precision is, up to a con-
stant factor, as hard as computing the energy of the same
molecule at the same precision.
Finally, a limitation of current quantum simulation al-

gorithms is that they are generally spin-free and non-
relativistic, which limits the ability to compute deriva-
tives such as indirect spin-spin coupling.

IV. NEWTON'S METHOD AND GEOMETRY

OPTIMIZATION

Perhaps the single most common use of molecular
derivatives is molecular geometry optimization. We can
therefore use it to illustrate some of the advantages of
a quantum algorithm over a classical one, including a
quantum version of Newton's method, which o�ers an
additional quadratic speedup over its classical counter-
part.
A simple way for �nding the locally optimal geometry

is to perform the standard Newton iterations,

Rn+1 = Rn −

(
dE

dR

∣∣∣∣
Rn

)
·

(
d2E

dR2

∣∣∣∣
Rn

)−1

, (18)

until convergence is reached. Here, Rn are the nuclear

coordinates at the nth iteration, and dE
dR

∣∣
Rn

and d
2E

dR2

∣∣∣
Rn

are, respectively, the gradient and Hessian of E with re-
spect to nuclear displacement (the �molecular gradient�
and the �molecular Hessian�). If a quantum computer
were used to compute the derivatives, one would require
exactly 3 calls to a black box for E per iteration: one
for the gradient and two for the Hessian. A classical ap-
proach, on the other hand, would be much slower, requir-
ing at least d2 + 1 function calls for �nite di�erence, and
approximately O(d) e�ort in the analytical case [30]. For
large molecules with large d, this savings could prove sig-
ni�cant, even if each energy evaluation takes much longer
on a quantum machine than on a classical computer.
There are many classical tricks available for speed-

ing up the convergence of Newton's method if the initial
guess is not close to a local minimum, in which case the
usual Newton step might be inappropriately large. Tech-
niques such as trust regions and level shifts [23] are still
available to quantum computers, or they can be imple-
mented as classical post-processing.
In addition, we remark that Newton's method is the

�rst in the class of Householder methods, which o�er a
rate of convergence of ` + 1, provided that derivatives
up to order ` + 1 exist and can be calculated. A quan-
tum computer could be used to accelerate Householder

methods of any degree, requiring
∑`+1

m=1 2m−1 = 2`+1−1
calls to the black box for order-` Householder optimiza-
tion method. Although exponential in `, this expression
is independent of system dimension d.
Of course, Newton's method is only useful for local

minimization, and we are often interested in global op-
timization. Here, we can use a quantum version of the
multistart technique, called the quantum basin hopper
[24, 25, 26, 27]. A number of points is selected at ran-
dom, and each is followed, using a local search, to its local
basin (if a quantum version of Newton's method is used
for the local search, such as the one we propose above, we
can get the usual quadratic convergence). Then, the min-
ima of all the basins are compared and the least one cho-
sen as the global minimum. Quantum computers could
add a quadratic speed-up to such a multistart technique,
since the resulting local minima form an unstructured
database that can be searched using Grover's algorithm
[11, 14] with a quadratic speed-up. As Dürr and Høyer
pointed out [28], a Grover search can �nd the minimum

of an unstructured database with O(
√
K logK) calls to

the database (where K is the number of database en-
tries, i.e. multistart points), as opposed to the classically
required O(K logK) queries.

V. CONCLUSION

We have shown that Jordan's quantum gradient es-
timation algorithm can be applied to the estimation of
time-independent, non-relativistic molecular properties.
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Doing so requires a quantum electronic-structre black
box, for which known quantum simulations algorithms
are well suited. The quantum algorithm o�ers a speed-
up from the classical cost of O

(
dbn/2c) for analytical

derivatives to the quantum query complexity of 2n−1.
That is, the number of energy calculations required on
the quantum computer is independent of d, and thus of
the system size, which could o�er a signi�cant advantage
for the computation of properties of large systems. In
particular, it would make the molecular Hessian of any
molecule only twice as expensive as its molecular gra-
dient, enabling a fast, local geometry optimization us-

ing Newton's method. Finally, global optimization could
combine the local Newton's method with Grover search
to o�er an additional quadratic speed-up over the classi-
cal multi-start technique.
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