150 research outputs found

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    A Survey on Layer-Wise Security Attacks in IoT: Attacks, Countermeasures, and Open-Issues

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Security is a mandatory issue in any network, where sensitive data are transferred safely in the required direction. Wireless sensor networks (WSNs) are the networks formed in hostile areas for different applications. Whatever the application, the WSNs must gather a large amount of sensitive data and send them to an authorized body, generally a sink. WSN has integrated with Internet-of-Things (IoT) via internet access in sensor nodes along with internet-connected devices. The data gathered with IoT are enormous, which are eventually collected by WSN over the Internet. Due to several resource constraints, it is challenging to design a secure sensor network, and for a secure IoT it is essential to have a secure WSN. Most of the traditional security techniques do not work well for WSN. The merger of IoT and WSN has opened new challenges in designing a secure network. In this paper, we have discussed the challenges of creating a secure WSN. This research reviews the layer-wise security protocols for WSN and IoT in the literature. There are several issues and challenges for a secure WSN and IoT, which we have addressed in this research. This research pinpoints the new research opportunities in the security issues of both WSN and IoT. This survey climaxes in abstruse psychoanalysis of the network layer attacks. Finally, various attacks on the network using Cooja, a simulator of ContikiOS, are simulated.Peer reviewe

    A lightweight authentication mechanism for M2M communications in industrial IoT environment

    Get PDF
    In the emerging Industrial IoT era, Machine-to-Machine (M2M) communication technology is considered as a key underlying technology for building Industrial IoT environments where devices (e.g., sensors, actuators, gateways) are enabled to exchange information with each other in an autonomous way without human intervention. However, most of the existing M2M protocols that can be also used in the Industrial IoT domain provide security mechanisms based on asymmetric cryptography resulting in high computational cost. As a consequence, the resource-constrained IoT devices are not able to support them appropriately and thus, many security issues arise for the Industrial IoT environment. Therefore, lightweight security mechanisms are required for M2M communications in Industrial IoT in order to reach its full potential. As a step towards this direction, in this paper, we propose a lightweight authentication mechanism, based only on hash and XOR operations, for M2M communications in Industrial IoT environment. The proposed mechanism is characterized by low computational cost, communication and storage overhead, while achieving mutual authentication, session key agreement, device’s identity confidentiality, and resistance against the following attacks: replay attack, man-in-the-middle attack, impersonation attack, and modification attack

    Secure Authenticated Key Exchange for Enhancing the Security of Routing Protocol for Low-Power and Lossy Networks

    Get PDF
    The current Routing Protocol for Low Power and Lossy Networks (RPL) standard provides three security modes Unsecured Mode (UM), Preinstalled Secure Mode (PSM), and Authenticated Secure Mode (ASM). The PSM and ASM are designed to prevent external routing attacks and specific replay attacks through an optional replay protection mechanism. RPL\u27s PSM mode does not support key replacement when a malicious party obtains the key via differential cryptanalysis since it considers the key to be provided to nodes during the configuration of the network. This thesis presents an approach to implementing a secure authenticated key exchange mechanism for RPL, which ensures the integrity and authentication of the received key while providing tamper-proof data communication for IoTs in insecure circumstances. Moreover, the proposed approach allows the key to be updated regularly, preventing an attacker from obtaining the key through differential cryptanalysis. However, it is observed that the proposed solution imposes an increase in the cost of communication, computation, power consumption, and memory usage for the network nodes

    An analysis of multicasting optimisation mechanisms for intelligent edge computing with low-power and lossy networks

    Get PDF
    This work studies the built-in multicast model in Contiki OS to provide the basis of a comparative evaluation for a new optimisation model using Radio Duty Cycling (RDC) mechanism. A significant amount of energy is consumed at the edge node executing various multicast routing protocols in Low-Power and Lossy Networks (LLN). The optimisation of the routing protocol and selection of an efficient multicast transmission model has the potential to reduce energy consumption in Edge Computing (EC) enabled LLN. With the precise objective of reducing energy consumption, this paper utilises a well-known RDC technique in multicast communication scenarios. To this end, a series of experiments are conducted to evaluate the performance of the existing RDC mechanisms proposed in the literature. The evaluation results are then utilised to develop an efficient RDC-based multicast transmission model. The comparative performance analysis reveals a 23.7% reduction in the RDC rate compared to the traditional model, consequently improving the energy consumption of EC-enabled LLN

    A Trust-Based Group Key Management Protocol for Non-Networks

    Get PDF
    In this paper, a secure and trust-based group key management protocol (GKMP) is presented for non-networks such as MANET/VANET. The scheme provides secure communication for group members in a dynamic network environment and does not restrict the users (registered or non-registered), allowing for flexible group communication. The proposed scheme is designed to address the challenges of key distribution, secure grouping, and secure communication. For result evaluation, first of all formal and informal security analysis was done and then compared with existing protocols. The proposed trust-based GKMP protocol satisfies the authentication, confidentiality of messages, forward/backward security concurrently as well as shows robustness in terms of packet delivery ratio and throughput

    Clustering algorithm for D2D communication in next generation cellular networks : thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering, Massey University, Auckland, New Zealand

    Get PDF
    Next generation cellular networks will support many complex services for smartphones, vehicles, and other devices. To accommodate such services, cellular networks need to go beyond the capabilities of their previous generations. Device-to-Device communication (D2D) is a key technology that can help fulfil some of the requirements of future networks. The telecommunication industry expects a significant increase in the density of mobile devices which puts more pressure on centralized schemes and poses risk in terms of outages, poor spectral efficiencies, and low data rates. Recent studies have shown that a large part of the cellular traffic pertains to sharing popular contents. This highlights the need for decentralized and distributive approaches to managing multimedia traffic. Content-sharing via D2D clustered networks has emerged as a popular approach for alleviating the burden on the cellular network. Different studies have established that D2D communication in clusters can improve spectral and energy efficiency, achieve low latency while increasing the capacity of the network. To achieve effective content-sharing among users, appropriate clustering strategies are required. Therefore, the aim is to design and compare clustering approaches for D2D communication targeting content-sharing applications. Currently, most of researched and implemented clustering schemes are centralized or predominantly dependent on Evolved Node B (eNB). This thesis proposes a distributed architecture that supports clustering approaches to incorporate multimedia traffic. A content-sharing network is presented where some D2D User Equipment (DUE) function as content distributors for nearby devices. Two promising techniques are utilized, namely, Content-Centric Networking and Network Virtualization, to propose a distributed architecture, that supports efficient content delivery. We propose to use clustering at the user level for content-distribution. A weighted multi-factor clustering algorithm is proposed for grouping the DUEs sharing a common interest. Various performance parameters such as energy consumption, area spectral efficiency, and throughput have been considered for evaluating the proposed algorithm. The effect of number of clusters on the performance parameters is also discussed. The proposed algorithm has been further modified to allow for a trade-off between fairness and other performance parameters. A comprehensive simulation study is presented that demonstrates that the proposed clustering algorithm is more flexible and outperforms several well-known and state-of-the-art algorithms. The clustering process is subsequently evaluated from an individual user’s perspective for further performance improvement. We believe that some users, sharing common interests, are better off with the eNB rather than being in the clusters. We utilize machine learning algorithms namely, Deep Neural Network, Random Forest, and Support Vector Machine, to identify the users that are better served by the eNB and form clusters for the rest of the users. This proposed user segregation scheme can be used in conjunction with most clustering algorithms including the proposed multi-factor scheme. A comprehensive simulation study demonstrates that with such novel user segregation, the performance of individual users, as well as the whole network, can be significantly improved for throughput, energy consumption, and fairness
    corecore