6,668 research outputs found

    CGIntrinsics: Better Intrinsic Image Decomposition through Physically-Based Rendering

    Full text link
    Intrinsic image decomposition is a challenging, long-standing computer vision problem for which ground truth data is very difficult to acquire. We explore the use of synthetic data for training CNN-based intrinsic image decomposition models, then applying these learned models to real-world images. To that end, we present \ICG, a new, large-scale dataset of physically-based rendered images of scenes with full ground truth decompositions. The rendering process we use is carefully designed to yield high-quality, realistic images, which we find to be crucial for this problem domain. We also propose a new end-to-end training method that learns better decompositions by leveraging \ICG, and optionally IIW and SAW, two recent datasets of sparse annotations on real-world images. Surprisingly, we find that a decomposition network trained solely on our synthetic data outperforms the state-of-the-art on both IIW and SAW, and performance improves even further when IIW and SAW data is added during training. Our work demonstrates the suprising effectiveness of carefully-rendered synthetic data for the intrinsic images task.Comment: Paper for 'CGIntrinsics: Better Intrinsic Image Decomposition through Physically-Based Rendering' published in ECCV, 201

    Joint Learning of Intrinsic Images and Semantic Segmentation

    Get PDF
    Semantic segmentation of outdoor scenes is problematic when there are variations in imaging conditions. It is known that albedo (reflectance) is invariant to all kinds of illumination effects. Thus, using reflectance images for semantic segmentation task can be favorable. Additionally, not only segmentation may benefit from reflectance, but also segmentation may be useful for reflectance computation. Therefore, in this paper, the tasks of semantic segmentation and intrinsic image decomposition are considered as a combined process by exploring their mutual relationship in a joint fashion. To that end, we propose a supervised end-to-end CNN architecture to jointly learn intrinsic image decomposition and semantic segmentation. We analyze the gains of addressing those two problems jointly. Moreover, new cascade CNN architectures for intrinsic-for-segmentation and segmentation-for-intrinsic are proposed as single tasks. Furthermore, a dataset of 35K synthetic images of natural environments is created with corresponding albedo and shading (intrinsics), as well as semantic labels (segmentation) assigned to each object/scene. The experiments show that joint learning of intrinsic image decomposition and semantic segmentation is beneficial for both tasks for natural scenes. Dataset and models are available at: https://ivi.fnwi.uva.nl/cv/intrinsegComment: ECCV 201

    Reflectance Adaptive Filtering Improves Intrinsic Image Estimation

    Full text link
    Separating an image into reflectance and shading layers poses a challenge for learning approaches because no large corpus of precise and realistic ground truth decompositions exists. The Intrinsic Images in the Wild~(IIW) dataset provides a sparse set of relative human reflectance judgments, which serves as a standard benchmark for intrinsic images. A number of methods use IIW to learn statistical dependencies between the images and their reflectance layer. Although learning plays an important role for high performance, we show that a standard signal processing technique achieves performance on par with current state-of-the-art. We propose a loss function for CNN learning of dense reflectance predictions. Our results show a simple pixel-wise decision, without any context or prior knowledge, is sufficient to provide a strong baseline on IIW. This sets a competitive baseline which only two other approaches surpass. We then develop a joint bilateral filtering method that implements strong prior knowledge about reflectance constancy. This filtering operation can be applied to any intrinsic image algorithm and we improve several previous results achieving a new state-of-the-art on IIW. Our findings suggest that the effect of learning-based approaches may have been over-estimated so far. Explicit prior knowledge is still at least as important to obtain high performance in intrinsic image decompositions.Comment: CVPR 201

    3D Reconstruction with Low Resolution, Small Baseline and High Radial Distortion Stereo Images

    Full text link
    In this paper we analyze and compare approaches for 3D reconstruction from low-resolution (250x250), high radial distortion stereo images, which are acquired with small baseline (approximately 1mm). These images are acquired with the system NanEye Stereo manufactured by CMOSIS/AWAIBA. These stereo cameras have also small apertures, which means that high levels of illumination are required. The goal was to develop an approach yielding accurate reconstructions, with a low computational cost, i.e., avoiding non-linear numerical optimization algorithms. In particular we focused on the analysis and comparison of radial distortion models. To perform the analysis and comparison, we defined a baseline method based on available software and methods, such as the Bouguet toolbox [2] or the Computer Vision Toolbox from Matlab. The approaches tested were based on the use of the polynomial model of radial distortion, and on the application of the division model. The issue of the center of distortion was also addressed within the framework of the application of the division model. We concluded that the division model with a single radial distortion parameter has limitations

    3D Reconstruction with Low Resolution, Small Baseline and High Radial Distortion Stereo Images

    Full text link
    In this paper we analyze and compare approaches for 3D reconstruction from low-resolution (250x250), high radial distortion stereo images, which are acquired with small baseline (approximately 1mm). These images are acquired with the system NanEye Stereo manufactured by CMOSIS/AWAIBA. These stereo cameras have also small apertures, which means that high levels of illumination are required. The goal was to develop an approach yielding accurate reconstructions, with a low computational cost, i.e., avoiding non-linear numerical optimization algorithms. In particular we focused on the analysis and comparison of radial distortion models. To perform the analysis and comparison, we defined a baseline method based on available software and methods, such as the Bouguet toolbox [2] or the Computer Vision Toolbox from Matlab. The approaches tested were based on the use of the polynomial model of radial distortion, and on the application of the division model. The issue of the center of distortion was also addressed within the framework of the application of the division model. We concluded that the division model with a single radial distortion parameter has limitations
    corecore