709 research outputs found

    Passive Synthetic Aperture Radar Imaging Using Commercial OFDM Communication Networks

    Get PDF
    Modern communication systems provide myriad opportunities for passive radar applications. OFDM is a popular waveform used widely in wireless communication networks today. Understanding the structure of these networks becomes critical in future passive radar systems design and concept development. This research develops collection and signal processing models to produce passive SAR ground images using OFDM communication networks. The OFDM-based WiMAX network is selected as a relevant example and is evaluated as a viable source for radar ground imaging. The monostatic and bistatic phase history models for OFDM are derived and validated with experimental single dimensional data. An airborne passive collection model is defined and signal processing approaches are proposed providing practical solutions to passive SAR imaging scenarios. Finally, experimental SAR images using general OFDM and WiMAX waveforms are shown to validate the overarching signal processing concept

    Wide-Angle Multistatic Synthetic Aperture Radar: Focused Image Formation and Aliasing Artifact Mitigation

    Get PDF
    Traditional monostatic Synthetic Aperture Radar (SAR) platforms force the user to choose between two image types: larger, low resolution images or smaller, high resolution images. Switching to a Wide-Angle Multistatic Synthetic Aperture Radar (WAM-SAR) approach allows formation of large high-resolution images. Unfortunately, WAM-SAR suffers from two significant implementation problems. First, wavefront curvature effects, non-linear flight paths, and warped ground planes lead to image defocusing with traditional SAR processing methods. A new 3-D monostatic/bistatic image formation routine solves the defocusing problem, correcting for all relevant wide-angle effects. Inverse SAR (ISAR) imagery from a Radar Cross Section (RCS) chamber validates this approach. The second implementation problem stems from the large Doppler spread in the wide-angle scene, leading to severe aliasing problems. This research effort develops a new anti-aliasing technique using randomized Stepped-Frequency (SF) waveforms to form Doppler filter nulls coinciding with aliasing artifact locations. Both simulation and laboratory results demonstrate effective performance, eliminating more than 99% of the aliased energy

    Effects of Orbit and Pointing Geometry of a Spaceborne Formation for Monostatic-Bistatic Radargrammetry on Terrain Elevation Measurement Accuracy

    Get PDF
    During the last decade a methodology for the reconstruction of surface relief by Synthetic Aperture Radar (SAR) measurements – SAR interferometry – has become a standard. Different techniques developed before, such as stereo-radargrammetry, have been experienced from space only in very limiting geometries and time series, and, hence, branded as less accurate. However, novel formation flying configurations achievable by modern spacecraft allow fulfillment of SAR missions able to produce pairs of monostatic-bistatic images gathered simultaneously, with programmed looking angles. Hence it is possible to achieve large antenna separations, adequate for exploiting to the utmost the stereoscopic effect, and to make negligible time decorrelation, a strong liming factor for repeat-pass stereo-radargrammetric techniques. This paper reports on design of a monostatic-bistatic mission, in terms of orbit and pointing geometry, and taking into account present generation SAR and technology for accurate relative navigation. Performances of different methods for monostatic-bistatic stereo-radargrammetry are then evaluated, showing the possibility to determine the local surface relief with a metric accuracy over a wide range of Earth latitudes

    Ground Moving Target Imaging using Bi-static Synthetic Aperture Radar

    Get PDF
    Abstract — In this paper, we present a novel method for imaging of moving targets using bi-static synthetic aperture radar configurations. We present a forward model that maps the twodimensional reflectivity and velocity of targets to the measured scattered field data. We then introduce a filtered-backprojection type method to reconstruct the reflectivity and use Renyi entropy to determine the two-dimensional velocity of targets. The filter is determined so that the reflectivity images are reconstructed at the correct location, orientation and strength whenever the velocity field is determined correctly. We present numerical simulations to verify our theory. I

    Decimation keystone algorithm for forward-looking monopulse imaging on platforms with uniformly accelerated motion

    Get PDF
    Forward-looking imaging for maneuvering platforms has garnered significant interest in many military and civilian fields. As the maneuvering trajectory in the scanning period can be simplified as the constant acceleration maneuver, monopulse imaging is applied to enhance the azimuthal resolution of the forward-looking image. However, the maneuver causes severe range migration and Doppler shift; this often results in range location error due to the space-varying Doppler shifts and the failure of angle estimation. We propose a decimation keystone algorithm based on the chirp-Z transform (CZT). First, the pulse repetition frequency (PRF) is decimated with an integer; thus, the azimuthal sampling sequence is decimated into many sub-sequences. Then, the linear range walk correction (LRWC) is performed on each sub-sequence using the keystone transform, significantly reducing the influence of the change of Doppler-ambiguity-number on range location. Further, the sub-sequences are regrouped as one sequence, and the range curvature due to the acceleration is compensated in the frequency domain. Finally, the varying Doppler centroid in each coherent processing interval (CPI) is analyzed and compensated for the sum-difference angular measurements. Simulation results demonstrate the effectiveness of the proposed algorithm for forward-looking imaging under constant acceleration maneuvers and the feasibility of range location error correction

    Innovative Adaptive Techniques for Multi Channel Spaceborne SAR Systems

    Get PDF
    Synthetic Aperture Radar (SAR) is a well-known technology which allows to coherently combine multiple returns from (typically) ground-based targets from a moving radar mounted either on an airborne or on a space-borne vehicle. The relative motion between the targets on ground and the platform causes a Doppler effect, which is exploited to discriminate along-track positions of targets themselves. In addition, as most of conventional radar, a pulsed wide-band waveform is transmitted periodically, thus allowing even a radar discrimination capability in the range direction (i.e. in distance). For side-looking acquisition geometries, the along-track and the range directions are almost orthogonal, so that the two dimensional target discrimination capabiliy results in the possibility to produce images of the illuminated area on ground. A side-looking geometry consists in the radar antenna to be, either mechanically or electronically, oriented perpendicular to the observed area. Nowadays technology allows discrimination capability (also referred to as resolution) in both alongtrack and range directions in the order of few tenths of centimeters. Since the SAR is a microwave active sensor, this technology assure the possibility to produce images of the terrain independently of the sunlight illumination and/or weather conditions. This makes the SAR a very useful instrument for monitoring and mapping both the natural and the artificial activities over the Earth’s surface. Among all the limitations of a single-channel SAR system, this work focuses over some of them which are briefly listed below: a) the performance achievable in terms of resolution are usually paid in terms of system complexity, dimension, mass and cost; b) since the SAR is a coherent active sensor, it is vulnerable to both intentionally and unintentionally radio-frequency interferences which might limit normal system operability; c) since the Doppler effect it is used to discriminate targets (assumed to be stationary) on the ground, this causes an intrinsic ambiguity in the interpretation of backscattered returns from moving targets. These drawbacks can be easily overcome by resorting to a Multi-cannel SAR (M-SAR) system

    Innovative Adaptive Techniques for Multi Channel Spaceborne SAR Systems

    Get PDF
    Synthetic Aperture Radar (SAR) is a well-known technology which allows to coherently combine multiple returns from (typically) ground-based targets from a moving radar mounted either on an airborne or on a space-borne vehicle. The relative motion between the targets on ground and the platform causes a Doppler effect, which is exploited to discriminate along-track positions of targets themselves. In addition, as most of conventional radar, a pulsed wide-band waveform is transmitted periodically, thus allowing even a radar discrimination capability in the range direction (i.e. in distance). For side-looking acquisition geometries, the along-track and the range directions are almost orthogonal, so that the two dimensional target discrimination capabiliy results in the possibility to produce images of the illuminated area on ground. A side-looking geometry consists in the radar antenna to be, either mechanically or electronically, oriented perpendicular to the observed area. Nowadays technology allows discrimination capability (also referred to as resolution) in both alongtrack and range directions in the order of few tenths of centimeters. Since the SAR is a microwave active sensor, this technology assure the possibility to produce images of the terrain independently of the sunlight illumination and/or weather conditions. This makes the SAR a very useful instrument for monitoring and mapping both the natural and the artificial activities over the Earth’s surface. Among all the limitations of a single-channel SAR system, this work focuses over some of them which are briefly listed below: a) the performance achievable in terms of resolution are usually paid in terms of system complexity, dimension, mass and cost; b) since the SAR is a coherent active sensor, it is vulnerable to both intentionally and unintentionally radio-frequency interferences which might limit normal system operability; c) since the Doppler effect it is used to discriminate targets (assumed to be stationary) on the ground, this causes an intrinsic ambiguity in the interpretation of backscattered returns from moving targets. These drawbacks can be easily overcome by resorting to a Multi-cannel SAR (M-SAR) system

    An introduction to the interim digital SAR processor and the characteristics of the associated Seasat SAR imagery

    Get PDF
    Basic engineering data regarding the Interim Digital SAR Processor (IDP) and the digitally correlated Seasat synthetic aperature radar (SAR) imagery are presented. The correlation function and IDP hardware/software configuration are described, and a preliminary performance assessment presented. The geometric and radiometric characteristics, with special emphasis on those peculiar to the IDP produced imagery, are described
    • …
    corecore