199 research outputs found

    Humanoid Robot Soccer Locomotion and Kick Dynamics: Open Loop Walking, Kicking and Morphing into Special Motions on the Nao Robot

    Get PDF
    Striker speed and accuracy in the RoboCup (SPL) international robot soccer league is becoming increasingly important as the level of play rises. Competition around the ball is now decided in a matter of seconds. Therefore, eliminating any wasted actions or motions is crucial when attempting to kick the ball. It is common to see a discontinuity between walking and kicking where a robot will return to an initial pose in preparation for the kick action. In this thesis we explore the removal of this behaviour by developing a transition gait that morphs the walk directly into the kick back swing pose. The solution presented here is targeted towards the use of the Aldebaran walk for the Nao robot. The solution we develop involves the design of a central pattern generator to allow for controlled steps with realtime accuracy, and a phase locked loop method to synchronise with the Aldebaran walk so that precise step length control can be activated when required. An open loop trajectory mapping approach is taken to the walk that is stabilized statically through the use of a phase varying joint holding torque technique. We also examine the basic princples of open loop walking, focussing on the commonly overlooked frontal plane motion. The act of kicking itself is explored both analytically and empirically, and solutions are provided that are versatile and powerful. Included as an appendix, the broader matter of striker behaviour (process of goal scoring) is reviewed and we present a velocity control algorithm that is very accurate and efficient in terms of speed of execution

    Development of a Hybrid Powered 2D Biped Walking Machine Designed for Rough Terrain Locomotion

    Get PDF
    Biped robots hold promise as terrestrial explorers because they require a single discrete foothold to place their next step. However, biped robots are multi-input multi-output dynamically unstable machines. This makes walking on rough terrain difficult at best. Progress has been made with non-periodic rough terrain like stairs or inclines with fully active walking machines. Terrain that requires the walker to change its gait pattern from a standard walk is still problematic. Most walking machines have difficulty detecting or responding to the small perturbations induced by this type of terrain. These small perturbations can lead to unstable gait cycles and possibly a fall. The Intelligent Systems and Automation Lab at the University of Kansas has built a three legged 2D biped walking machine to be used as a test stand for studying rough terrain walking. The specific aim of this research is to investigate how biped walkers can best maintain walking stability when acted upon by small perturbations caused by periodic rough terrain. The first walking machine prototype, referred to as Jaywalker has two main custom actuation systems. The first is the hip ratchet system. It allows the walker to have either a passive or active hip swing. The second is the hybrid parallel ankle actuator. This new actuator uses a pneumatic ram and stepper motor in parallel to produce an easily controlled high torque output. In open loop control it has less than a 1Β° tracking error and 0.065 RPM velocity error compared to a standard stepper motor. Step testing was conducted using the Jaywalker, with a passive hip, to determine if a walker with significant leg mass could walk without full body actuation. The results of testing show the Jaywalker is ultimately not capable of walking with a passive hip. However, the walking motion is fine until the terminal stance phase. At this point the legs fall quickly towards the ground as the knee extends the shank. This quick step phenomenon is caused by increased speeds and forces about the leg and hip caused by the extension of the shank. This issue can be overcome by fully actuating the hip, or by adding counterbalances to the legs about the hip

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    μ‚¬λžŒ 보행 뢄석 연ꡬ와 κ·Έ κ²°κ³Όλ₯Ό ν™œμš©ν•œ νœ΄λ¨Έλ…Έμ΄λ“œ λ‘œλ΄‡ 보행 νŒ¨ν„΄ 생성

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : μœ΅ν•©κ³Όν•™κΈ°μˆ λŒ€ν•™μ› μœ΅ν•©κ³Όν•™λΆ€(지λŠ₯ν˜•μœ΅ν•©μ‹œμŠ€ν…œμ „κ³΅), 2020. 8. λ°•μž¬ν₯.발의 λ―Έλ„λŸ¬μ§μ€ λ³΄ν–‰μ˜ μ•ˆμ •μ„±μ„ λ–¨μ–΄νŠΈλ¦¬λŠ” μš”μΈ 쀑 ν•˜λ‚˜μ΄λ‹€. 보행 쀑 λ°œμ— λ°œμƒν•˜λŠ” μˆ˜ν‰ 전단λ ₯이 발과 지면 μ‚¬μ΄μ˜ 마찰λ ₯보닀 컀지면, λ°œμ€ 접촉을 μƒμ‹€ν•˜κ³  λ―Έλ„λŸ¬μ§€κ²Œ λœλ‹€. μ—¬κΈ°μ„œ, 발과 지면 μ‚¬μ΄μ˜ 마찰λ ₯은 λ°œμ— μž‘μš©ν•˜λŠ” 수직λ ₯에 μ˜ν•΄ κ²°μ •λ˜κ²Œ λœλ‹€. 즉, νœ΄λ¨Έλ…Έμ΄λ“œ λ‘œλ΄‡ 보행 νŒ¨ν„΄ μƒμ„±μ˜ μΈ‘λ©΄μ—μ„œ 보자면, λ‘œλ΄‡ λ°œμ— λ°œμƒν•˜λŠ” μˆ˜ν‰λ ₯κ³Ό 수직λ ₯을 μ–΄λ–»κ²Œ μ„€κ³„ν•˜λŠ”μ§€μ— 따라 보행 쀑 λ―Έλ„λŸ¬μ§μ˜ κ°€λŠ₯성이 λ°”λ€λ‹€λŠ” 것이닀. μ„ ν˜• μ—­μ§„μž λͺ¨λΈμ€ νœ΄λ¨Έλ…Έμ΄λ“œ λ‘œλ΄‡μ˜ 무게 쀑심 ꢀ적 생성을 μœ„ν•΄ 자주 μ‚¬μš©λ˜μ–΄μ™”λ‹€. μ„ ν˜• μ—­μ§„μž λͺ¨λΈμ€ λ‘œλ΄‡μ˜ 무게 쀑심 높이λ₯Ό μΌμ •ν•˜κ²Œ μœ μ§€ν•˜λ„λ‘ μ œν•œν•œλ‹€. 무게 μ€‘μ‹¬μ˜ 높이 μ œν•œ λ•Œλ¬Έμ— λ‘œλ΄‡μ˜ 수직 λ°©ν–₯의 κ°€μ†λ„λŠ” 보행 속도와 κ΄€λ ¨ 없이 항상 쀑λ ₯ 가속도가 λœλ‹€. κ·ΈλŸ¬λ‚˜ μˆ˜ν‰ λ°©ν–₯의 κ°€μ†λ„λŠ” 보행 속도가 μ¦κ°€ν•˜λ©΄ λΉ„λ‘€ν•˜μ—¬ μ¦κ°€ν•œλ‹€. λ”°λΌμ„œ λΉ λ₯Έ 보행 μ†λ„μ—μ„œλŠ” 수직λ ₯에 λΉ„λ‘€ν•˜λŠ” 마찰λ ₯에 λΉ„ν•΄ μˆ˜ν‰ 전단λ ₯이 μ»€μ§€λ©΄μ„œ 발의 λ―Έλ„λŸ¬μ§μ΄ λ°œμƒν•  수 μžˆλ‹€. μ„ ν˜• μ—­μ§„μž λͺ¨λΈμ— μ˜ν•œ μΌμ •ν•œ 수직 높이 ꡬ속 쑰건이 λ‘œλ΄‡ 발의 λ―Έλ„λŸ¬μ§μ„ μœ λ°œν•  수 μžˆλ‹€λŠ” 것을 μ‹œμ‚¬ν•œλ‹€. 무게 μ€‘μ‹¬μ˜ μ μ ˆν•œ 수직 μ›€μ§μž„μ„ μƒμ„±ν•¨μœΌλ‘œμ¨ νœ΄λ¨Έλ…Έμ΄λ“œ λ‘œλ΄‡ 보행 쀑 발의 λ―Έλ„λŸ¬μ§μ„ 쀄일 수 μžˆλ‹€. 인간곡학 λΆ„μ•Όμ—μ„œλŠ” Available Coefficient of Friction(aCOF)κ³Ό Utilized Coefficient of Friction(uCOF)을 μ΄μš©ν•˜μ—¬ μ‚¬λžŒ 보행 쀑 발의 λ―Έλ„λŸ¬μ§ κ°€λŠ₯성을 μ˜ˆμΈ‘ν•˜λŠ” 연ꡬ듀이 μˆ˜ν–‰λλ‹€. μ—¬κΈ°μ„œ, aCOFλŠ” 두 물체의 μž¬μ§ˆμ΄λ‚˜ μƒνƒœμ— μ˜ν•΄ κ²°μ •λ˜λŠ” 마찰 κ³„μˆ˜μ΄λ‹€. 반면, uCOFλŠ” 보행 쀑 μ§€μ§€ν•˜λŠ” λ°œμ— κ°€ν•΄μ§€λŠ” μˆ˜ν‰ 전단λ ₯κ³Ό 수직λ ₯의 비이닀. 인간곡학 연ꡬ듀에 λ”°λ₯΄λ©΄, uCOFκ°€ aCOFλ₯Ό μ΄ˆκ³Όν•  λ•Œ λ°œμ€ 접촉을 μƒμ‹€ν•˜κ³  λ―Έλ„λŸ¬μ§€κ²Œ λœλ‹€. λ‘œλ΄‡ 발의 λ―Έλ„λŸ¬μ§ κ°μ†Œλ₯Ό μœ„ν•΄μ„œλŠ” λ‘œλ΄‡ 보행 쀑 λ°œμ— λ°œμƒν•˜λŠ” uCOFκ°€ λ‘œλ΄‡ 발과 지면 μ‚¬μ΄μ˜ aCOF 보닀 μž‘μ•„μ§€λ„λ‘ μ μ ˆν•œ 수직 λ°©ν–₯의 무게 쀑심 ꢀ적을 μƒμ„±ν•˜λŠ” 것이 ν•„μš”ν•˜λ‹€. λ‹€μ–‘ν•œ ν˜•νƒœμ˜ 수직 λ°©ν–₯의 무게 쀑심 ꢀ적 생성이 κ°€λŠ₯ν•œλ°, κ°„λ‹¨ν•˜λ©΄μ„œλ„ 효율적인 방법은 무게 μ€‘μ‹¬μ˜ μ—λ„ˆμ§€κ°€ λ³΄μ‘΄λ˜λ„λ‘ 수직 λ°©ν–₯의 무게 쀑심 ꢀ적을 μƒμ„±ν•˜λŠ” 것이닀. κΈ°μ‘΄ μ„ ν˜• μ—­μ§„μž λͺ¨λΈμ„ μ΄μš©ν•΄ μˆ˜ν‰ λ°©ν–₯의 무게 쀑심 ꢀ적을 μƒμ„±ν•˜κ³ , μš΄λ™ μ—λ„ˆμ§€μ™€ μœ„μΉ˜ μ—λ„ˆμ§€κ°€ κ΅ν™˜λ˜λ©΄μ„œ 전체 μ—λ„ˆμ§€κ°€ λ³΄μ‘΄λ˜λŠ” 수직 λ°©ν–₯의 무게 쀑심 ꢀ적을 μΆ”κ°€ν•˜λŠ” 것이닀. 무게 μ€‘μ‹¬μ˜ μ—λ„ˆμ§€ 보쑴 원리λ₯Ό μ΄μš©ν•˜μ—¬ 무게 μ€‘μ‹¬μ˜ μ–‘μ˜ 일(Mechanical Work) 생성을 μ΅œμ†Œν™”ν•¨μœΌλ‘œμ¨ κ΄€μ ˆμ˜ μ–‘μ˜ 일 생성을 κ°μ†Œμ‹œν‚€κ³ , 이λ₯Ό 톡해 보행 쀑 μ—λ„ˆμ§€ νš¨μœ¨μ„ λ†’μ΄λŠ” 것이 κ°€λŠ₯ν•˜λ‹€. 이 논문은 발과 지면 μ‚¬μ΄μ˜ aCOF 보닀 μž‘λ„λ‘ 보행 쀑 uCOFλ₯Ό μœ μ§€ν•˜λ©΄μ„œ 무게 μ€‘μ‹¬μ˜ μ–‘μ˜ 일을 μ΅œμ†Œν™”ν•˜λŠ” μ μ ˆν•œ 수직 λ°©ν–₯의 무게 쀑심 ꢀ적을 μƒμ„±ν•˜λŠ” 것을 λͺ©ν‘œλ‘œ ν•œλ‹€. 발의 λ―Έλ„λŸ¬μ§μ΄ κ°μ†Œν•˜λ©΄μ„œ μ—λ„ˆμ§€ 효율이 높은 νœ΄λ¨Έλ…Έμ΄λ“œ λ‘œλ΄‡ 보행 νŒ¨ν„΄ 생성을 μœ„ν•΄, λ¨Όμ € μ‚¬λžŒ 보행 쀑 uCOF에 κ΄€ν•œ 연ꡬ와 μ‚¬λžŒ 보행 쀑 κ΄€μ ˆμ˜ 일에 κ΄€ν•œ 연ꡬλ₯Ό μ„ ν–‰ν•œλ‹€. μ‚¬λžŒ 보행에 κ΄€ν•œ 뢄석 연ꡬ와 μ‚¬λžŒ λ³΄ν–‰μ˜ 원리 이해λ₯Ό 톡해 μ΅œμ ν™” μ•Œκ³ λ¦¬μ¦˜ 기반 수직 λ°©ν–₯의 무게 쀑심 ꢀ적 생성 방법이 μ œμ‹œλœλ‹€. μ œμ‹œλœ μ•Œκ³ λ¦¬μ¦˜μ„ μ΄μš©ν•˜μ—¬ ꡬ해진 수직 λ°©ν–₯의 무게 쀑심 ꢀ적을 νœ΄λ¨Έλ…Έμ΄λ“œ λ‘œλ΄‡ 보행 μ‹€ν—˜μ— μ μš©ν•œλ‹€. ꢁ극적으둜 이 논문은, 수직 λ°©ν–₯의 무게 쀑심 ꢀ적을 μΆ”κ°€ν•¨μœΌλ‘œμ¨ κΈ°μ‘΄ μ„ ν˜• μ—­μ§„μž λͺ¨λΈμ˜ ν•œκ³„λ₯Ό κ·Ήλ³΅ν•˜μ—¬, λ―Έλ„λŸ¬μ§μ˜ κ°€λŠ₯성이 κ°μ†Œν•˜κ³  μ—λ„ˆμ§€ 효율이 높은 νœ΄λ¨Έλ…Έμ΄λ“œ λ‘œλ΄‡ 보행 νŒ¨ν„΄μ„ μƒμ„±ν•œλ‹€.Foot slippage is one of the factors responsible for the increasing instability during human walking. A slip occurs when the horizontal shear force acting on the foot becomes greater than the frictional force between the foot and the ground, which is proportional to the vertical force. For humanoid robot walking, the possibility of a slip depends upon how the horizontal shear force and vertical force both acting on the foot are designed. In the linear inverted pendulum model (LIPM), which is commonly used to generate the center of mass (COM) trajectory of humanoid robots, the vertical height of the COM is kept constant. The constant height of the COM restricts that the vertical force is always equal to the gravitational force at any walking speed. However, upon increasing the walking speed, the horizontal ground reaction force increases in proportion with the forward and lateral accelerations of the COM. This increase in the horizontal ground reaction force, while the vertical ground force is being constant, suggests that the robot-foot slippage can occur because of the restriction of the vertical motion by the LIPM constraint. By generating the appropriate vertical motion, the robot-foot slippage can be reduced during humanoid robot walking. Researchers in the field of ergonomics have been conducted studies on the relationship between the available coefficient of friction (aCOF) and the utilized coefficient of friction (uCOF) to predict the potential for a slip during human walking. The aCOF is both the static and dynamic coefficient of friction between two objects in contact, and it depends on the properties of the objects. The uCOF is the ratio of the horizontal shear force to the vertical force applied by the supporting foot. Foot slippage occurs when the uCOF exceeds the aCOF. Various types of vertical motion can set the maximum value of the uCOF to be less than the aCOF between the foot and floor for humanoid robot walking. One of the simple and energy-efficient methods is to minimize the mechanical work of the COM by introducing added vertical motion. Therefore, the COM pattern would become more energy efficient by exchanging kinetic energy and potential energy. This thesis aims to generate the appropriate vertical motion of the COM to maintain the utilized coefficient of friction (uCOF) less than the available coefficient of friction between the foot and the ground, and to minimize the mechanical work during humanoid robot walking. Before generating a slip-safe and energy-efficient COM trajectory for humanoid robot walking, studies on analyzing the COM patterns, mechanical work, and uCOF during human walking are conducted to understand the principle of walking. Vertical motions at various speeds are generated using an optimization method. Subsequently, the generated COM motion patterns are used as reference trajectories of the COM for humanoid robot walking. This thesis suggests a way to generate slip-safe and energy-efficient COM patterns, which, in turn, overcome the limitations of the LIPM by adding vertical COM motion.Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Contributions of Thesis 3 1.3 Overviews of Thesis 4 Chapter 2 Dynamics of Walking 5 2.1 Walking Model 5 2.1.1 Linear Inverted Pendulum Model 5 2.1.2 Spring-Loaded Inverted Pendulum Model 6 2.1.3 Extrapolated Center of Mass Dynamics 9 2.2 Walking Theory 11 2.2.1 Step-to-Step Transition 11 Chapter 3 HumanWalking Analysis 13 3.1 Motion Capture for Walking 13 3.1.1 Motion Capture Technology 13 3.1.2 Joint Kinematics and Kinetics 15 3.2 Joint and COM During Human Walking 17 3.2.1 Introduction 17 3.2.2 Methods 19 3.2.3 Change of Joint Angle and the COM 20 3.2.4 Discussion 26 3.3 Slipping During Human Walking 27 3.3.1 Introduction 27 3.3.2 Methods 31 3.3.3 Change of uCOF and GRF 34 3.3.4 Interaction Effect Between Heel Area and Speed 36 3.3.5 Discussion 39 3.4 Mechanical Work During Human Walking 44 3.4.1 Introduction 44 3.4.2 Methods 46 3.4.3 Calculation for Joint Mechanical Work 48 3.4.4 Change of Joint Mechanical Work 51 3.4.5 Change of Stride Parameters 53 3.4.6 Discussion 54 Chapter 4 Robot Walking Pattern Generation 59 4.1 Introduction 59 4.2 Forward and Lateral COM 61 4.2.1 XcoM Method 61 4.2.2 Preview Control Method 63 4.3 Vertical COM 64 4.3.1 Calculation for uCOF 64 4.3.2 Calculation for ZMP 65 4.3.3 Calculation for COM Mechanical Work 66 4.3.4 Optimization for Vertical COM Generation 68 4.3.5 Results of Optimization for Vertical COM 73 4.4 Slipping During Robot Walking 75 4.4.1 Robot Simulation 75 4.4.2 Robot Experiments 77 4.5 Mechanical Work During Robot Walking 81 4.5.1 Robot Simulation 81 4.5.2 Robot Experiments 82 4.6 Discussion 87 4.6.1 Tracking Errors in Robot Experiments 87 4.6.2 Effect of Vertical Motions on Real Net Power 91 4.6.3 Trade-Off Between Efficiency and Stability 92 4.6.4 Difference Between Human and Robot 93 Chapter 5 Conclusions 95 Bibliography 97 Abstract (Korean) 111Docto

    Dynamic Balance and Gait Metrics for Robotic Bipeds

    Get PDF
    For legged robots to be useful in the real world, they must be able to balance and walk reliably. Both of these abilities improve when a system is more effective at moving itself around relative to its contacts (i.e., its feet). Achieving this type of movement depends both on the controller used to perform the motion and the physical properties of the system. Although much work has been done on the development of dynamic controllers for balance and gait, only limited research exists on how to quantify a system’s physical balance capabilities or how to modify the system to improve those capabilities. From the control perspective, there are three strategies for maintaining balance in bipeds: flexing, leaning, and stepping. Both stepping and leaning strategies typically depend on balance points (critical points used for maintaining or regaining balance) to determine whether or not a step is needed, and if so, where to step. Although several balance point estimators exist, the majority of these methods make undesirable assumptions (e.g., ignoring the impact dynamics, assuming massless legs, planar motion, etc.). From the physical design perspective, one promising approach for analyzing system performance is a set of dynamic ratios called velocity and momentum gains, which are dependent only on the (scale-invariant) dynamic parameters and instantaneous configuration of a system, enabling entire classes of mechanisms to be analyzed at the same time. This thesis makes four key contributions towards improving biped balancing capabilities. First, a dynamic bipedal controller is proposed which uses a 3D balance point estimator both to respond to disturbances and produce reliable stepping. Second, a novel balance point estimator is proposed that facilitates stepping while combining and expanding the features of existing 2D and 3D estimators to produce a generalized 3D formulation. Third, the momentum gain formulation is extended to general 2D and 3D systems, then both gains are compared to centroidal momentum via a spatial formulation and incorporated into a generalized gain definition. Finally, the gains are used as a metric in an optimization framework to design parameterized balancing mechanisms within a given configuration space. Effectively, this enables an optimization of how well a system could balance without the need to pre-specify or co-generate controllers and/or trajectories. To validate the control contributions, simulated bipeds are subjected to external disturbances while standing still and walking. For the gain contributions, the framework is used to compare gain-optimized mechanisms to those based on the cost of transport metric. Through the combination of gain-based physical design optimization and the use of predictive, real-time balance point estimators within dynamic controllers, bipeds and other legged systems will soon be able to achieve reliable balance and gait in the real world

    A Dual-SLIP Model For Dynamic Walking In A Humanoid Over Uneven Terrain

    Get PDF
    • …
    corecore