4,814 research outputs found

    A Survey on Array Storage, Query Languages, and Systems

    Full text link
    Since scientific investigation is one of the most important providers of massive amounts of ordered data, there is a renewed interest in array data processing in the context of Big Data. To the best of our knowledge, a unified resource that summarizes and analyzes array processing research over its long existence is currently missing. In this survey, we provide a guide for past, present, and future research in array processing. The survey is organized along three main topics. Array storage discusses all the aspects related to array partitioning into chunks. The identification of a reduced set of array operators to form the foundation for an array query language is analyzed across multiple such proposals. Lastly, we survey real systems for array processing. The result is a thorough survey on array data storage and processing that should be consulted by anyone interested in this research topic, independent of experience level. The survey is not complete though. We greatly appreciate pointers towards any work we might have forgotten to mention.Comment: 44 page

    Rapid configurational analysis using OSM data: towards the use of Space Syntax to orient post-disaster decision making

    Get PDF
    This paper addresses the problem of the growing exposure of contemporary cities to natural hazards by discussing the theoretical, methodological and practical aspects of using the configurational approach as a framework to perform a variety of spatial analyses to better orient disaster management. It claims that enabling a quick assessment of the evolving spatial functioning of the urban grid would effectively contribute to support strategic decision-making and to make post-disaster planning decisions more explicit among stakeholders, thus boosting wider understanding and participation among the public. The paper starts with a brief review of some relevant work done by the research community to date, which highlights emergent opportunities for urban morphology studies and Space Syntax theory to trigger effective innovations in disaster management practice. Next, the paper proposes to adopt a fit-for-purpose analysis approach with the aim to achieve a higher procedural flexibility in the analysis workflow. This issue is treated with a special focus on the necessities of relief organisations which need to integrate and overlap numerous layers of information and consider the feasibility of the analysis by evaluating time and costs. The proposal considers the economy of the construction of the map to be fundamental for ensuring the feasibility of a quantitative spatial assessment in data scarce contexts such as cities affected by disasters. Moreover, it recognises that the unicity of the map is likely to enable a better communication among different stakeholders following a BIM-oriented model of cooperation, while allowing a faster response in multi-hazards scenarios. Consequently, the proposal challenges the idea of the existence of a uniquely correct way to translate reality into a model, but rather suggests using a set of simplification techniques, such as filtering, generalisation and re-modelling, on a single crowdsourced map of the urban street network to generate suitably customised graphs for subsequent analysis. This brings together two themes: the first concerns the modelling activity per se and how certain technicalities that seem minor facts can influence the final analysis output to a greater extent; the second regards the crowdsourcing of spatial data and the challenges that the use of collaborative datasets poses to the modelling tasks. In line with the most recent research trends, this paper suggests exploiting the readiness of the Open Street Map (OSM) geo-dataset and the improving computational capacities of open GIS tools such as QGIS, which has recently achieved a wider acceptance worldwide. To further speed up the analysis and increase the likeness of the configurational analysis method to be successfully deployed by a larger pool of professionals it also proposes to make use of a state-of-the-art Python library named OSMnx. In the end, the consequences of using Volunteered Geographic Information (VGI), open source GIS platforms and Python scripting to perform the analysis are illustrated in a set of suitable case studies

    Parametric shape optimization for combined additive–subtractive manufacturing

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11837-019-03886-xIn industrial practice, additive manufacturing (AM) processes are often followed by post-processing operations such as heat treatment, subtractive machining, milling, etc., to achieve the desired surface quality and dimensional accuracy. Hence, a given part must be 3D-printed with extra material to enable this finishing phase. This combined additive/subtractive technique can be optimized to reduce manufacturing costs by saving printing time and reducing material and energy usage. In this work, a numerical methodology based on parametric shape optimization is proposed for optimizing the thickness of the extra material, allowing for minimal machining operations while ensuring the finishing requirements. Moreover, the proposed approach is complemented by a novel algorithm for generating inner structures to reduce the part distortion and its weight. The computational effort induced by classical constrained optimization methods is alleviated by replacing both the objective and constraint functions by their sparse grid surrogates. Numerical results showcase the effectiveness of the proposed approach.Peer ReviewedPostprint (published version

    Optical Network Models and their Application to Software-Defined Network Management

    Get PDF
    Software-defined networking is finding its way into optical networks. Here, it promises a simplification and unification of network management for optical networks allowing automation of operational tasks despite the highly diverse and vendor-specific commercial systems and the complexity and analog nature of optical transmission. A fundamental component for software-defined optical networking are common abstractions and interfaces. Currently, a number of models for optical networks are available. They all claim to provide open and vendor agnostic management of optical equipment. In this work, we survey and compare the most important models and propose an intent interface for creating virtual topologies that is integrated in the existing model ecosystem.Comment: Parts of the presented work has received funding from the European Commission within the H2020 Research and Innovation Programme, under grant agreeement n.645127, project ACIN
    • …
    corecore