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ABSTRACT 
 

In the framework of Urban Building Energy Modeling, several procedures have been proposed to reduce the 

computational burden to evaluate the thermal behavior of multiple buildings. In a previous work, we presented a novel 

simplification algorithm capable of abstracting a randomly-shaped building into a representative shoebox. Differently 

from most of the approaches available in the literature, the proposed method is supposed to go beyond the preliminary 

assessment of the buildings’ performance in the early design stage or on an annual basis. Indeed, it makes it possible 

to predict accurately not only the annual or seasonal energy needs but also the hourly thermal load and indoor 

temperature profiles. In addition to that aspect, the proposed algorithm has been specifically developed to deal with 

buildings of complex shape and geometry, as they are common in the European building stock, accounting for 

adjacencies and reciprocal shading effects. 

After a first validation step carried out at single-building level, the proposed algorithm has been tested on many 

fictional parametrically-generated neighborhoods and several climates. In such a way, it has been possible to assess 

the reliability of the algorithm at city scale, with the goal to understand whether the application at urban level, 

characterized by multiple mutual interactions among buildings, could undermine its accuracy. Furthermore, the role 

played by solar radiation modelling in the framework of the shoebox simplification and its impact on the outcome of 

the algorithm have been discussed, presenting two alternatives with different accuracy levels.  

As a whole, the algorithm showed to be effective in estimating hourly and annual thermal loads and indoor 

temperatures in district-scale simulations, reducing up to 30 times the simulation time for the considered 

configurations. 

 

1. INTRODUCTION 
 

Urban Building Energy Modelling UBEM represents the most recent development of Building Performance 

Simulation BPS. Indeed, the main feature of UBEM is the analysis on a larger physical domain, encompassing groups 

of buildings, districts, or whole cities. Among the methodologies that can be employed to estimate the energy use of 

buildings at urban scale, UBEM is the one having the greatest level of flexibility as it can consider new technologies 

and different energy efficiency designs (Johari et al., 2020). In this way, it is possible to assess the buildings’ energy 

performance at urban scale to drive energy policies for reducing the greenhouse gas emissions of the building stock. 
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The increase of the size of the simulation domain, however, brings a series of issues which prevents the application 

of the very same models and methods used in BPS because they would require too much time and information. 

Furthermore, the interactions among buildings (e.g., heat transfer through adjacent components, mutual radiative 

exchanges, shadows cast by adjacent building, solar radiation reflections, etc.) make the characterization of the 

boundary conditions more complex compared to single-building analyses. Combining both aspects, it looks clear that 

UBEM is more computationally demanding compared to traditional BPS (Reinhart and Davila, 2015). To cope with 

that, several approaches have been proposed in the literature to simplify models and simulation domains (Abbasabadi 

& Ashayeri, 2019). The most interesting methodologies aim at converting the geometrical massing into simplified 

energy models, rather than the fully detailed traditional model employed in BEM.  

The first work going in this direction has been proposed by Dogan and Reinhart (2013), who developed an automated 

workflow to convert architectural massing models into sets of thermal shoebox models. Such procedure is known as 

Shoeboxer algorithm (Dogan and Reinhart, 2017) and it is employed in the urban modeling interface umi (Reinhart et 

al., 2013) to estimate the thermal performance of the buildings in the model. Starting from the tridimensional massing 

model, the Shoeboxer computes the incident solar radiation on the envelope of each building and performs a clustering 

analysis to find the regions experiencing similar solar loads. For each cluster a shoebox thermal zone is created and 

placed in correspondence of the point on the façade whose radiation value is closest to the cluster’s mean. For each 

shoebox, only the visible external shading surfaces are included into the thermal model. To obtain the overall building 

demand, the results of every shoebox are aggregated and weighed according to the related cluster area. 

Later, Zhu et al. (2019) developed a new method called Building Blocks Energy Estimation BBEE based on the typical 

shoebox zone concept proposed by the Shoeboxer. The BBEE is built on top of the hypothesis that the energy needs 

of a building is close to the sum of each part of it. More specifically, the BBEE method consists in the BBEE algorithm 

which is coupled with an energy database of typical zones. Thus, the BBEE method employs the BBEE algorithm to 

transform complex building forms into an assembly of typical zones, coded according to their properties. Finally, 

instead of performing energy simulations, the method relies on the database to retrieve the energy use of each typical 

zone and sums them up to get to the final building’s needs. 

More recently, İşeri and Dino (2020) proposed another method that reorganizes the building geometries with 

functional clustering and radiation analysis scaling. At first, an adapted version of the solar radiation analysis 

performed in the Shoeboxer is implemented to group the buildings’ units according to the radiation values on the 

envelope. Afterwards, the clustered units are further subdivided depending on their position in the building, i.e., 

ground, middle and top floor, and their space conditioning. 

Finally, Zhu, et al. (2021) proposed a hybrid metamodel-based method to be used in the early design stage to find 

high-performance building forms. The method subdivides the building into several zones as metamodels and estimates 

the total energy needs by summing up the results of all metamodels. Differently from other metamodels, it accounts 

for the surrounding shading and reflection effects by using the received solar radiation values as inputs. Moreover, 

GPU acceleration technology is used to speed up the radiation calculation, and the accuracy of the metamodels is 

improved by implementing a machine learning algorithm screening framework.  

The aforementioned methodologies showed how it is possible to introduce simplifications in UBEM to reduce the 

computational time of the simulation. Nonetheless, there is still room for improvement, especially for what regards 

the spatial and temporal resolution of the outcome, e.g., properly predicting hourly temperature profiles permits to 

perform thermal comfort evaluations at urban scale. Indeed, given that UBEM is a relatively new field of research, a 

well-established approach to optimize its computational efficiency has still to be found (Hong et al., 2019). 

In a previous work, the authors presented a novel simplification algorithm capable of abstracting a randomly shaped 

building into a representative shoebox with a thermal zone per floor (Battini et al., 2021a). Differently from most of 

the approaches available in the literature, the proposed method has been development not only for the assessment of 

the buildings’ performance in the early design stages or on an annual basis. Indeed, it makes it possible to accurately 

predict not only the annual or seasonal energy needs but also the hourly thermal loads and indoor temperature profiles. 

Even though the algorithm has been already validated for stand-alone buildings, it has been designed to be employed 

for urban level simulations. Therefore, in this work, the approach has been tested on many neighborhoods’ 

configurations and several climates to assess its reliability at city scale. 

 

2. METHODOLOGY 
 

The methodology for assessing the performance of the proposed shoeboxing algorithm at urban scale consists of three 

parts: (i) overview on the simplification procedure, (ii) development of a set of fictional districts for testing, and (iii) 

simulation and comparison. 
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2.1 Shoeboxing algorithm 
In this work, two workflows have been followed to perform the simplification. At first, the standard procedure 

accounting for the self and context shadings by means of an annual radiation analysis has been followed. Then, an 

improved and more detailed approach capable of accounting for the obstructions on a monthly basis has been pursued. 

The two procedures are presented in the following. 

 

2.1.1 Basic shoeboxing algorithm description: A detailed description of the workflow employed to develop the 

algorithm can be found in a previous work by the authors (Battini et al., 2021a). Nonetheless, the steps to take in order 

to employ the approach for simplifying buildings into representative shoeboxes can be summarized as follows: 

1. Shoebox generation: starting from the three-dimensional building massing, three geometrical indicators able 

to meaningfully represent the building are computed. A system of three equations in three unknowns (i.e., 

the three indicators and the three shoebox dimensions) is solved to obtain the simplified model’s dimensions 

prior performing the simulation. The representative shoebox is generated according to the dimensions found 

and it is characterized by the same window-to-wall ratio and floor height as the starting building. Also, the 

thermophysical properties are assigned accordingly.  

2. Contextual- and self-shading incorporation: to account for the reduced amount of incoming solar radiation 

due to the building’s self-shadings and surroundings also in the simplified model, a portion of the windows 

is substituted by an opaque surface characterized by the same thermal transmittance of the window. To 

properly size the shading surfaces, a direct radiation analysis is performed on both the starting geometry and 

the resulting shoebox according to the all-weather Perez sky model. For sake of simplicity, only window 

surfaces are considered for the detailed massing while the entire geometry is considered for the shoebox. The 

average annual beam radiation is computed for every orientation and floor, and the equivalent obstruction 

ratios obtained. For every window of the simplified model, the opaque area is calculated from the 

corresponding obstruction ratio. The opaque surfaces are modelled as elements having the same base of the 

window, while the height is calculated to match the equivalent area previously found. 

3. Adjacent buildings inclusion: building adjacencies are treated as adiabatic surfaces. The presence of 

adjacencies is checked for each floor and orientation, and adiabatic ratios are computed. Adiabatic ratios can 

range between 0 and 1, i.e., surfaces can be totally exposed to the external environment or be completely 

adiabatic. As for windows, the adiabatic areas of the shoebox’s surfaces are computed from the adiabatic 

ratios. Adiabatic surfaces have the same height of the parent surface and the base length calculated to match 

the equivalent area obtained.  

For both obstructions and adjacencies, since a shoebox can have only four vertical surfaces, the orientation of the 

façades of the starting building are considered with a ± 45° tolerance range in order to aggregate walls with similar 

orientations. Windows and their corresponding obstruction surfaces are only applied to non-adiabatic façades. 

The shoeboxing algorithm has been developed employing Rhinoceros as CAD tool, its plug-in Grasshopper, and 

EnergyPlus as BPS engine. More specifically, customized Grasshopper components written in Python programming 

language have been utilized. RhinoCommon API (Robert McNell & Associates, 2021) has been used for the 

geometrical modeling and Ladybug Tools core SDK (Ladybug Tools LLC, 2021) to perform the radiation analysis 

and the conversion into thermal models. Figure 1 shows an example of shoeboxes with the related boundary 

conditions.  

 

 
 

Figure 1: Example of shoeboxes 
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2.1.2 Improved and more detailed shoeboxing procedure: In a previous work by the authors (Battini et al., 2021b), it 

has been proven that buildings’ geometrical details and context have a greater impact on the cooling needs than on the 

heating ones. In order to improve the prediction accuracy of the shoebox models, especially for what regards the 

cooling demand, a different approach has been tested to size the opaque elements obstructing solar radiation on 

windows. The second step of the basic workflow has been adapted to account for the global radiation instead of the 

direct one; then, monthly solar radiation analyses have been employed instead of an annual one. To accomplish this 

step, the radiation analysis has been performed using EnergyPlus for consistently sizing the shoebox’s obstructing 

surfaces by employing the same modeling tool as for the simulation. Differently from the basic procedure in which 

the radiation analysis and energy simulation have been carried out with two different engines. 

 

To complete the process, in both workflows detailed (i.e., the starting building) and simplified (i.e., the resulting 

shoebox) models are automatically exported as .idf files and prepared for the simulation by means of Python scripts 

with the aid of the library Eppy (Philip, 2020), a scripting language for EnergyPlus input and output files. Both detailed 

and simplified models have one thermal zone for each floor. Nonetheless, the zoning discretization is not a built-in 

feature of the algorithm, thus it can be changed if needed. For what regards the second procedure, since each month 

has a specific set of obstruction ratios, 12 different simplified .idf files, differentiated by the size of the obstructing 

surfaces, are generated. This is necessary due to a limitation of EnergyPlus which does not accept to schedule variable 

values for this feature. Then, to properly compare the outputs of the simplified models with those of the detailed ones 

and save computing time, the simulations of the shoebox models are performed just for the month of interest starting 

one week before the first day of the month, in order to avoid the initial conditions to lead to misleading results. 

 

2.1 Districts for testing 
Testing the algorithm at the urban scale aims to explore as much as possible the space of the solutions for the 

shoeboxes. Therefore, it has been decided to create fictional districts to assess the capabilities of the procedure. A 

literature review has been performed to find workflows capable of creating from scratch neighborhoods of complex 

and different building shapes.  

Lyu et al. (2019) developed nine Local Climate Zone models to find a correlation between sky view factor and 

microclimate. The models have the same simulation area and represent typical districts of the considered case study. 

Natanian et al. (2019) created an automated workflow for performance-driven urban design to evaluate the 

performance of both building and urban design parameters of residential and office buildings. Pomponi el al. (2021) 

analyzed the life cycle greenhouse gas emissions of cities decoupling density from tallness. They collected several 

inputs for real-world neighborhoods to create synthetic urban environments. Trepci et al. (2021) systematically 

evaluated the impact of the urban surroundings on the energy performance of buildings in a hot climate environment 

by applying different contexts to base case models changing the context’s distance and height, as well as the model 

orientation. Shi et al. (2021), with the aim of investigating interactions between solar energy use and urban design, 

developed the Urban Block Generator to parametrically model typical vernacular block typologies featuring various 

combinations of block dimensions, building patterns, floor area ratios, and site coverage. In the mentioned studies, 

even though several metrics have been used to build up the districts, buildings have simple or repetitive shapes and 

have mainly rectangular footprints. Moreover, individual buildings or building blocks are repeated to obtain generate 

neighborhoods. 

Since the target of this work are complex shaped buildings, a more viable solution is the Building Modular Cell BMC 

technique introduced by Javanroodi et al. (2018) to generate buildings based on a cuboid module according to a series 

of form generation rules. The BMC has already been used to enhance the energy efficacy of high-rise building in urban 

areas (Javanroodi et al., 2019) and to develop the Urban Cell concept (Perera et al., 2021), creating neighborhoods 

based on realistic morphological parameters. To create buildings, the BMC uses a 4x4 grid of cells along with a 

coverage indicator and two basic decision constrains: (a) the selected cells must be connected from their sides only 

(no corners), and (b) only one shape must be obtained from the grid (two or more separate footprints from one grid 

are not allowed). 

In this study, a base district similar to the Urban Cell has been created and then modified as parametrically as possible 

to explore a wider space of the solutions. The district is a 6x6 grid of blocks composed by 9 buildings each, resulting 

in 324 buildings. Buildings’ blocks are separated by fictional streets with the same width for the entire district. The 

buildings’ footprints have been generated by adapting the BMC technique using a 4x4 cells grid having 4 m as side 

length for each cell and employing a cell coverage ratio of 75 %, in order to ensure touching buildings in each block. 

The variables that have been parametrically edited to create the batch of districts for the test of the algorithm are the 

buildings’ height and scale, and the street’s width.  
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Figure 2: Base district generation process, district variables and combinations 

 

Changing the three variables, it is possible to move from a very dense urban setting with small buildings to a less 

dense one with large massings, allowing to properly evaluate which are the algorithm’s strength and weaknesses for 

different urban layouts. In each model, buildings have the same height and they can be 1, 2, 3 or 4 floors tall, given a 

floor height of 3 m. Moreover, buildings have been scaled by a factor equal to 1, 2, 3 or 4. Finally, the street’s width 

have been set equal to 10, 20, 30, or 40 meters. Combing all variables leads to 64 districts to be simulated, thus 20 

736 buildings in total. The district generation process, a visualization of the base district’s buildings footprints and the 

variables’ ranges coupled with the resulting combinations are reported in Figure 2.  

 

2.1 Simulation and comparison 
The 64 districts have been simulated in the three climates of Bolzano and Messina, Italy, and Denver, U.S. Bolzano 

and Messina have been chosen to have both heating- and cooling-dominated climates respectively, while Denver has 

been selected since it is usually employed for validating BPS tools, and it is characterized by large daily temperature 

variations. Detailed and simplified models according to the shoeboxing algorithm have been simulated for every 

district in each climate.  

As regards detailed models, in order to consider only the part of the district relevant for each building, the surrounding 

context has been taken into account up to a distance equal to the length of the blocks’ diagonal. All models have been 

characterized by the same energy-related properties, as in the previous work on stand-alone buildings (Battini et al, 

2021a).  

The outputs of detailed and simplified models have been compared to assess the algorithm performance. Even though 

both temperature and energy needs differences have been evaluated, in this paper, the comparison has been carried 

out only for what regards the energy demand to properly discuss the procedure’s goodness and reliability at building 

level. Thus, the energy needs have been analyzed at annual and hourly scale. Annually, absolute and relative 

differences between detailed and shoebox models have been calculated, while the Root Mean Square Error RMSE has 

been employed to assess the performance at hourly scale. 

  

3. RESULTS AND DISCUSSION 
 

3.1 Overview 
The energy needs differences between detailed and simplified models are presented as boxplots for all three climates, 

given the large amount of data analyzed. At first, the results from the standard shoeboxing procedure with one fixed 

opaque obstructing surface are presented. Then, the outcome for the improved configuration with monthly opaque 

shadings is reported. For both methodologies, the introduction of the shoeboxing algorithm has reduced the energy 

simulation time from 10 to almost 30 times depending on the district, regardless of the differences between the models. 

In this way, it has been possible to reduce the time required to simulate a district from several hours to tens of minutes 

in the worst case. 

B1 B2 B3 

B4 B5 B6 

B7 B8 B9 
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3.2 Basic simplification results 
The comparison of energy needs has been performed for all 64 districts simulated in the three climates of Bolzano, 

Denver and Messina. First, the differences have been reported for all simulated buildings without considering 

individual districts, buildings or blocks. Then, the analysis has increased the level of detail to identify the conditions 

leading to the poorest predictions. 

Figure 3 shows the relative annual differences for all buildings in all districts for the three considered climates. Overall, 

the heating demand is the better predicted output yielding results within ±20 % in all three climates neglecting outliers 

(defined as the points lying outside 1.5 times the interquartile range past the low and high quartiles), and, thus, its 

accuracy of this kind of simplification can be considered acceptable. Moreover, heating boxplots are often narrower, 

meaning that the prediction is consistent for all buildings. On the other hand, the cooling demand experiences larger 

deviations. For all three climates, only half of the buildings are within ±20 % deviation. Nonetheless, the remaining 

part of the studied buildings yields much larger differences, even ±100 %. The considerations related to the annual 

differences can be extended to the hourly deviations reported in Figure 4 by the RMSEs. Indeed, the RMSEs for the 

heating demand are much lower compared to the ones of the cooling demand.  

In Figure 5 and Figure 6 the relative annual differences and RMSEs have been grouped by building position in the 

blocks for a sample district. From the obtained boxplots, it is clear that their position in a block does not influence the 

deviations in the three climates. The same process has been followed to check the influence of the blocks’ position in 

the district obtaining the same outcome.  

From this first comparison, the basic configuration of the shoeboxing algorithm shows to be reliable enough when 

employed for assessing the heating demand, regardless the considered climate. However, it is still not able to ensure 

high accuracy when adopted for the cooling needs estimation in all the possible cases. To understand which are the 

conditions in which the accuracy of the procedure drops, a more in-depth analysis has been performed to check the 

variables employed in generating the districts leading to the poorest predictions. 

 
Figure 3: Boxplots reporting annual heating and cooling needs relative differences for all buildings in all districts in 

the three climates 

 

 
Figure 4: Boxplots reporting hourly heating and cooling RMSEs for all buildings in all districts in the three climates 
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Figure 5: Relative annual differences in the three climates for the district with buildings of 4 floors, scaled by a 

factor of 1, and with a street width of 10 m 

 

 
Figure 6: RMSEs in the three climates for the district with buildings of 4 floors, scaled by a factor of 1, and with a 

street width of 10 m 

 

 
Figure 7: Relative annual differences boxplots for all districts in the climate of Denver, with buildings' deviations 

grouped according to the building height, street width and building scale 

 

Specifically, the results of annual relative differences have been grouped according to the three variables utilized to 

create the districts: buildings’ scale and height, and street width. The results are consistent in all the three climates 

and, as an example, the boxplots for the climate of Denver are reported in Figure 7. From Figure 7 it is possible to see 

that the largest differences occur for smaller and taller buildings with smaller street widths. Indeed, taller buildings 

obstruct more the radiation on the lower floor resulting in larger differences. In the same way, smaller street widths 

lead to a denser urban context shading more radiation on all buildings. Moreover, smaller buildings have poorer 

predictions because they have a smaller volume, in fact the impact of the solar radiation entering the thermal zone on 

the air-node heat balance is greater respect to larger ones. Hence, considering all the above, the worst prediction 

accuracy occurring for the cooling needs seems to be correlated to the modelling of the solar radiation entering into 

the thermal zones. For this reason, an improved solution accounting for the radiation on a monthly basis has been 

tested. 
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3.3 Improved simplification results 
To assess the improvements of the shoeboxing algorithm with the new shading configuration, instead of running again 

all 64 districts, only the two districts yielding the worst overall prediction accuracy have been selected. 

Among all districts, the two districts experiencing the poorest predictions have both buildings of 4 floors and a street 

width of 10 m. As mentioned before, districts with smaller buildings are those with the largest differences (Figure 5 

and Figure 6), thus districts with buildings scaled by a factor of 1 and 2 have been selected. These two districts have 

been simulated in the three climates.  

Figure 8 and Figure 9 show the comparison in accuracy prediction between the basic simplification procedure and the 

improved one for the two districts considered in the three climates. The results show that sizing the obstruction opaque 

surface monthly remarkably reduces the differences, both annually and hourly. The cooling needs estimation has even 

become more accurate than the heating one with annual cooling relative differences within ± 20 % for every building 

in both districts, independently of the considered climate. The cooling RMSEs are comparable to the heating ones. In 

general, the new approach improved the prediction accuracy of the shoeboxing algorithm for all the considered targets, 

as shown not only by the lower deviations on both hourly and annual basis, but also by the much narrower boxplots. 

In the basic procedure, the cooling demand was generally underestimated by the shoeboxes, while for the heating 

demand a clear trend was not detected, with heating needs either over or underestimated. Differently, in the improved 

approach, while the cooling demand neglecting outliers is generally overestimated, the heating demand predictions 

are mainly underestimated, and they also show differences larger than 20 %. 

 

 
Figure 8: Relative annual differences comparison for the two districts considered in the three climates between the 

basic algorithm configuration and the improved one 

 

 
Figure 9: RMSEs comparison for the two districts considered in the three climates between the basic algorithm 

configuration and the improved one 
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Figure 10: Detail on the differences of the improved configuration for the two districts considered in the three 

climates 

 

Overall, the heating demand prediction has improved with respect to the basic procedure but not as much as the cooling 

one. Figure 10 reports more in detail the hourly and annual differences occurring in the six cases. The RMSEs boxplots 

highlight that the deviations between heating and cooling are comparable for all cases, excepts for Messina in which 

the heating demand magnitude is very low. 

To conclude, the results obtained by a more detailed modelling of the incoming radiation have improved more than 

any other solution (e.g., changing the grid-spacing used for the radiation analysis or employing opaque elements 

instead of shading surfaces outside the window for casting the solar radiation) the algorithm’s accuracy. More 

specifically, since the deviations are similar in the considered cases, the algorithm’s performances are less dependent 

on the external boundary condition as it is for the basic configuration. It is also expected that the improvements 

achieved in the two analyzed districts will be confirmed in the remaining ones, already yielding better results. As for 

now, the improved shoeboxing algorithm is capable of properly predicting the energy needs of complex shaped 

buildings at the urban level, even in a wide range of conditions that could undermine its accuracy.  

 

4. CONCLUSIONS 

 
In this work, a novel simplification algorithm to reduce the computational cost of building energy simulations at the 

urban scale has been tested to evaluate its accuracy at the district level. The algorithm consistently simplifies every 

building in an urban model into a representative shoebox and accounts for the building’s surroundings and adjacencies. 

Since the way in which the incoming solar radiation is modelled has a major effect on the outcome of the simplification 

approach’s accuracy, two solutions to consider the building’s self and context shadings have been investigated. The 

impacts of obstructions have been considered by means of opaque surfaces reducing the transparent building envelope 

generated according to obstruction ratios resulting from a radiation analysis. At first, such obstructions have been 

created from an annual direct radiation analysis. Then, an improved configuration considering monthly global 

radiation has been employed. The algorithm has been tested by means of a set of fictional districts, featuring complex 

shaped buildings arranged in blocks, that have been built to explore as much as possible the space of the solutions. To 

assess the algorithm’s performance under different boundary conditions, three different climatic conditions have been 

used. For every building in each district, detailed and simplified energy models have been compared on hourly and 

annual basis in terms of heating and cooling needs. 

Regardless of the kind of adopted radiation modelling (i.e., direct on annual basis or global on monthly basis), the 

algorithm has been able to cut the energy simulation time up to 30 times. The basic algorithm has proved to be effective 

in estimating the heating needs. However, it has not provided the same level of accuracy and reliability for what 

regards the cooling demand. For this reason, the improved methodology has been applied to the two districts yielding 

the worst results. Accounting for the solar radiation on a monthly basis significantly improved the cooling predictions, 

while still obtaining adequate results for the heating needs. Moreover, the results obtained were characterized by 

similar deviations regardless of the considered climate, making the algorithm’s performance independent by external 
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boundary conditions. 

To conclude, the shoeboxing algorithm showed to be adequate in predicting the energy needs of buildings of complex 

shapes at the urban level, even at fine time scale such as hourly. Further studies will be carried out in order to fully 

test the improved algorithm and to look for further improvements by studying outliers.  
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