36,098 research outputs found

    Investigating grid computing technologies for use with commercial simulation packages

    Get PDF
    As simulation experimentation in industry become more computationally demanding, grid computing can be seen as a promising technology that has the potential to bind together the computational resources needed to quickly execute such simulations. To investigate how this might be possible, this paper reviews the grid technologies that can be used together with commercial-off-the-shelf simulation packages (CSPs) used in industry. The paper identifies two specific forms of grid computing (Public Resource Computing and Enterprise-wide Desktop Grid Computing) and the middleware associated with them (BOINC and Condor) as being suitable for grid-enabling existing CSPs. It further proposes three different CSP-grid integration approaches and identifies one of them to be the most appropriate. It is hoped that this research will encourage simulation practitioners to consider grid computing as a technologically viable means of executing CSP-based experiments faster

    Observing the clouds : a survey and taxonomy of cloud monitoring

    Get PDF
    This research was supported by a Royal Society Industry Fellowship and an Amazon Web Services (AWS) grant. Date of Acceptance: 10/12/2014Monitoring is an important aspect of designing and maintaining large-scale systems. Cloud computing presents a unique set of challenges to monitoring including: on-demand infrastructure, unprecedented scalability, rapid elasticity and performance uncertainty. There are a wide range of monitoring tools originating from cluster and high-performance computing, grid computing and enterprise computing, as well as a series of newer bespoke tools, which have been designed exclusively for cloud monitoring. These tools express a number of common elements and designs, which address the demands of cloud monitoring to various degrees. This paper performs an exhaustive survey of contemporary monitoring tools from which we derive a taxonomy, which examines how effectively existing tools and designs meet the challenges of cloud monitoring. We conclude by examining the socio-technical aspects of monitoring, and investigate the engineering challenges and practices behind implementing monitoring strategies for cloud computing.Publisher PDFPeer reviewe

    SIMDAT

    No full text

    Information standards to support application and enterprise interoperability for the smart grid

    Get PDF
    Copyright @ 2012 IEEE.Current changes in the European electricity industry are driven by regulatory directives to reduce greenhouse gas emissions, at the same time as replacing aged infrastructure and maintaining energy security. There is a wide acceptance of the requirement for smarter grids to support such changes and accommodate variable injections from renewable energy sources. However the design templates are still emerging to manage the level of information required to meet challenges such as balancing, planning and market dynamics under this new paradigm. While secure and scalable cloud computing architectures may contribute to supporting the informatics challenges of the smart grid, this paper focuses on the essential need for business alignment with standardised information models such as the IEC Common Information Model (CIM), to leverage data value and control system interoperability. In this paper we present details of use cases being considered by National Grid, the GB transmission system operator for information interoperability in pan-network system management and planning.This study is financially supported by the National Grid, UK
    corecore