
Ward and Barker Journal of Cloud Computing: Advances, Systems and
Applications (2014) 3:24
DOI 10.1186/s13677-014-0024-2

RESEARCH Open Access

Observing the clouds: a survey and taxonomy
of cloud monitoring
Jonathan Stuart Ward† and Adam Barker*†

Abstract

Monitoring is an important aspect of designing and maintaining large-scale systems. Cloud computing presents a
unique set of challenges to monitoring including: on-demand infrastructure, unprecedented scalability, rapid
elasticity and performance uncertainty. There are a wide range of monitoring tools originating from cluster and
high-performance computing, grid computing and enterprise computing, as well as a series of newer bespoke tools,
which have been designed exclusively for cloud monitoring. These tools express a number of common elements and
designs, which address the demands of cloud monitoring to various degrees. This paper performs an exhaustive
survey of contemporary monitoring tools from which we derive a taxonomy, which examines how effectively existing
tools and designs meet the challenges of cloud monitoring. We conclude by examining the socio-technical aspects of
monitoring, and investigate the engineering challenges and practices behind implementing monitoring strategies for
cloud computing.

Keywords: Cloud computing; Monitoring

Introduction
Monitoring large-scale distributed systems is challeng-
ing and plays a crucial role in virtually every aspect of
a software orientated organisation. It requires substantial
engineering effort to identify pertinent information and to
obtain, store and process that information in order for it
to become useful. Monitoring is intertwined with system
design, debugging, troubleshooting, maintenance, billing,
cost forecasting, intrusion detection, compliance, testing
and more. Effective monitoring helps eliminate perfor-
mance bottlenecks, security flaws and is instrumental in
helping engineers make informed decisions about how to
improve current systems and how to build new systems.
Monitoring cloud resources is an important area of

research as cloud computing has become the de-facto
means of deploying internet scale systems andmuch of the
internet is tethered to cloud providers [1,2]. The advance-
ment of cloud computing, and by association cloud moni-
toring, is therefore intrinsic to the development of the next
generation of internet.
Cloud computing has a unique set of properties, which

adds further challenges to the monitoring process. The

*Correspondence: adam.barker@st-andrews.ac.uk
†Equal contributors
School of Computer Science, University of St Andrews, St Andrews, UK

most accepted description of the general properties of
cloud computing comes from the US based National Insti-
tution of Standards and Technology (NIST) and other
contributors [3,4]:

• On-demand self service: A consumer is able to
provision resources as needed without the need for
human interaction.

• Broad access: Capabilities of a Cloud are accessed
through standardised mechanisms and protocols.

• Resource Pooling: The Cloud provider’s resources
are pooled into a shared resource which is allocated
to consumers on demand.

• Rapid elasticity: Resources can be quickly
provisioned and released to allow consumers to scale
out and in as required.

• Measured service: Cloud systems automatically
measure a consumers use of resources allowing usage
to be monitored, controlled and reported.

Despite the importance of monitoring, the design of
monitoring tools for cloud computing is as yet an under
researched area, there is hitherto no universally accepted
toolchain for the purpose. Most real world cloudmonitor-
ing deployments are a patchwork of various data collec-
tion, analysis, reporting, automation and decision making

© 2014 Ward and Barker; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/30318551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto: adam.barker@st-andrews.ac.uk
http://creativecommons.org/licenses/by/4.0

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 2 of 30

software. Tools from HPC, grid and cluster computing
are commonly used due to their tendencies towards scal-
ability while enterprise monitoring tools are frequently
used due to their wide ranging support for different
tools and software. Additionally, cloud specific tools have
begun to emerge which are designed exclusively to tol-
erate and exploit cloud properties. A subclass of these
cloud monitoring tools are monitoring as a service tools
which outsource much of the monitoring process a third
party.
While the challenges associated with cloud monitor-

ing are well understood, the designs and patterns which
attempt to overcome the challenges are not well exam-
ined. Many current tools express common design choices,
which affect their appropriateness to cloud monitor-
ing. Similarly there are a number of tools which exhibit
relatively uncommon designs which are oftenmore appro-
priate for cloud computing. Arguably, due to the com-
partmentalisation of knowledge regarding the design and
implementation of current tools, emerging tools continue
to exhibit previously employed schemes and demonstrate
performance similar to well established tools. We there-
fore contend that it is necessary to examine the designs
common to existing tools in order to facilitate discus-
sion and debate regarding cloud monitoring, empower
operations staff to make more informed tool choices and
encourage researchers and developers to avoid reimple-
menting well established designs.
In order to perform this investigation we first present

a set of requirements for cloud monitoring frameworks,
which have been derived from the NIST standard and
contemporary literature. These requirements provide the
context for our survey in order to demonstrate which
tools meet the core properties necessary to monitor cloud
computing environments. Pursuant to this, we perform
a comprehensive survey of existing tools including those
from multiple related domains. From this comprehen-
sive survey we extract a taxonomy of current monitoring
tools, which categories the salient design and implemen-
tation decisions that are available. Through enumerating
the current monitoring architectures we hope to provide
a foundation for the development of future monitoring
tools, specifically built to meet the requirements of cloud
computing.
The rest of this paper is structured as follows:

Section ‘Monitoring’ provides an overview of the tradi-
tional monitoring process and how this process is applied
to cloud monitoring. Section ‘Motivation for cloud mon-
itoring’ describes the motivation for cloud monitoring
and details the behaviours and properties unique to cloud
monitoring that distinguish it from other areas of moni-
toring. Section ‘Cloud monitoring requirements’ presents
a set of requirements for cloud monitoring tools derived
from literature, which are used to judge the effectiveness

of current monitoring tools and their appropriateness to
cloud monitoring. Section ‘Survey of general monitoring
systems’ surveys monitoring systems which predate cloud
computing but are frequently referred to as tools used
in cloud monitoring. Section ‘Cloud monitoring systems’
surveys monitoring tools which were designed, from the
outset for cloud computing. Section ‘Monitoring as a ser-
vice tools’ surveys a monitoring as a service tools, a recent
development which abstracts much of the complexity
of monitoring away from the user. Section ‘Taxonomy’
extrapolates a taxonomy from the surveyed tools and cat-
egorises them accordingly. We then use this taxonomy
to identity how well current tools address the issues of
cloudmonitoring and analyse the future potential of cloud
monitoring tools. Section ‘Monitoring as an engineering
practice’ considers monitoring from a practical stand-
point, discussing the socio-technical and organisational
concerns that underpin the implementation of any moni-
toring strategy. Finally Section ‘Conclusion’ concludes this
paper.

Monitoring
At its very simplest monitoring is a three stage process
illustrated by Figure 1: the collection of relevant state,
the analysis of the aggregated state and decision making
as a result of the analysis. The more trivial monitoring
tools are simple programs which interrogate system state
such as the UNIX tools df, uptime or top. These tools
are run by a user who in turn analyses the system state
and makes an informed decision as to what, if any action
to take. Thus, in fact, the user is performing the vast
majority of the monitoring process and not software. As
computing systems continue to grow in size and com-
plexity there is an increasing need for automated tools to
perform monitoring with a reduced, or removed need for
human interaction. These systems implement all or some
of the 3 stage monitoring process. Each of these stages
have their own challenges, especially with regards to cloud
computing.

Collection
All monitoring systems must perform some form of data
collection. In tools commonly used for monitoring com-
modity server deployments this is achieved through the
use of a monitoring server. In these common use cases
a monitoring server either actively polls state on remote
hosts, or remote hosts push their state to the server.
This mechanism is ideal for small server deployments:
it is simple, it has no indirection and it is fast. As
the number of monitored servers grow, data collection
becomes increasingly challenging. The resources of a sin-
gle machine eventually become insufficient to collect all
the required state. Additionally, in tightly coupled systems
where there is often an active human administrator, the

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 3 of 30

Figure 1 The three stage monitoring process.

associated configuration overhead becomes prohibitive;
requiring frequent interaction. These challenges have led
to the development of a number of schemes to improve
the scalability of monitoring systems.
There are a diverse set of methods for collecting moni-

toring state from cloud deployments. Many tools still rely
upon fully centralised data collection, while others have
extended this design through the use of trees and other
forms of overlay.
Data collection trees are the simplest means of improv-

ing scalability over fully centralised systems. Monitoring
architectures using trees to collect and propagate data
have improved scalability when compared to fully cen-
tralised but still rely upon single points of failure. Typi-
cally, a central monitoring server sits at the root of the
tree and is supported by levels of secondary servers which
propagate state from monitored hosts (the leaves of the
tree) up to the root. Failure of a monitoring server will
disrupt data collection from its subtree.
Trees are not the solution to all scalability issues. In

the case of large scale systems, most tree schemes require
a significant number of monitoring servers and levels of
the tree in order to collect monitoring information. This
requires the provisioning of significant dedicated moni-
toring resources, which increases the propagation latency;
potentially resulting in stale monitoring data at the top of
the hierarchy.
With large scale systems becomingmore common place,

several recent monitoring systems have abandoned cen-
tralised communication models [5-8]. A new and diverse
class of monitoring system makes use of peer to peer
concepts to perform fully decentralised data collection.
These systems make use of distributed hash tables, epi-
demic style communication and various P2P overlays
to discover and collect data from machines. Decen-
tralised schemes have inherent scalability improvements
over earlier schemes but this is not without a series of
additional challenges including: the bootstrap problem,

lookup, replication and fault tolerance. Decentralised sys-
tems must overcome these challenges and risk becom-
ing slower and more cumbersome than their centralised
counterparts.
A very recent development is monitoring as a service:

SaaS applications that abstract much of the complexity
of monitoring away from the user. This class of monitor-
ing tool, presumably, makes use of similar architectures
to existing tools but introduces a novel separation of con-
cerns between where data is generated and where it is
collected. In these systems a users installs a small agent
which periodically pushes monitoring state to a service
endpoint, all functionality beyond that is the preroga-
tive of the monitoring provider. This alleviates complexity
on behalf of the user but exacerbates the complexity of
the service provider who must provide multi-tenanted
monitoring services.

Analysis
Once data has been collected it must be analysed or other-
wise processed in order for it to become useful. The range
of analysis offered by monitoring tools varies greatly from
simple graphing to extremely complex system wide anal-
ysis. With greater analysis comes greater ability to detect
and react to anomalous behaviour, this however comes
with an increased computational cost.
Graphing is the lowest common denominator of analy-

sis and offloads the complexity of analysis to the end user.
Resource monitors and systems, which exclusively collect
time series data are the only tools which tend to rely solely
on graphing. These tools typically provide a holistic view
of system wide resource usage; allowing a user to inter-
rogate machine specific resource usage if necessary. It is
then up to the user to detect resource spikes, failures and
other anomalous behaviour.
Other monitoring systems provide more complex anal-

ysis. Threshold analysis is the most common form of
analysis, found in the vast majority of monitoring systems.

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 4 of 30

Threshold analysis is where monitoring values are con-
tinually checked against a predefined condition, if the
value violates the condition an alert is raised or other
action taken. This basic strategy is used to provide health
monitoring, failure detection and other forms of basic
analysis.
Threshold monitoring allows for expected error states

to be detected but does not provide a means to detect
unexpected behaviour. As cloud deployments become
increasingly large and complex the requirement for auto-
mated analysis becomes more pressing. To this end var-
ious recent tools provide facilities for trend analysis and
stream processing to detect anomalous system states and
complex error conditions beyond what simple threshold
analysis is capable of detecting. These more complex anal-
ysis tasks often require bespoke code, which runs outside
of the monitoring environment consuming data via an
API or alternatively runs as part of the monitoring system
through a plugin mechanism.
Complex analysis is typically more resource intensive

than simple threshold, analysis requiring significant mem-
ory and CPU to analyse large volumes of historical data.
This is a challenge for most monitoring systems. In cen-
tralisedmonitoring system a commonmitigation is simply
provisioning additional resources as necessary to perform
analysis. Alternatively, taking cues from volunteer com-
puting, various monitoring systems attempt to schedule
analysis over under utilised hosts that are undergoing
monitoring.

Decision making
Decision making is the final stage of monitoring and is
particularly uncommon in the current generation of mon-
itoring tools. As previously discussed, simple tools collect
and graph analysis requiring the user to analyse the cur-
rent state of the system and in turn make any appropriate
decisions. This is a challenge for the user as it requires
them to consider all known state, identify issues and then
devise a set of actions too rectify any issues. For this rea-
son, all major organisations employ significant operations
personnel in order to enact any appropriate actions. Cur-
rent monitoring tools are intended to support monitoring
personnel rather than to take any action directly.
Many current monitoring tools support the notion of

event handlers; custom code that is executed dependant
upon the outcome of analysis. Event handlers allow oper-
ations personnel to implement various automated strate-
gies to prevent errors cascading, their severity increasing
or even resolve them. This represents an automation of
part of the manual error handling process and not a true
autonomic error correction process.
Some monitoring tools provide mechanisms to imple-

ment basic automated error recover strategies [9,10]. In
the case of cloud computing the simplest error recovery

mechanism is to terminate a faulty VM and then instanti-
ate a replacement. This will resolve any errors contained
to a VM (stack overflows, kernel panics etc) but will do lit-
tle to resolve an error trigged by external phenomenon or
an error that continuously reoccurs.
A true autonomic monitoring system which can detect

unexpected erroneous states and then return the system
to an acceptable state remains an open research area. This
area of research is beyond the scope of most other mon-
itoring challenges and exists within the domain of self
healing autonomic systems.

Motivation for cloudmonitoring
Monitoring is an important aspect of systems engineer-
ing which allows for the maintenance and evaluation of
deployed systems. There are a common set of motiva-
tions for monitoring which apply to virtually all areas
of computing, including cloud computing. These include:
capacity planning, failure or under-performance detec-
tion, redundancy detection, system evaluation, and policy
violation detection. Monitoring systems are commonly
used to detect these phenomena and either allow adminis-
trators to take action or to take some form of autonomous
action to rectify the issue. In the case of cloud computing
there are additional motivations for monitoring which are
more unique to the domain, these include:

Performance uncertainty
At the infrastructure layer, performance can be incredi-
bly inconsistent [11] due to the effects of multi-tenancy.
While most IaaS instance types provide some form of
performance guarantee these typically come in the neb-
ulous form of a ‘compute unit’. In the case of the Ama-
zon Compute Unit this is defined as: “the relative mea-
sure of the integer processing power of an Amazon EC2
instance” [12] and in the case of the Google Compute
Unit as: “a unit of CPU capacity that we use to describe
the compute power of our instance types. We chose 2.75
GCEUs to represent the minimum power of one logical
core (a hardware hyper-thread) on our Sandy Bridge plat-
form” [13]. These measurements give little in the way of
absolute performance metrics and at best serve to give a
vague indication of performance levels. Worse still are the
smallest instance types: t1.micro in the case of Amazon
and f1-micro in the case of Google. These instance types
have no stated performance value in terms of compute
units, or indeed otherwise, and are particularly suscepti-
ble to the effects of cpu stealing. CPU stealing [14] is an
emergent property of virtualization which occurs when
the hypervisor context switches a VM off the CPU. This
occurs based on some sort of policy: round robining,
demand based, fairness based or other. From the perspec-
tive of the VM, there is a period where no computation, or
indeed any activity, can occur. This prevents any real time

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 5 of 30

applications from running correctly and limits the perfor-
mance of regular applications. The performance impact
of CPU stealing can be so significant that Netflix [15] and
other major cloud users implement a policy of terminat-
ing VMs that exceed a CPU stealing threshold as part of
their monitoring regime.
The vague notion of compute units gives little ability to

predict actual performance. This is primarily due to two
factors: multi-tenancy and the underlying hardware. Vir-
tualization does not guarantee perfect isolation, as a result
users’ can affect one another. Many cloud providers utilise
(or are believed to utilise) an over-subscription model
whereby resources are over sold to end users. In this
case, users will effectively compete for the same resources
resulting in frequent context switching and overall lower
performance. The exact nature of this mechanism and the
associated performance implications are not disclosed by
any cloud provider. This issue is further compounded by
the underlying hardware. No cloud provider has homoge-
neous hardware. The scale that cloud providers operate at
makes this impossible. Each major cloud provider oper-
ates a wide range of servers with different CPUs. The
underlying hardware has the most crucial effect upon
performance. Again, no cloud provider discloses informa-
tion about their underlying hardware and the user has no
knowledge of the CPU type that their VM will have prior
to instantiation. Thus, details critical to determining the
performance of a VM are unavailable until that VM has
been instantiated.
Figure 2 gives some example as to the range of perfor-

mance variation commonly found in cloud deployments.
This Figure shows the results of an Apache benchmark
performed on 5 EC2 VMs instantiated at the same time,
in the same US East Region. Each of these VMs are of the
m1.medium type. In this sample of 5 instances, three CPU
types were found: the Intel Xeon E5645, E5430 and E5507.
An Apache benchmarking test was performed 12 sepa-
rate times per instance over a 3 hour period in order to

ascertain how many http requests per second (a predom-
inantly CPU bound activity) each instance could fulfil. As
is evident from the graph, a range of performance was
demonstrated. The lowest performance was exhibited by
instance C which in one test achieved 2163 requests per
second. The highest performance was demonstrated by
instance E which achieved 3052 requests per second. This
represents a 29% difference between the highest and low-
est performing VMs. Interesting to note is the processor
responsible for delivering the best and second best perfor-
mance, the E5430, is an older end of line chip. The newer
CPU models, which were expected to yield greater per-
formance handled demonstrably fewer tests.Whether this
is due to the underlying physical machines being over-
sold or due to some other multi-tenanted phenomena is
unclear. Notable is instance C which yielded a signifi-
cant range of performance variation, again for an unclear
reason. This trivial benchmarking exercise is comparable
with results found in literature [11,11,16] and demon-
strates the range of performance that can be found from
5 VMs that are expected to be identical. In any use case
involving a moderate to high traffic web application sev-
eral of these instances may prove unsuitable. Without the
availability of monitoring data it is impossible for stake-
holders to identify these issues and thus will suffer from
degraded performance.
The non-availability of exact performance metrics

makes deploying certain use cases on the cloud a chal-
lenge. An example of this is HPC applications. Cloud
computing has frequently been touted as a contender
for supporting the next generation of HPC applications.
Experiments showing that it is feasible to deploy a com-
parable low cost supercomputer capable of entering the
top500 [17] and the recent availability of HPC instance
types makes cloud computing an appealing choice for
certain HPC applications. Performance uncertainty, how-
ever, makes it hard to create a deployment with the
desired level of performance. Conceptually the same size

Figure 2 Apache requests served per second by AWS EC2m1.medium instances.

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 6 of 30

of deployment could offer significantly different rates of
performance at different points in time which is clearly
undesirable for compute bound applications. These con-
cerns will appear in any cloud deployment which expects
a certain level of performance and may be prohibitive.
This uncertainty makes cloud monitoring essential.

Without monitoring it is impossible to understand and
account for the phenomena mentioned above. To sum-
marise, the need for cloud monitoring, with regards to
performance certainty is four fold:

• To quantify the performance of a newly instantiated
VM deployment to produce an initial benchmark
that can determine if the deployment offers
acceptable performance.

• In order to examine performance jitter to determine
if a deployment is dropping below an acceptable
baseline of performance.

• To detect stolen CPU, resource over-sharing and
other undesirable phenomena.

• To improve instance type selection to ensure that the
user achieves best performance and value.

SLA enforcement
With such a dependency upon cloud providers, customers
rely upon SLAs to ensure that the expected level of ser-
vices are delivered. While downtime or non availability
is easily detected there are other forms of SLA viola-
tion which are not easily noticed. High error rates in
APIs and other services and performance degradation of
VMs and services are not always easily detectable but can
have significant impact upon an end users deployments
and services. Monitoring is therefore essential in order
to guarantee SLA compliance to produced the necessary
audit trail in the case of SLA violation. Monitoring is also
important on the part of the cloud provider, in this capac-
ity, to ensure SLA compliance is maintained and that an
acceptable user experience is provided to customers.
In the case of recent outages and other incidents [18,19]

cloud provider’s SLAs have been ineffective in safeguard-
ing performance or otherwise protecting users. Moni-
toring, therefore, becomes doubly important as it allows
cloud users to migrate their architecture to an alternative
provider or otherwise compensate when a cloud provider
does not adhere to the level of expected service.

Defeating abstraction
Cloud computing is based on a stack which builds func-
tionality on increasing levels of abstraction. It therefore
seems counter-intuitive to attempt to circumvent abstrac-
tion and delve down into the level below. Doing so how-
ever allows users to become aware of phenomena that,
whether they are aware of it or not, will affect their appli-
cations. There are a number of phenomena which are

abstracted away from the user that crucially affect their
applications, these include:

Load balancing latency
Many cloud providers including Amazon Web Services,
Google Compute Engine and Microsoft Azure include a
load balancer which can distribute load between VMs and
create additional VMs as necessary. Such load balancers
are based upon undisclosed algorithms and their exact
operation is unknown. In many cases the load balancer is
the point of entry to an application and as such, success
of an application rests, in part, on effective load balanc-
ing. A load balancer is ineffective when it fails to match
the traffic patterns and instantiate additional VMs accord-
ingly. This results in increased load on the existing VMs
and increased application latency. Monitoring load bal-
ancing is therefore essential to ensure that the process is
occurring correctly and that additional VMs are created
and traffic distributed as is required. Successfully detect-
ing improper load balancing allows the user to alter the
necessary policies or utilise an alternative load balancer.

Service faults
Public clouds are substantial deployments of hardware
and software spread between numerous sites and utilised
by a significant user-base. The scale of public clouds
ensures that at any given time a number of hardware faults
have occurred. Cloud providers perform a noble job in
ensuring the continuing operation of public clouds and
strive to notify end users of any service disruptions but do
not always succeed. An Amazon Web Services outage in
2012 disrupted a significant portion of the web [19]. Major
sites including Netflix, Reddit, Pintrest, GitHub, Imgur,
Forsquare, Coursera, Airbnb, Heroku and Minecraft were
all taken off-line or significantly disrupted due to fail-
ures in various AWS services. These failures were initially
detected by a small number of independent customers and
weren’t fully publicised until it became a significant issue.
The few users who monitored these emergence of these
faults ahead of the public announcement stood far greater
chance of avoiding disruption before it was too late. Mon-
itoring service availability and correctness is desirable
when one’s own infrastructure is entirely dependant upon
that of the cloud provider.

Location
Public cloud providers typically give limited information
as to the physical and logical location of a VM. The cloud
provider gives a region or zone as the location of the VM
which provides little more than a continent as a loca-
tion. This is usually deemed as beneficial; users do not
need to concern themselves with data centres or other
low level abstractions. Hoover for applications which are
latency sensitive or otherwise benefit from collocation the

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 7 of 30

unavailability of any precise physical or logical locations
is detrimental. If a user wishes to deploy an applica-
tion as close to users or a data source as possible and
has a choice of numerous cloud regions it is difficult
to make an informed decision with the limited informa-
tion that is made available by cloud providers [20,21]. In
order to make an informed decision as to the placement
of VMs additional information is required. To make an
informed placement the user must monitor all relevant
latencies between the user or data source and potential
cloud providers.

Cloudmonitoring requirements
Cloud computing owes many of its features to previous
paradigms of computing. Many of the properties inher-
ent to cloud computing originate from cluster, grid, ser-
vice orientated, enterprise, peer to peer and distributed
computing. However, as an intersection of these areas,
cloud computing is unique. The differences between cloud
monitoring and previous monitoring challenges has been
explored in literature [22,23]. A previous survey of cloud
monitoring [24] has addressed the challenges inherent
to cloud computing. Examination of the challenges pre-
sented in the literature in combination with the well
established NIST definition allow us to derive a set of
requirements for a cloud monitoring framework. These
requirements provide a benchmark against which to judge
current systems. An ideal system will focus on and fulfil
each of these requirements; realistically monitoring tools
will focus predominantly upon one of these requirements
with lesser or no support for the others. Importantly,
we differentiate our survey from [24] by focusing upon
the design and internals of current tools and taxonomies
these tools accordingly, as opposed to focusing upon the
requirements and open issues of cloud monitoring.

Scalable
Cloud deployments have an inherent propensity for
change. Frequent changes in membership necessitate
loose coupling and tolerance membership churn, while
change in scale necessitates robust architectures which
can exploit elasticity. These requirements are best encap-
sulated under the term scalability. A scalable monitoring
system is one which lacks components which act as a bot-
tleneck, single points of failure and supports component
auto detection, frequent membership change, distributed
configuration and management, or other features that
allow a system to adapt to elasticity.

Cloud aware
Cloud computing has a considerable variety of costs -
both in terms of capital expenditure and in terms of per-
formance. Data transfer between different VMs hosted
in different regions can incur significant financial costs,

especially when dealing with big data [25,26]. Monitor-
ing data will eventually be sent outside of the cloud in
order to be accessed by administrators. In systems hosted
between multiple clouds there will be both inter and intra
cloud communication. Each of these cases have different
costs and latencies associated with them both in terms of
latency and in terms of financial cost to the user. Latency
and QoS presents a significant challenge for applications
running on the cloud [27,28] including monitoring. When
monitoring physical servers a host can be but a few hops
away, cloud computing gives no such guarantees. This will
adversely affect anymonitoring systemwhich uses topolo-
gies which rely upon the proximity of hosts. A location
aware system can significantly outperform a system which
is not location aware [29] and reduce the costs inherently
associated with cloud computing. Hence a cloud moni-
toring system must be aware of the location of VMs and
collect data in a manner which minimizes delay and the
costs of moving data.

Fault tolerance
Failure is a significant issue in any distributed system,
however it is especially noteworthy in cloud computing
as all VMs are transient [30]. VMs can be terminated by
a user or by software and give no indication as to their
expected availability. Systems must Current monitoring
is performed based upon the idea that servers should be
permanently available. As such current monitoring sys-
tems will report a failure and await the return of the
failed server. A cloud monitoring systemmust be aware of
failure, and of VM termination and account for it appro-
priately. It must not treat VM termination as failure but it
must always detect genuine failure. Crucially failure, even
widespread failure, must not disrupt monitoring.

Autonomic
Having to configure a live VM, even a trivial configuration,
is a significant overhead when dealing with large num-
bers of VMs. When deployments auto-scale and rapidly
change, human administrators cannot be required to per-
form any form of manual intervention. An autonomic sys-
tem is one which has the capacity for self management; to
configure and optimise itself without the need for human
interaction. There are many different levels of autonomic
behaviour from simple configuration management tools
to self optimising and self healing systems. At the very
least, a cloud monitoring system must require no sig-
nifiant configuration or manipulation at runtime. Greater
degrees of autonomic behaviour is however, incredibly
desirable.

Multiple granularities
Monitoring tools can collect a vast sum of data, especially
from large and constantly changing cloud deployments.

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 8 of 30

Practically no data collected from systems is unimportant
but it may be unrelated to a given use case. Somemonitor-
ing state may be useful only when analysed enmasse while
other state is immediately useful by itself. These factors
necessitate a monitoring system which considers the mul-
tiple levels of granularity present in anymonitored system.
This can range from proving a mechanism to alter the rate
at which data is collected or to dynamically alter what data
is collected. It can also extend to tools which collect data
from less conventional sources and frommultiple levels of
the cloud stack. Accounting for granularity when dealing
with users is also essential. Users should not be expected
to manually parse and analyse large sets of metrics or
graphs. Monitoring tools should produce visualizations or
other reports to the user at a coarse granularity appro-
priate for humans while collecting and analysing data at a
much finer level of granularity.

Comprehensiveness
Modern systems consist of numerous types of hardware,
VMs, operating systems, applications and other software.
In these extremely heterogeneous environments there are
numerous APIs, protocols and other interfaces which pro-
vide potentially valuable monitoring state. A cloud moni-
toring tool must be comprehensive: it must support data
collection from the vast array of platforms, software and
other data sources that comprise heterogeneous systems.
This can be achieved either through the use of third party
data collection tools, plugins or simply through extensive
in built support.

Time sensitivity
Monitoring state can be useful long after it has been col-
lected. Capacity planning, post mortem analysis and a
variety of modelling strongly depends upon the availabil-
ity of historical monitoring state. Themore common func-
tions of monitoring, such as anomaly detection, depend
upon up to date monitoring state that is as close to real
time as possible. Monitoring latency: the time between
an phenomena occurring and that phenomena being
detected, arises due to a number of causes. The data col-
lection interval, the time between state being collected is
a significant factor in monitoring latency. In some systems
the collection interval is fixed, this is common in loosely
coupled systems wheremonitored hosts push state at their
own schedule. In other schemes the monitoring interval
can be adjusted this is common in pull based schemes
or in push schemes where there is some form of feed-
back mechanism. If the interval is fixed and events occur
within the collection interval those events will remain
undetected until the next collection occurs. In systems
where the collection time increases as the number ofmon-
itoring hosts increases this can result in significant latency
between phenomena occurring and their detection.

Monitoring latency can also be affected by communi-
cation overheads. Systems which rely upon conventional
network protocols which provide no time guarantees can
suffer increased latency due to packet loss or congestion.
Encoding formats, data stores and various of data repre-
sentation can also increase the time between state leaving
its point or origin and it being analysed if they act as
performance bottlenecks.
A monitoring system is time sensitive if it provides

some form of time guarantee or provides a mechanism for
reducing monitoring latency. These guarantees are essen-
tial to ensure continuous effective monitoring at scale or
in the event of frequent change.

Survey of general monitoring systems
This section contains two categories of tools: tools devel-
oped before cloud computing and contemporary tools
which were not designed specifically for cloud monitor-
ing but have related goals. In the case of the former, these
tools retain relevance to cloud computing either by util-
ising concepts pertinent to cloud monitoring or by being
commonly utilised in cloud monitoring.

Ganglia
Ganglia [31] is a resource monitoring tool primar-
ily intended for HPC environments. Ganglia organises
machines into clusters and grids. A cluster is a collection
of monitored servers and a grid is the collection of all clus-
ters. A Ganglia deployment operates three components:
Gmond, Gmetad and the web frontend. Gmond, the
Ganglia monitoring daemon is installed on each mon-
itored machine and collects metrics from the local
machine and receives metrics over the network from the
local cluster. Gmetad, the Ganglia Meta daemon polls
aggregated metrics from Gmond instances and other
Gmetad instances. The web frontend obtains metrics
from a gmond instance and presents them to users. This
architecture is used to form a tree, with Gmond instances
at the leaves and Gmond instances at subsequent layers.
The root of the tree is the Gmond instance which supplies
state to the web frontend. Gmetad makes use of RRDTool
[32] to store time series data and XDR [33] to represent
data on the wire.
Ganglia provides limited analysis functionality. A third

party tool: the Ganglia-Nagios bridge[34] allows Nagios
to perform analysis using data collected by Ganglia. This
attempts to gain the analysis functionality of Nagios while
preserving the scalable data collection model of Ganglia.
This is not a perfect marriage as the resulting system
incurs the limitations of both tools but is often proposed
as a stopgap tool for cloud monitoring. Similarly Ganglia
can export events to Riemann.
Ganglia is first and foremost a resource monitor and

was designed to monitor HPC environments. As such it

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 9 of 30

is designed to obtain low level metrics including CPU,
memory, disk and IO. It was not designed to moni-
tor applications or services and nor was it designed for
highly dynamic environments. Plugins and various exten-
sions are available to provide additional features but the
requirements of cloud computing are very different to
Ganglia’s design goals. Despite this, Ganglia still sees
some degree of usage within cloud computing due to its
scalability.

Astrolabe
Astrolabe [8] is a tool intended for monitoring large scale
distributed systems which is heavily inspired by DNS.
Astrolabe provides scalable data collection and attribute
based lookup but has limited capacity for performing
analysis. Astrolabe partitions groups of hosts into an over-
lapping hierarchy of zones in a manner similar to DNS.
Astrolabe zones have a recursive definition: a zone is
either a host or a set of non overlapping zones. Two
zones are non-overlapping if they have no hosts in com-
mon. The smallest zones consist of single hosts which are
grouped into increasingly large zones. The top level zone
includes all other zones and hosts within those zones.
Unlike DNS, Astrolabe zones are not bound to a specific
name server, do not have fixed attributes and state update
are propagated extremely quickly.
Every monitored host runs the Astrolabe agent which is

responsible for the collection of local state and the aggre-
gation of state from hosts within the same zone. Each host
tracks the changes of a series of attributes and stores them
as rows in a local SQL database. Aggregation in Astrolabe
is handled through SQL SELECT queries which serve as
a form of mobile code. A user or software agent issues an
query to locate a resource or obtain state and the Astro-
labe deployment rapidly propagates the query through
a peer to peer overly, aggregates results and returns a
complete result. Astrolabe continuously recomputes these
queries and returns updated results to any relevant clients.
Astrolabe has no publicly available implementation and

the original implementation evaluates the architecture
through the use of simulation. As a result, there is no
definitive means to evaluate Astrolabe’s use for cloud
monitoring. Irrespective of this Astrolabe is an influen-
tial monitoring system which, unlike many contemporary,
monitoring tools employs novel aggregation and grouping
mechanisms.

Nagios
Nagios [35] is the de facto standard open source moni-
toring tool for monitoring server deployments. Nagios in
its simplest configuration is a two tier hierarchy; there
exists a single monitoring server and a number of mon-
itored servers. The monitoring server is provided with a
configuration file detailing each server to be monitored

and the services each operates. Nagios then generates
a schedule and polls each server and checks each ser-
vice in turn according to that schedule. If servers are
added or removed the configuration must be updated and
the schedule recomputed. Plugins must be installed on
the monitored servers if the necessary information for
a service check cannot be obtained by interacting with
the available services. A Nagios service check consists of
obtaining the relevant data from the monitored host and
then checking that value against a expected value or range
of values; raising an alert if an unexpected value is detect.
This simple configuration does not scale well, as the sin-
gle server becomes a significant bottleneck as the pool of
monitored servers grows.
In a more scalable configuration, Nagios can be

deployed in an n-tier hierarchy using an extension known
as the Nagios Service Check Acceptor (NCSA). In this
deployment, there remains a single monitoring server at
the top of this hierarchy, but in this configuration it polls
a second tier of monitoring servers which can in turn
poll additional tiers ofmonitoring servers. This distributes
the monitoring load over a number of monitoring servers
and allows for scheduling and polling to be performed in
small subsections rather then en mass. The NCSA plug-
in that facilitates this deployment allows the monitoring
results of a Nagios server to be propagated to another
Nagios server. This requires each Nagios server to have
its own independent configuration and the failure of any
one of the monitoring servers in the hierarchy will dis-
rupt monitoring and require manual intervention. In this
configuration system administrators typically rely on a
third party configuration management tool such as Chef
or Puppet to manage the configuration and operation of
each independent Nagios server.
A final, alternative configuration known as the Dis-

tributed Nagios Executor (DNX) introduces the concept
of worker nodes [36]. In this configuration, a master
Nagios server dispatches the service checks from its
own schedule to a series of worker nodes. The master
maintains all configuration, workers only require the IP
address of the master. Worker nodes can join and leave
in an ad hoc manner without disrupting monitoring ser-
vices. This is beneficial for cloud monitoring; allowing
an elastic pool of workers to scale in proportion to the
monitored servers. If, however, the master fails all moni-
toring will cease. Thus, for anything other than the most
trivial deployments additional failover mechanisms are
necessary.
Nagios is not a perfect fit for cloud monitoring. There

is an extensive amount of manual configuration required,
including the need to modify configuration when moni-
tored VMs are instantiated and terminated. Performance
is an additional issue, many Nagios service checks are
resource intensive and a large number of service checks

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 10 of 30

can result in significant CPU and IO overhead. Internally,
Nagios relies upon a series of pipes, buffers and queues
which can become bottlenecks when monitoring large
scale systems [37]. Many of these host checks are, by
default, non parallelised and block until complete. This
severely limits the number of service checks that can
be performed. While most, if not all of these issues can
be overcome through the use of plugins and third party
patches this requires significant labour. Nagios was sim-
ply never designed or intended for monitoring large scale
cloud systems and therefore requires extensive retrofitting
to be suitable for the task [38]. The classification of
Nagios is dependant upon its configuration. Due to its
age and extensive plugin library Nagios has numerous
configurations.

Collectd
Collectd [39] is an open source tool for collecting mon-
itoring state which is highly extensible and supports all
common applications, logs and output formats. It is used
by many cloud providers as part of their own moni-
toring solutions, including Rightscale [40]. One of the
appeals of collectd is its network architecture; unlike most
tools it utilises IPv6 and multicast in addition to regu-
lar IPv4 unicast. Collectd uses a push model, monitoring
state is pushed to a multicast group or single server
using one of the aforementioned technologies. Data can
be pushed to several storage backends, most commonly
RRDTool [32] is used but MongoDB, Redis, MySQL and
others are supported. This allows for a very loosely cou-
pledmonitoring architecture wherebymonitoring servers,
or groups or monitoring servers, need not be aware of
clients in order to collect state from them. The sophisti-
cated networking and loose coupling allow collectd to be
deployed in numerous different topologies, from simple
two tier architectures to complex multicast hierarchies.
This flexibility makes collectd one of the more popu-
lar emerging tools for cloud monitoring. Collectd, as the
name implies, it primarily concerned with the collection
and transmission of monitoring state. Additional func-
tions, including the storage of state are achieved through
plugins. There is no functionality provided for analysing,
visualising or otherwise consuming collected state. Col-
lectd attempts to adhere to UNIX principles and eschews
non collection related functionality, relying on third party
programs to provide additional functionality if required.
Tools which are frequently recommended for use with
Collectd include:

• Logstash [41] for managing raw logfiles, performing
text search analysis which is beyond the perview of
collected

• StatsD [42] for aggregating monitoring state and
sending it to an analysis service

• Bucky [43] for translating data between StatsD,
Collectd and Graphtite’s formats.

• Graphite [44] for providing visualization and graphing
• drraw [45] an alternative tool for visualization

RRDtool data
• Riemann [9] for event processing
• Cabot [46] for alerting

Collectd, in conjunction with additional tools make
for a comprehensive cloud monitoring stack. There is
however no complete, ready to deploy distribution of a
collectd based monitoring stack. Therefore, there is sig-
nificant labour required to build, test and deploy the
full stack. This is prohibitive to organisations that lack
the resources to roll their own monitoring stack. Colletd
based monitoring solutions are therefore available only to
those organisations that can develop and maintain their
stack. For other organisations, a more complete solution
or monitoring as a service tool may be more appropriate.

Riemann
Riemann [9] is an event based distributed systems mon-
itoring tool. Riemann does not focus on data collection,
but rather on event submission and processing. Events
are representations of arbitrary metrics which are gen-
erated by clients and encoded using Google Protocol
Buffers [47] and additionally contains various metadata
(hostname, service name, time, ttl, etc). On receiving an
event Riemann processes it through a stream. Users can
write stream functions in a Clojure based DSL to operate
on streams. Stream functions can handle events, merge
streams, split streams and perform various other oper-
ations. Through stream processing Riemann can check
thresholds, detect anomalous behaviour, raise alerts and
perform other common monitoring use cases. Designed
to handle thousands of events per second, Riemann is
intended to operate at scale.
Events can be generated and pushed to Riemann in

one of two ways. Either applications can be extended
to generate events or third party programs can monitor
applications and push events to Riemann. Nagios, Ganglia
and collectd all support forwarding events to Riemann.
Riemann can also export data to numerous graphing tools.
This allows Riemann to integrate into existing monitoring
stacks or for new stacks to be built around it.
Riemann is relatively new software and has develop-

ing a user base. Due it its somewhat unique architecture,
scalability and integration Riemann is a valuable cloud
monitoring tool.

sFlow and host sFlow
sFlow [48] is a monitoring protocol designed for net-
work monitoring. The goal of sFlow is to provide an
interoperable monitoring standard that allows equipment

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 11 of 30

from different vendors to be monitored by the same soft-
ware.Monitored infrastructure runs an sFlow agent which
receives state from the local environment and builds and
sends sFlow datagram to a collector. A collector is any
software which is capable of receiving sSlow encoded data.
The original sFlow standard is intended purely for mon-
itoring network infrastructure. Host sFlow [49] extends
the base standard to add support for monitoring applica-
tions, physical servers and VMs. sFlow is therefore one of
the few protocols capable of obtaining state from the full
gamut of data centre technologies.
sFlow is a widely implemented standard. In addition to

sFlow agents being available for most pieces of network
equipment, operating systems and applications there are
a large number of collectors. Collectors vary in terms of
functionality and scalability. Collectors range from basic
command line tools and simple web applications to large
complexmonitoring and analysis systems. Othermonitor-
ing tools discussed, including Nagios and Ganglia, are also
capable of acting as sFlow collectors.
Rather than being amonitoring system, sFlow is a proto-

col for encoding and transmitting monitoring data which
makes it unique amongst the other tools surveyed here.
Many sFlow collectors are special purpose tools intended
for DDOS prevention [50], network troubleshooting [51]
or intrusion detection. At present, there is no widely
adopted general purpose sFlow based monitoring tool.
sFlow is however, a potential protocol for future monitor-
ing solutions.

Logstash
Logstash is a monitoring tool quite unlike the vast major-
ity of those surveyed here. Logstash is concerned not with
the collection of metrics but rather with the collection of
logs and event data. Logstash is part of the ElasticSearch
family, a set of tools intended for efficient distributed real
time text analytics. Logstash is responsible for parsing and
filtering log data while other parts of the ElasticSearch
toolset, notably Kibana (a browser based analytics tool) is
responsible for analysing and visualising the collected log
data. Logstash supports and event processing pipeline not
dissimilar to Riemann allowing chains of filter and routing
functions to be applied to events as they progress through
the Logstash index.
Similar to other monitoring tools, Logstash runs a small

agent on each monitored host referred to as a shipper.
The shipper is a Logstash instance which is configured to
take inputs from various sources (stdin, stderr, log files
etc) and then ’ship’ them using AMQ to an indexer. An
indexer is another Logstash index which is configured
to parse, filter and route logs and events that come in
via AMQ. The index then exports parsed logs to Elastic-
Search which provides analytics tools. Logstash addition-
ally provides a web interface which communicates with

ElasticSearch in order to analyse, retrieve and visualise log
data.
LogStash is written in JRuby and communicates using

AMQP with Redis serving as a message broker. Scalability
is of chief concern to LogStash and it enables distribution
of work via Redis, which despite relying on a centralised
model can conceptually allow LogStash to scale to thou-
sands of nodes.

MonALISA
MonALISA (Monitoring Agents in A Large Integrated
Services Architecture) [52,53] is an agent based monitor-
ing system for globally distributed grid systems. MonAL-
ISA uses a network of JINI [54] services to register and
discover a variety of self-describing agent-based subsys-
tems that dynamically collaborate to collect and analyse
monitoring state. Agents can pull interact with conven-
tional monitoring tools including Ganglia and Nagios and
collect state from a range of applications in order to
analyse and manage systems on a global scale.
MonALISA sees extensive use with the eScience and

High Energy Physics community where large scale, glob-
ally distributed virtual organisations are common. The
challenges those communities face are relatively unique,
but few other monitoring systems address the concerns of
widespread geographic distribution: a significant concern
for cloud monitoring.

visPerf
visPerf [55] is a grid monitoring tool which provides scal-
able monitoring to large distributed server deployments.
visPerf employs a hybrid peer-to-peer and centralised
monitoring approach. Geographically close subsets of the
grid utilise a unicast strategy to have a monitoring agent
on each monitored server disseminate state to a local
monitoring server. Each local server communicates with
each other using a peer-to-peer protocol. A central server,
the visPerf controller, collects state from each of the local
masters and visualises state.
Communication in visPerf is facilitated by a bespoke

protocol over TCP or alternatively XML-RPC. Either may
be used allowing external tools to interact and obtain
monitoring state. Each monitoring agent collects state
using conventional UNIX tools including iostat, vmstat
and top. Additionally, visPerf supports the collection of log
data and uses a grammar based strategy to specify how
to parse log data. The visPerf controller can communi-
cate with monitoring agents in order to change the rate
of data collection, what data is obtained and other vari-
ables. Bi-directional communication between monitoring
agents and monitoring servers is an uncommon feature
which is enables visPerf to adapt to changing monitor-
ing requirements without reduced need to manually edit
configuration.

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 12 of 30

GEMS
Gossip-Enabled Monitoring Service for Scalable Hetero-
geneous Distributed Systems (GEMS) is a tool designed
for cluster and grid monitoring [5]. It’s primary focus is
failure detection at scale. GEMS is similar to Astrolabe
in that it divides monitored nodes into a series of layers
which form a tree. A gossip protocol [56] is employed to
propagate resource and availability information through-
out this hierarchy. A gossipmessage at level k encapsulates
the state of all nodes at k and all levels above k. Layers are
therefore formed based on the work being performed at
each node, with more heavily loaded nodes being placed
at the top of the hierarchy where less monitoring work
is performed. This scheme is primarily used to propagate
four data structures: a gossip list, suspect vector, suspect
matrix and a live list. The gossip list contains the number
of intervals since a heartbeat was received from each node,
the suspect vector stores information regarding suspected
failures, the suspect matrix is the total of all node’s suspect
vectors and the live list is a vector containing the availabil-
ity of each node. This information is used to implement
a consensus mechanism over the tree which corroborates
missed heartbeats and failure suspicions to detect failure
and network partitions.
This architecture can be extended to collect and prop-

agate resource information. Nodes can operate a perfor-
mance monitoring component which contains a series
of sensors, small programs, which collect basic system
metrics including cpu, memory, disk io and so forth and
propagates them throughout the hierarchy. Additionally
GEMS operates an API to allow this information to be
made available to external management tools, middle-
ware or other monitoring systems. These external sys-
tems are expected to analyse the collected monitoring
state and take appropriate action, GEMS provides no
mechanism for this. GEMS does however include sig-
nificant room for extension and customisation by the
end user. GEMS can collect and propagate any arbitrary
state and has the capacity for real time programmatic
reconfiguration.
Unlike Astrolabe, which GEMS bears similarity to,

prototype code for the system is available [57]. This
implementation has received a small scale, 150 node,
evaluation which demonstrates the viability of the archi-
tecture and the viability of gossip protocols for moni-
toring at scale. Since its initial release, GEMS has not
received widespread attention and has not been evalu-
ated specifically for cloud monitoring. Despite this, the
ideas expressed in GEMS are relevant to cloud com-
puting. The problem domain for GEMS, large hetero-
geneous clusters are not entirely dissimilar to some
cloud environments and the mechanism for program-
matic reconfiguration is of definite relevance to cloud
computing.

Reconnoiter
Reconnoiter [58] is an open source monitoring tool which
integrates monitoring with trend analysis. Its design goal
is to surpass the scalability of previous monitoring tools
and cope with thousands of servers and hundreds of thou-
sands of metrics. Reconnoiter uses a n-tier architecture
similar to Nagios. The hierarchy consists of three com-
ponents notid, stratcond and Reconnoiter. An instance of
the monitoring agent, notid, runs in each server rack of
datacenter (dependant upon scale) and performs moni-
toring checks on all local infrastructure. stratcond aggre-
gates data from multiple notid instances (or other strat-
cond instances) and pushes aggregates to a PostgreSQL
database. The front end, named Reconnoiter, performs
various forms of trend analysis and visualises monitoring
state.
Reconnoiter represents an incremental development

from Nagios and other hierarchical server monitoring
tools. It utilises a very similar architecture to previous
tools but is specifically built for scale, with notid instances
having an expected capacity of 100,000 service checks per
minute. Despite being available for several years Recon-
noiter has not seen mass adoption, possibly due to the
increasing abandonment of centralised monitoring archi-
tectures in favour of decentralised alternatives.

Other monitoring systems
There are other related monitoring systems which are
relevant to cloud monitoring but are either similar to
the previously described systems, poorly documented or
otherwise uncommon. These systems include:

• Icinga [59] is a fork of Nagios which was developed to
overcome various issues in the Nagios development
process and implement additional features. Icinga, by
its very nature includes all of Nagios’ features and
additionally provides support for additional storage
back ends, built in support for distributed
monitoring, an SLA reporting mechanism and
greater extensibility.

• Zenoss [60] is an opens source monitoring system
similar in concept and use to Nagios. Zenoss include
some functionality not present in a standard Nagios
install including automatic host discovery, inventory
and configuration management, and an extensive
event management system. Zenoss provides a strong
basis for customisation and extension providing
numerous means to include additional functionality,
including supporting the Nagios plugin format.

• Cacti [61], GroundWork [62], Munin [63],
OpenNMS [64], Spiceworks [65], and Zabbix [66] are
all enterprise monitoring solutions that have seen
extensive use in conventional server monitoring
which now see some usage in cloud monitoring.

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 13 of 30

These systems have similar functionality and utilise a
similar set of backend tools including RRDTool,
MySQL and PostgreSQL. These systems, like several
discussed in this section, were designed for
monitoring fixed server deployments and lack the
supports for elasticity and scalability that more
cloud-specific tools offer. The use of these tools in the
cloud domain is unlikely to continue as alternative,
better suited tools become increasingly available.

Cloudmonitoring systems
Cloud monitoring systems are those systems which have
been designed from the ground for monitoring cloud
deployments. Typically such systems are aware of cloud
concepts including elasticity, availability zones, VM pro-
visioning and other cloud specific phenomena. Concep-
tually these tools have advantages over non cloud-aware
tools as they can utilise cloud properties to scale and adapt
as the system they monitor changes. The majority of sys-
tems in this category are recent developments and lack
the user base, support and range of plugins that are avail-
able for many earlier systems. This presents a trade-off
between cloud awareness and functionality that will likely
lessen as time passes.

cloudinit.d
cloudinit.d [10] is a tool for launching and maintaining
environments built on top of IaaS clouds. It is part of the
Nimbus tool set which provides IaaS services for scientific
users. Modelled after UNIX’s init daemon, cloudinit.d can
launch groups of VMs and services according to a set of
run levels and manage the dependencies between those
services. A set of config files known as a plan are used by
cloudinit.d to describe a deployment and provide scripts
to initialise services and to check for correct behaviour.
Once cloudinit.d has launched the set of services and VMs
specified in the plan it initiates monitoring. cloudinit.d
leverages conventional UNIX tools in its monitoring sys-
tem, using ssh and scp to deploy monitoring scripts from
the plan on each VM. These scripts periodically check
that status of the hosted service and push the result to
the Nimbus front end. The main purpose of this monitor-
ing scheme is to enable automated recovery. If a VM is
detected as faulty by cloudinit.d it will terminate and swap
out that VM with a new, hopefully correctly functioning
VM. This simple recovery mechanism allows distributed
services to keep running when VMs that make up part of
the service fail.
The cloudinit.d documentation recommends integrat-

ing Nagios or Pingdom to provide more comprehensive
and scalable monitoring services [67]. By itself cloudinit.d
does not provide full monitoring services. Instead it only
provides monitoring according to the scripts that are
included within the plan. Failure or anomaly’s behaviour

which is not checked for by the monitoring scripts will
go undetected. This impacts the failure recovery method
as only simple failures which have been anticipated as
potential failure can be detected. Unexpected failures
which do not have scripts to detect them and fail-
ures that are not solved by swapping out VMs cannot
be detected or recovered from. cloudinit.d is however
notable as being one of the few monitoring tools which
integrates into a deployment and management tool and
is one of the few tools which include a failure recovery
mechanism.

Sensu
Sensu [68] is described as a ‘monitoring router’ a sys-
tem that takes the result of threshold checks and passes
them to event handlers. Its primary goal is to provide an
event based model for monitoring. In Sensu nomencla-
ture, clients are monitored hosts that run small scripts for
performing service checks. The server periodically polls
clients who in turn execute their scripts and push the
results to the server. The server then correlates and anal-
yses the results of the service checks and upon any check
exceeding a predefined threshold then calls handlers: user
defined scripts which will attempt to take action.
Sensu makes use of RabbitMQ [69], a message orien-

tated middleware platform based upon the AMQ stan-
dard. A Redis datastore is also used in order to store
persistent data. These two technologies are used to allow
Sensu to scale. Performance evaluation of RabbitMQ
demonstrates its ability to handle tens of thousands of
messages per second [70] and conceptually scale to tens of
thousands of hosts.
Sensu is still an early stage project but already there are

a number of third party check scripts and handlers avail-
able. With additional community adoption Sensu could
become a predominant monitoring tool.

SQRT-C
In [71] An et al propose SQRT-C: a pubsub middleware
scheme for real time resource monitoring of cloud deploy-
ments. They identify current monitoring tools reliance
upon RESTful, HTTP and SOAP APIs as limitations to
real time monitoring. They contend that protocols which
are not, from the outset, designed for real time communi-
cation cannot sufficiently guarantee the delivery of time-
sensitive monitoring state. To address these issues they
propose SQRT-C: a real time resource monitoring tool
based upon the OMG Data Distribution Service pubsub
middleware. SQRT-C is based around three components:
publishers, subscribers and a manager. All monitored
nodes operate a publisher which publish state changes via
the DDS protocol. A subscriber or set of subscribers run
as close to the publishers as is feasible and analyse moni-
toring state and enact decisions in real time. The manager

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 14 of 30

orchestrates DDS connections between publisher and
subscriber.
An implementation of SQRT-C is available for down-

load. This implementation has been evaluated on a small
testbed of 50 VMs. This number of VMs does not demon-
strate the architectures viability for operating at scale,
however the results do demonstrate the inherent QoS
improvements that the architecture brings. By utilising an
underlying protocol that provides strong QoS guarantees
SQRT-C demonstrates significantly reduced latency and
jitter compared to monitoring tools leveraging conven-
tional RESTful APIs.
SQRT-C has not received particularly widespread atten-

tion but the issues of real time monitoring remain unad-
dressed by monitoring tools at large. Virtually all cloud
monitoring tools expose data via a conventional HTTP
API often with no alternative, the HP Cloud Monitoring
tool is the only notable monitoring system which offers a
real time alternative.

Konig et al
In [7] Konig et al. propose a distributed peer to peer tool
for monitoring cloud infrastructure. [7] is a three level
architecture consisting of a data, processing and distri-
bution layer. The data layer is responsible for obtaining
monitoring data from a range of sources including raw log
files, databases and services in addition to other conven-
tionalmonitoring tools includingGanglia andNagios. The
processing layer exposes a SQL-like query language to fil-
ter monitoring data and alter system configuration at run
time. The distribution layer operates a peer to peer over-
lay based on SmartFrog [72] which distributes data and
queries across the deployment.
Konig et al., 2012 [7] is similar to other p2p monitoring

systems in terms of topology but introduces a powerful
query language for obtaining monitoring data as opposed
to a conventional, simple REST API. Additionally the data
layer component abstracts over numerous data sources,
including other monitoring systems making this work
a notable tool for building federated clouds and other
architectures which encapsulate existing systems.

Dhingra et al
In [73] Dhingra et al. propose a distributed cloud mon-
itoring framework which obtains metrics from both the
VM and underlying physical hosts. Dhingra et al. contend
that no current monitoring solutions provide ’customer
focused’ monitoring and fail to monitor phenomena at
and below the hypervisor level. Their proposed architec-
ture, which is conceptually similar in design to collectd,
runs monitoring agents on both the VM and physical host
and aggregates state at a front end. The front end mod-
ule correlates VM level metrics with low level physical
metrics to provide a comprehensive monitoring data to

the end user. Additionally they propose a mechanism for
adjusting the level of granularity that users can receive in
order to provide fine grain data when users are perform-
ing their own analysis and decisionmaking ormore coarse
grain data when users are relying upon the cloud provider
to make decisions on their behalf. No implantation of the
proposed architecture is available for download, however
the variable granularity monitoring an multi-level mon-
itoring present novel concepts which have not yet been
fully integrated to existing monitoring tools.

DARGOS
Distributed Architecture for Resource manaGement and
mOnitoring in cloudS (DARGOS)[6] is a fully decen-
tralised resource monitor. DARGOS, like SQRT-C, makes
use of the OMG Data Distribution Standard [74] (DDS)
to provide a QoS sensitive pubsub architecture. DARGOS
has two entities: the Node Monitor Agent (NMA) and
the Node Supervisor Agent (NSA) which for all intents
and purposes are the publisher and subscriber, respec-
tively. The NMA collects state from the local VM and
publishes state using the DDS. The NSA are responsible
for subscribing to pertinent monitoring state and mak-
ing that state available to analysis software, users or other
agents via an API or other channel. DARGOS includes
two mechanisms to reduce the volume of unneeded mon-
itoring state which is propagated to consumers: time and
volume based filters. These mechanisms reduce unnec-
essary traffic and yield improvements over other pubsub
schemes.
While DARGOS makes use of the DDS standard, QoS

is not its primary concern and no specific provisions are
made to ensure the low latency and jitter achieved by
SQRT-C. Conceptually, DARGOS is similar to other pub-
sub based monitoring tools including GMOnE, SQRT-C
and Lattice

CloudSense
CloudSense [75] is a data centre monitoring tool which,
unlike other tools surveyed here, operates at the switch-
ing level. CloudSense attempts to address networking
limitations in previous tools which prevent the collec-
tion of large volumes of fine grain monitoring informa-
tion. CloudSense operates on switches and makes use
of compressive sensing [76], a recent signal processing
technique which allows for distributed compression with-
out coordination, to compress the stream of monitoring
state in the network. This allows CloudSense to collect
greater monitoring information without using additional
bandwidth. In the proposed scheme each rack switch
in a datacenter collects monitoring state from servers
within each rack and compresses and transmits aggre-
gated state to a master server which detects anomalous
state.

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 15 of 30

CloudSense is primarily intended for datacenter moni-
toring and uses a compression scheme which lends itself
well to anomaly detection. CloudSense has been proposed
as a tool for monitoring MapReduce and other perfor-
mance bound applications where anomaly detection is
beneficial. This architecture in itself, is not enough to
provide a comprehensive monitoring solution but does
present a novel option for anomaly detection as part of a
larger tool.

GMonE
GMonE [77] is a monitoring tool which covers the phys-
ical, infastructure, platform and application layers of the
cloud stack. GMonE attempts to overcome the limita-
tions of existing monitoring tools which give only a partial
view of a cloud system by giving a comprehensive view
of all layers of the cloud. To this end, a monitoring agent:
GMonEMon is present in all monitored components of
the cloud stack including physical servers, IaaS VMs, PaaS
instances and SaaS apps. GMonEMon has a plugin archi-
tecture that allows users to develop additional modules
to obtain metrics from all relevant sources. GMonEMon
uses its plugins to collect data and then uses Java RMI
based publish subscribe middleware to publish monitor-
ing state. A database component: GMonEDB acts as a
subscriber to various GMonEMon instances and stores
monitoring state using MySQL, RRDtool, Cassandra [78]
or other back end.
Unlike the vast majority of monitoring tools surveyed

here, GMondE providesmonitoring services to both cloud
providers and cloud users. In a GmonE deployment there
are at least two GMonE DB instances: one for a user and
one for the provider. Each stakeholders subscribe to the
components relevant to their operations. This could be
used to allow users to obtain monitoring state from the
layers bellow the layer that they are operating on. For
example as SaaS could use this scheme to obtain met-
rics regarding the PaaS platform, the VMs running the
platform and even potentially the underlying hardware.
The provider, meanwhile could choose only to moni-
toring physical resources or could monitor their users
infrastructure.
GMonE is a recent monitoring tool which currently

lacks any publicly available release. Despite this, GMonE’s
multi layer monitoring solution and novel pubsub scheme
are notable concepts which are not found in other con-
temporary monitoring tools.

Lattice
Lattice [79] is a monitoring platform for virtual resources
which attempts to overcome the limitations of previous
monitoring tools, including Ganglia and Nagios, that do
not address elasticity, dynamism and frequent change.
Unlike other tools in this survey Lattice is not in itself

a monitoring tool, rather it is a platform for developing
monitoring tools. Lattice includes abstractions which are
similar to other monitoring tools: producers, consumers
and probes. Additionally Lattice provides the concept of a
data source and distribution framework. The data source
is an producer which encapsulates the logic for control-
ling the collection and transmission of monitoring data in
a series of probes which perform the actual data collec-
tion. The distribution framework is the mechanism which
transmits monitoring state between the producers and the
consumers.
Lattice does not provide full implementations of these

structures but rather provides building blocks from which
third parties can develop full monitoring solution. This
design is intended to allow developers to build moni-
toring solutions specific to their unique use cases. The
separation of concerns between the various monitoring
components allows components to be differently imple-
mented and change over time without affecting the other
components.
The notion of a framework for buildingmonitoring tools

is a novel break from the other tools surveyed in this
paper. Conceptually Lattice can be used to build differ-
ent monitoring tools for different use cases rather than
reapplying existing tools to different uses cases.While this
allow for the best fitting tools possible it requires signifi-
cant labour to develop and test tools based upon Lattice.
Lattice does not provide a library of probes, requiring the
developer to implement their own library of data collec-
tion scripts, a significant limitation when compared to
other tools including collectd and Nagios. Additionally,
Lattice requires the developer to make design decisions
regarding the distribution framework; which network
architectures, wire formats, discovery mechanisms and
so forth are used. This degree of effort is likely to be
prohibitive to the vast majority of users.
Lattice being a framework for developing monitoring

tools and not a tool in itself does not merit a direct clas-
sification and is capable of producing tools that fit every
classification.

OpenNebula monitoring
OpenNebula [80] is an open source toolkit for building
IaaS clouds which includes a monitoring system [81,82].
OpenNebula manages the VM lifecycle in a manner simi-
lar to cloudinit.d, it bootstraps the VM with the necessary
monitoring agent and small scripts called probes via SSH.
OpenNebula has two configurations: pull and push. The
push model is the preferred mode of operation. In this
configuration the OpenNebula monitoring agent collects
resource metrics and transmits them to the OpenNebula
front end via UDP. The front end operates a collection
daemon which receives monitoring state and periodically
sends batches to oned, the OpenNebula core daemon.

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 16 of 30

If, due to support issues, the push model is unavailable
OpenNebula defaults to a pull model, similar to Nagios,
whereby oned initiates an SSH connection on each moni-
tored VM, executes the probes and pulls the results to the
front end. Visualisation and alerts can then be generated
by the OpenNebula web front end. OpenNebula’s moni-
toring system is not particularly novel but is one of the few
examples of an open source monitoring system which is
embedded within a cloud infrastructure.

PCMONS
Private Clouds MONitoring Systems (PCMONS) [83] is a
monitoring tool which was designed to address the lack of
effective open source tools for private cloud monitoring.
PCMONS employs a three layer structure consisting of
the view, integration and infrastructure layer. The infras-
tructure layer is comprised of heterogeneous resources:
IaaS clouds, clusters or other server deployments. In the
release available for download [84] Eucalyptus [85] and
OpenNebula are supported at the infrastructure level. The
integration level acts as a translator which abstracts the
heterogeneity of the infrastructure level presenting a uni-
form view of otherwise disparate systems. The integration
layer is responsible for generating the required config-
uration and installing the necessary software to collect
monitoring data from the infrastructure level and passing
it in a form that the view layer can use. The view layer per-
forms the visualization and analysis of monitoring data. In
the release of PCMONS, the view layer is based upon the
Nagios server.
The most novel feature of PCMONS is the notion of the

integration layer, a concept which is essential for feder-
ated cloud monitoring whereby monitoring is performed
over a series of different cloud resources. This feature of
PCMONS is found in few othermonitoring tools surveyed
here.

Varanus
Varanus [86] is a peer to peer monitoring tool designed
for monitoring large scale cloud deployments. Designed
to handle scale and elasticity, Varanus makes use of a
k-nearest neighbour based group mechanism to dynami-
cally group related VMs and form a layered gossip hierar-
chy for propagating monitoring state. Varanus uses three
abstractions: groups, regions and cloud over which the
gossip layer of the hierarchy. Groups are collections of
VMs assigned by Varanus’ grouping strategy, regions are
physical locations: data centres, cloud regions or sim-
ilar, and the cloud is the top level abstraction includ-
ing one or more regions. At the group and region level
Varanus makes heavy use of the network to propagate
state and state aggregates to related VMs. At the cloud
level communication is slower and only periodic sam-
ples are propagated. This scheme attempts to exploit the

inherent bandwidth differences in and between cloud
regions. Heavy use of the network is used where band-
width is unmetered and fast and reduced network usage
occurs between regions where bandwidth is metered and
limited.
Varanus has some points of commonality with Astro-

labe and GEMS in that it utilises a gossip hierarchy to
propagate monitoring state but introduces applies these
concepts in a manner more suitable to cloud monitoring.

Monitoring as a service tools
The following systems are designed from the outset
to monitoring cloud deployments. Unlike the systems
detailed in the previous section their design is not pub-
lished nor are any implementations available for full evalu-
ation. Instead, these systems are monitoring as as a service
(MaaS) tools which are accessible only though an API or
other interface.
As the backend portions of monitoring as a service tools

are hidden from the end user it is difficult to classify
these tools. Externally, each of these tools are unicast push
tools. The architecture used by the provider is, however,
unknown.

Amazon CloudWatch
CloudWatch [87] is the monitoring component of Ama-
zon Web Services. CloudWatch primarily acts as a store
for monitoring data, allowing EC2 instances and other
AWS services to push state to it via an HTTP API. Using
this data a user can view plots, trends, statistics and vari-
ous other representations via the AWS management con-
sole. This information can then be used to create alarms
which trigger user alerts or autoscale deployments. Mon-
itoring state can also be pulled by third party applications
for analysis or long term storage. Various tools including
Nagios have support for obtaining CloudWatch metrics.
Access to this service is governed by a pricing model

that charges for metrics, alarms, API requests and moni-
toring frequency. The most significant basic charge is for
metrics to be collected at minute intervals followed by the
charge for the use of non standard metrics. CloudWatch
presents a trade-off between full customisability and ease
of use. The primary use case of CloudWatch is monitor-
ing the full gamut of AWS services. Users of only EC2 will
likely find the customisability of a full monitoring system
preferable to the limited control afforded by CloudWatch.

HP cloudmonitoring
HP Cloud Monitoring [88] is the monitoring component
of the HP Public Cloud [89] which is currently in public
beta. HP Cloud Monitoring has features that are equiv-
alent to CloudWatch, offering threshold based alarms,
alerting and data visualization. Unlike, CloudWatch, HP
monitoring places emphasis on real time monitoring and

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 17 of 30

provides a high-performance message queue endpoint in
addition to a REST API in order to transmit large vol-
umes of monitoring state to third party tools in real time.
Thus, unlike most otherMaaS tools, HP cloudmonitoring
is intended to support rather than supplant other moni-
toring tools. Being able to use both a monitoring service
and a full fledged monitoring system potentially offers the
best of both worlds making this a notable system.

RightScale monitoring system
Rightscale [40] is a multi-cloud cloud management ser-
vice, the payed edition of which, includes the RightScale
Monitoring System [90]. The monitoring system is a col-
lectd based stack which is integrated with RightScale’s
management tools. In a manner similar to cloudinit.d,
Rightscale manages service deployment and deploys
scripts to newly instantiated VMs to provide various man-
agement functions, including monitoring. These scripts
deploy collectd and supporting tools which collects and
transmits monitoring state to a Rightscale server at 20 sec-
onds intervals via UDP unicast. The monitoring server
stores data in a RRDtool database and the end user can
view this data using a proprietary dashboard interface.
Alerts, graphs and raw data can be obtained via a REST
API.
Rightscale’s configuration collectd operates over simple

unicast and there is relatively limited analysis and com-
plex visualisation available from the dashboard. For more
complex analysis and visualisation, third party tools are
required. Despite the limitations, the availability of a man-
aged collectd stackmakes Rightscale monitoring a notable
tool.
Rightscale’s monitoring system takes away much of the

difficulty of rolling your own collectd based monitoring a
notable tool.

New relic
New Replic [91] provides a set of SaaS monitoring and
analytics tools for a range of services including servers and
applications. New Relic uses a locally deployed monitor-
ing agent to push state to a centralised dashboard which
performs a comprehensive set of time series and other
visualizations. New Relic places focus upon web applica-
tions providing an analysis of of application performance,
response time, requests perminute and other phenomena.
With regards to server monitoring New Relic provides a
less comprehensive set of resourcemetrics, primary: CPU,
memory and disk usage.
New Relic has partnerships with AWS, Azure, Rack-

space and other major cloud providers and provide an
support the monitoring of most major cloud services.
The most notable features of New Relic is it’s user inter-
face which provides an extensive set of visualisations and
reporting.

CopperEgg
CopperEgg [92] is a monitoring as a service tool which
provides server, EC2, database and website monitoring.
CopperEgg is similar to New Relic and other SaaS moni-
toring tools in that it utilises a small monitoring agent to
push state from monitored hosts to a service endpoint.
CopperEggs most notable unique feature is integration
with numerous current tools including Redis, MongoDB,
Chef, PostresQL, MySQL and Apache. Thus, unlike New
Relic, CopperEgg is capable of providing a significant
range of application monitoring metrics in addition to
more basic resource usage metrics. CopperEgg provides
an intuitive web front end for interrogating monitoring
data which surpasses the available interfaces of most non
SaaS tools.

Additional services
There are an extensive number of monitoring as a service
tools, each with a slightly different feature set. These tools
include:

• Cloud Sleuth [93] is a tool designed to monitoring
service availability and performance.

• Montis [94] is an agent less monitoring service which
polls monitored host and services from numerous
locations to achieve a global view of availability and
performance.

• Stackdriver [95] is an intelligent monitoring tools for
AWS, Google Compute Engine and Rackspace Cloud
that provides resource monitoring and anomaly
detection.

• Boundry [96] is a monitoring aggregator that can
consumer data from other tools including:
CloudWatch, Splunk, Chef, Nagios, Zenoss and
others.

• Cloudyn [97] is a tool focussed on providing cost
usage analysis for AWS and Google Compute Engine.

Taxonomy
From our extensive survey of existing monitoring sys-
tems it is evident that there are a number of common
elements. These elements include how components are
architected and how they communicate, the motivation
or origin behind the tool and the tool’s primary use case.
These can be used to form a taxonomy to classify cur-
rent and future monitoring tools. Figure 3 illustrates this
taxonomy.

Architecture, communication and collection
Monitoring frameworks typically consist of a number
of monitoring agents – components responsible for the
monitoring process. The way in which these agents are
architected, communicate and collect data differs from
system to system, however a number of common patterns

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 18 of 30

Figure 3 Taxonomy of Monitoring Tools: each tool is classified through an architecture, communication mechanism, collection
mechanism, origin and use-case.

can be identified, which forms part of our taxonomy.
Monitoring agents are typically architected in one of the
following ways:

• Two tier: in the most basic monitoring architecture
there are two types monitoring agents: a producer
and a consumer. Monitored hosts run an agent
simply comprising a producer. A second type of
agent comprising the consumer, state store and front
end collects, stores and analyses state from the first
type of agent. This architecture is shown in Figure 4.

• N-tier: this scheme is an evolution of the previous
scheme. The two agents described in the previous
section remain and a third agent is introduced. A new
intermediate agent acts as a consumer, state store
and republisher. The intermediate agent collects state
either from producer agents or from other
intermediate agents. The consumer agent consumes
state from intermediate agents. The n-tier
architecture is illustrated in Figure 5.

• Decentralised: all monitoring agents have the same
components. Agents are all capable of the same

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 19 of 30

functionality and their exact operation is dependant
upon locality, behaviour or other factors at runtime.
The decentralised architecture is shown in Figure 6.

Monitoring agents are then connected by one of the fol-
lowing communication channels:

• Unicast: monitoring agents communicate according
to a simple unicast protocol.

• Multicast: agents communicate with groups rather
than distinct agents. This includes the use of IP
multicast and overlay based multicast.

• Middleware: communication between agents is
facilitated via a middleware application. This includes
publish-subscribe middleware, message queues,
message brokers, service buses or other OS
independent messaging.

A final point of consideration is with regards to data col-
lection. This pertains to the directionality of the commu-

Figure 4 The two tier monitoring architecture.

nication channel. There are two contrasting mechanism
for collecting data from monitored hosts: push and pull.
In pull systems the consumer initiates the data collection
transaction. In push systems the producer initiates the
transaction.

Origin
The initial developer of a tool is often not the developer
who goes on to maintain and extend that tool. Never
the less, the intention and motivation behind the original
development does give some indication as to the design
of the monitoring tool and its applicability to cloud mon-
itoring. In our survey there are four origins: cluster/hpc,
grid, cloud and enterprise computing. Cluster monitor-
ing tools were predominantly written to operate over a
data centre or other small geographic area and were envis-
aged to function in an environment with few applications.
As such they tend to focus primarily upon metric collec-
tion and little else. Ganglia is a prime example of a cluster
monitoring tool. Grid tools are a natural evolution of clus-
ter tools whereby monitoring is performed over a wider
geographic area as is typical of grid virtual organisations.
In a similar fashion, grid tools focus primarily on met-
ric collection though health monitoring also features in
several grid based tools. Enterprise monitoring is a vast
category of tools which are incorporate several use cases.
Enterprise monitoring tools are by in large designed for
organisations who run a variety of applications, operating
systems, hardware and other infrastructure. Enterprise
tools such as Nagios are commonly used in cloud settings
as they have wide support for applications such as web
servers, databases and message queues. Enterprise mon-
itoring tools were not, largely, designed to tolerate scale
or changes to scale. Such tools therefore often require
manual configuration to add or remove a monitored host
and incur heavy load when monitoring large numbers of
VMs. Cloud monitoring tools are the newest category of
monitoring tools. These tools are in their infancy but are
typically designed with scale and elasticity as core goals.
Cloud monitoring tools are often interoperable and repre-
sent the growing popularity of patchwork solutions which
integrate numerous tools. While, a priori, cloud monitor-
ing tools are most appropriate for cloud monitoring they
often lack the features of their more mature counterparts
from alternative domains.

Use case
Monitoring is an all encompassing umbrella term for a
number of distinct processes. While some tools attempt
to provide extensive functionality which covers multiple
use cases, the vast majority of tools cater for a single
pertinent use case. These use cases include: metric collec-
tion, log/event processing, healthmonitoring and network
monitoring.

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 20 of 30

Figure 5 The n-tier monitoring architecture.

Metric collection is amongst the most basic monitoring
operation. It involves the collection of statistics regarding
system performance and utilisation and typically yields
a series of graphs as an end product. Metric collection
tools are typically less complex than other tools and do
not typically involve complex analysis. Tools which are
indented for metric collection include Ganglia, Graphite
and collectd and StatsD.
Log and event processing is a more complex use case

and typically involves an API or other interface which
allows a user to define a pipeline or set of instructions
to process a stream of events. Event processing is a

much more expensive form of monitoring than alterna-
tive use cases and requires significant compute capac-
ity to keep up with the demands of real time stream
processing. Event processing tools include Riemann and
Logstash. Health monitoring is similar to metric pro-
cessing in that it typically yields a series of values rep-
resenting the status of a service. It differs from more
simple metric collection in that it typically involves inter-
action with services. A common example of this is Apache
health monitoring whereby tools communicate with the
Apache web server via mod_status, apachectl or via
http in order to obtain internal state. This use case is

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 21 of 30

Figure 6 The decentralised monitoring architecture.

most commonly associated with alerting and reactive
monitoring.
Health monitoring often requires the writing of bespoke

software and frequently relies on plugin and extension
mechanisms exposed by monitoring tools. Nagios, Zabbix
and Icinga all cater to this use case. Network monitor-
ing is a wide use case which includes the monitoring of

network performance, network devices and network ser-
vices. This use case overlaps with health monitoring but
focuses more upon network conditions opposed to sim-
ply the services available on that network. This often
includes DoS detection, routing health detection, network
partition detection and so forth. Tools which cater to
network monitoring include Cacti, mrtg and ntop.

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 22 of 30

Applying the taxonomy
Table 1 provides a summary of the systems surveyed
within the previous sections. When collated together,
a trend emerges from the properties of the monitor-
ing systems surveyed in previous sections. Older tools

originating from the domain of enterprise monitoring are
predominantly 2-tier tools which have since been mod-
ified to support n-tier architectures in order to improve
scalability. Unexpectedly, many of the new generation
of cloud monitoring tools are also based upon 2-tier

Table 1 Taxonomy of monitoring tools

System Architecture Communication Collection Origin Use case

Astrolabe [8] Decentralised Multicast Push Cluster Computing Metric Collection and
Health Monitoring

Cacti [61] 2-tier Unicast Pull Enterprise Computing Network Monitoring
and Metric Collection

cloudinit.d [10] 2-tier Unicast Push Cloud Computing Health Monitoring

CloudSense [75] n-tier Unicast Push Cloud Computing Metric Collection

collectd [39] 2-tier/n-tier Unicast/multicast Push Enterprise Computing Metric Collection

DARGOS [6] 2-tier Middleware Push Cloud Computing Metric Collection

Dhingra et al [73] 2-tier Unicast Push Cloud Computing Metric Collection

Ganglia [31] n-tier Unicast Push Grid Computing Metric Collection

GEMS [5] Decentralised Multicast Push Cluster Computing Health Monitoring

GMonE [77] 2-tier Middlewear Push Cloud Computing Metric Collection

GroundWork [62] n-tier Unicast Pull Enterprise Computing Metric Collection and
Health Monitoring

Icinga [59] n-tier Unicast Push Enterprise Computing Metric Collection and
Health Monitoring

Konig et al [7] Decentralised Multicast Push Cloud Computing Metric Collection

Logstash [41] Centralised Unicast Push Cloud Computing Event Processing

MonALISA [52] n-tier Unicast Push Grid Computing Metric Collection and
Health Monitoring

Munin [63] n-tier Unicast Pull Enterprise Computing Network Monitoring

Nagios [35] 2-tier/n-tier Unicast Pull Enterprise Computing Network Monitoring
and Health Monitoring

OpenNMS [64] 2-tier/n-tier Unicast Pull Enterprise Computing Metric Collection and
Health Monitoring

OpenNebula [10][80] 2-tier Unicast Push Cloud Computing Metric Collection

PCMONS [83] 2-tier Unicast Push Cloud Computing Metic Collection

Reconnoiter [5] n-tier Unicast Push Enterprise Computing Metric Collection and
Health Monitoring

Riemann [9] 2-tier Unicast Push Cloud Computing Event Processing

sFlow [48] 2-tier Unicast Push Enterprise Computing Network Monitoring

Spiceworks [65] 2-tier/n-tier Unicast Pull Enterprise Computing Network Monitoring

StatsD [42] 2-tier Unicast Push Enterprise Computing Metric Collection

SQRT-C [71] 2-tier Middleware Push Cloud Computing Metric Collection

Varanus [86] Decentralised Multicast Push Cloud Computing Metric Collection

visPerf [55] Centralised/decentralised Unicast Push Grid Monitoring Metric Collection and
Log Processing

Zabbix [66] 2-tier/n-tier Unicast Pull Enterprise Monitoring Health Monitoring and
Metric Collection

Zenoss [60] 2-tier/n-tier Unicast Pull Enterprise Computing Health Monitoring and
Metric Collection

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 23 of 30

architectures. Many of the research projects which have
investigated issues in cloud monitoring have examined
issues other than architecture scalability and thus for the
sake of simplicity or other concerns utilise 2-tier architec-
tures. Those research projects which have placed scalabil-
ity amongst their primary concerns have predominantly
employed n-tier or decentralised architectures in addi-
tion to utilising some form of multicast or middleware to
facilitate communication.
Another trend which is clear from Figure 4 is the shift

from tools utilising a pull mechanism for collecting moni-
toring data to using a push model. This represents a move
from tight coupling and manual configuration to loosely
coupled tools which perform auto discovery and handle
membership change gracefully. Pull mechanism provided
a means for centralised monitoring servers to control the
rate at which data was collected and control the volume of
information produced at any given time. Push mechanism
dispense with that means of control and either require an
additional feedback mechanism to reintroduce this func-
tionality or require the monitoring system to cope with
variable and uncontrolled rates of monitoring data.

Applying the cloudmonitoring requirements
Tables 2 and 3 summarise the cloud monitoring require-
ments (detailed in Section 1) which each of the sur-
veyed monitoring systems provide. It is clear from these
tables that non cloud specific tools, expectedly, imple-
ment less of the requirements of cloud monitoring than

tools specifically built for cloud monitoring. Notably,
the general monitoring systems do implement the com-
prehensiveness requirement more so than current cloud
tools. This is primarily due to general tools having a
greater install base, larger communities and have bene-
fited from more development time. As cloud monitoring
tools mature this disparity is likely to diminish. Auto-
nomic monitoring features are the rarest of the require-
ments as much of the research in the field of autonomic
systems is yet to be applied to monitoring. Notably,
time sensitivity is not a feature provided by any gen-
eral monitoring systems. Recent cloud monitoring tools,
however, have begun to implement real time and time sen-
sitive mechanisms which may begin to become common
place.
The tools which support the less common monitoring

requirements are predominantly academic proof of con-
cept systems which do not have freely available releases or
have unmaintained releases. As is common, there is likely
to be a trickle down effect with the concepts introduced
by academic proof of concept systems being adopted by
open source and industrial tools. Notably, loose coupling
and related fault tolerance mechanism which were once
the preserve of academic research are now featuring in
more mainstream monitoring tools. This trend is likely to
follow for other cloud monitoring requirements.
A possible outcome of the increasing complexity of

the cloud computing sector is the demise of all-in-one
monitoring tools. Many of the tools surveyed here are not

Table 2 Requirements fulfilled by general monitoring systems

Cloudmonitoring requirements

Scalable Cloud Fault Multiply Comprehensive Time Autonomic
aware tolerant granular sensitive

Astrolabe � �
Cacti �
collectd � �
Ganglia � �
GEMS � �
Icinga �
MonaLISA � �
Nagios �

Monitoring systems OpenNMS �
Reconnoiter �
Riemann � �
StatsD � �
sFLow �
visPerf � � �
Zabix �
Zenoss �

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 24 of 30

Table 3 Requirements fulfilled by cloudmonitoring systems

Cloudmonitoring requirements

Scalable Cloud Fault Multiply Comprehensive Time Autonomic
aware tolerant granular sensitive

cloudinit.d � �
CloudSense � �
DARGOS � � � �
Dingra et al [73] � �
GMonE � � �

Monitoring systems Konig et al [7] � �
Logstash � � �
OpenNebula �
PCMONS � �
Sensu � �
SQRT-C � � �
Varanus � � �

complete solutions, rather they provide part of the moni-
toring process.With the diversification of cloud providers,
APIs, applications and other factors it will become
increasingly difficult to develop tools with encompass all
areas of the cloud computing stack. It is therefore likely
that future monitoring solutions will be comprised of
several tools which can be integrated and alternated to
provide comprehensive monitoring. This trend is already
coming to fruition in the open source domain where col-
lectd, statsd, Graphite, Riemann and a variety of other
tools which have common interchange formats can be
orchestrated to provide comprehensive monitoring. This
trend is slowly gaining traction amongst industrial tools
such as many of the monitoring as a service tools which
provide interoperability and complimenting feature sets.
CopperEgg for example, is interoperable with a number of
data sources including Amazon CloudWatch and the two
tools provide contrasting feature sets and different levels
of granularity. The rise of a ’no silver bullet’ mindset would
hasten the long predicted demise of conventional enter-
prise monitoring tools and see significant diversification
of the cloud monitoring sector.

Monitoring as an engineering practice
The greatest extent of this survey is spent discussing the
design of current monitoring tools in order to enable
users to more effectively choose tools and for researchers
to design more effective monitoring tools. Monitoring
tools are not however the be all and end all of monitor-
ing, they are however just one part of the process. Just
as software engineering prescribes a length requirements
engineering and design process prior to implemented so
to does monitoring require a well thought out strategy.

Monitoring tools form the bulk of the implementation
of any strategy but without appropriate consideration the
haphazard application of monitoring tools will inevitably
fail to perform as required.

Monitoring strategies
Amonitoring tool alone is not a monitoring strategy. Even
the most sophisticated monitoring tools are not the be
all and end all of monitoring, but rather are a part of a
grander strategy. A monitoring strategy defines what vari-
ables and events should be monitored, which tools are
used, who is involved and what actions are taken. As such,
a monitoring strategy is a sociotechnical process which
involves both software and human actors.
It is extremely difficult to produce an effective monitor-

ing strategy and it is doubly difficult to produce a strategy
before a system is operational. Most monitoring strate-
gies are devised during the design stage but are constantly
revised when events show the current strategy to be
incomplete, inefficient or otherwise ineffective. Part of the
inherent difficulty in devising a comprehensive monitor-
ing strategy is the complex intertwinement of software
and services within any large system. It is not immedi-
ately clear as to what effect various failure modes will have
on other services. Often failure cascades and knock-on
effects are extremely difficult to predict ahead of time.
As such it may take numerous iterations for a monitoring
strategy to reach a point whereby it can be used to prevent
widespread failure or other issues arising. Many high pro-
file outages which have affected large swathes of the web
have been due to ineffective monitoring strategies which
have prevented operations staff detecting and resolving a
growing issue before it was too late.

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 25 of 30

Building a monitoring strategy first and foremost
requires considering what actors (both human and soft-
ware) will be involved in the monitoring process. Com-
mon examples of these include:

• Operations staff who are actively involved in
maintaining the system and utilising monitoring data
as a key part of their role.

• Other staff who use monitoring data to varying
degrees within their roles.

• Monitoring tools which collect, analyse and visualise
data from the system in question.

• The infrastructure provider, this could be a cloud
provider, datacenter, an in-house team or a third
party organisation.

• Software systems with produce and/or consume
monitoring data.

• Customers or clients who may generate and make
use of monitoring data.

This is by no means and extensive list but it represents
many of the common actors involve in the monitoring
process. Failure to consider the relevant actors can lead
to ineffective monitoring strategy and can often result in
“Shadow IT” use cases emerging whereby human actors
circumvent the prescribed monitoring strategy in order to
obtain the information necessary to their roles.
Second in order to identify the actors involved, it is nec-

essary to identify the values, metrics, logs and other data
that are collected as part of the monitoring strategy. This
typically includes:

• Performance metrics e.g. cpu, queries/second,
response time etc.

• Utilisation metrics, e.g. memory, bandwidth, disk,
database tables etc.

• Throughput metrics e.g. network, caches, http etc.
• Log data from each host and application.
• User metrics including page views, click rates etc.
• Availability including uptime, host and service failure

and network failure.
• Compliance data e.g. permissions, SLA related

metrics, availability etc.
• Performance Indicators e.g. number of users, cost per

transaction, revenue per hour.

Once these variables have been appropriately identi-
fied developing a monitoring strategy becomes a routing
problem. One must devise the means to collect the afore-
mentioned variables and deliver them to the appropri-
ate actors in the appropriate format. Despite the claims
made by many monitoring tools there is no single bullet
which solves this problem. No single monitoring tool sup-
ports collection from all the required sources, provides
all the necessary analysis or provides all the necessary

outputs. Most monitoring strategies are therefore a patch-
work of several monitoring tools which either operate
independently or are interlinked by shared backends or
dashboards.

Implementing a monitoring strategy
There exists a not insignificant number of monitoring
tools, each designed for different, but sometimes overlap-
ping, purposes. When faced with implementing a moni-
toring strategy there are three basic options with regards
to software choices:

1. Use an existing monitoring tool.
2. Modify and existing monitoring tool to better fit the

requirements specified by the strategy.
3. Implement a new bespoke tool which fits the

requirements of the strategy.

There also exists a fourth option, which is to use a com-
bination of the above options. For most general use cases,
such as those involving amulti tiered web application built
from standard software, a preexisting monitoring tool is
likely to be sufficient to implement any monitoring strat-
egy. Should themost appropriate tool lack features needed
to fully implement the strategy, such as log parsing which
is underrepresented in the feature lists of many mon-
itoring tools, additional tools can be incorporated into
the implementation of the strategy. Monitoring strategies
which involve bespoke applications or simply uncom-
mon applications can result in few tools supporting those
applications. Most monitoring tools have some form of
plugin architecture. This can range from Nagios which
supports a menagerie of shell, perl and other scripts to
more modern tools such as Riemann which has a modern
functional API. Thesemechanisms allowmonitoring tools
to be extended to support data collection from bespoke
or uncommon applications allowing tool choice not to be
restricted by existing support for applications. Greater dif-
ficulties arise when necessary features are missing from
a monitoring tool. Certain monitoring strategies can call
for complex analysis, alerting, visualisation or other fea-
tures which are unsupported by the vast majority of tools.
Typically, such types of core functionality cannot be eas-
ily implemented via a plugin. This is not always the case
but it is an issue which affects many tools. In which case
there are two options: to add this functionality an existing
tool or to design a new tool. The former requires knowl-
edge of the original codebase and the ability to maintain
a fork which may be prohibitive to smaller organisa-
tions. The latter option requires another tool be added to
the strategy and it’s coordination and communication be
orchestrated. This latter option is what distinctly appears
to be the most popular option. This can be evidenced by
the number of open source tools which provide a small

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 26 of 30

part of a monitoring strategy that can be integrated as part
of a larger strategy. Such tools include StatsD, Graphite,
Graphene and HoardD which are all small tools providing
a fragment of any monitoring strategy show the current
trend towards implementing small bespoke tools as they
are require in lieu of modifying larger more complex tools.
This trend is advantageous as it allows operations staff

to choose from a diverse range of tools and devise an
implementing which fits themonitoring strategy as closely
as possible. This diversification of monitoring tools also
represents many potential issues, namely that smaller and
less popular tools may lose developers and support if it
recedes from vogue. Furthermore a diverse range of tools
requires a significant effort to orchestrate the commu-
nication between these tools. Unless there is a shared
language, protocol or format the orchestration of these
tools can become a troublesome.
Beyond software there is a human element to imple-

menting monitoring strategies. There are numerous fac-
tors involved with implementing a monitoring strategy
with regards to human actors, these including:

• Who is responsible for responding to alerts and
events raised by the monitoring system and what
oversight occurs when taking action.

• If an event occurs which the monitoring strategy fails
to detect what action is taken to improve the strategy.

• Who is responsible for maintaining the monitoring
system.

• How is access to the monitoring system controlled
and how is access granted are all users of the system
allowed to see the full data.

Even a monitoring system which is highly autonomic
in nature still relies upon some degree of human interac-
tion. Failure of human actors to take appropriate action is
equally, if not more, problematic than software agents fail-
ing. It is therefore essential for human and software actors
to abide by the monitoring strategy to ensure effective
monitoring.

The chaos monkey and testing monitoring strategies
Few monitoring strategies are perfect and the worst time
to discover imperfections in a monitoring strategy is in
production when a service is under high demand. Chaos
monkey is a term popularised by Netflix [98], which
defines a user or piece of software which introduces fail-
ure or error during a pre approved period of time in order
to test the effectiveness of a monitoring strategy and the
response of the operations team. In the case of Netflix the
chaos monkey terminates a random EC2 instance in order
to simulate a common failure mode. This failure should
be handled automatically by the monitoring strategy and
accounted for without the need for human intervention.

In the case that an unexpected outcome occurs the mon-
itoring strategy is adapted to cover what was previously
unexpected. The success of this testing strategy has led to
Netflix open sourcing their Simian Army toolkit, a widely
adopted tool which not only includes the Chaos Monkey
but also several other programs which create latency,
security, performance, configuration and other issues in
order to test the effectiveness of a monitoring strategy.
This type of testing whether it is automated, manual or

a mixture of both is essential in testing the effectiveness
of a monitoring strategy. Failing to test a monitoring strat-
egy is akin to failing to test software. Without appropriate
testing, a developer cannot assert that their product meets
the prescribed requirements or indeed make any strong
empirical claims regarding the validity of their software.
This is also true of a monitoring strategy. While software
testing has been an intrinsic part of software engineer-
ing since it’s beginnings, efficient testing methods for
monitoring strategies are only beginning to emerge.

Changing knowledge requirements and job descriptions
In previous sections we have discussed the role of the
operations team in a reasonably abstract manner. Oper-
ations is a core part of any large organisation and as
technology, knowledge and work culture has evolved so
to have the roles which comprise operations. For the
last 20 years the maintenance of software and hard-
ware systems has fallen under the preview of a system
administrator. For the longest time operations and system
administration were largely interchangeable. Sysadmins
have typically been responsible for a broad and often ill-
defined range of maintenance and deployment roles of
which monitoring inevitably is a large component. System
administrators are not developers or software engineers,
they do not typically implement new software or mod-
ify current systems. Therefore when a monitoring tool
reports a fault with an application it is beyond their
responsibilities to delve into application code in order to
resolve the issue and prevent its reoccurrence. Instead,
sysadmins are typically limited to altering configuration,
system settings and other tuneable parameters in order to
resolve an issue. If a problem arises with an application
which cannot be fixed by sysadmins then generally, the
problem is communicated to development staff who then
resolve the problem. Often communication between these
two groups is facilitated through issue trackers, project
management software or other collaboration tools. As
monitoring is the prerogative of the administrator (and
due to the administrator-developer divide) monitoring
tools have typically produced performance metrics, sta-
tus codes, failure notifications and other values that are of
direct use to the administrator. This leads to administra-
tors usingmonitoring tools in a reactive manner: they take
corrective action when a monitoring tool alerts them.

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 27 of 30

This separation of responsibility between adminis-
tration staff and development staff eventually became
strained. With the ever increasing diversity and complex-
ity of modern software it has become common place for
organisations to deploy bespoke or heavily modified soft-
ware. In such cases it is extremely beneficial for operations
staff to have detailed knowledge of the inner workings
of these systems. Furthermore, as monitoring tools have
become more advanced it has become feasible to mon-
itoring a vast range of application specific variables and
values. It is therefore of importance that operations staff
who make use of monitoring data have the prerequisite
application knowledge to understand, interpret and take
action upon monitoring data. Since the late 2000s what
has, arguably, occurred has been a bifurcation of admin-
istration roles into administrators with broad knowledge
of system architecture and application design and those
without. The later is still typically referred to as a systems
administrator while the later has assumed the moniker of
DevOps.
DevOps rethinks the purpose of monitoring. Instead

of the very reactive role monitoring has in conventional
systems administration, DevOps takes a proactive stance
to monitoring whereby monitoring becomes an intrinsic
part of the development process. This leads to the pro-
motion of a “monitor everything” approach whereby all
potentially interesting variables are recorded as these val-
ues are now utilised throughout the development process,
as opposed to simply the maintenance process. Concep-
tually, this improves the development process and ensures
the design and implementation of software is grounded in
empiricism.
While DevOps was gaining acceptance a separate trend

has been emerging. Site Reliability Engineers (SRE) is a
job role first created by Google which has since spread to
other organisations. While DevOps attempts to merge the
traditional system administrator and developer role, SREs
are, for all intents and purposes, are software engineers
tasked with an operations role. This new role has emerged
to fill the needs of organisations for whom “infrastruc-
ture is code”. When the division between all levels of
infrastructure are blurred, as is the case now with cloud
computing, operations roles require detailed knowledge
of software engineering. With regards to monitoring, SRE
take an equivalent “monitoring everything” approach and
utilise detailed, high frequency monitoring data during all
stages of the development and maintenance process.
The emergence of both DevOps and SRE is indicative

of a trend away from non-programming system admin-
istrators and towards a far winder range of skills and
knowledge. With this diversification of knowledge comes
a change in who monitoring data is intended for. No
longer are monitoring tools intended only for opera-
tions staff, instead they useful to stakeholders throughout

engineering and management. Table 4 provides a list of
monitoring stakeholders and their interests.

Monitoring as a data intensive problem
“Monitor Everything” is a phrase that features heavily in
discourse regarding monitoring best practices. This cer-
tainly removes the risk that a monitoring strategy will
fail to encompass all the relevant variables but if taken
in the most literal sense can be extremely difficult to
achieve. A VM instance has no shortage of data points,
these includes: application metrics, network activity, file
system changes, context switches, system calls, cache
misses, IO latency, hypervisor behaviour and cpu steal
to name but a few. The list is extensive. In the case of
a private cloud whereby physical hosts are monitored
there is an additional set of hardware values that can be
monitored.
Collecting all of these variables is challenging, especially

if a monitoring strategy calls for these variables to be
monitored in real time. While the vast majority of these
variables are small, the volume of variables and their rate
of change risks all encompassing monitoring (or event
more restricted monitoring) becoming a data intensive
challenge. In the past, common practice has been sam-
pling variables at 30 second or even greater increments.
As an industry standard this is no longer acceptable. Most
tools now operate at a 1 second interval. At scale, process-
ing and storing these variables at this interval requires a
significant volume of compute capacity.

Table 4 Monitoring stakeholders

Stakeholder Motivation

System Administrator Detecting failure, ensuring continued
operation of system

DevOps Data led software development, system
maintenance

Security Staff Intrusion detection, enforcement and
protection

SRE Software Engineering orientated
operations

Customers Billing

Testers Input for regression, requirements and
performance testing

Product Owner Ensure product quality and ensure
business value

Scrum Master Ensure adherence to SCRUM

Developers Debugging, identify performance issues,
trace messages and transactions

UI Team Observe user behaviour

Business Stakeholders Predict future requirements, costs and
profitability

Compliance Auditors SLA compliance, certification auditing

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 28 of 30

The trend towards all encompassing monitoring is
reflected in the monitoring tools. As our survey demon-
strates, older monitoring tools utilised predominantly
centralised architectures whereby a single server collected
data frommonitored hosts.With larger systems or with an
all encompassing monitoring strategy, this scheme is no
longer viable. Newer tools offer schemes where the com-
putation involved in monitoring can be distributed over a
large number of hosts using message queues, middleware,
shared memory or other communication channels.
This complicate the problem of monitoring vasty. No

longer do operations staff have to contend with the man-
agement of a single monitoring server but rather with a
a monitoring cluster which is likely proportional in size
to the monitored deployment. This had led to the devel-
opment of many cloud hosted service whereby this man-
agement complexity is abstracted behind an web service,
freeing operations staff from managing large monitoring
systems. This option is however, unacceptable for many
organisations who due to compliance, legal, security or
other reasons require that their monitoring system be
behind their firewall. This creates a number of issues.
Operations staff at organisations with large systems must
now contend with maintaining large monitoring systems
in addition to their production systems. These issues are
also concerning for organisations which do not regularly
operate at scale but by using cloud computing to autoscale
their infrastructure can temporarily operate at a larger
scale which requires larger and more costly monitoring.

Conclusion
Cloud computing is a technology which underpins much
of today’s Internet. Central to its success is elasticity;
the means to rapidly change in scale and composition.
Elasticity affords users the means to deploy large scale
systems and systems which adapt to changes in demand.
Elasticity also demands comprehensive monitoring. With
no physical infrastructure and a propensity for scale and
change it is critical that stakeholders employ a monitoring
strategy which allows for the detection of problems, opti-
misation, cost forecasting, intrusion detection, auditing
and other use cases. The lack of an appropriate strategy
risks downtime, data loss, unpredicted costs and other
unwanted outcomes. Central to designing and implement-
ing a monitoring strategy are monitoring tools. This paper
has exhaustively detailed the wide range of monitoring
tools related to cloud monitoring. As is evident, relevant
tools originate from a number of domains and employ a
variety of designs. There are a considerable number of
venerable tools originating from enterprise, grid and clus-
ter computing which have a variety of appropriateness to
cloud monitoring. More recent developments have seen
the development of cloud specific monitoring tools. These
tools are either installed by users on infrastructure or

operate as software as a service tools. At present there is
no universally accepted means to compose a monitoring
strategy or to select the appropriate tools. At present most
monitoring strategies are a patchwork of several mon-
itoring tools each which provide different functionality.
Common schemes include several tools which between
them provide metric gathering, log/event processing and
health and network monitoring.
Many older tools which originate from previous

domains are poor fits for cloud computing as they rely
on centralised strategies, pull models, manual configu-
ration and other anachronisms. Newer tools attempt to
avoid these issues but as yet do not provide the full
gamut of functionality offered by existing tools. Our tax-
onomy demonstrates that while newer tools better sup-
port the requirements of cloud monitoring they do not
yet have the entire range of necessary functionality. A
trend which is clear from our survey is the gradual transi-
tion from grid,cluster and enterprise monitoring tools to
more appropriate cloud monitoring tools. This trend will
increase greatly as more modern tools develop the range
of plugins, software support and functionality that older
tools currently support.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JSW conducted the detailed survey of monitoring frameworks as part of his
PhD studies. AB helped develop the structure, analysis and taxonomy for the
survey and provided substantial input into drafting and revising the
document. Both authors read and approved the final manuscript.

Acknowledgements
This research was supported by a Royal Society Industry Fellowship and an
Amazon Web Services (AWS) grant.

Received: 6 October 2014 Accepted: 10 December 2014

References
1. Tremante M (2013) Amazon Web Services’ growth unrelenting. http://

news.netcraft.com/archives/2013/05/20/amazon-web-services-growth-
unrelenting.html

2. Mendoza D (2012) Amazon outage takes down Reddit, Foursquare,
others - CNN.com. http://edition.cnn.com/2012/10/22/tech/web/reddit-
goes-down/, 2012

3. Mell P, Grance T (2011) The NIST Definition of Cloud Computing.
Technical Report 800-145, National Institute of Standards and Technology
(NIST), Gaithersburg, MD

4. Armbrust M, Stoica I, Zaharia M, Fox A, Griffith R, Joseph AD, Katz R,
Konwinski A, Lee G, Patterson D, Rabkin A (2010) A view of cloud
computing. Commun ACM 53(4):50

5. Subramaniyan R, Raman P, George AD, Radlinski M (2006) GEMS:
Gossip-Enabled Monitoring Service for Scalable Heterogeneous
Distributed Systems. Cluster Computing 9(1):101–120

6. Povedano-Molina J, Lopez-Vega JM, Lopez-Soler JM, Corradi A, Foschini L
(2013) DARGOS: A highly adaptable and scalable monitoring architecture
for multi-tenant Clouds. Future Generation Comput Syst 29(8):2041–2056

7. Konig B, Alcaraz Calero JM, Kirschnick J (1306) Elastic monitoring
framework for cloud infrastructures. IET Commun 6(10)

8. Van Renesse R, Birman KP, Vogels W (2003) Astrolabe. ACM Trans Comput
Syst 21(2):164–206

http://news.netcraft.com/archives/2013/05/20/amazon-web-services-growth-unrelenting.html
http://news.netcraft.com/archives/2013/05/20/amazon-web-services-growth-unrelenting.html
http://news.netcraft.com/archives/2013/05/20/amazon-web-services-growth-unrelenting.html
http://edition.cnn.com/2012/10/22/tech/web/reddit-goes-down/
http://edition.cnn.com/2012/10/22/tech/web/reddit-goes-down/

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 29 of 30

9. Riemann. http://riemann.io/
10. cloudinit.d. http://www.nimbusproject.org/doc/cloudinitd/1.2/
11. El-Khamra Y, Kim H, Jha S, Parashar M (2010) Exploring the Performance

Fluctuations of HPC Workloads on Clouds. In: 2010 IEEE Second
International Conference on Cloud Computing Technology and Science.
IEEE. pp 383–387

12. Amazon Web Services FAQs. https://aws.amazon.com/ec2/faqs/
13. Machine Types - Google Compute Engine - Google Developers. https://

developers.google.com/compute/docs/machine-types
14. Got Steal? | CopperEgg. http://copperegg.com/got-steal/
15. Link D (2011) Netflix and Stolen Time. http://blog.sciencelogic.com/

netflix-steals-time-in-the-cloud-and-from-users/03/2011
16. Avresky DR, Diaz M, Bode A, Ciciani B, Dekel E, eds (2010) A Performance

Analysis of EC2 Cloud Computing Services for Scientific Computing,
volume 34 of Lecture Notes of the Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering. Springer Berlin
Heidelberg, Berlin, Heidelberg

17. Top500.org Amazon EC2 Cluster Compute Instances - Amazon EC2
Cluster, Xeon X5570 2.95 Ghz, 10G Ethernet | TOP500 Supercomputer
Sites. http://www.top500.org/system/10661

18. BuisnessWeek Another Amazon Outage Exposes the Cloud’s Dark Lining -
Businessweek. http://www.businessweek.com/articles/2013-08-26/
another-amazon-outage-exposes-the-clouds-dark-lining

19. ZDNet Amazon Web Services suffers outage, takes down Vine, Instagram,
others with it, ZDNet. http://www.zdnet.com/amazon-web-services-
suffers-outage-takes-down-vine-instagram-flipboard-with-it-
7000019842/

20. Ec2 Global Infrastructure. https://aws.amazon.com/about-aws/
globalinfrastructure/?nc1=h_l2_cc

21. Azure Microsoft Azure Trust Center - Privacy. http://azure.microsoft.com/
en-us/support/trust-center/privacy/

22. Ward JS, Barker A (2012) Semantic based data collection for large scale
cloud systems. In: Proceedings of the fifth international workshop on
Data-Intensive Distributed Computing Date. ACM, New York, NY, USA.
pp 13–22

23. Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid
computing 360-degree compared. In: Grid Computing Environments
Workshop, 2008. GCE’08. IEEE. pp 1–10

24. Aceto G, Botta A (2013) Walter de Donato and Antonio Pescapè. Cloud
monitoring: A survey. Comput Netw 57(9):2093–2115

25. Deelman E, Singh G, Livny M, Berriman B, Good J (2008) The cost of doing
science on the cloud: The Montage example.1–12

26. Greenberg A, Hamilton J, Maltz DA, Patel P (2008) The cost of a cloud.
ACM SIGCOMM Comput Commun Rev 39(1):68

27. Sarathy V, Narayan P, Mikkilineni R (2010) Next Generation Cloud
Computing Architecture: Enabling Real-Time Dynamism for Shared
Distributed Physical Infrastructure. In: 2010 19th IEEE International,
Workshops on Enabling Technologies: Infrastructures for Collaborative
Enterprises. IEEE. pp 48–53

28. Ian Foster, Yong Zhao, Ioan Raicu, Shiyong L u Cloud Computing and Grid
Computing 360-Degree Compared. In: 2008 Grid Computing
Environments Workshop. IEEE. pp 1–10

29. Kozuch MA, Ganger GR, Ryan MP, Gass R, Schlosser SW, O’Hallaron D,
Cipar J, Krevat E, López J, Stroucken M (2009) Tashi. In: Proceedings of the
1st workshop on, Automated control for datacenters and clouds - ACDC
’09. ACM Press, New York, New York, USA. p 43

30. Marshall P, Keahey K, Freeman T (2011) Improving Utilization of
Infrastructure Clouds. In: 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing. IEEE. pp 205–214

31. Massie ML, Chun BN, Culler DE (2004) The ganglia distributed monitoring
system: design, implementation, and experience. Parallel Comput
30(7):817–840

32. Tobias Oetiker RRDtool. http://oss.oetiker.ch/rrdtool/
33. Eisler M XDR: External Data Representation Standard. http://tools.ietf.org/

html/rfc4506
34. Daniel Pocock ganglia-nagios-bridge. https://github.com/ganglia/

ganglia-nagios-bridge
35. Nagios Nagios - The Industry Standard in IT Infrastructure Monitoring.

http://www.nagios.org/
36. Intellectual Reserve Distributed Nagios Executor (DNX). http://dnx.

sourceforge.net/

37. NagiosConfig Main Configuration File Options. http://nagios.sourceforge.
net/docs/3_0/configmain.html

38. Kowall J Got Nagios? Get rid of it. http://blogs.gartner.com/jonah-kowall/
2013/02/22/got-nagios-get-rid-of-it/

39. Collectd collectd – The system statistics collection daemon. http://
collectd.org/

40. Rightscale Cloud Portfolio Management by RightScale. http://www.
rightscale.com/

41. Logstash. http://logstash.net/
42. statsd. https://github.com/etsy/statsd/
43. Bucky. https://github.com/trbs/bucky
44. Graphite. http://graphite.wikidot.com/
45. drraw. http://web.taranis.org/drraw/
46. Cabot. http://cabotapp.com/
47. Google (2014) Google Protocol Buffers. https://developers.google.com/

protocol-buffers/docs/overview
48. sFlow. http://www.sflow.org/
49. Host sFlow. http://host-sflow.sourceforge.net/
50. PeakFlow. http://www.arbornetworks.com/products/peakflow
51. Scrutinizer sFlow Analyzer. http://www.plixer.com/Scrutinizer-Netflow-

Sflow/scrutinizer.html
52. MonALISA. http://monalisa.caltech.edu/monalisa.htm
53. Legrand I, Newman H, Voicu R, Cirstoiu C, Grigoras C, Dobre C, Muraru A,

Costan A, Dediu M, Stratan C (2009) MonALISA: An agent based, dynamic
service system to monitor, control and optimize distributed systems.
Comput Phys Commun 180(12):2472–2498

54. Arnold K, Scheifler R, Waldo J, O’Sullivan B, Wollrath A (1999) Jini
Specification. http://dl.acm.org/citation.cfm?id=554054

55. Lee D, Dongarra JJ, Ramakrishna RS (2003) visperf: Monitoring tool for grid
computing. In: Sloot PMA, Abramson D, Bogdanov AV, Gorbachev YE,
Dongarra JJ, Zomaya AY (eds) Computational Science – ICCS 2003
volume 2659 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg. pp 233–243

56. Kermarrec A-M, Massoulie L, Ganesh AJ (2003) Probabilistic reliable
dissemination in large-scale systems. IEEE Trans Parallel Distributed Syst
14(3):248–258

57. GEMS Java Implementation. https://github.com/nsivabalan/gems
58. OmniTI Labs (2014) Reconnoiter. https://labs.omniti.com/labs/

reconnoiter
59. Icinga. https://www.icinga.org/
60. Zenoss (2014) Zenoss. http://www.zenoss.com/
61. The Cacti Group (2014) Cacti. http://www.cacti.net/
62. GroundWork. http://www.gwos.com/
63. Munin. http://munin-monitoring.org/
64. OpenNMS The OpenNMS Project. http://www.opennms.org/
65. Spiceworks Spiceworks. http://www.spiceworks.com/
66. Zabbix Zabbix. http://www.zabbix.com/
67. cloudinit.d monitoring README. https://github.com/nimbusproject/

cloudinit.d/blob/master/docs/monitor.txt
68. Sensu. http://sensuapp.org/
69. RabbitMQ. https://www.rabbitmq.com/
70. Bloom A How fast is a Rabbit? Basic RabbitMQ Performance Benchmarks.

https://blogs.vmware.com/vfabric/2013/04/how-fast-is-a-rabbit-basic-
rabbitmq-performance-benchmarks.html

71. An K, Pradhan S, Caglar F, Gokhale A (2012) A Publish/Subscribe
Middleware for Dependable and Real-time Resource Monitoring in the
Cloud. In: Proceedings of the Workshop on Secure and Dependable
Middleware for Cloud Monitoring and Management. ACM, New York, NY,
USA. pp 3:1–3:6

72. Goldsack P, Guijarro J, Loughran S, Coles A, Farrell A, Lain A, Murray P, Toft
P (2009) The SmartFrog configuration management framework. ACM
SIGOPS Operating Syst Rev 43(1):16

73. Dhingra M, Lakshmi J, Nandy SK (2012) Resource Usage Monitoring in
Clouds. In: Proceedings of the 2012 ACM/IEEE 13th International
Conference on Grid Computing. IEEE Computer Society, Washington, DC,
USA. pp 184–191

74. Pardo-Castellote G (2003) OMG data-distribution service: architectural
overview. In: 23rd International Conference on Distributed Computing
Systems Workshops, 2003. Proceedings. IEEE. pp 200–206

75. Kung HT, Lin C-k, Vlah D (2011) CloudSense : Continuous Fine-Grain
Cloud Monitoring With Compressive Sensing.

http://riemann.io/
http://www.nimbusproject.org/doc/cloudinitd/1.2/
https://aws.amazon.com/ec2/faqs/
https://developers.google.com/compute/docs/machine-types
https://developers.google.com/compute/docs/machine-types
http://copperegg.com/got-steal/
http://blog.sciencelogic.com/netflix-steals-time-in-the-cloud-and-from-users/03/2011
http://blog.sciencelogic.com/netflix-steals-time-in-the-cloud-and-from-users/03/2011
http://www.top500.org/system/10661
http://www.businessweek.com/articles/2013-08-26/another-amazon-outage-exposes-the-clouds-dark-lining
http://www.businessweek.com/articles/2013-08-26/another-amazon-outage-exposes-the-clouds-dark-lining
http://www.zdnet.com/amazon-web-services-suffers-outage-takes-down-vine-instagram-flipboard-with-it-7000019842/
http://www.zdnet.com/amazon-web-services-suffers-outage-takes-down-vine-instagram-flipboard-with-it-7000019842/
http://www.zdnet.com/amazon-web-services-suffers-outage-takes-down-vine-instagram-flipboard-with-it-7000019842/
https://aws.amazon.com/about-aws/globalinfrastructure/?nc1=h_l2_cc
https://aws.amazon.com/about-aws/globalinfrastructure/?nc1=h_l2_cc
http://azure.microsoft.com/en-us/support/trust-center/privacy/
http://azure.microsoft.com/en-us/support/trust-center/privacy/
http://oss.oetiker.ch/rrdtool/
http://tools.ietf.org/html/rfc4506
http://tools.ietf.org/html/rfc4506
https://github.com/ganglia/ganglia-nagios-bridge
https://github.com/ganglia/ganglia-nagios-bridge
http://www.nagios.org/
http://dnx.sourceforge.net/
http://dnx.sourceforge.net/
http://nagios.sourceforge.net/docs/3_0/configmain.html
http://nagios.sourceforge.net/docs/3_0/configmain.html
http://blogs.gartner.com/jonah-kowall/2013/02/22/got-nagios-get-rid-of-it/
http://blogs.gartner.com/jonah-kowall/2013/02/22/got-nagios-get-rid-of-it/
http://collectd.org/
http://collectd.org/
http://www.rightscale.com/
http://www.rightscale.com/
http://logstash.net/
https://github.com/etsy/statsd/
https://github.com/trbs/bucky
http://graphite.wikidot.com/
http://web.taranis.org/drraw/
http://cabotapp.com/
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview
http://www.sflow.org/
http://host-sflow.sourceforge.net/
http://www.arbornetworks.com/products/peakflow
http://www.plixer.com/Scrutinizer-Netflow-Sflow/scrutinizer.html
http://www.plixer.com/Scrutinizer-Netflow-Sflow/scrutinizer.html
http://monalisa.caltech.edu/monalisa.htm
http://dl.acm.org/citation.cfm?id=554054
https://github.com/nsivabalan/gems
https://labs.omniti.com/labs/reconnoiter
https://labs.omniti.com/labs/reconnoiter
https://www.icinga.org/
http://www.zenoss.com/
http://www.cacti.net/
http://www.gwos.com/
http://munin-monitoring.org/
http://www.opennms.org/
http://www.spiceworks.com/
http://www.zabbix.com/
https://github.com/nimbusproject/cloudinit.d/blob/master/docs/monitor.txt
https://github.com/nimbusproject/cloudinit.d/blob/master/docs/monitor.txt
http://sensuapp.org/
https://www.rabbitmq.com/
https://blogs.vmware.com/vfabric/2013/04/how-fast-is-a-rabbit-basic-rabbitmq-performance-benchmarks.html
https://blogs.vmware.com/vfabric/2013/04/how-fast-is-a-rabbit-basic-rabbitmq-performance-benchmarks.html

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications (2014) 3:24 Page 30 of 30

76. Candes EJ, Wakin MB (2008) An Introduction To Compressive Sampling.
Signal Processing Magazine, IEEE:21–30

77. Montes J, Sánchez A, Memishi B, Pérez MS, Antoniu G (2013) GMonE:
A complete approach to cloud monitoring. Future Generation Comput
Syst 29(8):2026–2040

78. Lakshman A, Malik P (2010) Cassandra: A Decentralized Structured
Storage System. SIGOPS Oper. Syst. Rev. 44(2):35–40

79. Clayman S, Galis A, Mamatas L (2010) Monitoring virtual networks with
Lattice. In: Network Operations and Management Symposium Workshops
(NOMS Wksps), 2010 IEEE/IFIP. pp 239–246

80. OpenNebula. http://opennebula.org/
81. OpenNebula KVM and Xen UDP-push Monitoring. http://docs.

opennebula.org/4.4/administration/monitoring/imudppushg.html
82. Melis J OpenNebula 4.4: New Massively Scalable Monitoring Driver.

http://opennebula.org/opennebula-4-4-new-massively-scalable-
monitoring-driver/

83. De Chaves SA, Uriarte RB, Westphall CB (2011) Toward an architecture for
monitoring private clouds. Communications Magazine, IEEE
49(12):130–137

84. PCMONS Download. https://github.com/pedrovitti/pcmons
85. Eucalyptus: Open Source Private Cloud Software. https://www.

eucalyptus.com/eucalyptus-cloud/iaas
86. Ward JS, Barker A (2013) Varanus: In Situ Monitoring for Large Scale Cloud

Systems. In: 2013 IEEE 5th International Conference on Cloud Computing
Technology and Science. IEEE Vol. 2. pp 341–344

87. Amazon CloudWatch. http://aws.amazon.com/cloudwatch/
88. HP Cloud Monitoring. http://www.hpcloud.com/products-services/

monitoring
89. HP Public Cloud. http://www.hpcloud.com/
90. Monitoring System - RightScale. http://support.rightscale.com/12-

Guides/RightScale_101/08-Management_Tools/Monitoring_System
91. New Relic. http://newrelic.com/
92. CopperEgg. http://copperegg.com/
93. CloudSleuth. https://cloudsleuth.net/
94. Network & IT Systems Monitoring | Monitis - Monitor Everything. http://

www.monitis.com/
95. Cloud Monitoring as a Service for AWS and Rackspace. https://www.

stackdriver.com/
96. Boundary: Unified Monitoring for Web-Scale IT and Modern IT Operations

Monitoring. http://boundary.com/
97. Multi cloud Optimization: AWS & Google Cloud Services | Cloud Analytics

| Cloudyn | Actionable Recommendations. http://www.cloudyn.com/
98. Netflix Chaos Monkey. http://techblog.netflix.com/2012/07/chaos-

monkey-released-into-wild.html

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://opennebula.org/
http://docs.opennebula.org/4.4/administration/monitoring/imudppushg.html
http://docs.opennebula.org/4.4/administration/monitoring/imudppushg.html
http://opennebula.org/opennebula-4-4-new-massively-scalable-monitoring-driver/
http://opennebula.org/opennebula-4-4-new-massively-scalable-monitoring-driver/
https://github.com/pedrovitti/pcmons
https://www.eucalyptus.com/eucalyptus-cloud/iaas
https://www.eucalyptus.com/eucalyptus-cloud/iaas
http://aws.amazon.com/cloudwatch/
http://www.hpcloud.com/products-services/monitoring
http://www.hpcloud.com/products-services/monitoring
http://www.hpcloud.com/
http://support.rightscale.com/12-Guides/RightScale_101/08-Management_Tools/Monitoring_System
http://support.rightscale.com/12-Guides/RightScale_101/08-Management_Tools/Monitoring_System
http://newrelic.com/
http://copperegg.com/
https://cloudsleuth.net/
http://www.monitis.com/
http://www.monitis.com/
https://www.stackdriver.com/
https://www.stackdriver.com/
http://boundary.com/
http://www.cloudyn.com/
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html

	Abstract
	Keywords

	Introduction
	Monitoring
	Collection
	Analysis
	Decision making

	Motivation for cloud monitoring
	Performance uncertainty
	SLA enforcement
	Defeating abstraction
	Load balancing latency
	Service faults
	Location

	Cloud monitoring requirements
	Scalable
	Cloud aware
	Fault tolerance
	Autonomic
	Multiple granularities
	Comprehensiveness
	Time sensitivity

	Survey of general monitoring systems
	Ganglia
	Astrolabe
	Nagios
	Collectd
	Riemann
	sFlow and host sFlow
	Logstash
	MonALISA
	visPerf
	GEMS
	Reconnoiter
	Other monitoring systems

	Cloud monitoring systems
	cloudinit.d
	Sensu
	SQRT-C
	Konig et al
	Dhingra et al
	DARGOS
	CloudSense
	GMonE
	Lattice
	OpenNebula monitoring
	PCMONS
	Varanus

	Monitoring as a service tools
	Amazon CloudWatch
	HP cloud monitoring
	RightScale monitoring system
	New relic
	CopperEgg
	Additional services

	Taxonomy
	Architecture, communication and collection
	Origin
	Use case
	Applying the taxonomy
	Applying the cloud monitoring requirements

	Monitoring as an engineering practice
	Monitoring strategies
	Implementing a monitoring strategy
	The chaos monkey and testing monitoring strategies
	Changing knowledge requirements and job descriptions
	Monitoring as a data intensive problem

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

