52 research outputs found

    Energy-Efficient Flow Scheduling and Routing with Hard Deadlines in Data Center Networks

    Full text link
    The power consumption of enormous network devices in data centers has emerged as a big concern to data center operators. Despite many traffic-engineering-based solutions, very little attention has been paid on performance-guaranteed energy saving schemes. In this paper, we propose a novel energy-saving model for data center networks by scheduling and routing "deadline-constrained flows" where the transmission of every flow has to be accomplished before a rigorous deadline, being the most critical requirement in production data center networks. Based on speed scaling and power-down energy saving strategies for network devices, we aim to explore the most energy efficient way of scheduling and routing flows on the network, as well as determining the transmission speed for every flow. We consider two general versions of the problem. For the version of only flow scheduling where routes of flows are pre-given, we show that it can be solved polynomially and we develop an optimal combinatorial algorithm for it. For the version of joint flow scheduling and routing, we prove that it is strongly NP-hard and cannot have a Fully Polynomial-Time Approximation Scheme (FPTAS) unless P=NP. Based on a relaxation and randomized rounding technique, we provide an efficient approximation algorithm which can guarantee a provable performance ratio with respect to a polynomial of the total number of flows.Comment: 11 pages, accepted by ICDCS'1

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing
    corecore