18,114 research outputs found

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    A Stochastic Geometry-based Demand Response Management Framework for Cellular Networks Powered by Smart Grid

    Full text link
    In this paper, the production decisions across multiple energy suppliers in smart grid, powering cellular networks are investigated. The suppliers are characterized by different offered prices and pollutant emissions levels. The challenge is to decide the amount of energy provided by each supplier to each of the operators such that their profitability is maximized while respecting the maximum tolerated level of CO2 emissions. The cellular operators are characterized by their offered quality of service (QoS) to the subscribers and the number of users that determines their energy requirements. Stochastic geometry is used to determine the average power needed to achieve the target probability of coverage for each operator. The total average power requirements of all networks are fed to an optimization framework to find the optimal amount of energy to be provided from each supplier to the operators. The generalized α\alpha-fair utility function is used to avoid production bias among the suppliers based on profitability of generation. Results illustrate the production behavior of the energy suppliers versus QoS level, cost of energy, capacity of generation, and level of fairness.Comment: 6 pages, 4 figure

    Sustainable consumption: towards action and impact. : International scientific conference November 6th-8th 2011, Hamburg - European Green Capital 2011, Germany: abstract volume

    Get PDF
    This volume contains the abstracts of all oral and poster presentations of the international scientific conference „Sustainable Consumption – Towards Action and Impact“ held in Hamburg (Germany) on November 6th-8th 2011. This unique conference aims to promote a comprehensive academic discourse on issues concerning sustainable consumption and brings together scholars from a wide range of academic disciplines. In modern societies, private consumption is a multifaceted and ambivalent phenomenon: it is a ubiquitous social practice and an economic driving force, yet at the same time, its consequences are in conflict with important social and environmental sustainability goals. Finding paths towards “sustainable consumption” has therefore become a major political issue. In order to properly understand the challenge of “sustainable consumption”, identify unsustainable patterns of consumption and bring forward the necessary innovations, a collaborative effort of researchers from different disciplines is needed

    GREENET - An Early Stage Training Network in Enabling Technologies for Green Radio

    No full text
    International audienceIn this paper, we describe GREENET (an early stage training network in enabling technologies for green radio), which is a new project recently funded by the European Commission under the auspices of the 2010 Marie Curie People Programme. Through the recruitment and personalized training of 17 Early Stage Researchers (ESRs), in GREENET we are committed to the development of new disruptive technologies to address all aspects of energy efficiency in wireless networks, from the user devices to the core network infrastructure, along with the ways the devices and equipment interact with one another. Novel techniques at the physical, link, and network layers to reduce the energy consumption and carbon footprint of 4G devices will be investigated, such as Spatial Modulation (SM) for Multiple-Input-Multiple-Output (MIMO) systems, Cooperative Automatic Repeat reQuest (C-ARQ) protocols, and Network Coding (NC) for lossy networks. Furthermore, cooperation and cognition paradigms will be exploited as additional assets to improve the energy efficiency of wireless networks with the challenging but indispensable constraint of optimizing the system capacity without degrading the user's Quality-of-Service (QoS)

    Green Networking in Cellular HetNets: A Unified Radio Resource Management Framework with Base Station ON/OFF Switching

    Full text link
    In this paper, the problem of energy efficiency in cellular heterogeneous networks (HetNets) is investigated using radio resource and power management combined with the base station (BS) ON/OFF switching. The objective is to minimize the total power consumption of the network while satisfying the quality of service (QoS) requirements of each connected user. We consider the case of co-existing macrocell BS, small cell BSs, and private femtocell access points (FAPs). Three different network scenarios are investigated, depending on the status of the FAPs, i.e., HetNets without FAPs, HetNets with closed FAPs, and HetNets with semi-closed FAPs. A unified framework is proposed to simultaneously allocate spectrum resources to users in an energy efficient manner and switch off redundant small cell BSs. The high complexity dual decomposition technique is employed to achieve optimal solutions for the problem. A low complexity iterative algorithm is also proposed and its performances are compared to those of the optimal technique. The particularly interesting case of semi-closed FAPs, in which the FAPs accept to serve external users, achieves the highest energy efficiency due to increased degrees of freedom. In this paper, a cooperation scheme between FAPs and mobile operator is also investigated. The incentives for FAPs, e.g., renewable energy sharing and roaming prices, enabling cooperation are discussed to be considered as a useful guideline for inter-operator agreements.Comment: 15 pages, 9 Figures, IEEE Transactions on Vehicular Technology 201
    • …
    corecore