186,774 research outputs found

    Intelligent Green Communication Network for Internet of Things

    Get PDF
    The text covers the advanced and innovative concept of green communication networks using the Internet of Things in different fields including cloud technology, agriculture, the automobile sector, and robotics. It will also help readers in learning the efficient use of sensors and devices in the Internet of Things networks. The text covers 5G communication and its application for intelligent and green network-enabled Internet of Things. This book • Discusses intelligent and green networking-enabled Internet of Things • Covers architectures and models for intelligent and green communication networks-enabled Internet of Things • Discusses designing Internet of Things devices that help in reducing the emissions of CO2 in the environment and energy consumption • Highlights green computing approach and green communication network designs and implementations for Internet of Things ecosystem • Includes studies on energy-aware systems, technologies, and green communication This book comprehensively discusses recent advances and applications in the area of green Internet of Things communication in a single volume. It will serve as an ideal reference text for senior undergraduate and graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer engineering, and information technology

    Challenges and Approaches in Green Data Center

    Get PDF
    Cloud computing is a fast evolving area of information and communication technologies (ICTs)that hascreated new environmental issues. Cloud computing technologies have a widerange ofapplications due to theirscalability, dependability, and trustworthiness, as well as their abilityto deliver high performance at a low cost.The cloud computing revolution is altering modern networking, offering both economic and technologicalbenefits as well as potential environmental benefits. These innovations have the potential to improve energyefficiency while simultaneously reducing carbon emissions and e-waste. These traits have thepotential tomakecloud computing more environmentally friendly. Green cloud computing is the science and practise of properlydesigning, manufacturing, using, and disposing of computers, servers,and associated subsystems like displays,printers, storage devices, and networking and communication systems while minimising or eliminatingenvironmental impact. The most significant reason for a data centre review is to understand capacity,dependability, durability,algorithmic efficiency, resource allocation, virtualization, power management, andother elements. The green cloud design aims to reduce data centre power consumption. The main advantageof green cloud computing architecture is that it ensures real-time performance whilereducing IDC’s energyconsumption (internet data center).This paper analyzed the difficultiesfaced by data centers such as capacityplanning and management, up-time and performance maintenance, energy efficiency and cost cutting, realtime monitoring and reporting. The solution for the identified problems with DCIM system is also presentedin this paper. Finally, it discusses the market report’s coverage of green data centres, green computingprinciples, andfuture research challenges. This comprehensive green cloud analysis study will assist nativegreen research fellows in learning about green cloud concerns and understanding future research challengesin the field

    Worst-case access delay of HomePlug Green PHY (HPGP) for delay-critical in-vehicle applications

    Get PDF
    The increasing complexity of automotive electronics has put considerable pressure on automotive communication networking to accommodate in-vehicle information flows. The use of power lines has been a promising alternative to in-vehicle communications because of elimination of extra data cables. In this paper, we focus on the latest HomePlug Green PHY (HPGP) which has been promoted by major automotive manufacturers for green communications with electric vehicles, and study its worst-case access delay performance in supporting delaycritical in-vehicle applications using both theoretical analysis and the simulation. Specifically, we apply Network Calculus as a deterministic modeling approach to evaluate the worst delay and further verify its performance using the OMNeT++ simulation. Evaluation results are also supplemented to compare with legacy methods and provide useful guidelines for developing HPGP based vehicular power line communication systems

    Research challenges on energy-efficient networking design

    Get PDF
    The networking research community has started looking into key questions on energy efficiency of communication networks. The European Commission activated under the FP7 the TREND Network of Excellence with the goal of establishing the integration of the EU research community in green networking with a long perspective to consolidate the European leadership in the field. TREND integrates the activities of major European players in networking, including manufacturers, operators, research centers, to quantitatively assess the energy demand of current and future telecom infrastructures, and to design energy-efficient, scalable and sustainable future networks. This paper describes the main results of the TREND research community and concludes with a roadmap describing the next steps for standardization, regulation agencies and research in both academia and industry.The research leading to these results has received funding from the EU 7th Framework Programme (FP7/2007–2013) under Grant Agreement No. 257740 (NoE TREND)

    Towards Green Metaverse Networking Technologies, Advancements and Future Directions

    Full text link
    As the Metaverse is iteratively being defined, its potential to unleash the next wave of digital disruption and create real-life value becomes increasingly clear. With distinctive features of immersive experience, simultaneous interactivity, and user agency, the Metaverse has the capability to transform all walks of life. However, the enabling technologies of the Metaverse, i.e., digital twin, artificial intelligence, blockchain, and extended reality, are known to be energy-hungry, therefore raising concerns about the sustainability of its large-scale deployment and development. This article proposes Green Metaverse Networking for the first time to optimize energy efficiencies of all network components for Metaverse sustainable development. We first analyze energy consumption, efficiency, and sustainability of energy-intensive technologies in the Metaverse. Next, focusing on computation and networking, we present major advancements related to energy efficiency and their integration into the Metaverse. A case study of energy conservation by incorporating semantic communication and stochastic resource allocation in the Metaverse is presented. Finally, we outline the critical challenges of Metaverse sustainable development, thereby indicating potential directions of future research towards the green Metaverse

    GREEN RADIO COMMUNICATIONS IN 5G NETWORKS TO IMPROVE ENERGY EFFICIENCY AND REDUCE GLOBAL WARMING

    Get PDF
    The technology of green radio communication helps in reducing the emission of carbon and also helps in the process of reducing the consumption of energy by the base stations of wireless networks. In addition to that, with the help of tools such as Information Communication Technology (ICT) and Multi-Hop Relay Network (MHR), the functionalities and the operational attributes of the technology of green radio communication can be improved and the process of energy consumption gets better as well. It is found from the discussion that green networking technology has mainly two core components and the two core components are energy awareness and energy efficiency. The ability of the network to measure the cost per packet is called energy awareness. On the other hand, the ability of a network to decrease the contribution of carbon and extend the lifetime of the network can be called energy efficiency. In addition, the implementation of the technology of green radio communication helps in mitigating the issue of future energy crises. Additionally, it has also been understood that Green communication in terms of energy efficiency can help IT industry which has been extensively criticised for the contribution of the carbon emissions as well as the failure to respond to the negative impact on the whole climate. In fact, the next generation networks have imposed the challenges in terms of the provision of the energy efficient solutions which are provided and the transportation of the data along with the huge range of the quality of the services requirement as well as the tolerance of lower optimum services.The technology of green radio communication helps in reducing the emission of carbon and also helps in the process of reducing the consumption of energy by the base stations of wireless networks. In addition to that, with the help of tools such as Information Communication Technology (ICT) and Multi-Hop Relay Network (MHR), the functionalities and the operational attributes of the technology of green radio communication can be improved and the process of energy consumption gets better as well. It is found from the discussion that green networking technology has mainly two core components and the two core components are energy awareness and energy efficiency. The ability of the network to measure the cost per packet is called energy awareness. On the other hand, the ability of a network to decrease the contribution of carbon and extend the lifetime of the network can be called energy efficiency. In addition, the implementation of the technology of green radio communication helps in mitigating the issue of future energy crises. Additionally, it has also been understood that Green communication in terms of energy efficiency can help IT industry which has been extensively criticised for the contribution of the carbon emissions as well as the failure to respond to the negative impact on the whole climate. In fact, the next generation networks have imposed the challenges in terms of the provision of the energy efficient solutions which are provided and the transportation of the data along with the huge range of the quality of the services requirement as well as the tolerance of lower optimum services

    Special issue on green radio

    Get PDF
    • …
    corecore