Towards Green Metaverse Networking Technologies, Advancements and Future Directions

Abstract

As the Metaverse is iteratively being defined, its potential to unleash the next wave of digital disruption and create real-life value becomes increasingly clear. With distinctive features of immersive experience, simultaneous interactivity, and user agency, the Metaverse has the capability to transform all walks of life. However, the enabling technologies of the Metaverse, i.e., digital twin, artificial intelligence, blockchain, and extended reality, are known to be energy-hungry, therefore raising concerns about the sustainability of its large-scale deployment and development. This article proposes Green Metaverse Networking for the first time to optimize energy efficiencies of all network components for Metaverse sustainable development. We first analyze energy consumption, efficiency, and sustainability of energy-intensive technologies in the Metaverse. Next, focusing on computation and networking, we present major advancements related to energy efficiency and their integration into the Metaverse. A case study of energy conservation by incorporating semantic communication and stochastic resource allocation in the Metaverse is presented. Finally, we outline the critical challenges of Metaverse sustainable development, thereby indicating potential directions of future research towards the green Metaverse

    Similar works

    Full text

    thumbnail-image

    Available Versions