778 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Memory-Efficient Deep Salient Object Segmentation Networks on Gridized Superpixels

    Full text link
    Computer vision algorithms with pixel-wise labeling tasks, such as semantic segmentation and salient object detection, have gone through a significant accuracy increase with the incorporation of deep learning. Deep segmentation methods slightly modify and fine-tune pre-trained networks that have hundreds of millions of parameters. In this work, we question the need to have such memory demanding networks for the specific task of salient object segmentation. To this end, we propose a way to learn a memory-efficient network from scratch by training it only on salient object detection datasets. Our method encodes images to gridized superpixels that preserve both the object boundaries and the connectivity rules of regular pixels. This representation allows us to use convolutional neural networks that operate on regular grids. By using these encoded images, we train a memory-efficient network using only 0.048\% of the number of parameters that other deep salient object detection networks have. Our method shows comparable accuracy with the state-of-the-art deep salient object detection methods and provides a faster and a much more memory-efficient alternative to them. Due to its easy deployment, such a network is preferable for applications in memory limited devices such as mobile phones and IoT devices.Comment: 6 pages, submitted to MMSP 201
    • …
    corecore