7 research outputs found

    A Gray-Level Dynamic Range Modification Technique for Image Feature Extraction Using Fuzzy Membership Function

    Full text link
    The features of an image must be unique so it is necessary to use certain techniques to ensure them. One of the common techniques is to modify the gray dynamic range of an image. In principle, the gray level dynamic range modification maps the gray level ranges from the input image to the new gray level range as an output image using a specific function. Fuzzy Membership Function (MF) is one kind of membership function that applies the Fuzzy Logic concept. This study uses Trapezoidal MF to map the gray dynamic range of each RGB component to produce a feature of an RGB image. The aim of this study is how to ensure the uniqueness of image features through the setting of Trapezoidal MF parameters to obtain the new dynamic range of gray levels that minimize the possibility of other features other than the selected feature. To test the performance of the proposed method, it also tries to be applied to the signature image. Mean Absolute Error (MAE) calculations between feature labels are performed to test authentication between signatures. The results obtained are for comparison of samples of signature images derived from the same source having a much smaller MAE than the comparison of samples of signature images originating from different sources

    Random Adjustment - Based Chaotic Metaheuristic Algorithms for Image Contrast Enhancement

    Get PDF
    Metaheuristic algorithm is a powerful optimization method, in which it can solve problemsby exploring the ordinarily large solution search space of these instances, that are believed tobe hard in general. However, the performances of these algorithms signicantly depend onthe setting of their parameter, while is not easy to set them accurately as well as completelyrelying on the problem\u27s characteristic. To ne-tune the parameters automatically, manymethods have been proposed to address this challenge, including fuzzy logic, chaos, randomadjustment and others. All of these methods for many years have been developed indepen-dently for automatic setting of metaheuristic parameters, and integration of two or more ofthese methods has not yet much conducted. Thus, a method that provides advantage fromcombining chaos and random adjustment is proposed. Some popular metaheuristic algo-rithms are used to test the performance of the proposed method, i.e. simulated annealing,particle swarm optimization, dierential evolution, and harmony search. As a case study ofthis research is contrast enhancement for images of Cameraman, Lena, Boat and Rice. Ingeneral, the simulation results show that the proposed methods are better than the originalmetaheuristic, chaotic metaheuristic, and metaheuristic by random adjustment

    Random adjustment - based Chaotic Metaheuristic algorithms for image contrast enhancement

    Full text link

    Infrared image enhancement using adaptive histogram partition and brightness correction

    Get PDF
    Infrared image enhancement is a crucial pre-processing technique in intelligent urban surveillance systems for Smart City applications. Existing grayscale mapping-based algorithms always suffer from over-enhancement of the background, noise amplification, and brightness distortion. To cope with these problems, an infrared image enhancement method based on adaptive histogram partition and brightness correction is proposed. First, the grayscale histogram is adaptively segmented into several sub-histograms by a locally weighted scatter plot smoothing algorithm and local minima examination. Then, the fore-and background sub-histograms are distinguished according to a proposed metric called grayscale density. The foreground sub-histograms are equalized using a local contrast weighted distribution for the purpose of enhancing the local details, while the background sub-histograms maintain the corresponding proportions of the whole dynamic range in order to avoid over-enhancement. Meanwhile, a visual correction factor considering the property of human vision is designed to reduce the effect of noise during the procedure of grayscale re-mapping. Lastly, particle swarm optimization is used to correct the mean brightness of the output by virtue of a reference image. Both qualitative and quantitative evaluations implemented on real infrared images demonstrate the superiority of our method when compared with other conventional methods

    Sequentially Modified Gravitational Search Algorithm for Image Enhancement

    Get PDF
    Gravitational Search Algorithm (GSA) is based on the acceleration trend feature of objects with a mass towards each other and includes many interdependent parameters. The gravitational constant among these parameters influences the speeds and positions of the agents, meaning that the search capability depends on the largescale gravitational constant. The proposed new algorithm, which was obtained with the use of two operators at different times of the call and sequentially doing works, was named as Sequentially Modified ‎ Gravitational Search Algorithm (SMGSA). SMGSA is applied to 10 basic and 6 composite benchmark functions. Each function is run 30 times and the best, mean and median values are obtained. The achieved results are compared with the Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and GSA among the heuristic optimization algorithms. Between GSA and the operator for each function convergence speed, standard deviation and graphical comparisons are included. Beside this, by using the Wilcoxon signed rank test, the comparison of the averages of the data as two dependent groups of GSA and the new operators is performed. It is seen that the obtained results provided better results than the other methods. Additionally, in this study, SMGSA was applied to the transformation function among image enhancement techniques which are engineering applications. The success of this method has been increased by optimizing the parameters of the transformation function used. Effective improvement has been achieved in terms of both visual and information quality

    Sample supervised search centric approaches in geographic object-based image analysis

    Get PDF
    Sample supervised search centric image segmentation denotes a general method where quality segments are generated based on the provision of a selection of reference segments. The main purpose of such a method is to correctly segment a multitude of identical elements in an image based on these reference segments. An efficient search algorithm traverses the parameter space of a given segmentation algorithm. A supervised quality measure guides the search for the best segmentation results, or rather the best performing parameter set. This method, which is academically pursued in the context of remote sensing and elsewhere, shows promise in assisting the generation of earth observation information products. The method may find applications specifically within the context of user driven geographic object-based image analysis approaches, mainly in respect of very high resolution optical data. Rapid mapping activities as well as general land-cover mapping or targeted element identification may benefit from such a method. In this work it is suggested that sample supervised search centric geographic segment generation forms the basis of a set of methods, or rather a methodological avenue. The original formulation of the method, although promising, is limited in the quality of the segments it can produce – it is still limited by the inherent capability of the given segmentation algorithm. From an optimisation viewpoint, various structures may be encoded forming the fitness or search landscape traversed by a given search algorithm. These structures may interact or have an interplay with the given segmentation algorithm. Various method variants considering expanded fitness landscapes are possible. Additional processes, or constituents, such as data mapping, classification and post-segmentation heuristics may be embedded into such a method. Three distinct and novel method variants are proposed and evaluated based on this concept of expanded fitness landscapes
    corecore