1,750 research outputs found

    Modeling and Dynamical Analysis of the Water Resources Supply-Demand System: A Case Study in Haihe River Basin

    Get PDF
    The relationship between water resources supply and demand is very complex and exhibits nonlinear characteristics, which leads to fewer models that can adequately manage the dynamic evolution process of the water resources supply-demand system. In this paper, we propose a new four-dimensional dynamical model to simulate the internal dynamic evolution process and predict future trends of water supply and demand. At the beginning, a new four-dimensional dynamical model with uncertain parameters is established. Then, the gray code hybrid accelerating genetic algorithm (GHAGA) is adopted to identify the unknown parameters of the system based on the statistic data (1998–2009). Finally, the dynamical analysis of the system is further studied by Lyapunov-exponent, phase portraits, and Lyapunov exponent theory. Numerical simulation results demonstrate that the proposed water resources supply-demand system is in a steady state and is suitable for simulating the dynamical characteristics of a complex water supply and demand system. According to the trends of the water supply and demand of several nonlinear simulation cases, the corresponding measures can be proposed to improve the steady development of the water resources supply-demand system

    A Framework for Evolutionary Optimization Applications in Water Distribution Systems

    Get PDF
    The application of optimization to Water Distribution Systems encompasses the use of computer-based techniques to problems of many different areas of system design, maintenance and operational management. As well as laying out the configuration of new WDS networks, optimization is commonly needed to assist in the rehabilitation or reinforcement of existing network infrastructure in which alternative scenarios driven by investment constraints and hydraulic performance are used to demonstrate a cost-benefit relationship between different network intervention strategies. Moreover, the ongoing operation of a WDS is also subject to optimization, particularly with respect to the minimization of energy costs associated with pumping and storage and the calibration of hydraulic network models to match observed field data. Increasingly, Evolutionary Optimization techniques, of which Genetic Algorithms are the best-known examples, are applied to aid practitioners in these facets of design, management and operation of water distribution networks as part of Decision Support Systems (DSS). Evolutionary Optimization employs processes akin to those of natural selection and “survival of the fittest” to manipulate a population of individual solutions, which, over time, “evolve” towards optimal solutions. Such algorithms are characterized, however, by large numbers of function evaluations. This, coupled with the computational complexity associated with the hydraulic simulation of water networks incurs significant computational overheads, can limit the applicability and scalability of this technology in this domain. Accordingly, this thesis presents a methodology for applying Genetic Algorithms to Water Distribution Systems. A number of new procedures are presented for improving the performance of such algorithms when applied to complex engineering problems. These techniques approach the problem of minimising the impact of the inherent computational complexity of these problems from a number of angles. A novel genetic representation is presented which combines the algorithmic simplicity of the classical binary string of the Genetic Algorithm with the performance advantages inherent in an integer-based representation. Further algorithmic improvements are demonstrated with an intelligent mutation operator that “learns” which genes have the greatest impact on the quality of a solution and concentrates the mutation operations on those genes. A technique for implementing caching of solutions – recalling the results for solutions that have already been calculated - is demonstrated to reduce runtimes for Genetic Algorithms where applied to problems with significant computation complexity in their evaluation functions. A novel reformulation of the Genetic Algorithm for implementing robust stochastic optimizations is presented which employs the caching technology developed to produce an multiple-objective optimization methodology that demonstrates dramatically improved quality of solutions for given runtime of the algorithm. These extensions to the Genetic Algorithm techniques are coupled with a supporting software library that represents a standardized modelling architecture for the representation of connected networks. This library gives rise to a system for distributing the computational load of hydraulic simulations across a network of computers. This methodology is established to provide a viable, scalable technique for accelerating evolutionary optimization applications.Engineering and Physical Sciences Research Council, UK

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Air Force Institute of Technology Research Report 2006

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    A Parallel Genetic Algorithm for Optimizing Multicellular Models Applied to Biofilm Wrinkling

    Get PDF
    Multiscale computational models integrating sub-cellular, cellular, and multicellular levels can be powerful tools that help researchers replicate, understand, and predict multicellular biological phenomena. To leverage their potential, these models need correct parameter values, which specify cellular physiology and affect multicellular outcomes. This work presents a robust parameter optimization method, utilizing a parallel and distributed genetic-algorithm software package. A genetic algorithm was chosen because of its superiority in fitting complex functions for which mathematical techniques are less suited. Searching for optimal parameters proceeds by comparing the multicellular behavior of a simulated system to that of a real biological system on the basis of features extracted from each which capture high-level, emergent multicellular outcomes. The goal is to find the set of parameters which minimizes discrepancy between the two sets of features. The method is first validated by demonstrating its effectiveness on synthetic data, then it is applied to calibrating a simple mechanical model of biofilm wrinkling, a common type of morphology observed in biofilms. Spatiotemporal convergence of cellular movement derived from experimental observations of different strains of Bacillus subtilis colonies is used as the basis of comparison

    Data-Augmented Structure-Property Mapping for Accelerating Computational Design of Advanced Material Systems

    Get PDF
    abstract: Advanced material systems refer to materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to their superior properties over conventional materials. This dissertation is motivated by the grand challenge in accelerating the design of advanced material systems through systematic optimization with respect to material microstructures or processing settings. While optimization techniques have mature applications to a large range of engineering systems, their application to material design meets unique challenges due to the high dimensionality of microstructures and the high costs in computing process-structure-property (PSP) mappings. The key to addressing these challenges is the learning of material representations and predictive PSP mappings while managing a small data acquisition budget. This dissertation thus focuses on developing learning mechanisms that leverage context-specific meta-data and physics-based theories. Two research tasks will be conducted: In the first, we develop a statistical generative model that learns to characterize high-dimensional microstructure samples using low-dimensional features. We improve the data efficiency of a variational autoencoder by introducing a morphology loss to the training. We demonstrate that the resultant microstructure generator is morphology-aware when trained on a small set of material samples, and can effectively constrain the microstructure space during material design. In the second task, we investigate an active learning mechanism where new samples are acquired based on their violation to a theory-driven constraint on the physics-based model. We demonstrate using a topology optimization case that while data acquisition through the physics-based model is often expensive (e.g., obtaining microstructures through simulation or optimization processes), the evaluation of the constraint can be far more affordable (e.g., checking whether a solution is optimal or equilibrium). We show that this theory-driven learning algorithm can lead to much improved learning efficiency and generalization performance when such constraints can be derived. The outcomes of this research is a better understanding of how physics knowledge about material systems can be integrated into machine learning frameworks, in order to achieve more cost-effective and reliable learning of material representations and predictive models, which are essential to accelerate computational material design.Dissertation/ThesisDoctoral Dissertation Mechanical Engineering 201

    Intelligent Computing: The Latest Advances, Challenges and Future

    Get PDF
    Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human-computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing. Intelligent computing is still in its infancy and an abundance of innovations in the theories, systems, and applications of intelligent computing are expected to occur soon. We present the first comprehensive survey of literature on intelligent computing, covering its theory fundamentals, the technological fusion of intelligence and computing, important applications, challenges, and future perspectives. We believe that this survey is highly timely and will provide a comprehensive reference and cast valuable insights into intelligent computing for academic and industrial researchers and practitioners

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    Computational Optimizations for Machine Learning

    Get PDF
    The present book contains the 10 articles finally accepted for publication in the Special Issue “Computational Optimizations for Machine Learning” of the MDPI journal Mathematics, which cover a wide range of topics connected to the theory and applications of machine learning, neural networks and artificial intelligence. These topics include, among others, various types of machine learning classes, such as supervised, unsupervised and reinforcement learning, deep neural networks, convolutional neural networks, GANs, decision trees, linear regression, SVM, K-means clustering, Q-learning, temporal difference, deep adversarial networks and more. It is hoped that the book will be interesting and useful to those developing mathematical algorithms and applications in the domain of artificial intelligence and machine learning as well as for those having the appropriate mathematical background and willing to become familiar with recent advances of machine learning computational optimization mathematics, which has nowadays permeated into almost all sectors of human life and activity
    • …
    corecore