

A FRAMEWORK FOR EVOLUTIONARY
OPTIMIZATION APPLICATIONS IN WATER

DISTRIBUTION SYSTEMS

Submitted by Mark Stephen Morley, to the University of Exeter as a thesis for

the degree of Doctor of Philosophy in Engineering, March 2008.

This thesis is available for Library use on the understanding that it is copyright material and

that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that

no material has previously been submitted and approved for the award of a degree by this or

any other University.

 (signature)

2 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Abstract

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 3

Abstract

The application of optimization to Water Distribution Systems encompasses the use of

computer-based techniques to problems of many different areas of system design,

maintenance and operational management. As well as laying out the configuration of new

WDS networks, optimization is commonly needed to assist in the rehabilitation or

reinforcement of existing network infrastructure in which alternative scenarios driven by

investment constraints and hydraulic performance are used to demonstrate a cost-benefit

relationship between different network intervention strategies. Moreover, the ongoing

operation of a WDS is also subject to optimization, particularly with respect to the

minimization of energy costs associated with pumping and storage and the calibration of

hydraulic network models to match observed field data.

Increasingly, Evolutionary Optimization techniques, of which Genetic Algorithms

are the best-known examples, are applied to aid practitioners in these facets of design,

management and operation of water distribution networks as part of Decision Support

Systems (DSS). Evolutionary Optimization employs processes akin to those of natural

selection and “survival of the fittest” to manipulate a population of individual solutions,

which, over time, “evolve” towards optimal solutions. Such algorithms are characterized,

however, by large numbers of function evaluations. This, coupled with the computational

complexity associated with the hydraulic simulation of water networks incurs significant

computational overheads, can limit the applicability and scalability of this technology in this

domain.

Accordingly, this thesis presents a methodology for applying Genetic Algorithms to

Water Distribution Systems. A number of new procedures are presented for improving the

performance of such algorithms when applied to complex engineering problems. These

techniques approach the problem of minimising the impact of the inherent computational

complexity of these problems from a number of angles. A novel genetic representation is

presented which combines the algorithmic simplicity of the classical binary string of the

Genetic Algorithm with the performance advantages inherent in an integer-based

representation. Further algorithmic improvements are demonstrated with an intelligent

mutation operator that “learns” which genes have the greatest impact on the quality of a

solution and concentrates the mutation operations on those genes. A technique for

Abstract

4 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

implementing caching of solutions – recalling the results for solutions that have already been

calculated - is demonstrated to reduce runtimes for Genetic Algorithms where applied to

problems with significant computation complexity in their evaluation functions. A novel

reformulation of the Genetic Algorithm for implementing robust stochastic optimizations is

presented which employs the caching technology developed to produce an multiple-objective

optimization methodology that demonstrates dramatically improved quality of solutions for

given runtime of the algorithm.

These extensions to the Genetic Algorithm techniques are coupled with a supporting

software library that represents a standardized modelling architecture for the representation

of connected networks. This library gives rise to a system for distributing the computational

load of hydraulic simulations across a network of computers. This methodology is

established to provide a viable, scalable technique for accelerating evolutionary optimization

applications.

Keywords
Evolutionary Optimization, Genetic Algorithms, Hydroinformatics, Caching, Multiple-

Objective Optimization, Distributed Computing.

Acknowledgements

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 5

Acknowledgements

I am deeply grateful to my family for their enduring support over the period that I have been

working towards this thesis. Their consistently positive attitude has ensured that this thesis

has finally come to fruition.

In addition, I would like to thank my supervisor, Professor Dragan Savić, not least

for his forbearance and perseverance in the face of persistent obduracy against completing

this thesis, but also for (twice) rescuing me from the wilds of the commercial sector and

introducing me to the academic environment at the Centre for Water Systems in Exeter.

Foremost amongst my (erstwhile) colleagues I would like to express my appreciation

to Mr. Roger Atkinson and, latterly, Dr. Carla Tricarico for attempting to instil in me the

belief that this thesis could be completed in a meaningful fashion – and that doing so was

worthwhile. I would also like to thank Mr. Josef Bicik, Drs. Zoran Kapelan, Ed Keedwell,

Francesco di Pierro and Darko Joksimović for their help and support along with all my other

colleagues and friends that I have met over so many years at the Centre.

Finally, to my two sons, Alexander and Christopher, to whom this thesis is dedicated:

without them, it would surely have been completed much sooner ☺

Mark S Morley

Exeter

March 2008

6 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Table of Contents

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 7

Table of Contents

Abstract ... 3

Keywords ... 4

Acknowledgements .. 5

Table of Contents ... 7

List of Tables .. 17

List of Figures ... 21

Glossary ... 27

Definitions ... 27

List of Abbreviations .. 31

Chapter 1. Introduction .. 35

1.1. Background ... 35

1.2. Aims of Research ... 36

1.3. Objectives ... 36

1.4. Thesis Structure ... 37

Chapter 2. Optimization in Water Distribution Systems .. 39

2.1. Literature Review ... 39

2.1.1. Genetic Algorithms .. 39

2.1.1.1. Pump Optimization ... 39

2.1.1.2. Network Design and Rehabilitation... 40

2.1.1.3. Network Calibration .. 44

2.1.1.4. Water Quality Optimization .. 45

2.1.1.5. Accommodating uncertainty in GAs .. 45

2.1.2. Other Optimization Techniques .. 46

2.1.2.1. Linear Programming .. 46

2.1.2.2. Heuristic Approaches ... 46

2.1.2.3. Cellular Automata ... 47

2.1.2.4. Particle Swarm Optimization ... 47

Table of Contents

8 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

2.1.2.5. Simulated Annealing .. 48

2.1.2.6. Ant Colony Simulation .. 49

2.2. Summary ... 49

Chapter 3. Genetic Algorithms .. 51

3.1. Introduction ... 51

3.2. Methodology .. 52

3.2.1. Algorithm operation... 52

3.2.1.1. Algorithm types .. 54

3.2.1.2. Selection .. 55

3.2.1.3. Recombination .. 56

3.2.1.4. Mutation .. 57

3.2.1.5. Replacement .. 57

3.2.2. Solution Representation .. 58

3.2.2.1. Genotype Representation (Encoding) .. 59

3.2.2.2. Decoding ... 62

3.2.2.3. Evaluation ... 62

3.3. Implementation ... 62

3.3.1. Algorithm Modularity .. 64

3.3.2. Genetic Representation ... 67

3.3.2.1. Chromosome ... 67

3.3.2.2. Genome .. 67

3.3.3. Third Party Extensions .. 68

3.4. Conclusions .. 68

Chapter 4. Extending the GA methodology .. 73

4.1. Introduction ... 73

4.2. Binary String Implementation .. 73

4.2.1. Introduction ... 73

4.2.1.1. Genotype Representations ... 73

4.2.2. Conventional Representations ... 77

4.2.3. Hybridized integer gene ... 78

4.2.3.1. Crossover representation .. 79

Table of Contents

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 9

4.2.3.2. Mutation representation .. 81

4.2.4. Experimentation .. 81

4.2.5. Conclusions .. 82

4.3. Binary String Caching ... 83

4.3.1. Introduction ... 83

4.3.2. Implementation ... 83

4.3.3. Experimentation .. 83

4.3.4. Conclusions .. 84

4.4. Solution Caching .. 85

4.4.1. Red-Black Binary tree cache ... 87

4.4.1.1. Multi-tier cache ... 90

4.4.2. Judy Tree Cache .. 91

4.4.2.1. Example .. 95

4.4.3. Experimentation .. 97

4.4.4. Conclusions .. 103

4.5. Non-Repeating GA (NRGA) .. 104

4.6. Adaptive Differential Mutation... 106

4.6.1. Introduction ... 106

4.6.1.1. Sensitivity and Trend Score Implementation ... 107

4.6.2. Differential Mutation Implementation ... 108

4.6.3. Cellular Automaton Mutation Implementation .. 109

4.6.4. Conclusions .. 110

4.7. Conclusions .. 111

Chapter 5. Distributed Evaluation for EPANET: deEPANET............................... 113

5.1. Introduction .. 113

5.1.1. Parallelization of Optimization ... 114

5.2. Implementation .. 116

5.2.1. Robust networking.. 118

5.2.2. Advanced processor architectures ... 118

Table of Contents

10 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

5.2.3. Cross platform characteristics .. 119

5.3. Application ... 119

5.4. Case Study Network ... 120

5.5. Results ... 122

5.6. Distributing Stochastic Computation .. 126

5.7. Conclusions .. 130

Chapter 6. Single Objective Optimization Problems ... 131

6.1. Introduction ... 131

6.1.1. Genetic Representation ... 132

6.1.2. Heterozygous Chromosomes ... 132

6.1.3. Caching ... 133

6.1.4. Adaptive Differential Mutation .. 134

6.1.5. Distributed Performance ... 135

6.2. New York Tunnels ... 135

6.2.1. Problem Formulation .. 135

6.2.2. Network Configuration ... 136

6.2.3. GA Configuration .. 138

6.2.4. Genetic Representation ... 139

6.2.4.1. Binary String .. 139

6.2.4.2. Gray Binary String .. 139

6.2.4.3. Integer ... 140

6.2.4.4. Hybrid Integer .. 140

6.2.4.5. Comparative Analysis .. 141

6.2.4.6. Runtime Performance ... 143

6.2.5. Heterozygous Chromosomes ... 143

6.2.5.1. Binary String .. 143

6.2.5.2. Integer ... 144

6.2.5.3. Hybrid Integer .. 145

6.2.5.4. Comparative Analysis .. 146

6.2.5.5. Runtime Performance ... 147

6.2.6. Caching ... 148

Table of Contents

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 11

6.2.7. Adaptive Differential Mutation .. 148

6.2.8. Distributed Performance ... 149

6.3. Hanoi ... 151

6.3.1. Problem Formulation ... 151

6.3.2. Network Configuration .. 151

6.3.3. GA Configuration ... 154

6.3.4. Genetic Representation .. 155

6.3.4.1. Binary String .. 155

6.3.4.2. Integer ... 155

6.3.4.3. Hybrid Integer .. 156

6.3.4.4. Comparative Analysis .. 156

6.3.4.5. Runtime Performance .. 157

6.3.5. Caching ... 158

6.3.6. Adaptive Differential Mutation .. 158

6.3.7. Distributed Performance ... 159

6.3.8. Optimal Solution Details ... 160

6.4. Piedemonte San Germano ... 161

6.4.1. Problem Formulation ... 161

6.4.2. Network Configuration .. 162

6.4.3. GA Configuration ... 165

6.4.4. Genetic Representation .. 165

6.4.4.1. Binary String .. 165

6.4.4.2. Integer ... 166

6.4.4.3. Hybrid Integer .. 167

6.4.4.4. Comparative Analysis .. 167

6.4.4.5. Runtime Performance .. 168

6.4.5. Heterozygous Chromosomes ... 169

6.4.5.1. Binary String .. 169

6.4.5.2. Integer ... 170

6.4.5.3. Hybrid Integer .. 171

6.4.5.4. Comparative Analysis .. 172

6.4.5.5. Runtime Performance .. 174

Table of Contents

12 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

6.4.6. Caching ... 174

6.4.7. Adaptive Differential Mutation .. 174

6.4.8. Distributed Performance ... 175

6.5. Conclusions .. 177

Chapter 7. Multiple Objective Optimization Problems ... 180

7.1. Introduction ... 180

7.2. New York Tunnels ... 182

7.2.1. Genetic Representation ... 182

7.2.1.1. Binary String .. 182

7.2.1.2. Integer ... 183

7.2.1.3. Hybrid Integer .. 184

7.2.1.4. Comparative Analysis .. 185

7.2.1.5. Runtime Performance ... 187

7.2.2. Heterozygous Chromosomes ... 188

7.2.2.1. Binary String .. 188

7.2.2.2. Integer ... 188

7.2.2.3. Hybrid Integer .. 189

7.2.2.4. Comparative Analysis .. 190

7.2.2.5. Runtime Performance ... 195

7.2.3. Caching ... 195

7.3. Hanoi .. 196

7.3.1. Genetic Representation ... 196

7.3.1.1. Binary String .. 196

7.3.1.2. Integer ... 197

7.3.1.3. Hybrid Integer .. 198

7.3.1.4. Comparative Analysis .. 199

7.3.1.5. Runtime performance .. 201

7.3.2. Caching ... 202

7.4. Piedemonte San Germano .. 202

7.4.1. Genetic Representation ... 202

7.4.1.1. Binary String .. 202

7.4.1.2. Integer ... 203

Table of Contents

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 13

7.4.1.3. Hybrid Integer .. 204

7.4.1.4. Comparative Analysis .. 205

7.4.1.5. Runtime Performance .. 207

7.4.2. Heterozygous Chromosomes ... 207

7.4.2.1. Binary String .. 207

7.4.2.2. Integer ... 208

7.4.2.3. Hybrid Integer .. 209

7.4.2.4. Comparative Analysis .. 210

7.4.2.5. Runtime Performance .. 214

7.4.3. Caching ... 215

7.5. Conclusions .. 215

Chapter 8. Large Scale Optimization Problems ... 218

8.1. Introduction .. 218

8.2. “Real World” Network ... 218

8.2.1. Problem Formulation ... 218

8.2.2. Genetic Representation .. 220

8.2.2.1. Comparative Analysis .. 220

8.2.2.2. Runtime Performance .. 223

8.2.3. Caching ... 224

8.2.4. Distributed Performance ... 224

8.3. Stochastic Piedemonte San Germano ... 226

8.3.1. Problem Formulation ... 226

8.3.2. Non-Repeating Genetic Algorithm ... 227

8.3.3. Distributed Performance ... 230

8.4. Conclusions .. 231

Chapter 9. Conclusions .. 234

9.1. Further Research ... 238

Appendix A Network Infrastructure Modelling: OpenNet .. 244

A.1 Introduction .. 244

A.2 Implementation .. 246

Table of Contents

14 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

A.3 Network Constituents .. 248

A.3.1 Elements ... 248

A.3.2 Element Lists and Stores ... 250

A.3.2.1 Addition ... 250

A.3.2.2 Deletion .. 251

A.3.2.3 Searching .. 251

A.3.2.4 Other functionality .. 252

A.3.3 Network.. 252

A.3.4 Node Elements ... 252

A.3.5 Link Elements ... 253

A.3.6 Element Type Registration ... 253

A.4 Hydraulic specialisation .. 256

A.5 Network analysis ... 259

A.5.1 Connectivity ... 259

A.5.2 Network Traversal .. 260

A.5.2.1 Basic functions .. 260

A.5.2.2 Network Simplification .. 263

A.6 Hydraulic Evaluation .. 264

A.6.1 Pressure Driven Demand.. 264

A.7 Extensions .. 265

A.7.1 Tracing .. 265

A.7.2 Generalized Attributes ... 265

A.8 Network model translation ... 266

A.8.1 Translation suite .. 266

A.8.2 Translator structure .. 267

A.8.3 User interface support ... 267

A.8.4 Difficulties .. 268

A.9 Linking hydraulic models to GIS applications .. 269

A.9.1 Pipe matching .. 271

A.9.1.1 Import Hydraulic Network .. 271

Table of Contents

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 15

A.9.1.2 Import Asset Management Database ... 271

A.9.1.3 ID Matching .. 272

A.9.1.4 Geographic matching ... 272

A.9.1.5 Pipe grouping .. 273

A.9.1.6 Interactive matching .. 273

A.9.1.7 Results .. 275

A.10 Representing networks using XML ... 276

A.10.1 Elements ... 276

A.10.2 Entities .. 278

Appendix B OpenNet XML Representation ... 282

B.1 XML Schema .. 282

B.2 Example XML Network File .. 288

Bibliography .. 292

Papers presented by the candidate ... 292

Other Papers arising from this work ... 292

Published ... 292

In preparation .. 293

List of References .. 294

16 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

List of Tables

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 17

List of Tables

Table 3-1: Comparison of conventional binary strings and Gray-coded binary strings for
4-bit values ... 60

Table 4-1: Binary eXclusive OR (XOR) operation ... 75

Table 4-2: Example dry run for decoding a Gray-coded binary string 76

Table 4-3: Binary string implementations: relative performance .. 82

Table 4-4: Comparison of cached/uncached performance for binary string
representations .. 84

Table 4-5: Comparison of Red-Black Binary Tree and Judy Tree cache requirements for
New York Tunnels Problem (100,000 solutions) ... 97

Table 4-6: Comparison of cached and best-case theoretical performance for the 200
job/20 agent GAP problem using the tiered Red-Black Binary Tree cache
 .. 98

Table 4-7: Long term 500,000 evaluation comparison of cached and best-case run-times
and evaluations .. 99

Table 4-8: Runtime results for caching of small GAP 20 Agent/100 Job problem with
variable mutation rates ... 101

Table 4-9: Runtime results for caching of large GAP 20 Agent/200 Job problem with
variable mutation rates ... 103

Table 5-1: Hardware specifications of test environment computers. 120

Table 5-2: Baseline performance on Piedemonte San Germano simulation exercise. ... 122

Table 5-3: Results obtained from running single threads on each of the computers and
dual threads on the multiprocessor computers. .. 124

Table 5-4: Results utilizing one thread per processor (virtual or physical) plus one
supplementary thread. .. 125

Table 5-5: Comparison of data transfer and performance for standard and devolved
stochastic configurations (for the Piedemonte San Germano case study as
before – assuming 50 stochastic samples) .. 129

Table 6-1: Hardware specifications of distributed test environment computers 135

Table 6-2: New York Tunnels Node Characteristics .. 137

Table 6-3: New York Tunnels Reservoir Characteristics ... 137

Table 6-4: New York Tunnels Pipe Characteristics .. 138

Table 6-5: New York Tunnels Pipe Duplication Options ... 138

List of Tables

18 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Table 6-6: New York Tunnels: Comparison with Literature Results 141

Table 6-7: New York Tunnels Runtime Performance ... 143

Table 6-8: New York Tunnels Heterozygous vs. Conventional Runtime Performance
.. 148

Table 6-9: Cache results: New York Tunnels .. 148

Table 6-10: Theoretical maximum performance for distributed New York Tunnels
problem .. 150

Table 6-11: New York Tunnels distributed performance results .. 150

Table 6-12: Hanoi Node Characteristics ... 153

Table 6-13: Hanoi Reservoir Characteristics .. 153

Table 6-14: Hanoi Pipe Characteristics ... 154

Table 6-15: Hanoi Pipe Options .. 154

Table 6-16: Hanoi Runtime Performance .. 158

Table 6-17: Cache results: Hanoi .. 158

Table 6-18: Theoretical maximum performance for distributed Hanoi problem 159

Table 6-19: Hanoi distributed performance results .. 159

Table 6-20: Comparison of optimal solutions to Hanoi problem 161

Table 6-21: Piedemonte San Germano Node Characteristics .. 163

Table 6-22: Piedemonte San Germano Reservoir Characteristics 163

Table 6-23: Piedemonte San Germano Pipe Characteristics .. 164

Table 6-24: Piedemonte San Germano Pipe Duplication Options 165

Table 6-25: PSG Runtime Performance ... 169

Table 6-26: PSG Heterozygous Runtime Performance vs. Conventional Performance . 174

Table 6-27: Cache results: Piedemonte San Germano ... 174

Table 6-28: Theoretical maximum performance for distributed Piedemonte San Germano
problem .. 175

Table 6-29: Piedemonte San Germano distributed performance results............................ 177

Table 7-1: C metrics for Multiple Objective New York Tunnels after 20 generations . 186

Table 7-2: C metrics for Multiple Objective New York Tunnels after 100 generations 187

Table 7-3: C metrics for Multiple Objective New York Tunnels after 1,000 generations
.. 187

Table 7-4: New York Tunnels Multiple Objective Runtime Performance 188

List of Tables

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 19

Table 7-5: C metrics for Multiple Objective Heterozygous New York Tunnels after 20
generations ... 193

Table 7-6: C metrics for Multiple Objective Heterozygous New York Tunnels after 100
generations ... 194

Table 7-7: C metrics for Multiple Objective Heterozygous New York Tunnels after
1,000 generations .. 195

Table 7-8: New York Tunnels Multiple Objective Heterozygous Runtime Performance
vs. Conventional Performance ... 195

Table 7-9: Cache results: Multiple Objective New York Tunnels 196

Table 7-10: C metrics for Multiple Objective Hanoi after 20 generations 200

Table 7-11: C metrics for Multiple Objective Hanoi after 100 generations 201

Table 7-12: C metrics for Multiple Objective Hanoi after 1,000 generations 201

Table 7-13: Hanoi Multiple Objective Runtime Performance .. 202

Table 7-14: Cache results: Multiple Objective Hanoi ... 202

Table 7-15: C metrics for Piedemonte San Germano after 20 generations 206

Table 7-16: C metrics for Piedemonte San Germano after 100 generations 206

Table 7-17: C metrics for Piedemonte San Germano after 1000 generations 207

Table 7-18: Piedemonte San Germano Multiple Objective Runtime Performance 207

Table 7-19: C metrics for Multiple Objective Heterozygous Piedemonte San Germano
after 20 generations .. 213

Table 7-20: C metrics for Multiple Objective Heterozygous Piedemonte San Germano
after 100 generations .. 213

Table 7-21: C metrics for Multiple Objective Heterozygous Piedemonte San Germano
after 1,000 generations ... 214

Table 7-22: PSG Multiple Objective Heterozygous Runtime Performance vs.
Conventional Performance ... 214

Table 7-23: Cache results: Multiple Objective Piedemonte San Germano 215

Table 8-1: S metrics for Real World network after 100, 1,000 and 10,000 generations . 222

Table 8-2: C metrics for Real World network after 100 generations 223

Table 8-3: C metrics for Real World network after 1,000 generations 223

Table 8-4: C metrics for Real World network after 10,000 generations 223

Table 8-5: Real World network Multiple Objective Runtime Performance 224

Table 8-6: Cache results: Multiple Objective Real World problem 224

List of Tables

20 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Table 8-7: Theoretical maximum performance for distributed “Real World” problem 225

Table 8-8: “Real World” distributed performance results ... 225

Table 8-9: Theoretical maximum performance for distributed, stochastic Piedemonte
San Germano problem .. 230

Table 8-10: Stochastic Piedemonte San Germano distributed performance results 231

Table A-1: Differences in network element representation between common hydraulic
modelling packages .. 268

List of Figures

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 21

List of Figures

Figure 3-1: Flowchart illustrating basic Genetic Algorithm operation. 54

Figure 3-2: Example of a chromosome using binary strings .. 59

Figure 3-3: Example of a chromosome using integer values (same values as Figure 3-2) 59

Figure 3-4: Conventional Binary String .. 60

Figure 3-5: Outline class diagram for GA library implementation (Pascal version)........... 65

Figure 3-6: Final operational structure of generic GA implementation (single objective) 68

Figure 3-7: GA methodology: final design (single objective) ... 69

Figure 3-8: GA methodology: final design (multiple objective) ... 70

Figure 4-1: C++ code fragment for encoding a binary string .. 74

Figure 4-2: C++ code fragment for decoding binary string ... 74

Figure 4-3: C++ code fragment for encoding a Gray-coded binary string 75

Figure 4-4: Binary string prior to right shift ... 75

Figure 4-5: Binary string following right shift ... 75

Figure 4-6: C++ code fragment for decoding a Gray-coded binary string 76

Figure 4-7: Parent gene a (value= 8,221) .. 79

Figure 4-8: Parent gene b (value= 392) ... 79

Figure 4-9: Expected child outputs from crossover ... 79

Figure 4-10: Crossover mask c (value= 255) .. 80

Figure 4-11: C++ code to generate mask for crossover .. 80

Figure 4-12: Masked parent d – least significant byte (value= 29) ... 80

Figure 4-13: Masked parent e - least significant byte (value= 136) .. 80

Figure 4-14: Masked parent f - most significant byte (value= 8,192) 80

Figure 4-15: Masked parent g - most significant byte (value= 256) ... 81

Figure 4-16: Child h (value= 8,328) ... 81

Figure 4-17: Child i (value= 285) ... 81

Figure 4-18: Flowchart illustrating the role of caching in a simple GA 86

Figure 4-19: Traditional binary tree representation .. 87

Figure 4-20: Unbalanced binary tree.. 88

List of Figures

22 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 4-21: Example Red-Black binary tree ... 89

Figure 4-22: Pseudo-code for cache search logic ... 90

Figure 4-23: Tiered Cache ... 91

Figure 4-24: Two-way Digital Tree (trie) .. 92

Figure 4-25: Three-way Digital Tree (trie) ... 92

Figure 4-26: Example Binary Tree representation ... 94

Figure 4-27: Example Judy Tree representation demonstrating implicit compression of
search key. .. 95

Figure 4-28: Example New York Tunnels chromosome .. 96

Figure 4-29: Digital/Judy tree implementation for New York Tunnels chromosome 96

Figure 4-30: Algorithmic performance (median) for small GAP problem (20 Agent/100
Job) with variable mutation rates ... 100

Figure 4-31: Comparative Runtimes for small GAP problem (20 Agent/100 Job) with
variable mutation rates and four caching strategies 101

Figure 4-32: Algorithmic performance (median) for large GAP problem (20 Agent/200
Job) with variable mutation rates ... 102

Figure 4-33: Comparative Runtimes for large GAP problem (20 Agent/200 Job) with
variable mutation rates and four caching strategies 103

Figure 4-34: Outline flowchart for non-repeating GA .. 105

Figure 4-35: C++ structure for recording gene mutation trend score data 107

Figure 4-36: C++ code for trend scoring for differential mutation 108

Figure 4-37: C++ code for mutation operator ... 108

Figure 4-38: C++ code for differential mutation operator .. 109

Figure 5-1: Typical PC network configuration for deploying deEPANET 116

Figure 5-2: Topology of Piedemonte San Germano Case Study Network 121

Figure 5-3: Logical Structure of Stochastic Optimization Software (after Kapelan, 2005)
.. 122

Figure 5-4: Baseline performance on Piedemonte San Germano simulation exercise. .. 123

Figure 5-5: Results utilizing one thread per processor (virtual or physical) plus one
supplementary thread. ... 126

Figure 5-6: Extended test network for deEPANET simulations .. 128

Figure 6-1: Example result graph .. 132

Figure 6-2: Mutation performance comparison - Generalized Assignment Problem 134

List of Figures

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 23

Figure 6-3: New York Tunnels Topology .. 136

Figure 6-4: Algorithmic Performance: New York Tunnels - Binary String 139

Figure 6-5: Algorithmic Performance: New York Tunnels - Gray Binary String 140

Figure 6-6: Algorithmic Performance: New York Tunnels – Integer 140

Figure 6-7: Algorithmic Performance: New York Tunnels - Hybrid Binary String 141

Figure 6-8: Algorithmic Performance: New York Tunnels - Combined Best 142

Figure 6-9: Algorithmic Performance: New York Tunnels - Combined Upper/Lower
Quartiles .. 142

Figure 6-10: Algorithmic Performance: New York Tunnels - Heterozygous Binary String
 .. 144

Figure 6-11: Algorithmic Performance: New York Tunnels - Heterozygous Binary String
results overlain with conventional results... 144

Figure 6-12: Algorithmic Performance: New York Tunnels - Heterozygous Integer 145

Figure 6-13: Algorithmic Performance: New York Tunnels - Heterozygous Integer results
overlain with conventional results ... 145

Figure 6-14: Algorithmic Performance: New York Tunnels - Heterozygous Hybrid Binary
String ... 146

Figure 6-15: Algorithmic Performance: New York Tunnels - Heterozygous Hybrid Integer
results overlain with conventional results... 146

Figure 6-16: Algorithmic Performance: New York Tunnels – Combined Heterozygous
Best .. 147

Figure 6-17: Algorithmic Performance: New York Tunnels - Combined Heterozygous
Upper/Lower Quartiles ... 147

Figure 6-18: Mutation performance comparison - New York Tunnels problem 149

Figure 6-19: Hanoi Network Topology .. 152

Figure 6-20: Algorithmic Performance: Hanoi - Binary String .. 155

Figure 6-21: Algorithmic Performance: Hanoi – Integer .. 156

Figure 6-22: Algorithmic Performance: Hanoi - Hybrid Integer ... 156

Figure 6-23: Algorithmic Performance: Hanoi - Combined Best .. 157

Figure 6-24: Algorithmic Performance: Hanoi - Combined Upper/Lower Quartiles 157

Figure 6-25: Mutation performance comparison - Hanoi ... 158

Figure 6-26: Piedemonte San Germano Network Topology ... 162

Figure 6-27: Algorithmic Performance: PSG - Binary String ... 166

List of Figures

24 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 6-28: Algorithmic Performance: PSG – Integer .. 167

Figure 6-29: Algorithmic Performance: PSG - Hybrid Integer ... 167

Figure 6-30: Algorithmic Performance: PSG - Combined Best .. 168

Figure 6-31: Algorithmic Performance: PSG - Combined Upper/Lower Quartiles 168

Figure 6-32: Algorithmic Performance: PSG – Heterozygous Binary String 169

Figure 6-33: Algorithmic Performance: PSG- Heterozygous Binary String results overlain
with conventional results .. 170

Figure 6-34: Algorithmic Performance: PSG – Heterozygous Integer 170

Figure 6-35: Algorithmic Performance: PSG- Heterozygous Integer results overlain with
conventional results ... 171

Figure 6-36: Algorithmic Performance: PSG – Heterozygous Hybrid Integer 171

Figure 6-37: Algorithmic Performance: PSG- Heterozygous Hybrid Integer results
overlain with conventional results ... 172

Figure 6-38: Algorithmic Performance: PSG – Heterozygous Combined Best 173

Figure 6-39: Algorithmic Performance: PSG - Combined Upper/Lower Quartiles 173

Figure 6-40: Mutation performance comparison - Piedemonte San Germano 175

Figure 7-1: Multiple Objective Pareto-Optimal Front .. 180

Figure 7-2: New York Tunnels – Multiple Objective Binary String Results 183

Figure 7-3: New York Tunnels – Multiple Objective Integer Results 184

Figure 7-4: New York Tunnels – Multiple Objective Hybrid Integer Results 185

Figure 7-5: Box plots of S metric for Multiple Objective New York Tunnels after 20, 100
& 1,000 generations ... 185

Figure 7-6: New York Tunnels – Multiple Objective Heterozygous Binary String Results
.. 188

Figure 7-7: New York Tunnels – Multiple Objective Heterozygous Integer Results 189

Figure 7-8: New York Tunnels – Multiple Objective Heterozygous Hybrid Integer
Results ... 190

Figure 7-9: Graphical Comparison of Multiple Objective New York Tunnels results ... 191

Figure 7-10: Box plots of S metric for Multiple Objective Heterozygous New York
Tunnels after 20, 100 & 1,000 generations .. 192

Figure 7-11: Box plots of S metric for Multiple Objective New York Tunnels for Normal
and Heterozygous New York Tunnels after 20, 100 & 1,000 generations
.. 192

Figure 7-12: Hanoi – Multiple Objective Binary String Results .. 197

List of Figures

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 25

Figure 7-13: Hanoi – Multiple Objective Integer Results ... 198

Figure 7-14: Hanoi – Multiple Objective Hybrid Integer Results ... 198

Figure 7-15: Graphical Comparison of Multiple Objective Hanoi results 199

Figure 7-16: Box plots of S metric for Multiple Objective Hanoi after 20, 100 and 1,000
generations ... 200

Figure 7-17: Piedemonte San Germano– Multiple Objective Binary String Results 203

Figure 7-18: Piedemonte San Germano– Multiple Objective Integer Results 204

Figure 7-19: Piedemonte San Germano– Multiple Objective Hybrid Integer Results 204

Figure 7-20: Box plots of S metric for Multiple Objective Piedemonte San Germano after
20, 100 and 1,000 generations .. 205

Figure 7-21: Piedemonte San Germano– Multiple Objective Heterozygous Binary String
Results ... 208

Figure 7-22: Piedemonte San Germano– Multiple Objective Heterozygous Integer Results
 .. 209

Figure 7-23: Piedemonte San Germano– Multiple Objective Heterozygous Hybrid Integer
Results ... 209

Figure 7-24: Graphical Comparison of Multiple Objective Piedemonte San Germano
results .. 210

Figure 7-25: Box plots of S metric for Multiple Objective Heterozygous Piedemonte San
Germano after 20, 100 & 1,000 generations .. 211

Figure 7-26: Box plots of S metric for Multiple Objective Normal and Heterozygous
Piedemonte San Germano after 20, 100 & 1,000 generations 212

Figure 8-1: "Real World" network topology .. 219

Figure 8-2: Best Pareto fronts for "Real World" problem after 100 generations 220

Figure 8-3: Best Pareto fronts for "Real World" problem after 1,000 generations 221

Figure 8-4: Best Pareto fronts for "Real World" problem after 10,000 generations 222

Figure 8-5: Non-Repeating GA performance comparison ... 229

Figure A-1: New York Tunnels-specific version of GAnet with OpenNet visualization
component ... 245

Figure A-2: Constituents of a network representation ... 246

Figure A-3: OpenNet class hierarchy (partial) .. 247

Figure A-4: OpenNet pipe properties dialog box .. 254

Figure A-5: High level class hierarchy of OpenNet implementation 255

Figure A-6: Typical 24 hour domestic demand curve ... 257

List of Figures

26 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure A-7: Recursive network traversal ... 262

Figure A-8: Recursive network traversal (continued) ... 263

Figure A-9: Network schematic simplification with OpenNet ... 263

Figure A-10: UML Class Hierarchy for generalized attributes.. 265

Figure A-11: Translation options available through OpenNet ... 267

Figure A-12: Translator progress window showing a SynerGEE model being imported
into OpenNet. ... 268

Figure A-13: Pipe matching application .. 274

Glossary

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 27

Glossary

Definitions
Allele The alleles of a gene are the set of values that this gene can

take. The most straightforward example taken from biology

is that of the gene that determines eye colour. The alleles of

this gene are the different colours (Brown, Blue...etc...)

Application Programming Interface

A specification for the public interface to a software library to

be used by developers.

Chromosome Many workers in the field of evolutionary algorithms use the

term chromosome instead of organism above. As will be

shown, it is convenient to maintain a distinction between the

two (as well as maintaining the biological analogue) and to

preserve the chromosome moniker to describe a group of genes

that are related in some fashion. Thus, a chromosome is some

sub-division of an organism’s genome.

Common Object Model A technology developed by Microsoft for the implementation

of a componentized software architecture featuring a

standardized API for the introspection of methods and

members. Microsoft Windows specific. Largely supplanted

by the .NET technology but still underpinning many

Microsoft Products (e.g. Office).

Distributed Common Object Model.

As COM but with additional functionality to allow the

instantiation of objects remotely, across a network.

Dynamic Link Library A mechanism for dynamically linking software functions into

an application. Promotes componentization through code

reuse – applications can be composed from smaller building

blocks. Unlike COM, however, DLLs do not have a standard

mechanism for implementing object classes – which has

Glossary

28 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

resulted in compiler vendors implementing their own,

incompatible techniques for doing so.

Elitism Applied to generational GAs, elitism allows the most fit

individuals from a source population to transfer directly to the

destination population without undergoing recombination –

ensuring that they are preserved from generation to

generation.

Fitness The measure by which individual organisms are compared to

each other to judge their relative suitability for the

optimization problem at hand. For single objective

algorithms this is a single value, often combined with a penalty

function to penalise constraint violation.

Gene Genes are the fundamental unit of genetic algorithms. Each

gene represents a specific attribute that is encoded within the

genome at a specific location known as a locus. This attribute

normally represents a decision variable to be considered in the

optimization but can also convey other information specific

to an organism.

Generational GA A type of Genetic Algorithm used for both single and

multiple objective optimization. Following selection and

recombination, child organisms are inserted into a new

population rather than replaced into the existing population as

with a Steady-State GA. The selection and recombination

process continues until the new population reaches the

nominal size of the previous generation. The new population

then forms the basis for selection for the next generation.

Genome The total genetic representation of an organism is described

as its genome. In mammalian biology, a genome is ordinarily

sub-divided into chromosomes.

Genotype The representation of the information contained within the

genome in its native form. For example, a decision variable

Glossary

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 29

containing the value 5 may represent a pipe diameter of

80mm. The genotypic value of the decision variable is 5.

Locus The locus of a gene is the position it occurs in a chromosome. In

Genetic Algorithms, the locus is usually fixed for a given

gene. However, in certain types of GA with variable-length

or heterozygous chromosomes the locus can vary.

Network Calibration An optimization problem to calibrate a Water Distribution

System hydraulic model to match observed field data –

commonly by varying pipe friction factors or diameters.

Network Design An optimization problem to layout new pipes for a Water

Distribution System.

Network Rehabilitation/Reinforcement

An optimization problem that determines intervention

strategies in a WDS for rehabilitating existing pipes or

reinforcing the network through pipe duplication.

Organism This is the representation of an individual in the population. It

is a term not normally associated with genetic algorithms and

is a by-product of the underlying object-oriented library

described here. Conventionally, the term “chromosome” has

been the preferred term for an individual in GAs. However,

because this use of chromosome is significantly at variance

with the biological analogue – and the necessity for the

object-oriented library to have an appropriate naming strategy

for classes – it was decided to break with convention and to

use “organism” as the fundamental unit of a population instead.

Because each organism always has exactly one genome and that

genome can only belong to a single organism they can be

considered concomitant.

Penalty Function A function commonly used in single objective optimization to

represent constraint violation by an individual organism –

normally used in combination with a fitness value to give an

overall relative measure of fitness for a solution.

Glossary

30 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Phenotype The representation of the information contained within the

genome in its appliedform. For example, a decision variable

containing the value 5 may represent a pipe diameter of

80mm. The genotypic value of the decision variable is 80

when translated into the domain of the solution.

Population A collection of organisms – the pool of genetic material

operated on by a Genetic Algorithm.

Recombination The derivation of child solutions from their parents –

ordinarily as a result of crossover and mutation.

Steady-state GA A type of single-objective Genetic Algorithm in which a pair

of solutions are selected from a population, recombined to

form two children and those children inserted, according to

some rule, back into the original population. c.f. Generational

GA.

Glossary

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 31

List of Abbreviations
ACS Ant Colony Simulation

ADSL Asymmetric Digital Subscriber Line

AMS Asset Management System

ANSI American National Standards Institute

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CA Cellular Automata

COM Common Object Model.

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

CWS Centre for Water Systems, University of Exeter

DCOM Distributed Common Object Model

DLL Dynamic Link Library

DMA District Metered Area

DSS Decision Support System

DTD Document Type Definition (XML)

EPS Extended Period Simulation

FLV Float Valve

GA Genetic Algorithm

GAP Generalized Assignment Problem

GIS Geographic Information System

IP Internet Protocol

ISO International Standards Organisation

LAN Local Area Network

LP Linear Programming

Glossary

32 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

LSB Least Significant Bit (binary number)

MGA Messy Genetic Algorithm

MOGA Multiple Objective Genetic Algorithm

MSB Most Significant Bit (binary number)

MTV Motorised Throttle Valve

NLP Non-Linear Programming

NRGA Non-Repeating Genetic Algorithm

NRV Non-Return Valve

NSGA Non-dominated Sorted Genetic Algorithm

NYT New York Tunnels (benchmark problem)

OLE Object Linking & Embedding

OOTEN Object-Oriented Toolkit for EPANET

OSGB Ordnance Survey of Great Britain

PBV Pressure Break Valve

PDD Pressure-Driven Demand

PDF Probability Density Function

PRV Pressure Reducing Valve

PSG Piedemonte San Germano (benchmark problem)

PSO Particle Swarm Optimization

PSV Pressure Sustaining Valve

RCV Remote Control Valve

RDBMS Relational Database Management Software

rNSGA-II Robust NSGA-II

SA Simulated Annealing

SDSS Spatial Decision Support System

SFLA Shuffled Frog Leaping Algorithm

Glossary

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 33

SGML Standard Generalized Markup

SMGA Structured, Messy Genetic Algorithm

SMP Symmetric Multi-Processing

SOGA Single Objective Genetic Algorithm

STL Standard Template Library

SWMM Storm Water Management Model

TCP Transmission Control Protocol

THV Throttle Valve

UDP User Datagram Protocol

UML Unified Modelling Language

WAN Wide Area Network

WAP Wireless Access Point

WDS Water Distribution Systems

XML eXtensible Markup Language

XOR eXclusive OR (logical operation)

34 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Chapter 1: Introduction

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 35

Chapter 1. Introduction

1.1. Background

Automated analysis and optimization tools have been used to provide a mechanism for

improving various facets of water system networks including, amongst others, model

calibration, network design and rehabilitation, leakage detection and pump scheduling. Such

tools represent an attempt to provide assistance to practitioners through the means of

intelligent, knowledge-based techniques. These Decision Support Systems (DSS) encompass

a wide-range of computer-enabled applications that are conventionally based on some form

of analytical model, coupled to some form of optimization. The application of optimization

to Water Distribution Systems is generally characterised, however, by extended runtimes

owing to the computational load imposed by the numerical solution of a hydraulic network

model in order to determine the pressures and flows throughout the system. This solution is

iterative in nature and the time taken to compute the solution is largely dependent on the size

and configuration of the network model itself. Evolution Algorithms, which, by their nature

require large numbers of evaluations of an objective function would, on first sight, appear to

be ill-suited to Water Distribution System applications. However, their ability to converge

rapidly on an optimal or near-optimal solution, whilst having analysed a mere fraction of the

total solution space, has made such algorithms popular subjects for research. Despite

inexorable improvements in computer power, there is still a need to improve the

performance of these algorithms to allow for more complex optimizations to be undertaken

with acceptable efficiency and effectiveness. If multiple settings of the hydraulic network are

to be considered, for example to allow an optimization to take account of variable network

conditions during a 24-hour period or to allow for conditions of uncertainty to be evaluated,

the computational workload associated with this hydraulic simulation becomes even more

significant.

A software framework for implementing Genetic Algorithms for hydroinformatic

applications is presented. This framework employs object-oriented programming techniques

to provide a flexible, extensible system for implementing single and multiple-objective

algorithms. The framework developed has been deployed in a number of research projects

as well as commercial undertakings and has been adopted to provide optimization facilities to

three commercial products from two vendors.

Chapter 1: Introduction

36 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

1.2. Aims of Research

The research presented in this thesis builds on previous work in the Centre for Water

Systems on evolution-based algorithms by introducing a framework for the development of

such methodologies. This thesis presents novel approaches for simplifying the deployment

of optimization techniques in hydroinformatic applications through the introduction of a

componentized methodology that can be extended to implement new evolutionary

algorithms with a minimal requirement for additional development work.

Relative to the implementation of the optimization algorithm itself, the operation of a

hydraulic network solver incurs significantly greater computation overhead. To this end,

novel approaches are proposed in the thesis to accommodate this issue from two

perspectives. Firstly, novel approaches for improving the algorithmic efficiency of the

evolutionary optimization algorithms themselves are explored. This includes investigations

of new modifications to the representation of the genetic material employed and the

operators that act on it in order to promote the efficient convergence of the population to an

optimal solution. Other considerations include ensuring that the algorithms minimize

wastage by avoiding the evaluation of solutions that have already been considered. The

acceleration of stochastic optimization techniques is of particular importance, given the even

greater runtimes common with such optimizations. The second approach undertaken is to

improve the operational efficiency of the algorithms. This is achieved, herein, through the

development of a methodology for massively parallelizing the evaluation of hydraulic

network simulations by employing a cooperating network of computers.

1.3. Objectives

The following objectives have been formulated

• Evaluate the effectiveness and relative performance of alternative genetic

representations for chromosomes in evolution algorithms with respect to runtime

and solution quality considerations.

• Assess the potential for advanced caching and archiving techniques to reduce the

runtime of evolution algorithms.

• Develop and implement a framework for distributed evaluation of hydraulic network

simulation and determine its value for facilitating the massive parallelization and

acceleration of evolution algorithms for the optimization of water distribution

networks.

Chapter 1: Introduction

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 37

• Develop and implement a modelling architecture for representing connected

hydraulic networks to assist in the above objectives.

1.4. Thesis Structure

This thesis is arranged in nine chapters with two supplementary appendices. Following this

introduction and statement of the thesis aims and objectives, this thesis adopts the following

structure:

The second chapter, the literature review, provides a background to the application

of optimization techniques, with particular emphasis on evolutionary approaches, to the

optimization of Water Distribution Systems.

Chapter Three introduces the concept of Evolution Algorithms (EAs) and relates the

design, implementation and continuing development of a methodology for the application of

EAs to hydroinformatic optimization problems.

Novel extensions to the classical implementations of these algorithms are presented

in the Fourth Chapter with the aim of improving algorithm performance – both in terms of

execution speed and quality of result.

Chapter Five presents a new methodology for the distribution of the computational

workload associated with optimization applications that involve hydraulic network simulation

between computers connected by a Local Area Network (LAN) or on

multiprocessor/multicore computers.

Chapter Six demonstrates the applicability of the techniques introduced in the prior

chapters through their application to a number of small-scale single-objective optimization

problems from the literature.

This analysis is extended in Chapter Seven where the small-scale problems are

refactored as multiobjective optimization problems. Having demonstrated the effectiveness

of the novel techniques on small-scale networks, the analysis is concluded with the

application of the techniques to a more computationally demanding network optimization

problem.

Chapter Eight reapplies the methodologies presented to more complex problems –

computationally and algorithmically – to demonstrate the wider applicability of the research

to optimization of hydroinformatic problems.

Chapter 1: Introduction

38 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

The final chapter details the conclusions that can be drawn from this research and

the proposed methodologies and suggest further avenues of research.

The first Appendix introduces a software component, OpenNet, used for the

modelling of networks. This library implements a generic system for representing connected

networks and for undertaking analysis upon them. A specialization for representing

pressurized hydraulic networks is presented along with a generic, adaptable technique for

representing networks using eXtensible Markup Language (XML) the specification of which

can be found in the second appendix. The research is supported by the application of these

tools to a number of practical applications. Those described in the first appendix include the

translation of third-party hydraulic networks from one format to another and integrating

hydraulic models with disparate GIS data sources.

Chapter 2: Optimization in Water Distribution Systems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 39

Chapter 2. Optimization in Water Distribution Systems

2.1. Literature Review

2.1.1. Genetic Algorithms

Genetic Algorithms (GAs) are part of a group of stochastic optimization techniques called

Evolutionary Optimization, inspired by Darwinian theories of natural selection. This class of

algorithm is noted for its ability to tackle large, NP-hard (Templeman, 1982) optimization

problems without any domain-specific configuration. Such NP-hard problems are those

which are difficult to solve in polynomial time. Holland (1975) was the first to coin the term

‘genetic algorithm’ and identified the mathematical basis for the operation of the algorithms

in terms of schema theory and the basis for the selection and recombination of genetic

material, chromosomes, representing problem solutions. The implementation and

techniques underpinning GAs are described in more detail in Chapter 3. Holland’s GAs

implement the archetypal chromosomal representation which use strings of binary digits

(bits) to encode the genotype of a solution.

A number of workers in the field have investigated the extension of GAs to operate

on multiple objectives simultaneously. Instead of allowing a population of individual

chromosomes to converge to a single solution, a multiple objective algorithm maintains

multiple trade-off solutions for two or more objectives. An early description of a conceptual

multiple-objective algorithm by Goldberg (1989) was followed by functional algorithms

including Non-dominated Sorted GA (NSGA) (Srinivas & Deb 1994) and multiple-objective

GA (Fonseca & Fleming, 1993). Deb (2001) describes the substantially reworked NSGA-II

algorithm, which forms the basis of the robust multiple-objective optimization developed by

Kapelan et al. (2005) and subsequent developments described in Chapter 4.5.

2.1.1.1. Pump Optimization

One of the first applications of Genetic Algorithms to Water Distribution System

(WDS) optimization is reported by Goldberg and Kuo, (1987). This work demonstrates the

efficacy of applying the GA methodology to pipeline optimization problems. In this case,

the optimization is applied to a 40 pump, serial pipeline and seeks to minimize the cost of

pumping (in terms of power consumption) whilst meeting constraints of maximum discharge

pressure and maximum and minimum suction pressure. The GA is implemented in terms of

a simple binary string and employs single-point crossover and simple mutation (see 3.2.1.3).

Chapter 2: Optimization in Water Distribution Systems

40 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

The results are compared with the optimal solution determined using mixed-integer

programming and the GA is found to have performed well, having achieved within 0.72% of

the optimal solution on average whilst exploring a minute fraction of the search space of size

1.1×1012.

2.1.1.2. Network Design and Rehabilitation

Murphy et al. (1993) present one of the earliest applications of a GA to a real-world

WDS optimization problem. In this paper, they demonstrate the ability of a GA to produce

an optimal design layout for a new housing development using discrete, commercially

available pipe diameters. A theme returned to by Simpson et al. (1994) who review the

alternatives for the optimization of water distribution systems, comparing “traditional”

Linear Programming (LP) approaches with non-linear techniques and the, emergent GAs.

Of particular interest is the ability of the GA to select discrete, rather than the continuous

variable outputs of the LP technique – obviating the need to convert the solutions obtained

by the algorithm into a commercially feasible installation.

Simpson et al. (1994) describe one of the first applications of GAs to a conventional

supply system. Here the GA is applied to the combined network rehabilitation and design

problem introduced by Gessler (1985). In this problem, a small network (1 reservoir, 1 tank

and nine demand nodes) is to be upgraded through the provision of new pipes and the

duplication or cleaning or others – minimising the cost of implementation whilst meeting a

minimum pressure criterion at each node. A conventional binary string representation is

employed with three bits being used to represent the options available for each pipe. In the

case of the duplicated/cleaned pipes, this value represents either a decision to clean the pipe

or the diameter of the replacement. For the new-build pipes, this value represents the

diameter of the new pipe. The results obtained were compared to those derived from an

exhaustive simulation of the possible solutions – thus, it is possible to compare the GAs

performance against the global optimum for the problem. The GA as formulated using a

single-point crossover and simple by gene mutation arrangement is shown to achieve the

global optimum on the majority of its runs despite exploring between 0.1% and 0.15% of the

solution space (16,777,216 possible solutions). Further to this comparison, a Non-Linear

Programming (NLP) approach was also employed. This method uses gradient techniques to

refine a single solution to a problem, producing continuous results for the decision variables.

In this example, the decisions need to be made in terms of discrete, commercially available

pipe diameters and, consequently, the solutions obtained from the NLP algorithm need to be

Chapter 2: Optimization in Water Distribution Systems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 41

recast into discrete terms by rounding the continuous pipe diameters obtained to their

nearest discrete equivalent. The NLP output is shown to be significantly inferior to that of

the GA – indeed the continuous variable results obtained are inferior to the GA even prior to

being rounded into discrete diameters.

Gupta et al. (1999) present an unconventional GA implementation for WDS design

that does away with the normal chromosomal representation used by GAs. Instead of

employing binary strings to represent discrete pipe diameters, this work substitutes the actual

diameters into the chromosome instead – ostensibly to avoid the encode/decode cycle

associated with the use of binary strings. It should be noted, however, that the overhead for

maintenance of the binary string is trivial in comparison to the computational requirements

of performing a hydraulic simulation and this improvement, of itself, is unlikely to be

significant in substantially reducing the algorithm runtimes. The GA itself is heavily

influenced by a number of heuristic modifications, including the initial stratification of the

network into different diameter groups using expert judgement. The operation of the GA is

steered through further iterative routines, which operate on a candidate solution to promote

feasible solutions in the population. The results for six related case study scenarios are

contrasted with those obtained from the authors’ own WATDIS software which employs

NLP and which is shown to be marginally inferior for all but one of the scenarios. It is

noted, however, that both the GA and the NLP software require several trials to identify

near-optimal solutions. In the case of the GA this is to accommodate different scenarios of

initial stratification for the pipe diameter ranges whilst the progress of the NLP software is

heavily dependent on the initial conditions as it has a tendency to identify local optima.

Savić & Walters(1997) introduce the GANET software and apply it to three

previously published case studies in design and rehabilitation of WDS – New York Tunnels,

Hanoi (Fujiwara & Kang, 1990) and Alperovits & Shamir’s example network (1977). A

comprehensive comparison of the results obtained in previous work, using various

optimization techniques, is presented and illustrates the sensitivity of such analysis to the

minor variation of some modelling parameters between different researchers. In particular,

variation in the constants used to derive the Hazen-Williams coefficient (see Walski, 1984) is

highlighted as being a cause for marked differences in the predicted hydraulic behaviour of

the network. Such differences in behaviour are shown to have consequences for the steering

of the optimization algorithms employed and the comparability of the results obtained: a

solution to the New York Tunnels problem is given which at $37.13m betters the current

Chapter 2: Optimization in Water Distribution Systems

42 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

known optimal solution – achieved by relaxing the Hazen-Williams coefficient. The

GANET tool, which combines an optimizing application coupled to a public domain

hydraulic solver, EPANET (Rossman, 1993) which employs the Gradient technique (Todini

and Pilati, 1987) for evaluating the hydraulic performance of networks.

The integration of WDS analysis with commercial optimizers is the focus of Lippai et

al. (1999). They report the results of solving the New York Tunnels problem (Schaake & Lai,

1969) with WinPipes (an EPANET-derived hydraulic solver) coupled to four commercial

optimization applications including, GA-based Evolver (Palisade Corp., 1998) and

GENOCOP (Michalewicz, 1992). Interestingly, they report a solution for New York

Tunnels, obtained with Evolver, of $38.13m – which would be the best result obtained to

date were it feasible. Running the proposed solution through EPANET reveals an aggregate

head deficit of 0.03psi. This may be related to the sensitivity to the model to small changes in

the Hazen-Williams coefficient, as noted by Savić and Walters (1997) or through some

rounding error.

The Messy Genetic Algorithm (MGA) of Goldberg et al. (1989) differs from a

conventional GA in that the MGA operates with variable chromosome lengths, allowing the

algorithm to progressively build up a solution as it runs – constraining the search space

encountered. In this instance, integer-coded genes are employed. An enhancement to the

MGA is described by Halhal et al. (1997) with particular application to the rehabilitation of

WDS. They propose a modified algorithm termed Structured, Messy Genetic Algorithm

(SMGA). The SMGA extends the approach of the MGA by employing an initial population,

each member of which contains each single decision element. For example, in the small

rehabilitation problem presented in this paper, there are 8 possible decisions to be made on

each of 15 pipes which would lead to the SMGA having a starting population of 8×15 = 120

individuals, representing each possible decision using one intervention. Furthermore, the

authors describe one of the first applications of multiobjective optimization to WDS

problems. With this technique, Pareto-optimal ranking and fitness sharing Goldberg &

Richardson (1987) is used to coordinate the retention of individuals in the population

according to how well they fit the twin objectives of minimizing cost and maximizing benefit.

In contrast to the other techniques employed, such a multiobjective optimization produces a

Pareto-curve illustrating the trade off between the objectives rather than a single “solution”

to the problem. The SMGA is shown to perform far better than a conventional GA for the

presented problems, producing a better classification of individuals along the Pareto front

Chapter 2: Optimization in Water Distribution Systems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 43

than the standard GA. This technique is later applied to the “Anytown” WDS benchmark

system (Walski et al., 1987) by Walters et al. (1999). This problem is a network reinforcement

for increasing demand scenarios, which is constrained not only by infrastructure but also by

pumping costs. The SMGA as presented by the authors is seen to improve the then best

published result for this benchmark by between 4 and 5%.

Wu and Simpson (2001) seek to optimize the same network arrangement solved by

Simpson et al. (1994) using a similar MGA. In addition, they demonstrate an improved

performance, in terms of GA convergence to near-optimal solutions, for the MGA on the

New York Tunnels problem over that achieved by the “Improved GA” of Dandy et al.

(1996).

Dandy and Engelhart (2001) relate the use of GAs to optimize pipe-replacement

schedules for single and multiple time-horizons. The algorithm described includes the use of

a hybrid selection scheme in which Tournament selection (Goldberg et al., 1991) is combined

with the conventional Roulette-wheel technique (Holland, 1975). In addition, Uniform

crossover (Syswerda, 1989) and the creep mutation of Dandy et al. (1996) were employed to

operate on an integer-coded chromosome. The authors demonstrate that this approach

employed on a problem with a large solution space (~1×10100) produces good results by

identifying pipes requiring replacement, within the required budget. The results were

validated by comparison with a simplified asset model for which decisions were made on a

case-by-case basis.

Kadu et al. (2008) present a modified Genetic Algorithm for undertaking optimal

design of WDS employing techniques to reduce the optimization search space. A real-coded

chromosome is employed, along with single-point, uniform and multi-parent crossover, non-

uniform and neighbour mutation (amongst others) coupled with a Critical Path technique

(Bhave, 1978) to reduce the search space -the different genetic operators being selected at

random during the operation of the algorithm. The algorithm is demonstrated on a number

of familiar networks from the literature including the Hanoi network where the algorithm is

shown to match the best known result (Cunha & Sousa, 1999) and to better the result

achieved for the stricter problem introduced by Savić & Walters (1997) where ω = 10.9031.

For performing the hydraulic analysis, the authors introduce GRA-NET a hydraulic solver

which, like EPANET, is based on the Gradient Method (Todini & Pilati, 1987) but which

allows the easy modification of the coefficient (ω) and exponents (α,β) used in the Hazen-

Williams head loss equation:

Chapter 2: Optimization in Water Distribution Systems

44 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

݄௙ ൌ ߱ ·
ܮ

ఈܥ · ఉܦ · ܳ
ఈ

i)

where hf is the head loss, L is the length of the pipe, Q is the flow through the pipe

and C and D are the friction factor and diameter of the pipe respectively.

The sensitivity of GAs to the genetic representation used to represent the problem

and its interaction with the recombination operators of crossover and mutation is

demonstrated by Dandy et al. (1996). Specifically, they investigate the use of Gray coding to

improve the performance of crossover in preserving schema in the chromosomes. A

variable power-scaling fitness function is employed to direct the search as the optimization

progresses. In addition, a novel mutation operator is introduced which permutes individual

genes into adjacent values, rather than the traditional GA approach of randomizing gene

values. As a case study, they apply these modifications to the New York Tunnels problem

(Schaake & Lai, 1969) and report the best result obtained by a Genetic Algorithm of $38.80m

for a fully feasible solution using discrete pipe diameter selections. The results obtained mark

a considerable improvement in both computation performance and solution quality over the

authors’ previously work (Murphy et al. 1993).

2.1.1.3. Network Calibration

Since their introduction into the domain of hydroinformatics, GAs have been used

for calibrating WDS – modifying system parameters, ordinarily pipe roughnesses in order to

match model results with data obtained from the field (e.g. Savić & Walters, 1995).

Vitkovsky and Simpson (1997) present a comprehensive analysis of the application of GAs

to calibration, both for fitting roughness values to pipes and for transient calibration. The

authors use real numbers encoded as binary strings as the basis for a conventional GA

approach. The operation of an averaging crossover operator is improved by the occasional

use of two-child average operators, which are seen to reduce the likelihood of a population of

individuals converging prematurely.

de Schaetzen et al. (2000) utilise the GA in a different fashion for calibration:

attempting to find the optimal arrangement and density of sampling points for the analysis.

The optimization here is formulated in terms of maximizing an entropy function, employing

an integer-based chromosome with each gene representing a potential sampling point

location. The results are compared to those produced through expert judgement and are

Chapter 2: Optimization in Water Distribution Systems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 45

found to be a useful tool for deriving a likely set of candidate sampling points. A similar

approach is adopted by Meier and Barkdoll (2000) where the objective function is to realize

the maximization of the length of pipes in the network that have non-negligible flows when

the sampling is being performed for the proposed sampling point distribution. Kapelan et al.

(2003b) further extend this analysis by formulating a multi-objective GA based on Fonseca &

Fleming’s implementation (1993) for considering calibration-sampling design.

2.1.1.4. Water Quality Optimization

Genetic Algorithms are used by Munavalli and Kumar (2003) to optimize the rate,

timing and concentration of chlorine dosing in a WDS. Given predefined dosing locations,

this methodology seeks to optimize chlorine dosing so as to minimise the maximum

concentration found in the network whilst continuing to maintain the minimum level of

chlorine residuals at all nodes in the network. Using hydraulic results from EPANET

(Rossman, 2000) for extended period simulation of the network in question, the authors

apply their quality model for chlorine decay. The GA employed uses a conventional binary

string implementation but adds creep mutation, in which mutation permutes the variable by

the smallest possible amount in a given direction, and a niching operator (multidimensional

phenotypic sharing scheme - Goldberg 1989) to direct further the search.

2.1.1.5. Accommodating uncertainty in GAs

Kapelan et al. (2003a) report a technique for accommodating uncertainty in design

constraints when optimizing using GAs. This approach embeds a stochastic optimization

cycle within the operation of a conventional single or multiple-objective GA. The stochastic

cycle evaluates samples for Probability Density Functions (PDFs) obtained for the stochastic

variables (in this example, uncertain future demands) and aggregates statistics on the network

performance over the lifetime of the chromosome – providing a measure of reliability of the

network under the uncertain constraints.

Babayan et al. (2003) and Kapelan et al. (2004) present differing approaches to the

optimization of WDS design/rehabilitation under conditions of uncertainty. The former

approach employs the reformulation of the stochastic problem in deterministic terms. This

is accomplished through some simplification of the problem and the use of numerical

methods in the quantification of the uncertainty in hydraulic reliability. By comparison, the

latter promotes a sampling-based technique for accommodating uncertainty that is

Chapter 2: Optimization in Water Distribution Systems

46 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

independent of the model under consideration. Both of these methodologies employ single

objective GAs to perform the optimization.

2.1.2. Other Optimization Techniques

2.1.2.1. Linear Programming

One of the earliest efforts at computer-aided water distribution system (WDS) design was

described by Alperovits & Shamir (1977) who developed a Linear Programming Gradient

methodology for a least-cost implementation of a network. In this context, “least-cost”

refers to the minimization of the implementation cost of the network in terms of the cost of

the pipes to be installed. This methodology reduces the optimization to a series of sub-

problems regarding the possible flow routes to each point in the network. The applicability

of this approach is severely constrained by the complexity of the network involved and

subsequent work has concentrated on reducing the computation complexity of optimizing

such networks.

Morgan & Goulter (1985), Taher & Labadie (1996) formulate their design

optimization as a Linear Programming problem for which a componentized software

package was developed comprising a number of individual applications working in concert.

These papers, and several others, suggest a common theme - the direct integration of the

network optimization software with spatial information – in this instance, the spatial

component is used to perform network analysis for pressure zone distribution, node demand

allocation and least-cost routing.

2.1.2.2. Heuristic Approaches

Heuristic techniques are employed in situations where classical optimization techniques

would otherwise struggle to achieve good results with acceptable runtimes. This is often

achieved through the embedding into the optimization of some domain-specific knowledge,

which can be used to steer the process more effectively. Makropoulos et al. (2003) employ a

random search technique to resolve a spatial optimization problem obtained from the

aggregation of water demand management scenarios developed through fuzzy inference

rules. This work seeks to produce optimum strategies for maximizing water-saving whilst

respecting investment constraints. The application of such a heuristic, as with many

optimization strategies, is not guaranteed to produce a global-optimum and the authors

validate the results obtained through a Monte-Carlo sampling approach. This technique is

Chapter 2: Optimization in Water Distribution Systems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 47

expanded upon by Makropoulos & Butler (2005) where a heuristic approach is hybridised

with a more conventional multiple-objective evolution algorithm for application to wider

water sustainability issues.

2.1.2.3. Cellular Automata

Cellular Automata are a long established area of research in computer science having

been first identified by John von Neumann and Stanisław Ulam whilst working at Los

Alamos National Laboratory, New Mexico, U.S.A. (von Neumann, 1966). They have been

successfully employed as an optimization technique for Water Distribution Systems by

Keedwell & Khu (2006) in which the nodes and pipes of a network are configured to

communicate with each other, according to predefined rules, in such a fashion that a self-

optimizing behaviour emerges in the network. Keedwell and Khu (2006) employ three rules

to direct this behaviour:

• If a demand node is pressure deficient then it requests connected pipes that

supply it to be upsized.

• Conversely, if a demand node has a pressure surplus then it attempts to

downsize its supply pipes.

• If a pipe receives an equal number of upsize and downsize requests it

responds by upsizing.

The emergent behaviour that these rules embody makes no attempt to find a global optimum

as it is driven purely by pressure differentials rather than other, conventional optimization

factors such as implementation cost. Instead, it seeks a stable solution that it can achieve by

making local changes to the network. This technique is of particular interest as it is

computationally very efficient with respect to other optimization techniques and can be seen

as a effective form of local-search heuristic. The authors suggest that it is well suited to the

role of generating initial “seed” populations for other optimization techniques where the

solution space for a given network problem is inordinately large.

2.1.2.4. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is introduced by Eberhart and Kennedy (1995).

Like GAs, this technique operates on a population of individuals that is, initially, randomly

generated. However, the mechanisms for improving the fitness of the population are quite

different to those of evolutionary algorithms. Here, individuals in the population use

Chapter 2: Optimization in Water Distribution Systems

48 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

retained information about the best solution they themselves have encountered in the

solution hyperspace and, combined with the “group knowledge” of the global best solution

encountered, the individual solutions are perturbed in the directions of the local and global

optima according to some random term. The Shuffled Frog Leaping Algorithm (SFLA) is

related by Eusuff and Lansey (2003a,b), a memetic, meta-heuristic technique which combines

a novel evolutionary technique with the PSO (Eberhart and Kennedy, 1995) to facilitate the

local search element. Once more, the New York Tunnels (NYT) example is employed, with

EPANET providing the hydraulic computation, with the authors contrasting their results

with those obtained by several others in the field – including the seemingly infeasible result of

Lippai et al. (1999) and those obtained by Savić & Walters (1997) through the variation of the

Hazen-Williams coefficient. In Eusuff and Lansey (2003a), the SFLA algorithm produces a

result for the NYT expansion problem of $35.27m. It is unclear from the paper as to how

this result is obtained as the solution presented is infeasible when solved with EPANET (an

aggregate head deficit of 7.27psi over three nodes) and remains infeasible even with the

relaxed Hazen Williams constraint of Savić and Walters (-6.36psi over the same three nodes).

Eusuff and Lansey (2003b), however, report modified results in which SFLA’s best result is

shown to be equal to that of Lippai et al. (1999) using a modified Hazen-Williams coefficient

of 10.667.

2.1.2.5. Simulated Annealing

Simulated Annealing is an optimization technique which, in essence, applies the

mutation operator familiar to the Genetic Algorithm to a single solution repeatedly. Initially,

a high “temperature” allows the mutation to vary widely the values of the decision variables.

As the “temperature” cools, i.e. during the progress of the optimization, the freedom of the

mutation to vary the values is constrained – as an analogue with metallurgical annealing in

which crystalline solids begin to appear during cooling.

Cunha & Sousa (1999) describe the application of the Simulated Annealing technique

to WDS benchmark problems including one introduced by Alperovits & Shamir (1977) and

the Hanoi network of Fujiwara & Kang (1990). The application is successful in finding low-

cost solutions and has identified the lowest-cost solution for the Hanoi problem yet

published of $6,056,370.68 – albeit with a relaxed Hazen Williams constraint.

Chapter 2: Optimization in Water Distribution Systems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 49

2.1.2.6. Ant Colony Simulation

The Ant Colony Simulation (ACS) approach was introduced by Dorigo et al. (1996)

and first applied to the domain of WDS optimization by Maier et al. (2003) who used this

technique to tackle a number of benchmark rehabilitation problems. This work is notable, in

particular, for finding the best-known solution, at the time of writing, for the New York

Tunnels optimization problem introduced by Schaake & Lai (1969) and described in detail in

Chapter 6.2. ACS operates as an analogue of the essentially random process of ants foraging

for food in which individual ants lay pheromone trails as they explore. In the optimization

technique, there is a higher probability of an ant following an existing pheromone trail that it

encounters of a given threshold strength – resulting in a positive feedback mechanism which

allows the “ants” to identify the most direct route to the food source.

Several variants of the approach have emerged. Following on from earlier work

(Zecchin et al., 2006), Zecchin et al. (2007) present a comparative study of the performance of

five ACS algorithms applied to Water Distribution System benchmarks and find that the

Elitist-Rank Ant System (Bullnheimer et al., 1999) and the Max-Min Ant System (Stützle and

Hoos, 2000) outperform the other types.

2.2. Summary

Evolution algorithms are no longer seen as an emergent technology in the field of Water

Distribution System optimization. The traditional techniques founded on linear and non-

linear programming have largely been usurped and new metaheuristic techniques have taken

their place. These techniques, Genetic Algorithms, Ant Colony Optimization, Particle

Swarm Optimization amongst their number, are being employed for an increasingly diverse

range of applications in the field. The classical applications of network design and

rehabilitation and model calibration have been supplemented with more complex and larger-

scale problems. Hybrid optimization techniques are increasingly being employed to

accommodate additional concepts to improve the reliability of optimized solutions –

particularly by considering uncertainty in design criteria.

50 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Chapter 3: Genetic Algorithms

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 51

Chapter 3. Genetic Algorithms

3.1. Introduction

Evolution programs (Michalewicz, 1992), of which Genetic Algorithms (GAs) are probably

the best-known types, are general, artificial evolution search methods based on natural

selection and mechanisms of population genetics. They emulate the natural processes of

evolution (Darwin, 1859)– being based on preferential survival and reproduction of the fittest

members of the population, the maintenance of a population with diverse members, the

inheritance of genetic information from parents and the occasional mutation of genes. These

algorithms are best suited to solving combinatorial optimization problems that cannot be

solved practicably using more conventional operational-research methods. Thus, they are

often applied to large, complex problems that are non-linear with multiple local optima.

GA optimization is a powerful approach with a proven ability to identify near-

optimal solutions (Savić & Walters, 1994; Halhal et al., 1999). However, the correct operation

of a GA optimization depends on careful configuration and parameter tuning - requiring

appropriate skills and experience. Inappropriate penalty levels will distort the results away

from the end user’s perception of ‘optimum.’ Too high or low a rate of genetic interchange

(‘crossover’ and ‘mutation’) result in degeneration to a random search or stagnation, causing a

failure to converge on the global optimum. Because of the complexity involved in setting up a

GA to operate effectively, this form of optimization is not well suited to ‘trivial’ problems, i.e.

those for which the number of possible solutions is small.

Solving optimization problems related to water distribution networks is recognized as

an NP-hard analysis that has conventionally been approached using a number of techniques

including hill climbing, linear and dynamic programming. Evolution algorithms represent a

proven, alternative strategy for approaching these problems.

The benefits of GAs stem from their ability to converge rapidly on an optimal or

near-optimal solution, having analysed only a tiny fraction of the number of possible

solutions available. For large problems such as those typically associated with networks, the

exhaustive analysis of all options is unlikely ever to be feasible. In a water distribution

network expansion and reinforcement problem (Atkinson et al., 1998) analysed in the Centre

for Water Systems, University of Exeter, using GAs, there were approximately 300 pipe links,

each of which could adopt any of 14 diameters (including the option of not employing a

pipe). This presents a problem size of 14300 or 6.89×10343. Even if one billion design

Chapter 3: Genetic Algorithms

52 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

evaluations (i.e. network simulation runs) could be performed in a second, the time needed to

evaluate all possible schemes would be much longer than the age of the earth (estimated at

4.6 billion years). Given that, on current high-end PC platforms, design evaluations for

multiple time-steps may take up to several seconds each, such iterative analyses are clearly

redundant. In this instance, the GA optimization search was able to converge on the lowest

cost solutions by carrying out several hundred thousand evaluations.

3.2. Methodology

The basic genetic algorithm is implemented by means of selecting a number of organisms

from a population; recombining them in some fashion to produce a number of offspring;

introducing some mutation factor; evaluating the resultant offspring with respect to their

fitness as solutions for the problem at hand and finally reintroducing (or replacing) the

organisms into the base population. The flowchart in Figure 3-1 illustrates the basic

operation of a Genetic Algorithm through these repeated cycles of Selection, Recombination

(crossover), Mutation and Replacement.

In nature, the evolution of biological organisms takes place as a result of the adaptive

pressure exerted upon them by the environment in which they have to survive. Through the

sexual competition between individuals, it happens that the strongest and most attractive

individuals win the right to mate and to produce offspring.

The adaptation of organisms is ordinarily considered to take place through the

production of offspring. Natural organisms, in general, produce numerous offspring, many

of which will not survive. These offspring have varied traits inherited genetically from their

parents. Natural selection acts in such a fashion that the offspring with the most useful traits

for their environment are the most likely to survive and, hence, to perpetuate those traits.

As with its natural analogue, a GA operates on a population of individuals that can be

seen as representations of potential solutions to a given problem. In nature, this problem is

survival and procreation - in GAs it can be any problem for which there is a means to

determine a solution's fitness (suitability). This means is commonly described as an

individual's objective function.

3.2.1. Algorithm operation

Genetic algorithms search for schemata (Holland, 1975), which result in better fitness scores.

Schemata can be considered building blocks An evaluation is implicitly processing a number

Chapter 3: Genetic Algorithms

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 53

of schemata in parallel. Therefore, each time the genetic information from an individual

organism is evaluated by the algorithm, instead of merely sampling a single point in the

solution space, the algorithm is sampling many simultaneously. Holland finds that the

relationship between population size (P) and the number of schema implicitly processed by

each generation of that population is of the order of P3.

It is also necessary to consider at what stage the operation of an algorithm should be

terminated. Although the algorithm can be executed for a given number of iterations or run

for a specific length of time, it is more useful to examine some measure of the genetic

diversity of the population. This is normally done by some statistical analysis of the variance

in the fitness of the organisms in the population - since if a population is composed of

identical, or near-identical organisms, the prospects for advancement for the population are

poor.

Chapter 3: Genetic Algorithms

54 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 3-1: Flowchart illustrating basic Genetic Algorithm operation.

3.2.1.1. Algorithm types

There are three conventional methods for organising the operation of a basic single-objective

genetic algorithm.

Chapter 3: Genetic Algorithms

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 55

1. In a steady state algorithm, (Holland, 1975) a number of individuals (normally

two) are selected for recombination. Once generated, their offspring are, in

some fashion, incorporated into the existing population - provided they are

of sufficient fitness.

2. The generational scheme (Goldberg, 1989) is markedly different in that the

offspring borne of parents selected from the population are pooled in a new

population. This process of selecting from one population and storing the

offspring in another is ordinarily repeated until the size of the offspring's

population is the same as that of the original population. At this time, the

inhabitants of the original population are eliminated and the offspring's

population becomes that from which selection takes place.

3. Adding elitism (Goldberg et al., 1991) to the generation GA implementation

involves preserving the best organisms from the original population and

transferring them, unmodified, into the new population. The degree of

elitism can be controlled by varying the number of organisms copied between

the populations.

Extending GAs into the multiple objective domain was first undertaken by Fonseca

& Fleming (1993) who formulated a Multiple Objective GA (MOGA) employing fitness

ranking to produce a trade-off between competing objectives. Further multiple objective

implementations have been proposed, such as the NSGA-II by Deb (2001) which has the

advantage of being largely self-tuning. Both methodologies have been incorporated into the

library described herein.

3.2.1.2. Selection

Although, conventionally, a GA does not have a concept of gender in its representation of

organisms, it still possesses the notion of sexual selection in the initial selection phase of

operation in that organisms are competing against each other for the perquisite of

propagating themselves.

The process of selection determines, in some fashion, which of the individuals will

have some or all of their genetic material passed on to the next generation. The selection

scheme used by a GA seeks to give exponentially increasing selection to the fittest organisms

in the population, thus differentiating a GA from a random search technique.

Chapter 3: Genetic Algorithms

56 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

The "roulette-wheel" or proportional selection introduced by Holland (1975) and

refined by Goldberg (1989) is amongst the most common means of performing selection. It

is best visualised as a roulette wheel in which each slot on the wheel represents an organism

in the population. The width of the slot is proportional to the fitness of the corresponding

organism and thus the 'ball' is more likely to favour the fitter individuals in the population.

Conventionally, the implementation of the roulette wheel relies on the objective function

being configured for a maximization problem. It is a small matter to ensure that the function

correctly configures the roulette wheel for the minimization problems that are more common

in the water industry. A similar selection technique is proposed by Baker (1985) in which the

basis of the proportional selection is the rank an organism holds, in terms of fitness, within a

population.

Tournament selection (Goldberg et al., 1991) can be thought of as a form of ranked

selection as above. Instead of operating on the population as a whole, it functions by

selecting at random a number of individuals from the population and then comparing their

fitness. The fittest individual goes forward from the tournament to be one of the

contributing individuals to the recombination process. The tournament is repeated until

enough individuals have been selected to perform the recombination. One of the useful

attributes of tournament selection is that the selection pressure can be tuned easily by

modifying the size of the tournament: a smaller tournament promotes the likelihood that a

weaker member from the population will be selected.

3.2.1.3. Recombination

A GA seeks to evolve fitter solutions through some means of selective recombination of

parts of better, existing solutions. This mimics the “survival of the fittest” stratagem of

natural evolution in which the “fitter” solutions are predisposed to be more successful at

reproduction. This tends to lead to the removal of the less-fit individuals and an increase in

the fitness of the population as a whole. In Genetic Algorithms, this recombinative

operation is known as “crossover”.

Crossover, like selection, is one of the key traits of a Genetic Algorithm. Ordinarily,

it takes place on two organisms selected from the population and, conventionally, produces

two offspring organisms - although this is not necessarily the case. Each child is likely to be

different from its parents, unless its parents are identical, and yet they will each retain a

number of characteristics from their parents. Given that both parents are likely to have high

Chapter 3: Genetic Algorithms

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 57

fitness, since they prevailed in the selection process, there is a reasonable probability that the

one or both of the children may prove to be more fit than either parent is.

The most commonly used crossover methodologies for standard GAs are single and

two point crossovers in which one or two loci are selected on the parent gene and the genes

between the end and the locus (single point) or between the loci (two point) are transposed

to produce the two offspring. Syswerda (1989) introduced Uniform crossover in which the

two children are produced by selecting at random, for each gene locus, from which parent

the gene value should be copied. As with the other methodologies, the two resulting children

retain all of the genetic information from the parents – it having been transferred in part to

one child or the other.

3.2.1.4. Mutation

To ensure that the solutions in a population do not become stuck at a non-optimal solution,

a randomization element is introduced. This stochastic alteration is known in GAs as

"mutation". The purpose of the mutation component of the algorithm is to permit local

search around a given solution. Various forms of mutation are commonly used, varying

from those which permute individual bits of binary strings, randomize variables with their

domain or adjacency operators that “nudge” gene values to adjacent values.

3.2.1.5. Replacement

After crossover, and potentially mutation, the final stage of the GA operation is

Replacement. This operation applies primarily to Steady State GAs, since generational GAs

populate wholly new populations, to form each successive generation - making the

application of a replacement strategy irrelevant. Instead, the children produced in a

Generational GA, following recombination, are automatically promoted to the new

population. Such GAs tend to promote genetic diversity as a result.

The newly formed offspring have to be incorporated into the existing population in some

fashion. There are many potential strategies, including substitution of parents, replacement

of the weakest member of the population, etc. The choice of replacement strategy is dictated

considerably by the nature of the algorithm being employed, be it steady state or generational

and by the solution space itself.

Rather than explicitly control the replacement strategy, some GA implementations

seek to place a measure of control on it by introducing a probability factor on the crossover

Chapter 3: Genetic Algorithms

58 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

operation. This means that the parents pass through the crossover stage unaltered and,

unless mutated, will find their way back into the population unaltered.

A number of mechanisms can be used to implement this replacement:

Replacement of Parents

This mechanism is, perhaps, closest to the biological analogue. Traditionally, organisms in

GAs do not have a concept of age. However, by causing children to replace their parents

this can be simulated to an extent. Ordinarily, this would only be done if they prove to be

fitter than their parents are.

Replace Weakest

In this strategy, both children are added to the population and then the two weakest

organisms are removed. This has the effect that if either or both of the children are weaker

than the weakest existing member of the population then they will be eliminated. If they are

stronger then an existing member is sacrificed, instead. This mechanism has the effect of

rapidly excluding the weakest members of the population whilst converging on the very

strongest members.

Replace First Weaker

Each child is compared with the existing members of the population until a weaker organism

is encounters, whose place it then takes in the population. In the event that no weaker

organisms are found (i.e. that the child is weaker than the weakest member) then that child

becomes extinct. This promotes less rapid convergence, being less destructive than the

Replace Weakest strategy with respect to the weaker members who may still retain valuable

genetic information.

Replace By Rank

The 'Replace by Rank' mechanism operates by ranking the organisms within the population

according to their fitness values. The newly produced children then replace the existing

organism which has the rank that they would have, had they been part of the population. If

there is no such rank in the population then they are eliminated.

3.2.2. Solution Representation

In order for a GA to function there must be some mechanism to allow the computation of

the fitness of an individual for the problem at hand. The term genotype refers to the genetic

Chapter 3: Genetic Algorithms

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 59

information stored in the genome of an individual organism. In order to make use of this

information, it has to be decoded into the phenotype – the “real-world” interpretation of this

information, if you will. The decoding process used depends on the representation used for

the genotype.

3.2.2.1. Genotype Representation (Encoding)

Conventionally, Genetic Algorithms have used strings of binary digits to implement the

genotype as in Figure 3-2. This figure represents four genes each of which is comprised of

four binary digits (bits) which allow the representation of 16 (24) different values. The

mechanism for encoding and decoding these values is covered in the following section.

Figure 3-2: Example of a chromosome using binary strings

Two other commonly used forms of alternate generic encoding are real numbers and

integer (or ordinal) values. Here, in contrast to the binary representation, the values required

are stored directly in the chromosome as evidenced by Figure 3-3 which illustrates an integer-

based chromosome encoding the save gene values (alleles) as in Figure 3-2.

Figure 3-3: Example of a chromosome using integer values (same values as Figure 3-2)

Binary strings

The bit string encoding used for the chromosomes described above is one of the genetic

representations (allelomorphs) that can be used. Figure 3-4 shows the structure of a

conventionally encoded binary string with a value of 1,024 + 512 + 256 + 128 + 64 + 16 + 4

= 2004. The notations MSB and LSB indicate the Most and Least Significant Bit of the

binary string respectively, referring to the influence that these bits have on the total value

represented.

0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Gene 1 Gene 2 Gene 3 Gene 4

0 7 13 4

G
ene 3

G
ene 4

G
ene 2

G
ene 1

Chapter 3: Genetic Algorithms

60 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 3-4: Conventional Binary String

Gray coding

Gray coding (Gray, 1953) is a means of recoding the binary string such that successive values

of the phenotype are guaranteed to be represented by binary strings that differ in only a

single bit position. There are many such Gray codes that can be developed for a given bit

length - the type of coding implemented in this library is “binary-reflected” as this is quite

simple to implement in an efficient manner. In this technique, with each increasing integral

value, the next binary string representation is derived by flipping the least-significant bit that

will produce a binary string that has yet to be encountered.

Value 0 1 2 3 4 5 6 7
Normal 0000 0001 0010 0011 0100 0101 0110 0111
Gray 0000 0001 0011 0010 0110 0111 0101 0100

Value 8 9 10 11 12 13 14 15
Normal 1000 1001 1010 1011 1100 1101 1110 1111
Gray 1100 1101 1111 1110 1010 1011 1001 1000

Table 3-1: Comparison of conventional binary strings and Gray-coded binary strings for 4-bit values

Table 3-1 illustrates the “adjacency property” (Goldberg, 1989) in which adjacent

values of Gray-coded binary strings differ only by a single bit value. This has been shown

(Michalewicz, 1992) to improve the performance of the mutation operation as it allows a

more effective exploration of a local-search space. For example, to progress from a value of

7 to 8 with a conventional representation would require the flipping of four bits – clearly an

unlikely mutation. However, using the Gray-coded representation such a change – as with

any other in the sequence – would result from the modification of a single bit. With higher-

order binary string length, this issue becomes more apparent.

Real Number Encoding

This encoding strategy uses chromosomes whose genes are not represented by binary digits -

rather they use real numbers. The principal advantage of such a representation is that the

decoding stage to obtain the phenotype is unnecessary since the genes are already in the form

that they are required. This has a clear performance advantage for the algorithm, reinforced

0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0

MSB LSB

1 2 4 8

16

32

64

128

256

512

1,024

2,048

4,096

8,192

16,384

32,768

Chapter 3: Genetic Algorithms

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 61

by the fact that floating-point genes are far easier to manipulate than their bit-string

equivalents and occupy significantly less memory space. Janikow & Michalewicz (1991)

found experimentally that such real number encodings vastly outperformed their binary

equivalents both in computation performance but also in their flexibility for the

implementation of operators that function as vectors in the solution space itself.

Real encodings have significant benefit to the engineering design optimization field as

there is typically a large number of parameters to describe the design options that can be

chosen, as well as being more intuitive in the first place. As the size of the solution space is

generally extremely large, the use of bit-strings for representing the solutions becomes

prohibitive in terms of performance.

The mechanisms of crossover and mutation that are normally associated with the bit-

string representation are appropriate for use with real number encoding. However, the

representation allows new forms of crossover to be considered, such as averaging the value

in each parent, weighted averages, weighting each child to a particular parent.

In a similar fashion, the mutation operations can be optimized for use with real

numbers. Rather than simply replacing a gene with a newly generated random version, it is

possible to add or subtract from the existing value of the gene or average the value with a

random number. For the purposes of Water Distribution System design, however, real

encodings are of lesser value – given that the decision variables are typically installation pipe

diameters, tank sizing and the like: these things being more commonly represented as discrete

values to reflect the reality of the “off-the-shelf” sizes of these elements. However, they find

some utility in applications such as network calibration in which friction factors of individual

pipes are modified to produce a match between observed and modelled pressures and flows.

Ordinal/Integral Value Encoding

Where a problem can be described in terms of a discrete number of choices, as is often the

case in design optimization an ordinal encoding can be appropriate. Within an organism's

objective function, the decoding of these ordinals often takes place using a look-up table.

Ordinal encoding is also well suited to combinatorial optimization problems such as

the oft-cited Travelling Salesman Problem (Cormen et al., 2001). In this problem, a salesman

is required to visit a number of towns and return home without travelling to any town more

than once. The aim of the optimization is to minimize the distance travelled by the salesman.

Chapter 3: Genetic Algorithms

62 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Whilst this problem can be encoded using a conventional bit-string arrangement, it is

more intuitive to represent it as a chromosome of ordinal numbers, where each ordinal

represents an individual town. When using this representation, however, it is necessary to

use crossover and mutation operators that are aware of this form of encoding. The use of

the conventional crossover and mutation operators are highly likely to result in the creation

of invalid (illegitimate?) children. An ordinal chromosome must not contain duplicates and

must have every ordinal represented at some locus of the chromosome.

3.2.2.2. Decoding

The first step is to decode the chromosome. The genome of the organism which is

comprised, in this example, of bit-strings need have no implicit relationship to the values they

relate to with respect to the problem - it is simply the organism’s genetic material. The

phenotype of a genome describes what the values of the genes actually mean and represents,

therefore, the parameters used in determining the fitness of an organism. Thus decoding is

the process of mapping the genome (or genotype) onto the phenotype.

3.2.2.3. Evaluation

Once the chromosome has been decoded, the calculation part of the objective function is

responsible for plugging the decoded phenotype values into some form of function to map

these parameters to a positive number, the fitness. The mapping function need not be a

simple mathematical function, indeed in the case of hydraulic network optimization, the

function in question is a complete hydraulic solver package, which produces a series of values

for pressures and flows for given parts of the network that are further used to assess the

fitness of an organism. In order for acceptable performance it is important that the

calculation part of the objective function must be as swift as possible given that this function

will be executed many tens of thousands of times during the runtime of an algorithm.

Indeed, it is this speed that determines whether many problems are suitable candidates for

solution through GAs.

3.3. Implementation

The Centre for Water Systems at the University of Exeter had previously developed genetic

algorithm applications using a public-domain library, ‘libGA’ (Corcoran, 1993). This library

was written in the C language (Kernighan & Ritchie, 1988) and was restricted to single-

objective, genetic algorithm applications only. The author of this library had made a

Chapter 3: Genetic Algorithms

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 63

concerted effort to ensure that the library was fully extensible through a complicated series of

references to procedural variables. Such a structure allowed for the straightforward

interchange of a number of different components - however, no mechanism was in place to

promote code-reuse between components or to provide for extensibility of the library.

Prior to exposure to libGA, a number of design criteria had been identified as being

desirable for creating a generic framework for implementing GA applications. Among these,

which were not available with the libGA library, were:

• heterozygous chromosomes - where individual genes code for different

phenotypical variables and the chromosomes themselves may have variable

structure or length between the individuals in a population.

• heterogeneous chromosomes to support the above where genetic

representation may vary according to that which is most appropriate for

modelling the phenotype involved.

• parallelization of the execution of GAs.

These requirements and the absence of object-orientation from this C-based library

led to its rejection as a basis for ongoing development.

At the beginning of the development of the GA software presented in this thesis,

applications being developed in the Centre for Water Systems at the University of Exeter,

were using the Delphi programming environment (Borland International, 1997), which is

based on an object-oriented version of the Pascal language. In order to incorporate

Corcoran’s library into a controlling program written in Delphi, it would have been necessary

to encapsulate the GA library within a Dynamic Link Library (DLL) written in C adding

significantly to the complexity of employing the library. At the time, it was understood that

this would effectively preclude the use of the library on any other platform other than

Microsoft Windows operating systems running on Intel processors, as this was the only

platform for which Delphi produced applications. However, several years later, Borland

began producing versions of Delphi that would compile to Intel-based Linux as well as

Microsoft’s .NET platform. Integrating a C++ (Stroustrup, 1997) library such as GAlib

would have involved the creation and maintenance of a “wrapper” to interface with the

object-oriented C++ routines.

After many years of development, however, a decision was taken to improve the

compatibility and portability of the library and all of the legacy Pascal code was replaced with

Chapter 3: Genetic Algorithms

64 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

ANSI-compliant C++ code using the functionality provided by the C++ Standard Template

Library (Stepanov & Lee, 1994) and the Boost extension library (www.boost.org). This led to

a “forking” of the codebase in which other developers continued to extend the Pascal

implementation – notably Engelhardt et al. (2002) who added Fonseca and Fleming’s (1993)

MOGA multi-objective optimization capability to the basic GA – testament to the flexibility

of the original design was that this was accomplished with the minimum of structural changes

to the library.

3.3.1. Algorithm Modularity

The processes that constitute the genetic algorithm are themselves represented by individual

classes, known as Extensions, derived from a single parent. This class is primarily tasked

with providing hooks that can be accessed by the user interface to query the status and to

configure a given extension.

The basic genetic algorithm class contains placeholders for five Extension-derived

objects. These represent Selection, Crossover, Mutation and Replacement. This and the

other basic class relationships can be seen illustrated in Figure 3-5.

A virtual method configure is introduced which may be implemented by descendant

classes if required. This would ordinarily be used to present interactive interface elements to

the user to configure the operation of this extension. The user interface may query whether

configuration is possible by examining the public Configurable property, which returns false by

default. Other public properties allow the interface to retrieve information about the type of

extension, author, version number and a description of the extension's characteristics for

display in the user interface.

Chapter 3: Genetic Algorithms

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 65

Figure 3-5: Outline class diagram for GA library implementation (Pascal version)

Selection

The abstract selection class introduces an abstract, virtual method select which must be

overridden in all descendents of this class - failure to do so will result in a compilation error.

This function is called by the algorithm implementation as the first step in the GA. The

derived selection objects operate by querying the current crossover object as to the number

of parent organisms required for its operation. This number of parents is then selected,

according to the implementation of the selection process and references to the parents are

stored in the GA's Family member – a repository in which parents and their offspring are

stored during the recombination and evaluation process and prior to replacement into the

population.

OSEAOrganism

A

2..n
2..n

OSEABitString

OSEAPermutation

OSEAGroup

OSEAIntegerGene

OSEARealGene

OSEAReplacer
Random
OSEAReplacer
ByRank
OSEAReplacer
FirstWeaker
OSEAReplacer
Weakest

OSEAMutatorNone

OSEAMutatorRandom
OSEAMutatorRandom
ByGene
OSEAMutatorRandom
NonUniform
OSEAMutatorRandom
NonUniformByGene

OSEACrossover
None
OSEACrossover
Randomize
OSEACrossover
SimpleOnePoint
OSEACrossover
UniformRandom
OSEACrossover
Arithmetic
OSEACrossover
ArithmeticNonUniform

OSEASelector
Tournament
OSEASelector
UniformRandom
OSEASelector
RankBiased
OSEASelector
Roulette
OSEASelector
SRWSR

Application specificApplication specificApplication specific

Application specificApplication specificApplication specificApplication specificApplication specificApplication specific

Application

OSEA

1

OSEAMigrator

A

1

OSEACrossover

A

1

A

OSEAReplacer

1

OSEASelector

A

1

OSEAPopulation
Configuration

A

1

OSEAGenome
1

OSEANetwork
ThreadManager

OSEAMultiCriteria
ThreadManagerOSEAThread

Manager
0..1

A

OSEARealBounded
Gene

OSEAIntegerBounded
Gene

OSEABitGene

OSEAGrayBitString

OSEABoundedBitString OSEABoundedGray
BitString

OSEA
Chromosome

A

0..n

OSEAThread

{active}

1..n1

Application specificApplication specificApplication specificApplication specificApplication specificApplication specific

GANETGANET

SantoriniSantorini

0..n

OSEA
Allelomorph

0..n A

OSEAAlgorithm

A

1

OSEAPopulation

1

OSEAGASteadyState

OSEAGAGenerational

OSEAGA

OSEAGAGenerational
Elitist

OSEAEvolution
Algorithm

A

OSEAFamily1

OSEAMutator

A

1

A

OSModel

0..1

OSEAOrganism

A

2..n
2..n OSEAOrganism

A

2..n

OSEAOrganism

A

OSEAOrganismOSEAOrganism

AA

2..n
2..n

OSEABitString

OSEAPermutation

OSEAGroup

OSEABitString

OSEAPermutation

OSEAGroup

OSEABitString

OSEAPermutation

OSEAGroup

OSEAIntegerGene

OSEARealGene

OSEAIntegerGene

OSEARealGene

OSEAIntegerGene

OSEARealGene

OSEAReplacer
Random
OSEAReplacer
ByRank
OSEAReplacer
FirstWeaker
OSEAReplacer
Weakest

OSEAReplacer
Random
OSEAReplacer
ByRank
OSEAReplacer
FirstWeaker
OSEAReplacer
Weakest

OSEAReplacer
Random
OSEAReplacer
ByRank
OSEAReplacer
FirstWeaker
OSEAReplacer
Weakest

OSEAMutatorNone

OSEAMutatorRandom
OSEAMutatorRandom
ByGene
OSEAMutatorRandom
NonUniform
OSEAMutatorRandom
NonUniformByGene

OSEAMutatorNone

OSEAMutatorRandom
OSEAMutatorRandom
ByGene
OSEAMutatorRandom
NonUniform
OSEAMutatorRandom
NonUniformByGene

OSEAMutatorNone

OSEAMutatorRandom
OSEAMutatorRandom
ByGene
OSEAMutatorRandom
NonUniform
OSEAMutatorRandom
NonUniformByGene

OSEACrossover
None
OSEACrossover
Randomize
OSEACrossover
SimpleOnePoint
OSEACrossover
UniformRandom
OSEACrossover
Arithmetic
OSEACrossover
ArithmeticNonUniform

OSEACrossover
None
OSEACrossover
Randomize
OSEACrossover
SimpleOnePoint
OSEACrossover
UniformRandom
OSEACrossover
Arithmetic
OSEACrossover
ArithmeticNonUniform

OSEACrossover
None
OSEACrossover
Randomize
OSEACrossover
SimpleOnePoint
OSEACrossover
UniformRandom
OSEACrossover
Arithmetic
OSEACrossover
ArithmeticNonUniform

OSEASelector
Tournament
OSEASelector
UniformRandom
OSEASelector
RankBiased
OSEASelector
Roulette
OSEASelector
SRWSR

OSEASelector
Tournament
OSEASelector
UniformRandom
OSEASelector
RankBiased
OSEASelector
Roulette
OSEASelector
SRWSR

OSEASelector
Tournament
OSEASelector
UniformRandom
OSEASelector
RankBiased
OSEASelector
Roulette
OSEASelector
SRWSR

Application specificApplication specificApplication specificApplication specificApplication specificApplication specificApplication specificApplication specificApplication specific

Application specificApplication specificApplication specificApplication specificApplication specificApplication specificApplication specificApplication specificApplication specificApplication specificApplication specificApplication specificApplication specificApplication specificApplication specificApplication specificApplication specificApplication specific

ApplicationApplication

OSEA

1

OSEA

1

OSEAMigrator

A

1

OSEAMigrator

A

OSEAMigrator

AA

1

OSEACrossover

A

1
OSEACrossover

A

OSEACrossoverOSEACrossover

AA

1

A

OSEAReplacer

1

A

OSEAReplacer

AAA

OSEAReplacer

1

OSEASelector

A

1

OSEASelector

A

OSEASelectorOSEASelectorOSEASelector

AA

1

OSEAPopulation
Configuration

A

1 OSEAPopulation
Configuration

A

OSEAPopulation
Configuration

OSEAPopulation
Configuration

AA

1

OSEAGenome
1

OSEAGenome
1

OSEANetwork
ThreadManager

OSEAMultiCriteria
ThreadManager
OSEANetwork
ThreadManager

OSEAMultiCriteria
ThreadManager
OSEANetwork
ThreadManager

OSEAMultiCriteria
ThreadManagerOSEAThread

Manager
0..1

A

OSEAThread
Manager

0..1 OSEAThread
Manager

0..1

AA

OSEARealBounded
Gene
OSEARealBounded
Gene

OSEAIntegerBounded
Gene

OSEABitGene

OSEAIntegerBounded
Gene

OSEABitGene

OSEAGrayBitString

OSEABoundedBitString

OSEAGrayBitString

OSEABoundedBitString

OSEAGrayBitString

OSEABoundedBitString OSEABoundedGray
BitString
OSEABoundedGray
BitString

OSEA
Chromosome

A

0..n
OSEA

Chromosome

A

OSEA
Chromosome

AA

0..n

OSEAThread

{active}

1..n1

OSEAThread

{active}

OSEAThread

{active}

OSEAThread

{active}

1..n1

Application specificApplication specificApplication specificApplication specificApplication specificApplication specific

GANETGANET

SantoriniSantorini

Application specificApplication specificApplication specificApplication specificApplication specificApplication specific

GANETGANET

SantoriniSantorini

Application specificApplication specificApplication specificApplication specificApplication specificApplication specific
Application specificApplication specificApplication specificApplication specificApplication specificApplication specific

GANETGANET

SantoriniSantorini

0..n

OSEA
Allelomorph

0..n A 0..n

OSEA
Allelomorph

0..n 0..n

OSEA
Allelomorph

0..n AA

OSEAAlgorithm

A

1

OSEAAlgorithm

A

OSEAAlgorithmOSEAAlgorithmOSEAAlgorithm

AA

1

OSEAPopulation

1

OSEAPopulation

1

OSEAGASteadyState

OSEAGAGenerational

OSEAGA

OSEAGAGenerational
Elitist

OSEAGASteadyState

OSEAGAGenerational

OSEAGASteadyState

OSEAGAGenerational

OSEAGA

OSEAGAGenerational
Elitist

OSEAEvolution
Algorithm

A

OSEAEvolution
Algorithm

OSEAEvolution
Algorithm

OSEAEvolution
Algorithm

AA

OSEAFamily1 OSEAFamily1

OSEAMutator

A

1

OSEAMutator

A

OSEAMutatorOSEAMutator

AA

1

A

OSModel

0..1

A

OSModel

AA

OSModel

0..1

Chapter 3: Genetic Algorithms

66 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Crossover

The Crossover class implements the core functionality required for performing the crossover

operation. A virtual method cross is introduced which performs the crossover on the parent

organisms found in the GA's Family member. This method should be overridden in

descendent classes, although this is not required - by default the children produced by the

cross method are identical copies of their parents. The cross method is the second method

called by the GA algorithm class during its execution cycle.

The base crossover class also exposes two properties for the use of other Extension

classes. These are used to indicate how many parent organisms are required for the

crossover and how many children are produced as a result. As these attributes are

implemented using properties, it is possible to construct a descendent crossover class that

dynamically varies the number of parents/children it manipulates. The mechanism of these

variations is hidden from the other extensions, which depend on this information.

In addition, a number of protected tools are provided for descendent crossover

classes. These are intended to provide a level of abstraction from the type of chromosome

representation being used (indirected or expansive map). Although the genome class itself

implements this abstraction, some operations, particularly those that iterate over the genome

structure, are more efficient with one representation than the other. Consequently,

implementing a further level of abstraction in the crossover class, which is mostly concerned

with iteration, allows the derivation of cross methods, which have variant implementations

depending on which representation is being used. Among these methods are functions to

determine a valid crossover point and most importantly, to exchange the genes between the

parent's genomes over a given range.

Mutation

Support for mutation is represented by the Mutator class. This class introduces a single

virtual method, mutate, which performs the implemented mutation operation on the child

organisms present in the GA algorithm class's Family member. By default, this method does

nothing, leaving the children unmodified. The mutate method is the third called by the GA

algorithm class during its execution cycle. Ordinarily, however, this execution is conditional -

derived mutate methods should reference the GA algorithm class's MutationProbability

property and determine, using a random number, whether to proceed with the mutation.

Notwithstanding this, this behaviour has not been made obligatory,

Chapter 3: Genetic Algorithms

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 67

A further method actsOn is provided for internal use. This method takes a gene or a

chromosome as a parameter and returns true or false depending on whether the

implemented mutation method is able to mutate the referred object.

Replacement

The abstract replacement class, Replacer, introduces a single abstract, virtual method replace

which according to some scheme, inserts the children present in the GA algorithm class's

Family member into the population referenced by the GA. In the case of the Generational

GA implementation, the replacement technique is not specified as child organisms are always

incorporated in the new population. The replace function of this class is normally the last to

be called by the execution cycle of the algorithm.

3.3.2. Genetic Representation

3.3.2.1. Chromosome

This class is the immediate ancestor for all genetic elements that group genes together. It

may be used on its own, simply to group related genes, or in the case of derivatives, to add

additional functionality. Its most important descendents are those concerned with

implementing bit strings and ordinal combinatorial optimization strings.

The gene() property introduced in this class allows the retrieval of a gene from a given

locus in the chromosome. The implementation of this property is recursive, thus if gene n is

to be found in a nested chromosome it will be correctly returned.

Also prototyped at this level is the “repair” functionality, implemented virtually.

Repair functions are applied to a chromosome, after recombination, in order to ensure that

the decision variable values are valid. Whilst having no effect at this point in the hierarchy,

this method is used in derivative chromosome types, particularly those for permutation

optimization in which duplicates within the chromosome are not permitted and need to be

removed where generated during recombination. By devolving this to this level, it is possible

to specify repair mechanisms for small parts of the genome, rather than operating across the

entire genome.

3.3.2.2. Genome

The genome class is a specialized derivation of the chromosome class. It differs from the

latter in that it transparently maintains the expansive map of the chromosome if that

Chapter 3: Genetic Algorithms

68 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

representation is being used. It also introduces a length property that can be queried to

determine the total length of the chromosome in genes.

3.3.3. Third Party Extensions

Since the initial development of the Genetic Algorithm library, a number of researchers have

exploited the extensibility afforded by the library to add significant new functionality.

To bring the GA library to a wider audience of developers within the Centre for

Water Systems, the library was encapsulated as a custom C++Builder Component by

Edward Keedwell. Offering a “plug-in” optimization component for use in the C++Builder

environment, this development makes the production of a simple optimization application a

matter of using the Builder user interface to drag a component onto a window and then to

configure the parameters of the optimization using the interactive dialog boxes provided.

Additional components are provided to provide reporting functionality including a

specialized charting component for graphing of the progress of the algorithm.

In this form, the library has been used in a variety of research and commercial

projects as well as by undergraduate and postgraduate projects.

3.4. Conclusions

A library for the development of evolution algorithms is presented. This library

makes extensive use of object-oriented programming techniques to implement an extensible,

open architecture for genetic algorithms and related optimization techniques. The modular

nature allowing for the extension of all components of the algorithm is described and is

demonstrated through the implementation of specific algorithm implementations. The final

state of the library is illustrated in Figure 3-7 for single objective algorithms and Figure 3-8

for multiple objective algorithms.

Chapter 3: Genetic Algorithms

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 69

Figure 3-7: GA methodology: final design (single objective)

Chapter 3: Genetic Algorithms

70 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 3-8: GA methodology: final design (multiple objective)

Chapter 3: Genetic Algorithms

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 71

The fitness for purpose of this library and its constituent methodologies is

demonstrated through its deployment in a number of research applications covering a

number of hydroinformatic subject areas, e.g. Fullerton et al. (2002) (storm water flow

modelling and optimization), Savić et al. (2000) (optimal design of expansion to a large-scale

hydraulic network) and Engelhardt et al. (2002) (whole-life-costing for water distribution

network management). In addition, the software has been used in a number of generic,

commercial software applications. GAnet (Morley et al., 2000) and GAcal (Walters et al.,

1998) were sold by Ewan Associates as bespoke software applications for

design/reinforcement and calibration of water networks, respectively. More recently, the

library has provided the optimization functionality in SEAMS’ WiLCO software (Engelhardt

& Skipworth, 2005) used for the optimization of asset rehabilitation strategies to minimize

whole-life-costs in water distribution and sewer networks.

72 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 73

Chapter 4. Extending the GA methodology

4.1. Introduction

Evolution algorithms are particularly sensitive to unexpected performance impediments due

to the tightly iterative nature of their design. Thus, efficient implementation of the

algorithmic structures themselves is essential. Even small inefficiencies can be magnified

when looped repetitively. Several novel techniques have been investigated to improve the

computational performance of generic genetic algorithms. The representations of binary

strings have been explored in this thesis and a novel representation combining attributes of

the integer representation is proposed as a contribution. In addition, techniques for caching

decoded values and entire solutions are introduced along with mechanisms for directing the

mutation of individuals during an optimization. Where appropriate, fragments of C++ or

pseudo-code have been incorporated to help illustrate the implementation of the techniques

discussed.

4.2. Binary String Implementation

4.2.1. Introduction

Classically, binary strings – strings of bits (binary digits) – have been used in Genetic

Algorithms to represent the chromosomes of the population (Goldberg, 1989; Michalewicz,

1992). Whilst the binary representation is simple to manipulate and understand, it can suffer

in terms of computational efficiency because it is both a larger structure to manipulate and

typically requires encoding and decoding into the specific domain required by the evaluation

function of the GA.

A variety of representations is examined by the Author for implementing the genes

(genotypes) and their relative efficiency in computational terms established. A novel

representation that combines characteristics from the binary string and integer

representations is introduced in this thesis and contrasted with the established

representations.

4.2.1.1. Genotype Representations

This section describes the basic binary string representations utilised in the thesis.

Thereafter, the remainder of the chapter describes novel techniques that have been devised

to improve the performance of such representations.

Chapter 4: Extending the GA methodology

74 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Binary strings

Binary strings are the conventional representation for Genetic Algorithms. The process for

encoding a bit string is as follows:

void binary string::setValue(int a_Value)
{
 for (int loop=0; loop < m_BitLength; ++loop)
 {
 m_Bit[loop]= a_Value & 1;
 a_Value >>= 1;
 }
}

Figure 4-1: C++ code fragment for encoding a binary string

The process is performed in reverse to decode the bit string. It should be clear from

the description of the encode process that performing the encode (Figure 4-1) or decode

(Figure 4-2) cycle entails significant expenditure of processor if the process is repeated often -

as is the case in a genetic algorithm. Consequently, these routines are ideal for optimization

in assembly language.

int binary string::value()
{
 int result= 0;
 int multiplier= 0;
 for (int loop= 0; loop < m_BitLength; ++loop)
 {
 result+= multiplier * m_Bit[loop];
 multiplier <<= 1;
 }
}

Figure 4-2: C++ code fragment for decoding binary string

Gray coding of binary strings

To facilitate the (transparent) use of Gray-coded binary strings in the GA library a

derived class of the standard binary string is provided. This class overrides the getValue and

setValue methods of the binary string class to perform the Gray encoding and decoding

without the end-user or other constituents of the algorithm being aware of the change. The

setValue function has been optimized by the Author for C++ implementation and relies on a

transformation of the incoming value to perform the Gray encoding.

bool grayBinary string::setValue(int a_Value)
{
 int newValue= a_Value ^ (a_Value >> 1);
 binary string::setValue(newValue);
}

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 75

Figure 4-3: C++ code fragment for encoding a Gray-coded binary string

The encoding shown in Figure 4-3 permutes the incoming phenotypic value a_Value

and produces a modified value by performing the XOR operation (see Table 4-1)on a_Value

against itself when integer divided by 2.

Value A Value B Result
0 0 1
1 0 1
0 1 1
1 1 0

Table 4-1: Binary eXclusive OR (XOR) operation

The C++ ‘>>’ operation above notates a bitwise right shift of 1 binary place which

has the effect of integer dividing by two – any remainder is discarded implicitly. This process

is illustrated in the following where the example string (Figure 4-4) has a value of 1,024 + 512

+ 256 + 128 + 64 + 16 + 4 + 1 = 2005.

Figure 4-4: Binary string prior to right shift

Figure 4-5 shows the same string following a right shift of one place in which each bit has

moved one place to the right. The end-most bit was shifted out of the string and has been

discarded. The resulting value is 512 + 256+ 128+ 64 + 32 + 8 + 2 = 1002 –the integer

division by two of the original.

Figure 4-5: Binary string following right shift

 The C++ ‘^’ operator performs the XOR. Once the modified value is calculated, it

is passed to the inherited setValue method to be encoded in the binary string in the normal

fashion. Referring to Table 3-1 it can be seen that when using the binary-reflected means of

Gray coding, a value of 10 (nominally 10102) should be encoded as 11112 equivalent to a

0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0

MSB LSB

1 2 4 8

16

32

64

128

256

512

1,024

2,048

4,096

8,192

16,384

32,768

0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1

MSB LSB

1 2 4 8

16

32

64

128

256

512

1,024

2,048

4,096

8,192

16,384

32,768

Chapter 4: Extending the GA methodology

76 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

decimal value of 15. Following the operation outlined in Figure 4-3 gives 10 XOR 5 = 15, as

required.

Decoding a Gray-coded value is, however, less straightforward than encoding and

requires some iteration:

int grayBinary string::getValue()
{
 int result= binary string::getValue();
 int mask= result >> 1;
 while (mask > 0)
 {
 result ^= mask;
 mask >> 1;
 }
 return result;
}

Figure 4-6: C++ code fragment for decoding a Gray-coded binary string

One of the properties of the binary-reflected Gray encoding is that the most-

significant bit remains the same between the encoded and decoded representations - thus the

decode routine can start on the second-most-significant bit. A dry run through this code is

shown in Table 4-2 illustrating the reverse of the example above in which a Gray-coded

genotype of 15 (11112) is converted back to the phenotype of 10 (10102).

Program step Result Mask
int result= binary string::getValue(); 15 11112 undefined undefined

int mask= result >> 1; 15 11112 7 01112
while (mask>0) 15 11112 7 01112
result ^= mask; 8 10002 7 01112

mask >> 1; 8 10002 3 00112
result ^= mask; 11 10112 3 00112

mask >> 1; 11 10112 1 00012
result ^= mask; 10 10102 1 00012

mask >> 1; 10 10102 0 00002

return result; 10 10102 0 00002

Table 4-2: Example dry run for decoding a Gray-coded binary string

As with the conventionally encoded genotype, storing the value of the binary string –

post Gray-decoding – would be expected to render a performance improvement.

A number of different implementations for representing binary strings have been

investigated by the Author to assess their relative benefits with respect to performance and

memory requirements. The details of implementation are specifically tailored to C++

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 77

representations. However, many of the principles involved remain relevant when considered

across operating system platforms as a whole.

4.2.2. Conventional Representations

1 bit per bit

In terms of memory efficiency, it is obvious that the most economical means of representing

a string of bits is to represent each bit as a single bit. However, modern operating systems do

not permit the access of single bits in their own right – restricting the developer to the byte as

the smallest unit of addressable memory. Thus, it is necessary to employ “tricks” to achieve

such representations by using classes to pack and unpack bits from a byte-wise

representation. Two such representations have been evaluated. However, since much of the

analysis of these representations is specific to C++, discussion of the differences in their

implementation is not presented here.

1 byte and 2 bytes per bit

In C++, the one byte per bit representation is correctly implemented using the unsigned char

type, which, at first sight, seems rather counterintuitive, given that this is the datatype used to

store a textual character. However, this is also the correct type for an integral variable that

can take on the values in the range 0 to 255. These two types were included in the analysis

for completeness.

1 word per bit

The most straightforward representation that can be used is one in which an entire processor

word (i.e. 32 bits under most current operating systems) is used to represent a single bit in the

string. Whilst this arrangement is the most expensive in terms of memory requirement, it

should theoretically perform quickest because it is, by definition, using the processors native

unit of memory access.

STL implementation

The Standard Template Library (STL) is an integral part of the C++ language and provides a

number of simple containers, algorithms and other data structures to accelerate development

in C++. Unusually, for a library, the STL is a specification of how an implementation should

behave rather than an implementation in its own right. Compiler developers are free to

choose whether to use an existing STL implementation or to provide their own. The result

Chapter 4: Extending the GA methodology

78 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

of this is that highly optimized STL implementations are available for most compilers and

platforms.

Using the STL container, vector<bool>, it is possible to implement a bit-string using 1

bit per pixel. vector<bool> achieves this by applying bitwise operators to set individual bits in a

byte and is atypical because this means of access violates several of the principles of STL

containers. The use of bitwise operators involves a small, but tangible, processing overhead

to each read and write access of the binary string.

Boost implementation

“Boost” is a third-party library that extends the basic STL containers, adds vital platform-

independent support for common development paradigms and can be considered a

repository for candidate code for the STL itself. Boost has come about primarily as a result

of the lengthy times involved in ratifying changes to the STL proper.

As well as vector<bool> the STL has a container called bitset, which allows bitwise

operations to be applied to the binary string without needing to decode it first and has useful

functions to directly translate binary strings to integers and vice-versa. Unfortunately, the

implementation of bitset requires its size to be known at compile time - rendering it unsuitable

for generic GA applications with variable chromosome lengths. Boost, however, includes a

dynamic_bitset container, which overcomes this limitation.

4.2.3. Hybridized integer gene

Binary string gene representations in genetic algorithms are traditionally viewed as being

inefficient in terms of performance because of the additional processing required to encode

and decode values as well as overheads incurred in the storage and recombination of large

data structures, as described in 3.2.2.1.

Since integer values are mapped directly to binary digits by the processor itself, it

makes little sense to recreate the same representation for our own purposes. Instead, by

using modified crossover and mutation operators which effectively act on the binary

representation of the gene value, it is possible to manipulate integer values as binary strings

with all the attendant advantages of speed in manipulating integer values as well of those of

schema preservation from binary strings – thus producing a hybrid between the two

techniques. The sole disadvantage of this representation is that the maximum length of the

gene is limited to the length of the integer representation in the operating system/processor –

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 79

nominally 32 bits. Clearly, though, as this still allows each gene to take on over 4.2 billion

values, this should not be regarded as a significant constraint. This approach, as shown below

is very close in performance to a pure integer-based approach, but maintains the crossover

performance of a binary string. In addition, many of the operations undertaken translate

directly to the processor’s own microcode acting on its registers maximizing the performance

benefit accrued.

4.2.3.1. Crossover representation

The crossover and mutation operations take the form of bitwise operators, which have the

advantage of being directly supported by the floating-point processor in hardware. Binary

strings are represented with a sequence of bits, each one corresponding to a power of 2. The

value of a binary string is computed by summing the power of 2 represented by each bit that

is set. Conventionally, binary strings are represented right-to-left from the Least Significant

Bit to the Most Significant Bit to conform to our own decimal numbering system. However,

in hardware, the strings are normally oriented in reverse.

In the case of crossover – as in all of the representations surveyed here – whole genes

are copied en masse. Partially recombined genes are dealt with as follows:

Given two parent genes [a] and [b] of values 8,221 and 392:

Figure 4-7: Parent gene a (value= 8,221)

Figure 4-8: Parent gene b (value= 392)

Performing a crossover within the resulting gene will result in child genes as those

seen in Figure 4-9. This particular crossover is the result of a crossover at the eighth locus in

the gene.

Figure 4-9: Expected child outputs from crossover

These recombined chromosomes give post-crossover values of 8,328 and 285

respectively. Crossover operators on binary strings conventionally swap each bit, as

0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1

0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1

0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0

Chapter 4: Extending the GA methodology

80 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

0

appropriate. Using bitwise operators on integer variables has exactly the same outcome – but

with far better performance characteristics.

First, it is necessary to create a mask, which will be used to identify which genes of

the chromosome are to be swapped. The mask simply set to zeros for one side of the

crossover and ones for the other:

Figure 4-10: Crossover mask c (value= 255)

Construction of the mask is simplified by retaining an array in memory containing the powers

of 2 from 1 to 32. Using this array it is straightforward to create a mask based on the start

locus of the crossover (startLocus) and the number of genes to crossover (count):

int mask= 0;
int endLocus= startLocus + count;
for (loop= startLocus; loop < endPoint; ++loop)
 mask= mask | power2_32[loop];

Figure 4-11: C++ code to generate mask for crossover

The C++ ‘|’ operator represents the OR operation. This mask [c] is combined with

each of the existing chromosomes [a] and [b] using the Boolean AND (C++ ‘&’) operation

to give us two halves of the new chromosomes:

d = a & c;
e = b & c;

Figure 4-12: Masked parent d – least significant byte (value= 29)

Figure 4-13: Masked parent e - least significant byte (value= 136)

In order to isolate the other halves of the chromosomes for crossover, it is

straightforward to subtract these newly created halves from the originals:

f = a – d;
g = b – e;

Figure 4-14: Masked parent f - most significant byte (value= 8,192)

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 81

Figure 4-15: Masked parent g - most significant byte (value= 256)

The final stage of the crossover is straightforward being merely to combine the

opposing halves of the chromosomal fragments through the Boolean OR operation:

h = e | f;
i = d | g;

Figure 4-16: Child h (value= 8,328)

Figure 4-17: Child i (value= 285)

As can be seen, the outputs [h] and [i] are the binary strings expected from Figure 4-9

with values of 8,328 and 285 respectively.

4.2.3.2. Mutation representation

Application of mutation is uncomplicated using the array of powers of 2 used in creating the

crossover mask. Having determined a locus for the mutation to take place (locus), the XOR

operation is performed with the value of the gene against the power of 2 represented by that

locus – resulting in it being removed from the gene if it is already set or adding it if it is

absent.

4.2.4. Experimentation

To determine the relative performance of the binary string representations a simple GA was

devised that reflects the normal process of decoding, encoding and recombination that a

binary string would undergo. The performance of the representation was then evaluated

over a series of five runs, each of one million evaluations. This performance is measured in

terms of evaluations per second.

The organism representation was 25 binary string genes, each of which was 25 bits

long – a total genome length of 625 bits. To minimize the impact of an objective function

on the performance it was assigned a simple task to sum the values of each gene and to

return that sum as the fitness of the individual organism. The memory requirements and

performance results from the experimentation are presented in Table 4-3.

0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1

0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Chapter 4: Extending the GA methodology

82 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Binary string representation Memory requirement †
(bytes)

Performance
(evaluations/second)

1 bit/bit (STL) 100 7,568
1 bit/bit (Boost) 100 8,594

1 byte/bit 625 9,714
2 bytes/bit 1,250 9,581
1 word/bit 2,500 9,263

Hybridized integer 100 11,083
Pure integer 100 13,339

Table 4-3: Binary string implementations: relative performance

† Per individual. Each representation has additional memory overheads associated with the implementation of

the containing class – however, these overheads are largely constant and, for clarity, are not considered here.

4.2.5. Conclusions

Two clear conclusions may be drawn from the above results. First is the surprisingly good

performance of the 1 byte/bit representation relative to the 1 word/bit which was expected

to have the highest performance. This suggests that, despite the processor intrinsically using

“words” in its manipulations, there is greater overhead in manipulating binary strings of this

size than the overhead on the processor of having to perform manipulations on individual

bytes.

The second observation is the massive performance and memory advantage enjoyed

by the hybridized integer representation. This is due to it not having encode/decode cycles

at all – rather the value is directly stored in an integer variable and is only considered as a

binary string when used in crossover and mutation.

Despite being fastest, the integer representation would not yield as good results for a

given run-time as, using the conventional GA operators, it is only able to recombine

chromosomes between genes and as such requires a higher mutation rate to operate effectively.

This is because the only means by which the values of the individual genes may change is

through mutation. Running such a GA without specialised operators or an enhanced

mutation rate often results in a population that quickly stagnates, converging to a local

optimum owing to a lack of genetic diversity.

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 83

4.3. Binary String Caching

4.3.1. Introduction

Aside from memory requirements, binary string use in GAs is compromised because of the

additional overheads in reading and writing values with them – although these overheads may

ultimately prove to be insignificant compared to the runtime of the evaluation function. One

mechanism for improving this performance is to cache the decoded value of a binary string

and then to keep track of any changes to the binary string. During a GA run, only binary

strings that are directly affected by a crossover or mutation operator will have their values

changed. This means that, particularly in the case of binary strings that represent real

numbers, a significant amount of binary string processing and recalculation can be avoided.

4.3.2. Implementation

Along with the bit-wise data itself, each binary string will preserve an integral variable that

represents the decoded value of the string. In addition, a single Boolean variable is used to

determine whether the binary string has been modified or not. When returning the value of

the string, this variable is tested and if the string is found to be unmodified – i.e. the

representation has not changed – the pre-decoded value is returned. When setting the string

to a specific value, for instance during randomization, it is also sensible to store this value in

the pre-decoded value to accelerate decoding. All that remains is for the crossover and

mutation operators to be adapted to ensure that they mark the modified flag of any binary

string whose content they modify.

4.3.3. Experimentation

To analyse the relative performance of caching binary strings two simple genetic algorithms

were developed each involving 25 binary strings each comprising 25 bits. The evaluation

function for both GAs involves extracting an integral value from the binary string, before

transforming it to a certain range. A summation of all of the values in the string is the value

returned by the objective function, thus:

ܨ ൌ ෍ ௜ܸ ൅ ܥ
ଶହ

௜ୀଵ

ii)

Chapter 4: Extending the GA methodology

84 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Where F is the fitness of the individual, V is the value encoded by the gene, i, and C

is a constant which is used to shift the value out of the range 0..n to C..n+C.

Performance figures are also given for performing the same operations on a Gray-coded

binary string. Gray-coded strings have an additional performance overhead associated with

their encoding and decoding and, as such, are likely to benefit from caching.

Baseline figures for the pure integer implementation are also given – although it

should be noted that this representation would not attain similar algorithmic performance

without the provision of customized operators.

Number
Type Encoding Representation Memory

(bytes)
Uncached
(eval./sec.)

Cached
(eval./sec.)

Improvement
%

Binary String
Integer
(25 bits)

Normal

1 bit/bit (STL) 100 7,568 8,418 11.23%

1 bit/bit (Boost) 100 8,594 9,206 7.12%

2 bytes/bit 1,250 9,581 9,787 2.15%

4 bytes/bit 2,500 9,263 9,498 2.54%

Gray

1 bit/bit (STL) 100 6,287 6,852 8.99%

1 bit/bit (Boost) 100 7,018 7,404 5.50%

1 byte/bit 625 7,581 7,582 0.01%

2 bytes/bit 1,250 7,530 7,492 -0.50%

4 bytes/bit 2,500 7,259 7,194 -0.90%

Pure Integer native 100 13,339 13,339 n/a

Hybridized
Integer

Normal native 100 11,083 11,093 n/a
Gray native 100 8,491 10,087 18.80%

Table 4-4: Comparison of cached/uncached performance for binary string representations

4.3.4. Conclusions

This per-string caching produces a marginal benefit for the fastest of the conventional binary

string representations – and has a more significant impact on the slower implementations –

as might be expected. The Gray-coded representations also show significant improvements

– though the effect of the caching on the faster routines is quite odd: impacting detrimentally

on performance. It is surmised that – having isolated environmental factors – this decrease

in performance can be attributed largely to the additional overheads imposed by

encoding/decoding Gray-coded binary strings relative to the complexity of the evaluation

function, which, in this instance, is trivial. Problems that are more complex could expect to

see a more significant benefit from using the binary string caching.

Once again, the hybridized integer representations win out – as with the pure integer

representation, caching is redundant as the value is already stored natively as an integer

variable. However, the caching can be used in the Gray-coded variant to accelerate its

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 85

operations and, as can be seen from Table 4-4 above, Gray-coded binary strings can now be

used with minimal performance impact as the hybridized integer version is shown to be

faster than all of the conventional, normally encoded representations. Despite the Integer

representation being fastest, this representation would not yield as good results for a given

run-time as it only recombines chromosomes between genes and as such requires a higher

mutation rate to operate effectively.

4.4. Solution Caching

During the lifetime of a genetic algorithm – and in particular towards the end of a run – the

algorithm may revisit solutions that it has already evaluated. In a classical GA there is no

mechanism to prevent this duplicated effort. By maintaining a cache of previously visited

solutions, it is possible to avoid repeated calls to the objective function. This is clearly an

important consideration when such a call may have significant processing requirements.

Figure 4-18 shows how this technique is integrated into a classical GA. Despite being an

apparently obvious strategy to employ within Genetic Algorithms, there is a puzzling lack of

literature on the subject. Kratica (1999) and Povinelli & Feng (1999) investigate similar

caching approaches utilising a simple hash table for storing the most-recently accessed,

cached objective function results and finds that the approach is viable in reducing GA

runtime performance. It may be that the objective functions employed with GAs hereto may

lack the computational complexity to merit the widespread application of the technique;

certainly for most hydroinformatics applications this is not the case. This section proposes

two forms of cache for general use with GAs :

• A simple, cache based on the common binary-tree data structure – both in a

simple and “tiered” approach in which older, unused cached items percolate

down through tiers of increasingly larger (and therefore slower) caches.

• A novel cache utilising the “Judy Tree” algorithm, commonly used in large

scale. intensive hardware data access caching applications (e.g. server hard

drives) which offers unparalleled access performance.

Chapter 4: Extending the GA methodology

86 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 4-18: Flowchart illustrating the role of caching in a simple GA

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 87

4.4.1. Red-Black Binary tree cache

The basic caching structure is a variant of a conventional binary tree, which is ordered

according to a representation of the genome and contains fitness information for that

evaluated genome. Trees offer an efficient data structure for storing ordered data. Binary

trees are among the most commonly used variants and have been specialised for various

tasks (Knuth, 1997a). Figure 4-19 illustrates a binary tree with seven data members

comprising a “value” and two pointers to other data members. Conventionally these

pointers are used to point to “smaller” and “larger” data members. In addition, each node

possesses a data record of some type – in the context of caching for evolution algorithms,

this record will contain information about the fitness of a solution.

Figure 4-19: Traditional binary tree representation

The tree is assembled as data is added to it and, as such, the resulting form of the tree

is highly dependent on the order in which values are inserted. Searching the tree for a given

value begins at the root node of the tree (value “5” in Figure 4-19) and then proceeds to

traverse the “smaller” or “larger” branches of the tree depending on the value sought and the

value of the current node of the tree. The search continues recursively until either the value

is located or there is no branch to traverse – in which case the value sought is not present in

the tree. In the above example, Figure 4-19, a search for number “7” proceeds through the

nodes of the tree in the sequence “5” – “10” –“7” comparing the target value with the node

value at each stage and determining which branch to take through the tree. Similarly, a

search for the number “3” would proceed through nodes “5” – “1” – “4” whereupon the

Chapter 4: Extending the GA methodology

88 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

search would conclude that “3” is not present in the tree owing to the fact that there is no

node attached to the “less-than” branch of the “4” node.

The tree shown in Figure 4-19 represents a “perfect” binary tree – one in which all of

the nodes have exactly two branches and the depth of the tree (in this case 3) is constant.

This is the most efficient tree structure for searching as, in the example, the maximum

number of comparisons that would have to be made to locate a value in the tree is 3. Figure

4-20, however, shows an alternative scenario for a similar tree in which the data was inserted

in a different order resulting in a lop-sided, unbalanced tree. Despite having the same

number of data members, a search of this particular tree may require as many as 5

comparisons.

Figure 4-20: Unbalanced binary tree

Once a traditional binary tree has been populated with all the data it is possible to run

a balancing algorithm to rearrange the tree in a more optimal fashion. However, this is an

expensive operation to run if the data in the tree is constantly changing – as is the case in a

caching application. Pfaff (2004) compared 20 different representations for Binary Search

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 89

Trees (BSTs) and found that the most efficient variant when considering the input of random

or near-random data was the Red-Black binary tree (Cormen et al., 2001). Thus, the first

implementation considered in this thesis employs the C++ Standard Template Library (STL)

container map (Josuttis, 1996) which, in most implementations of the STL, is an implemented

with a red-black binary tree. This algorithm practises a common form of self-organization.

Self-organization is a vital characteristic for caching algorithms: searches of binary trees are

most efficient when the tree is balanced such that the average depth of tree that needs to be

searched to locate a record is minimized. Figure 4-21 illustrates an example Red-Black binary

tree. Along with the perquisites of the binary tree structure above, Red-black binary trees

have additional constraints in order to be valid:

• Each node has two children, each coloured either Red or Black.

• Every leaf node (those at the extremities of the network) is coloured Black.

• Both children of Red nodes are coloured Black (a consequence of this is that

there cannot be two consecutive Red nodes in a path from the root to a leaf).

• Every path from the tree root to a leaf contains the same number of Black

nodes (known as the “Black Height” of the tree).

Figure 4-21: Example Red-Black binary tree

Chapter 4: Extending the GA methodology

90 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

When a new node is added to a Red-Black binary tree, its nominal insertion point is

identified. If this insertion violates any of the conditions of the tree structure then a recursive

series of reorganisations are undertaken to restructure the tree dynamically in order to

conform to the constraints. Thus, Red-Black binary tree searches will normally come close

to the O (log n) search performance for a perfect binary tree – albeit with additional overhead

associated with the reorganisation as data is inserted into the structure.

For the purposes of caching, the search key is some representation of the decision

variables – thus it is necessary to search the cache to determine whether a particular

combination of decision variables has been encountered before and, if so, to return the result

of the evaluation function without having to recalculate it.

In addition to the tree data structure itself, a first-in, first-out (FIFO) queue,

implemented as an STL deque is maintained in parallel, which allows the cache to identify

which of the entries in the binary tree is oldest and to remove it when the maximum size of

the cache is exceeded. The core cache functionality is represented thus:

if (findInCache(organism->genome()))
 return cachedFitness(organism->genome)
else
 {
 organism->evaluateFitness();
 addToCache(organism->genome(),organism->fitness());
 }

Figure 4-22: Pseudo-code for cache search logic

4.4.1.1. Multi-tier cache

The principal constraint on the performance of the Red-Black binary string cache is the

number of comparisons that have to be undertaken in order to locate – or otherwise – a

cached record in the tree. By creating a multi-layered or “tiered” cache, which has variable

size layers, the most recently found solutions can be stored in smaller caches which are

searched first whilst older solutions may be found by searching the larger, lower tiers. Figure

4-23 presents a schematic of the cache arrangement employed.

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 91

Figure 4-23: Tiered Cache

Instead of the oldest solution being deleted when the maximum cache size is reached, it is

instead demoted to a lower, larger tier. Similarly, when a solution is located in one of the

lower tiers it is promoted up a tier so that, gradually, the most commonly encountered

solutions percolate up through the tier structure whilst the rarely encountered solutions move

down and ultimately are removed from the cache altogether when newer solutions are added

to the cache.

4.4.2. Judy Tree Cache

Whilst these Red-Black binary structures examined thus far are memory efficient in terms of

the amount of memory required to retain each solution, they experience increasingly

detrimental performance as the size of the cache increases – requiring a large number of

memory access to determine whether a solution exists in the cache and, if so, to retrieve its

fitness value. Two related data structures, the Digital Tree (also known as a Trie –

pronounced “try”- Knuth, 1997b) and a derivative, the Judy Tree (also known as a Judy

Array) offer the potential to significantly improve the performance of genetic algorithm

caching as well as being suitable for archiving solutions – dependent on available memory.

The Digital Tree structure can be thought of as a n-way tree. The Digital Tree in

Figure 4-24 shows a 2-way representation for storing each of the eight permutations of two

letters (A and B) in a sentence three characters long (i.e. AAA, AAB, ABA, ABB, BAA, BAB,

BBA and BBB). Unlike the binary tree representation of the same dataset (see Figure 4-26) it

can be seen that the individual nodes do not contain the search key itself, rather one

Chapter 4: Extending the GA methodology

92 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

component of it. In this fashion, only the leaf nodes of the tree will contain an associated

data as the intermediate and root nodes represent incomplete “sentences” or paths to the

search key.

Figure 4-24: Two-way Digital Tree (trie)

Aside from the rationalisation of the manner in which the key is stored in the Digital

Tree, it further differs from the conventional binary tree by not being restricted to two way

operation. Figure 4-25 shows a Three-way digital tree populated with each of the

permutations of three letters (A, B and C) in a sentence two characters long (i.e. AA, AB, AC,

BA, BB, BC, CA, CB and CC).

Figure 4-25: Three-way Digital Tree (trie)

Judy Trees are an implementation of a type of multi-way tree developed at Hewlett

Packard’s UNIX Software Enablement Laboratory (Hewlett Packard, 2001) in the early

1980s. The name “Judy” not only encompasses the data structure implementation itself but a

range of optimizations intended to maximize the benefits of CPU caching to the search

process. Until 2001, Judy was retained as an internal, commercial secret but has now been

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 93

released as a public library (Silverstein, 2002) for maintaining large, efficient in-memory

structures and is a particularly appropriate representation for caching applications in genetic

algorithms.

Judy implements a structure similar to a Digital Tree in that it ordinarily decodes one

or more 8-bit digits in its key (i.e. a 256 way digital tree). However, unlike a Digital Tree

where each node must have the same number of children, each node need not be a 256-way

vector to store the possible values. Judy has the ability to change dynamically the

representation employed by each of the nodes depending on the number of elements that it

contains. This changing representation means that Judy may elect to represent part of the

cache in one of three ways:

• as a simple array containing pointers to child nodes, termed “uncompressed”

which is useful if that part of the tree is nearly or fully populated (as in Figure

4-27).

• as a “bitmap” which contains 256 bits, each representing whether the

corresponding child is populated or empty, interspersed with 8 pointers to 8

ordered lists of up to 32 next-level pointers each which are created as they are

required by the contents of the bitmap. This is the second-most memory

efficient arrangement.

• as a “branch” which contains a count of how many children are populated,

enumerates them and lists pointers to them. This is the most memory-

efficient arrangement and is used when the population is sparse.

In this fashion, the Judy Tree achieves much better memory usage than a

conventional digital tree. This makes the representation ideal for storing complex data,

which are sparse in nature such as GA solutions in which only a minute proportion of the

search space is actively explored (Goldberg, 1989).

In comparison to binary trees, which have (at best) a search lookup time of O (log n),

Digital Trees achieve O (logm n) – where m is the number of significant digits in the search

key. Insertion into a digital tree is also rapid compared to a binary tree, as at most m

comparisons will be needed to insert an element into the tree. The Judy tree maintains the

search performance of the Digital Tree, being at most O (log256 n). In addition, there is no

need for either a Digital Tree or Judy Tree to undertake any form of balancing which is an

expensive operation for a binary tree and its related forms.

Chapter 4: Extending the GA methodology

94 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

The Judy data structure is characterised as being opaque, in that the end user need

not know anything about the storage mechanisms that are being used in the algorithm – nor

have to be concerned about initialising the data structures. They are highly scalable in terms

of memory consumption as memory use scales with the number of items in the array and

does not require the pre-allocation of large data structures as would be the case with a

conventional array structure. One of their principal advantages for caching applications is

that they are very efficient in terms of performance through the implicit compression of the

search keys (which also reduces its memory requirement).

Figure 4-26: Example Binary Tree representation

Figure 4-26 shows a binary tree that has been populated with the eight permutations

of two letters (A and B) in a three character sentence. It can be seen that to store these

search key values in the tree incurs a cost of 3 × 8 = 24 characters. The equivalent Judy Tree

representation is shown in Figure 4-27 where each node in the tree is itself a one-dimensional

array. The Judy Tree algorithm decomposes the search key into its constituent characters

and only stores at each node the minimum information to represent the path. In this fashion

this representation requires only 2 × 7 = 14 characters to store the same data.

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 95

Figure 4-27: Example Judy Tree representation demonstrating implicit compression of search key.

Whilst such an improvement may not seem particularly significant, when considering much

longer strings as search terms, such as the chromosomes indexed by the caching, it can be

seen that the Judy representation will offer a significant improvement in the memory

footprint of the cache. It should also be noted that even for this very simple example, the

maximum number of comparisons that a Judy Tree search could require to find a given value

is three – one less than that of the binary tree in this example. Furthermore, each of these

comparisons for the Judy Tree (and Digital Tree) is of only one character whereas for the

binary tree, the entire search key is compared with the value in each node traversed – a

significant difference if long chromosome keys are being cached.

4.4.2.1. Example

As Judy Trees offer significant advantages over Digital Trees without any

disadvantages, their application to GA caching will be considered here using as an example

appropriate to a hydroinformatic, genetic algorithm application: the representation of the

chromosome applied to the New York Tunnels optimization problem (Schaake & Lai, 1969).

This problem, described in detail in Chapter 6.1.2, is a hydraulic reinforcement problem in

which 21 pipes may be duplicated with one of 15 commercially available pipe diameters in

order to meet certain pressure requirements across the network. Accordingly, New York

Tunnels employs a chromosome of 21 genes – each of which can represent 15 different pipe

diameters as well as a sixteenth, “do nothing” option – Figure 4-28 represents such a

chromosome:

Chapter 4: Extending the GA methodology

96 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 4-28: Example New York Tunnels chromosome

A digital tree is characterized by the fact that the key of an element in the tree is decoded one

byte (or one digit) at a time. In this way, a tree structure is developed that has the same depth

as the number of decision variables in the chromosome – thus the maximum number of

comparisons that must be made to determine whether an particular chromosome for this

problem has been encoded into a digital or Judy Tree is 21. Figure 4-29 illustrates a portion

of a digital tree structure for storing the representation of the chromosome in Figure 4-28 (ptr

is used as an abbreviation for “pointer”).

Figure 4-29: Digital/Judy tree implementation for New York Tunnels chromosome

In effect, this view is a hyper-dimensional slice through the Judy Tree data structure.

If fully populated, the different levels of the Judy Tree would have vast numbers of nodes

according to the relationship:

݊ ൌ 16௟

where n is the number of nodes on level l. Given that a Judy Tree structure like this

would have 21 levels, one for each of the pipes in the optimization, this is an unrealistic

amount of data to be handling. However, considering an evolutionary optimization that has

encountered 100,000 unique solutions in optimizing this problem, we can compare the

1515 22 66 1212 77 99 66 00 1212 00 1010 00 11 00 44 22 00 88 1111 44 99
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1515 22 66 1212 77 99 66 00 1212 00 1010 00 11 00 44 22 00 88 1111 44 99
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Digital/Judy Tree

0

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 1

0

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 4

0

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 19

0

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 20

0

datadata

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 21

0

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 2

0

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 3

Digital/Judy Tree

0

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 1

0

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 1

0

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 4

0

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 4

0

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 19

0

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 19

0

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 20

0

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 20

0

datadata

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 21

0

datadata

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

datadata

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 21

0

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 2

0

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 2

0

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 3

0

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

ptrptr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene 3

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 97

memory footprint and the maximum number of comparisons that may be required between

the Judy Tree and the Red-Black binary tree – as seen in Table 4-5.

Representation Memory Requirement Mean Search Comparisons

Judy Tree 127 kilobytes
(see below) 21

Red-Black Binary Tree 100,000 ൈ 21 ݏ݁ݐݕܾ
ൌ 2 logଶ ݏ݁ݐݕܾܽ݃݁ܯ 16ଶଵ ൌ 84

Table 4-5: Comparison of Red-Black Binary Tree and Judy Tree cache requirements for New York Tunnels
Problem (100,000 solutions)

Estimating the actual memory requirement for the Judy Tree for a given optimization

a priori is difficult, given that it is dependent on the compression that can be achieved by

encoding the chromosome’s gene values in the tree. The worst case would occur where

there is as little genetic commonality between the chromosomes as possible. In this problem,

this would result in a memory requirement of around 127 kilobytes – still a significant saving

over that required by the conventional binary string.

The final data pointer is used to point to the data to be associated with the cache

record. In this application, this record will contain information about the fitness of the

individual so that it need not be evaluated again. However, it may also contain statistical

information for stochastic optimization routines (see the following Chapter 4.5 for an

example).

4.4.3. Experimentation

To validate the performance of the solution caching a series of experiments were undertaken

on a benchmark problem called the Generalized Assignment Problem (Chu & Beasley, 1997).

This class of problem involves a number of workers, “agents” each of whom has a finite

workload limit and an associated cost per unit work. The optimization seeks to allocate

“jobs” to the agent of varying workload on a least-cost basis. This optimization was

undertaken using a simple, steady-state GA – albeit without the heuristic extensions to the

Genetic Algorithm that Chu & Beasley (1997) employed to good effect.

Relative to evolution algorithm applications in hydroinformatics, the computational

workload of the GAP algorithm is very small – although the solution space is comparable.

To simulate a more complex objective function, the processor was made to “sleep” for a

number of milliseconds (termed “ballast”) in addition to the computation required to

compute the fitness. The results obtained from this experimentation are related in Table 4-6.

Chapter 4: Extending the GA methodology

98 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Cache Size

In the experiments below, several cache sizes are used. Here 3 caches are used increasing in

magnitude each time. Therefore “10-100-1000” represents a top-tier cache of 10 solutions,

level 2 cache of 100 solutions and level 3 cache of 1000 solutions.

Algorithm Comparison

To compare the solution caching with that of a non-cached run, two measures are used, run-

time and evaluations saved. A run-time analysis should be more accurate in that it takes into

account all of the computation required to maintain the cache, algorithm and to update the

display – which can be a significant impact on runtimes. However, evaluations saved gives

an important benchmark so an expected saving can be computed for different objective

function evaluation times. In the following experiments, the cached individuals were

compared with a theoretical-best-case solution. This is computed as the number of objective

function evaluations divided by the ballast, to give the minimum number of seconds it would

take to evaluate N solutions. This is the best case because it does not allow for any other

computational load (incurred by the algorithm, the caching, or Operating System). Therefore

the benchmark seen here for comparison is the strictest possible.

Results

Table 4-6 provides a comparison between runs of the 200 job/20 agent GAP problem with

different cache sizes against theoretical best case given the size of the ballast employed:

Table 4-6: Comparison of cached and best-case theoretical performance for the 200 job/20 agent GAP
problem using the tiered Red-Black Binary Tree cache

Table 4-6, above, shows that - over 100,000 evaluations with a 50ms ballast - a run-

time saving of almost 8% is possible against the best-case. However, the performance

benefits are actually to be far higher than this as the computational disparity between the

objective function and the other computation load on the system (Operating System,

maintenance of the caching data structures), is not that marked. The more noteworthy figure

Cache
status

Cache
sizes

Runtime
(seconds)

% Runtime
50ms Ballast

% Runtime Saved # Evals Saved % Evals Saved

OFF n/a 5,000 100.00 n/a n/a n/a

ON 10-100-1000 4,610 92.80 7.20 22,947 22.95

ON 20-200-2000 4,640 92.20 7.80 23,664 23.67

ON 40-400-4000 4,606 92.12 7.88 23,895 23.90

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 99

is that almost a quarter of objective function calls were saved during a modest run on a large

problem.

Table 4-7: Long term 500,000 evaluation comparison of cached and best-case run-times and evaluations

Table 4-7, above, shows that over a longer optimization period and a greater ballast,

the caching run-time performance is close to that of the number of evaluations saved. This is

because with 125ms ballast, every objective function call saved is much more crucial to the

overall performance of the algorithm. Also, the caching becomes more effective as the

optimization continues and the population begins to converge.

Further Results

In performing the initial experimentation above, it was noted that the caching algorithm was

highly sensitive to the mutation regime employed by the algorithm and that that employed in

the above experiments was unduly amenable to the caching strategy – i.e. that there was a low

mutation rate which promoted the operation of the cache. To that end, the experiments

were repeated with a wide variation in mutation rates. In the revised experiments, four

caching strategies were adopted and compared:

• None, i.e. caching disabled.

• Tiered, the Red-Black Binary Tree cache with three tiers of 40, 400 and 4000

individuals each.

• Huge, the Red-Black Binary Tree cache with a single tier that is allowed to grow until

constrained by the available memory of the system.

• Judy, the Digital Tree derived cache which is unconstrained except for available

memory.

Small GAP problem (20 Agents, 100 Jobs)

Two types of mutator were used: the first is expressed as a probability that mutation will take

place applied to each of the 100 genes of the chromosome in turn. The mutation rates so

examined were: 0% (i.e. no mutation), 0.2%, 0.5%, 0.75%, 1%, 1.5% and 2%. The second

Cache
status

Cache
sizes

Runtime
(seconds)

% Runtime
125ms Ballast

% Runtime Saved # Evals Saved % Evals Saved

OFF n/a 62,500 100.00 n/a n/a n/a

ON 40-400-
4000 27,426 43.89 56.12 310,616 62.12

Chapter 4: Extending the GA methodology

100 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

class of mutator is expressed as a probability that exactly one gene will be mutated. The

mutation rates for this class are 100% (i.e. exactly one gene mutated every iteration), 90% and

80%. By way of a simple performance metric for a single objective optimization, Figure 4-30

shows the median values obtained over 100 runs of the optimization with each mutation rate.

As can be seen from the graph, the best performing mutation regime for this problem is that

of the 100% in which exactly one gene is mutated, per chromosome, in each iteration.

Figure 4-30: Algorithmic performance (median) for small GAP problem (20 Agent/100 Job) with variable

mutation rates

Figure 4-31 graphs the effect of the different caching strategies on the algorithm runtimes

with respect to the different mutation regimes. The most striking result is that of the tiered

cache which can be seen to be performing worse than the completely un-cached algorithm.

However, it should be remarked that here the algorithm is not having to accommodate any

“ballast” to simulate a more complex objective function. Accordingly, for a more

computationally intensive hydroinformatic optimization, the cache hits afforded by the tiered

representation will likely improve the overall runtime performance. The other two caching

strategies, the Judy Cache and the Huge Red-Black Binary Tree appear well matched for all

mutation rates on this problem with the “Huge” representation slightly outperforming the

Judy Tree (see Table 4-8).

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 101

Figure 4-31: Comparative Runtimes for small GAP problem (20 Agent/100 Job) with variable mutation rates

and four caching strategies

Mutation
rate

Judy Tier Huge None
Runtime
(seconds)

% of
uncached

Runtime
(seconds)

% of
uncached

Runtime
(seconds)

% of
uncached

Runtime
(seconds)

0% 120.08 94.32% 131.52 103.31% 117.14 92.01% 127.31

0.2% 123.00 95.97% 135.81 105.96% 119.88 93.53% 128.17

0.5% 123.19 94.81% 132.39 101.89% 120.58 92.80% 129.93

0.75% 123.91 96.60% 131.00 102.13% 120.91 94.26% 128.28

1.0% 124.46 96.24% 129.90 100.45% 121.30 93.80% 129.32

1.5% 122.80 95.15% 128.17 99.31% 122.45 94.88% 129.07

2.0% 121.98 94.68% 127.02 98.59% 122.00 94.70% 128.83

1 gene 120.90 94.99% 125.55 98.64% 120.50 94.68% 127.28

0.90 1
gene 122.04 95.13% 123.08 95.94% 122.12 95.19% 128.29

0.80 1
gene 122.91 95.26% 122.12 94.65% 123.08 95.40% 129.02

Table 4-8: Runtime results for caching of small GAP 20 Agent/100 Job problem with variable mutation
rates

Large GAP problem (20 Agents, 200 Jobs)

As with the smaller GAP problem, two types of mutation were employed in this analysis. As

before one mutator is expressed as a probability that exactly one gene will be mutated. The

mutation rates for this type of mutator remain at 100% (i.e. exactly one gene mutated every

iteration), 90% and 80%. The other mutator class has modified probabilities as this larger

Chapter 4: Extending the GA methodology

102 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

problem has a chromosome comprising 200 genes – twice the size of the other. As a result,

the probabilities of this mutator acting on each gene need to be diminished so as to retain the

same approximate overall mutation rate for the algorithm. The mutation rates employed for

this class of mutator are: 0%, 0.1%, 0.25%, 0.375%, 0.5%, 0.75% and 1%.

Once more the median performance of the varying mutation rates was assessed over

100 runs of each algorithm. The results are presented in

Figure 4-32: Algorithmic performance (median) for large GAP problem (20 Agent/200 Job) with variable

mutation rates

In Figure 4-32, it can be seen that the mutator that changes exactly one gene in each iteration

performs the best, once more, closely followed by the two other mutators of this type. In

contrast to the smaller problem, however, the performance metrics for the large problem

with respect to the caching are more varied. The results (Figure 4-33 and Table 4-9)

demonstrate that the Red-Black Binary Trees do not perform as well on the larger problem

size – indeed in a number of cases both the Huge and Tiered strategies which use this

representation are slower than the uncached algorithm. The Judy cache continues to

perform well, however, allowing for runtime savings of between 1.6 and 8.3% depending on

the mutation operator employed.

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 103

Figure 4-33: Comparative Runtimes for large GAP problem (20 Agent/200 Job) with variable mutation rates

and four caching strategies

Mutation
rate

Judy Tier Huge None
Runtime
(seconds)

% of
uncached

Runtime
(seconds)

% of
uncached

Runtime
(seconds)

% of
uncached

Runtime
(seconds)

0% 247.82 95.65% 244.87 94.51% 258.44 99.75% 259.10

0.1% 252.83 97.02% 256.87 98.57% 268.45 103.01% 260.60

0.25% 253.23 97.22% 257.65 98.91% 255.47 98.08% 260.48

0.375% 251.79 97.54% 256.75 99.46% 254.65 98.65% 258.14

0.5% 251.49 97.55% 253.78 98.44% 253.13 98.18% 257.81

0.75% 249.72 97.02% 253.41 98.46% 249.40 96.90% 257.38

1.0% 250.66 97.31% 254.11 98.64% 249.26 96.76% 257.60

1 gene 250.91 97.17% 253.51 98.18% 249.46 96.61% 258.22

90% 1
gene 241.22 91.75% 271.10 103.12% 268.63 102.18% 262.9

0.80% 1
gene 258.93 98.37% 269.85 102.52% 269.36 102.34% 263.22

Table 4-9: Runtime results for caching of large GAP 20 Agent/200 Job problem with variable mutation
rates

4.4.4. Conclusions

Solution caching is shown to be an effective technique for reducing the runtimes of GA

applications, becoming more effective, with respective to the potential performance

improvement, with the increasing complexity of the objective function and with the duration

of the optimization undertaken. Because cache performance will vary from machine to

Chapter 4: Extending the GA methodology

104 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

machine with respect to that of the objective function, the caching routines should, through

its own internal timing, determine the complexity of the objective function and determine

whether caching is an efficient strategy to employ – without interaction from the end-user. A

comparison between the efficiency of the two caching regimes with respect to benchmark

hydroinformatic problems is undertaken in Chapter 6.2.6 Given the relative simplicity of the

objective functions employed herein, even for the larger-scale GAP problem, performance

savings on more computationally intensive optimizations can be expected to be considerably

greater than those demonstrated in this experimentation. Experiments demonstrate that the

tiered cache is shown to be inefficient relative to a larger Red-Black binary tree arrangement

whilst the Judy Tree outperforms the other representations, both in terms of performance

and memory requirements, when considering the indexing of more complex chromosomes.

4.5. Non-Repeating GA (NRGA)

The caching techniques introduced above have also been used to improve the

algorithmic performance of the stochastic evolutionary optimization technique, rNSGA-II

introduced by Kapelan et al. (2005). Here, uncertain variables within the optimization are

accommodated through sampling techniques and statistical aggregation of the fitness results.

For example, in the model by Kapelan et al. (2005), each organism is evaluated a number of

times for a sample of stochastic inputs and then the aggregated fitness is obtained by

applying statistical analysis (e.g. mean, standard deviation, etc.). In this technique, due to the

sampling procedure employed, a given set of decision variables will produce a different result

every time the objective function is evaluated. Consequently, the form of caching employed

above is of little utility. However, it has been observed that for a variety of problems

employing the rNSGA-II, up to 4% of new solutions (dependent on population size)

generated by the algorithm have already been encountered by the algorithm in a prior

iteration. Moreover, it is common in runs of the rNSGA-II to find that the population

contains many duplicates of a particular solution – each with its own statistical record.

Reducing or preventing these duplicates would both improve the quality of the stochastic

modelling by improving the accuracy of the statistical record (and therefore fitness values) as

well as better maintaining the genetic diversity of the population. Figure 4-34 illustrates the

operation of the “non-repeating cache” in the context of a single-objective GA. The

operation of the GA, be it a single or multiple objective, continues largely as normal with the

exception that, in the event of an organism being removed from the population then the

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 105

statistical data that it has accrued during its lifetime in the population is stored, along with its

genetic signature, in the cache.

The use of the cache allows the algorithm to determine, in the first instance, whether

one of the newly created individual generated by the algorithm is present in the existing

population. If it is then the new individual is rejected and the selection and recombination

process begun afresh in order to prevent the duplicate individual entering the population. If

the new individual is not in the population but is located in the cache then it represents a

solution that has been identified before but has subsequently been ejected from the

population. In this event, the statistics for this organism are recovered from the cache and

the evaluation process proceeds as normal – the organism having effectively been resurrected

to the condition in which it was when it was removed from the population.

Figure 4-34: Outline flowchart for non-repeating GA

Chapter 4: Extending the GA methodology

106 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

4.6. Adaptive Differential Mutation

4.6.1. Introduction

With all real world problems, and especially those with large numbers of decision variables,

certain decision variables will be more important than others will. In fact, in many problems,

the majority of the fitness of the solution depends on a small number of the decision

variables. A case in point being the New York Tunnels problem referenced elsewhere in this

chapter where a very small number of pipes (less than 25%) are critical in the determination

of a feasible, low-cost solution. It is hypothesised that knowledge obtained during the

evolution could be utilised to update the mutation probabilities of individual decision

variables.

In this methodology, each decision variable (gene) is associated with an individual,

independent mutation probability. If the modification of a set of variables is useful when the

problem changes, the mutation probabilities of these variables will be increased. Throughout

the operation of the genetic algorithm, the sensitivity of the fitness to each of the decision

variables is determined by noting the change in fitness when the value of that variable

changes as a result of mutation. Even though the changes in the chromosome are not made

in isolation – given that many mutations may occur in a single iteration - over a large number

of evaluations, the sensitivity of the objective value to each gene can be evaluated.

In addition, by recording the direction in which a mutation moved a gene value and

its relationship to the changes in fitness value, it is possible to determine the direction in

which future mutations should preferentially take place. Clearly, however, this trend analysis

will only return sensible results if there is an underlying scalar relationship between the value

of the gene and the physical property that it represents in the problem solution. In the case

of the New York Tunnels example (described fully in Chapter 6.2), the gene value maps into

a list of pipe sizes which varies from 0 inches (or pipe closed) to 204 inches – thus fulfilling

this scalar relationship prerequisite.

In concert, these measurements can be used to indicate which genes have proven to

represent the more significant variables in the algorithm run thus far and can therefore be

used to drive the mutation probabilities accordingly. Consequently, a variable which is

considered to have more influence on the result will be mutated more often. Similarly, if it

appears to positively affect fitness when permuted in a particular direction, then mutation in

this direction is accorded a higher probability of occurring. The implementation of this

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 107

mutation strategy is limited to the steady-state, single objective class of GA. Whilst there is

no technical reason why this may not be extended into other forms of GA, such as the

generational form, this implementation is unable to consider multiple objectives.

4.6.1.1. Sensitivity and Trend Score Implementation

Implementing the differential mutation is a two stage process: data on the

performance of the algorithm has to be collected before the differential mutation can be

used. This is achieved by adding routines to the recombination cycle to monitor the

sensitivity of the fitness of solutions to individual gene changes. During the “learning cycle”

– the first n iterations of the algorithm when the default mutation operator is being used –

this sensitivity data is collected. Thereafter, that data is used in the differential mutation and

is also updated with the results of the differential mutation.

 Analysis to determine some measure of the fitness of the solution to the value of

each gene was undertaken using a global repository of scores on a per gene basis:

struct geneticRecord
{
 double positiveScore;
 double negativeScore;
 int trendUpCount;
 int trendDownCount;
 int resultCount;
}

Figure 4-35: C++ structure for recording gene mutation trend score data

Of these fields, positiveScore represents the number of times that the gene has

contributed to an improvement of the solution, negativeScore to deterioration in the solution.

Similarly, trendUpCount and trendDownCount note, respectively, whether an increase or decrease

in the variable value – relative to the best organism yet found - has been responsible for an

improvement. resultCount is simply the number of times this gene has been changed.

During crossover and mutation, it is necessary to demark which genes have been

affected by crossover or mutation from one of their parents.

After evaluating the fitness of children, the global scores for each of their genes are

updated:

// baseScore reflects the difference between the newly created
// children and the best organism yet encountered
double baseScore= organism->fitness – bestOrganism->fitness;
for (geneLoop= 0; geneLoop < genomeSize; ++geneLoop)
{

Chapter 4: Extending the GA methodology

108 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

 switch (organism->trend->gene(loop))
 {
 case down:
 if (baseScore > 0.0)
 {
 geneHistory[geneLoop]->addPositiveScore(baseScore);
 geneHistory[geneLoop]->trendDown();
 }
 else
 if (baseScore < 0.0)
 geneHistory[geneLoop]->addNegativeScore(baseScore);
 break;
 case up:
 if (baseScore > 0.0)
 {
 geneHistory[geneLoop]->addPositiveScore(baseScore);
 geneHistory[geneLoop]->trendUp();
 }
 else
 if (baseScore < 0.0)
 geneHistory[geneLoop]->addNegativeScore(baseScore);
 break;
 }
}

Figure 4-36: C++ code for trend scoring for differential mutation

4.6.2. Differential Mutation Implementation

The mutation operator itself is coded thus:

if (random()<0.5) // produces a random number where Թ א ሺ0 , 1ሻ
{
 int numMutations= genomeSize * mutationRate;
 for (int loop=0; loop < numMutations; ++loop)
 {
 double spin= random()*totalScore;
 double runningTotal= 0.0;
 int currentGene= 0;
 while (runningTotal < spin)
 {
 runningTotal+= geneScore[currentGene];
 ++currentGene;
 }
 --currentGene;
 mutateGene(currentGene);
 }
}
else
 defaultMutator->mutate();

Figure 4-37: C++ code for mutation operator

The above code snippet shows that the differential mutation operator is only applied

with 50% probability; otherwise the default mutation operator is used. This is important as it

allows other genes, which have not been identified in the sensitivity analysis, some

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 109

opportunity to be mutated. To facilitate this form of mutation, it was necessary to update the

gene classes to enable them to “increment” and “decrement” their values accordingly.

The mutateGene function referenced above is where the trend analysis is applied to the

mutation, if required:

void mutateGene(int index)
{
 int trendUpCount= geneHistory[index]->trendUpCount();
 int trendDownCount= geneHistory[index]->trendDownCount();
 bool test;

 if (trendUpCount > trendDownCount)
 {
 if (trendUpCount > 0)
 test= random() < (trendDownCount/trendUpCount);
 else
 test= random() < 0.25;
 if (test)
 gene(index)->decrement();
 else
 gene(index)->increment();
 }
 else
 if (trendDownCount > trendUpCount)
 {
 if (trendDownCount > 0)
 test= random() < (trendUpCount/trendDownCount);
 else
 test= random() < 0.25;
 if (test)
 gene(index)->increment();
 else
 gene(index)->decrement();
 }
 else
 gene(index)->mutate();
}

Figure 4-38: C++ code for differential mutation operator

4.6.3. Cellular Automaton Mutation Implementation

Cellular Automata (CA) are a long established area of research in computer science (von

Neumann, 1963) which are characterised by a population of “cells” which are able to

communicate with their neighbours according to predefined rules as a response to stimulus

received from their neighbours. The most famous CA is John Conway’s Game of Life

(Gardner, 1970), a CA which takes place on a two dimensional cellular grid. The grid is

initialised with cells in an initial state, “alive” or “dead” and the simulation is then allowed to

proceed through discrete timesteps for each of which the predefined rules are applied to

every cell in the network. Conway’s rules are very simple:

Chapter 4: Extending the GA methodology

110 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

• A live cell with one or fewer live neighbours dies of loneliness.

• A live cell with four live neighbours dies of overcrowding.

• A live cell with two or three neighbours survives unchanged to the next timestep.

• A dead cell with three live neighbours is reborn.

Through these rules, intricate patterns are played out as time passes. Some initial

configurations produce stable configurations whilst others die out over time. The “CA”

Mutation operator is an adjunct to the differential mutation and is almost identical in

operation to its sibling except it is applied to each gene in a chromosome in turn – rather than

to a random selection – reflecting the global, simultaneous application of the rules in a true

CA.

for (int loop= 0; loop < genomeSize; ++loop)
 mutateGene(loop);

This mutation option is activated as an option in the code such that there is a

probability of 50% normal mutation, 25% differential mutation and 25% “CA” differential

mutation.

4.6.4. Conclusions

Differential mutation with trend analysis support has the potential to improve consistently

the performance of the GA subject to some relationship being maintained between the

values of the decision variables and some real-world property that influences the solution.

Clearly, further analysis into the scalability of this technique, along with a means to identify

the appropriate point to start differential mutation, would be desirable – particularly to

determine a trade-off between the overhead of maintaining the history of gene behaviour

versus the algorithmic performance advantage that might be expected from employing it. If

used in a mixed genome where there are many types of data, it would be sensible to highlight

the genes that could be used most effectively with this type of mutator, rather than to waste

evaluations modifying variables whose influence is difficult or nonsensical to track trend data

for. Experiments in Chapter 6.4.7 investigate the application of this technique to a number

of hydroinformatic problems.

Chapter 4: Extending the GA methodology

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 111

4.7. Conclusions

The enhanced methodologies presented demonstrate several novel techniques for

improving the performance of evolution algorithms. Exploiting caching at various levels

within the algorithm is shown to have the potential to improve dramatically performance.

This use of caching includes retaining values for binary strings as well as retaining objective

function results in a solution cache. It is shown that the use of such caches has the potential

to improve GA performance by ensuring that processor effort is not expended on solutions

that have been encountered previously during the optimization. Further quantification of

this with respect to hydroinformatics applications will be presented in Chapter 6.

Furthermore, novel modifications to the mutation operator are expounded demonstrating

the potential to improve GA performance by concentrating mutation operations on the

genes that are determined to have the greatest impact on a solution, i.e. solutions are sensitive

to changes in particular genes. To improve upon the computational performance of binary

string representations, a hybridised-integer gene is presented which offers the

representational benefits of the archetypal GA binary string representation combined with

the performance benefits offered by integer and real-encoded genes.

112 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Chapter 5: Distributed Evaluation for EPANET: deEPANET

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 113

Chapter 5. Distributed Evaluation for EPANET: deEPANET

5.1. Introduction

Optimization applications for hydraulic networks, particularly those involving evolutionary

algorithms, are characterized by long runtimes owing to the need to evaluate large numbers

of hydraulic solutions. Where conditions of uncertainty are to be considered, this issue

becomes exacerbated as multiple hydraulic simulations must be performed for each solution

under consideration. Distributed Evaluation for EPANET (deEPANET) is implemented as

an extension to the updated release of the popular hydraulic solver toolkit (Rossman, 2000)

and adds the functionality to distribute hydraulic networks for concurrent evaluation.

In order to reduce the computational runtime of GAs applied to hydroinformatic

problems. Balla and Lingireddy (2000), introduce a distributed computation implementation,

PCNet. This approach splits the computational load of the individual objective function

evaluations across computers coupled over a Microsoft Windows-based local area network.

A specimen application is described for the calibration of WDS using this approach and the

performance improvement obtained from the distribution is seen to vary near-linearly with

the number of computers employed. The implementation, as presented, does not however

implement an automated scheme for balancing the load between the client computers

attached to the network. Instead, the load balance is calculated a priori using the aggregate

performance of the individual computers on an optimization problem. Such an approach

does not allow for differences in network hardware, nor does it allow for dynamic changes in

performance caused by network congestion or other loads on the client systems.

The distributed evaluation methodology presented herein permits the balancing of

computational load using a simple queuing construct, which can contend with dynamic

variation in computation performance and ensures that the throughput of all cooperating

computers is maximized. The efficacy of this approach – even for relatively simple networks

– is demonstrated with a case study on the water distribution network of a small Italian town,

which is analyzed under conditions of uncertain demand. The results presented demonstrate

that significant improvement in optimization performance can be realized through harnessing

multiple computers in parallel in this manner. In addition, non-trivial improvements in

performance are demonstrated even for single machines where advanced processor

architectures with implicit parallelization are available.

Chapter 5: Distributed Evaluation for EPANET: deEPANET

114 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

5.1.1. Parallelization of Optimization

One of the key design goals for the GA library - introduced in Chapter 3 -since the beginning

of its development, has been to offer the potential for accelerating optimization through the

provision of parallelization techniques. Modern operating systems offer the opportunity for

an application to control multiple, parallel processes simultaneously. On a conventional,

single processor computer, these parallel processes merely have the appearance of running in

parallel, being time-sliced automatically (i.e. divided and run consecutively) by the operating

system. However, on modern Intel processors featuring HyperThreading, dual-core

processors or genuine multi-processor computers there is an element of genuine

parallelization involved.

Operating Systems such as those based on Linux or Microsoft Windows NT

implement Symmetric Multiprocessing (SMP), which balances processor load across

multiprocessors whether real or virtual. In the case of a HyperThreading processor, the

potential performance gains through multithreading are minimal – relating principally to the

more efficient operation of the host operating system. For multiple-core or multiple-

processor systems, however, there is a tangible performance improvement, which could

theoretically approach a linear improvement in speed as resources are added.

In early versions of the GA library, each Genetic Algorithm was optimized for

parallelization, meaning that if one were to run more than one GA at a time then there would

be some performance benefit (c.f. Thurley et al., 1999). On single-processor platforms it

allowed parallel operations to be performed which can be used to initiate several short-

optimization runs (i.e. batch-run mode) for processing overnight. This is referred to as

algorithmic parallelization. This implementation can be considered as generally successful

although there were a number of lingering problems that proved difficult to rectify -

particularly relating to the stability of inter-thread communication. Data transfer between

threads requires careful management to ensure that thread processes are synchronized at the

time or that threads do not attempt to access the same data structures at the same time.

Subsequent versions of the CWS library incorporate this same basic algorithmic

parallelization although information about the progress of the algorithm is published in the

form of custom Windows messages in order to reduce the need to synchronize threads. A

number of memory-management issues were identified within the thread handling code,

which were resolved.

Chapter 5: Distributed Evaluation for EPANET: deEPANET

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 115

For the most part, this algorithmic parallelization is retained purely for organizational

purposes although it has the potential to be used in the construction of nested GAs for

which there is no direct support or management provided by the library at this time.

The most recent evolution of the library incorporates the single thread per algorithm

approach and additionally targets the execution of the GA objective function in a more

piecemeal fashion.

On each execution of an objective function, a thread is created which handles that

execution and is automatically terminated on the completion of that function. This

behaviour is limited to creating a number of threads up to the number of processors within

the system. The number of Objective Threads created is limited in this way as multiple

threads of this type on a single processor offer no advantages over sequentially processing

them save for allowing the Operating System to reallocate dynamically the processor

responsible for the thread.

In breaking down the evaluation operations to this extent, the library gains the

advantage of implicitly accelerating, on multi-processor machines, the processing of single-

algorithm applications that are by far the most common.

The provision of multithreading support for Genetic Algorithms, whilst providing

substantial performance advantages on multiprocessor platforms, is not without its pitfalls.

Foremost among these regards the routines detailed to evaluate the objective function. In

the above examples, the objective functions are simple mathematical routines that are easily

coded directly into the organism. Other optimization applications, including those of water

distribution system design, use an external solver application to evaluate the hydraulic state of

the network. If such a system is to be used with multithreading then there are two

techniques that can be used to accommodate the external solver:

A mutex (mutual exclusion) can be applied to the external solver, which allows use by

a single thread at a given time - thus negating many of the advantages of the multithreaded

approach, particularly given that the solver is likely to be handling the most computationally

demanding part of the optimization.

Multiple instances of the solver application may be created with the same network

data. For efficiency, the solvers should only be instantiated once and not with the creation of

each new thread.

Chapter 5: Distributed Evaluation for EPANET: deEPANET

116 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Whilst the first option is wholly undesirable, the second in many applications may be

unobtainable. Many external applications may refuse to start multiple instances, in other

cases there may be unforeseen interaction between instances - something that developers

rarely examine. Therefore, in this thesis, a tool is presented, deEPANET, which embeds the

hydraulic solver into a server-side application of which many instances may be instantiated

on an individual machine or distributed amongst a network of cooperating machines.

5.2. Implementation

Underpinning deEPANET is the OpenNet library (Morley et al., 2000- see Appendix A)

which is employed as a solver-independent hydraulic model within the software environment.

In this fashion, the mechanisms employed by deEPANET for distributing and solving

hydraulic networks are made entirely opaque to the developer of an application –

modifications made to the OpenNet representation are transparently reflected in the

underlying EPANET model. A detailed description of OpenNet and its capabilities can be

found in Appendix A.

Figure 5-1: Typical PC network configuration for deploying deEPANET

deEPANET uses a client-server methodology to distribute solutions to remote

computers or to a local computer using a loopback network address. The standard Internet

networking protocols of TCP/IP (Transmission Control Protocol/Internet Protocol) and

UDP (User Datagram Protocol) are used to implement a client-server protocol for

distributing EPANET networks, partial networks and solver results across a local area

network as illustrated in Figure 5-1.

The deEPANET server application can function either as a standalone, conventional

Windows application or as a Windows Service. The Windows application provides an

interface where the progress of optimizations may be monitored by the user as well as

providing full control over the configuration of the application. deEPANET is only available

Chapter 5: Distributed Evaluation for EPANET: deEPANET

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 117

to remote users when the application is running, allowing the owner of the computing

resource to determine whether and when deEPANET is permitted to run. By contrast, the

Windows Service form runs in the absence of a conventional user interface. The

deEPANET service is started automatically when Windows is started and, as such, does not

require a user to have logged into the system. The deEPANET service can be configured

through the Windows Control Panel where a simple interface is exposed which allows the

configuration of all the options that are available in the conventional Windows application.

In addition an option is available to restrict the times at which the deEPANET service will

accept solution requests from remote computers.

Upon initial connection to a deEPANET server, the client software will normally

upload the base EPANET input file that will be operated upon. It is necessary to transfer

this information as an input file as the EPANET Toolkit DLL does not contain the

necessary functions to configure programmatically a network, i.e. to dynamically modify the

network topology necessary for running a simulation.

Having uploaded a base network to the server, a client may request that the network

be solved, i.e. to perform a hydraulic simulation run. The solve process is broken down into

three stages: Configuring the hydraulic network; performing the hydraulic analysis and

returning the results.

The configuration of the hydraulic network is done in a sparse fashion so as to limit

the amount of network traffic generated. A list of network element identifiers plus the

parameters to be changed, and the new settings, are passed from the client to the server –

rather than sending en masse all of the network specification.

In a similar manner, a list of the results required from the analysis is also passed from

the client to the server. In this fashion, the server need only return the absolute minimum of

data that the client is interested in. This is particularly important for large networks where an

optimization may only be focusing on a few critical nodes for analysis or, as in the case of the

example case study in 5.4, where there are a large number of returned data values because of

the resolution of the analysis undertaken.

One novel feature of deEPANET is that it maintains a queue of solutions waiting to

be performed. The solutions in this queue are distributed to servers on a first-come first-

served basis. This ensures that faster computers are not hamstrung by slower servers on the

network as they are able to make more frequent requests of the queue in contrast to the

methodology of Balla and Lingireddy (2000) who determine which computers will be given a

Chapter 5: Distributed Evaluation for EPANET: deEPANET

118 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

higher workload a priori. This approach does have a limitation in that it requires that an

ample supply of solutions to be queued for optimal performance. Conventional steady-state

Genetic Algorithm (GA) applications are less well suited for this as they generally produce a

pair of solutions for evaluation at a given time. However, generational GAs are more

appropriate for this as they can queue population_size individuals for evaluation at a time. The

problem presented in the case study related in Chapter 5.4 involves stochastic sampling

coupled with a genetic algorithm, which can queue population_size × sample_size individuals for

evaluation at a time.

5.2.1. Robust networking

Any distributed computing application has to accommodate the possibility that the failure of

a remote computer or network component may interrupt the flow of data. deEPANET

accommodates this on the client-side by analyzing the frequency of data returns from the

connected servers. If a server fails to return a result within three times the average time that

it has previously calculated results in then that server is asked to cancel its operation and the

solution is tasked to another server – whilst the original server is given a virtual “black mark”.

After exceeding a user-defined number of “black marks”, a server may be disconnected from

the application.

For the ease of developing new applications using the deEPANET library, functions

were added to allow for the automated search of the LAN for available servers. The search

facility is limited to a LAN as it will not be able to traverse a switch and so the deEPANET

client also offers the facility to add manually an IP address to send a message to.

Accordingly, the deEPANET server implements a UDP listener to allow it to respond to this

broadcast message; the response taking the form of a reciprocal TCP connection over the

same port. The client and server negotiate the port numbers that are used in the event that

either side is using any ports in the default range. The combination of the UDP listener and

TCP connection is used for both the automatic and manual discovery of servers as this

verifies that any manual server additions are valid and can be reached through any

intermediate firewalls.

5.2.2. Advanced processor architectures

deEPANET seeks to exploit emerging technologies such as HyperThreading™ (a

mechanism for optimizing instruction pipelining for multiple threads on a single processor

core) and multiple-core processors to further accelerate performance. Through its

Chapter 5: Distributed Evaluation for EPANET: deEPANET

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 119

multithreaded structure and its novel ability to manage concurrent instances of the hydraulic

solver, deEPANET is able to improve the performance of EPANET on standalone (non-

networked) hardware with features such as HyperThreading™ and multiprocessor/multicore

systems. Since both of these technologies are becoming increasingly common it makes sense

to target such systems for use with optimization applications.

The ability to employ multiple processors in standard PC hardware has existed for

many years – requiring multithreaded software to maximize its benefit. Yet the use of

multiprocessor machines outside of the server environment has been somewhat restricted,

requiring expensive motherboards and, naturally, two costly processor chips. The emergence

of “multi-core” processors in which two or more processor chips are incorporated on the

same silicon die has seen this situation change. Not only are these chips considerably

cheaper than buying equivalent processors separately and there is no requirement for an

expensive multiple socket motherboard but their presence is relatively transparent to

software and hardware alike.

5.2.3. Cross platform characteristics

To provide deEPANET with cross-platform capability, the library is coded in portable C++

(with the exception of the optional user interface) and uses a portable, open source TCP/IP

library to provide its network connectivity. The only difficulty with using deEPANET on

Linux or other operating systems is likely to be the need to recompile the EPANET library

itself for that platform. Because of the inherent platform-neutral nature of TCP/IP, using

deEPANET instances on different platforms in conjunction with each other would not pose

any problems.

5.3. Application

The computers for the test environment were selected to form a representative cross-section

of the type of computers that might be found in a normal networked environment.

Represented in the test environment are high-end and mid-range processors from both the

dominant PC processor manufacturers, Intel and AMD.

Chapter 5: Distributed Evaluation for EPANET: deEPANET

120 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Computer Processor Memory Network
A 1.8 GHz AMD Athlon 64 1 GB Gigabit
B 1.6 GHz Intel Pentium 4† 512 MB Fast
C 3.0 GHz Intel Pentium 4HT 1 GB Fast
D 2.2 GHz AMD Athlon 64x2 1 GB Gigabit

†The processor in computer B is a 3.0 GHz Intel Pentium 4 that has been de-rated to operate at 1.6 GHz.

Table 5-1: Hardware specifications of test environment computers.

The computers are connected via a Gigabit Ethernet switch to allow the two Gigabit

equipped computers to be connected at the highest speed (1,000 Mb/s). The switch

employed can be forced to operate in a “Fast Ethernet only” mode (100 Mb/s) which

allowed the influence of network speed on deEPANET’s performance to be investigated.

5.4. Case Study Network

The case study relates to the water distribution network of the small Italian town of

Piedemonte San Germano (Tricarico et al., 2005) and comprises 45 pipes serving 33 demand

nodes, arranged so as to form 12 loops, gravity-fed from a single reservoir. A full description

of the network topology and characteristics may be found in Chapter 6.3.4.

Whilst the scale of this network is relatively trivial, the demand conditions for this

system are extreme in that the network model contains demand data obtained from the real-

world network for 24 hours at 1-second intervals and resampled to 1 minute intervals.

Tricarico et al. (2006) analyzed this data using the robust Non-Dominated Sorted Genetic

Algorithm II (rNSGA-II) developed by Kapelan et al. (2005).

Chapter 5: Distributed Evaluation for EPANET: deEPANET

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 121

Figure 5-2: Topology of Piedemonte San Germano Case Study Network

A key characteristic of the rNSGA is its use of stochastic sampling techniques to

obtain a measure of the robustness of a given solution under conditions of uncertainty – in

this instance the network demands. This approach requires significantly more simulation

evaluations than ordinarily required by a conventional, deterministic GA optimization with

between 5 and 50 additional hydraulic simulations being required for each solution evolved by

the algorithm, as well as up to 100,000 additional simulations performed on the best

solutions as a post-processing exercise. The use of such a sampling technique makes this

type of algorithm ideal for use with deEPANET given that many solutions may be queued

for evaluation for each iteration of the algorithm.

1

2

3

4

5

6

7

8

9

10

11

12

13

39

14
15

16 17

20

18
1922

23

40
24

25

30

31

32

33

26

27

28

29

44

38

45

43

42

34

35

37

41

36

1

0

2

3

4

5

6

7

8

31

9

30
22

13
12

11

10

14

21

15

16
17

18

20

23

24

29

25
19

28

26

27

32

33

1

2

3

4

5

6

7

8

9

10

11

12

13

39

14
15

16 17

20

18
1922

23

40
24

25

30

31

32

33

26

27

28

29

44

38

45

43

42

34

35

37

41

36

1

2

3

4

5

6

7

8

9

10

11

12

13

39

14
15

16 17

20

18
1922

23

40
24

25

30

31

32

33

26

27

28

29

44

38

45

43

42

34

35

37

41

36

1

0

2

3

4

5

6

7

8

31

9

30
22

13
12

11

10

14

21

15

16
17

18

20

23

24

29

25
19

28

26

27

32

33

1

0

2

3

4

5

6

7

8

31

9

30
22

13
12

11

10

14

21

15

16
17

18

20

23

24

29

25
19

28

26

27

32

33

1

0

2

3

4

5

6

7

8

31

9

30
22

13
12

11

10

14

21

15

16
17

18

20

23

24

29

25
19

28

26

27

32

33

Chapter 5: Distributed Evaluation for EPANET: deEPANET

122 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 5-3: Logical Structure of Stochastic Optimization Software (after Kapelan, 2005)

To prevent the performance improvement being masked by any additional

overheads, a simulation exercise was devised that performs no processing other than

generating a network to be solved and then dispatching that network for solution and the

interpreting the results returned.

5.5. Results

In order to demonstrate the potential performance gains from deploying deEPANET it is

necessary to evaluate first the baseline performance of the computers in the test

environment.

Computer
Performance

 (evaluations per second)
Single thread Two threads Three threads

A 11.97 11.75 11.24
B 3.45 3.42 3.32
C 7.07 9.25 9.09
D 13.95 25.07 25.18

Table 5-2: Baseline performance on Piedemonte San Germano simulation exercise.

Optimization Loop

Sampling Loop

Deterministic
Simulator

Deterministic
Simulator

Decision
Variable
Values

One
implementation of
uncertain input
variables

Some statistics of
the deterministic
simulator output

One realization
of all output

variables

Problem DataOptimal Solution

Stochastic
Simulator
Stochastic
Simulator

OptimizerOptimizer

Optimization Loop

Sampling Loop

Optimization Loop

Sampling Loop

Deterministic
Simulator

Deterministic
Simulator

Decision
Variable
Values

One
implementation of
uncertain input
variables

Some statistics of
the deterministic
simulator output

One realization
of all output

variables

Problem DataOptimal Solution

Stochastic
Simulator
Stochastic
Simulator

OptimizerOptimizer

Chapter 5: Distributed Evaluation for EPANET: deEPANET

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 123

Table 5-2 and Figure 5-4 show the results obtained from averaging ten runs of the simulation

exercise outlined above. The simulation exercise was repeated using two and three instances

of deEPANET running on the same machine to determine whether there was any benefit of

doing so.

Figure 5-4: Baseline performance on Piedemonte San Germano simulation exercise.

As was expected, the availability of a second thread on the dual core machine D

allowed it to almost double its throughput of solutions; indeed, the performance of this

machine continued to improve with up to six instances being used – the reasons for which

will be discussed below. What was more surprising, however, was the performance of

computer C that demonstrated a performance improvement > 30% with the addition of the

second instance – rather than the degradation which might be expected and which was

shown by the other single-core processors.

To determine whether Intel’s HyperThreading technology was likely to be

responsible for this performance gain, the processor in computer B was returned to its native

3.0GHz performance and retested – the processors in computers B and C are identical save

11
.9

7

11
.7

5

11
.2

4

3.
45

3.
42

3.
32

7.
07

9.
25

9.
09

13
.9

5

25
.0

7

25
.1

8
0

5

10

15

20

25

30

So
lu

tio
ns

 p
er

 S
ec

on
d

A B C D

Computer

Piedemonte San Germano Case Study

One thread
Two threads
Three threads

Chapter 5: Distributed Evaluation for EPANET: deEPANET

124 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

for the latter’s support for HyperThreading. Under these conditions, computer B achieved a

baseline score of 7.09 solutions per second with a single thread and degraded thereafter with

additional instances, in line with its prior performance confirming that the HyperThreading

support on the processor was indeed assisting in the running of two instances of the

deEPANET client.

The baseline results demonstrate that, even without employing collaborating

computers across a network, deEPANET can realize significant performance improvements

on standalone machines with multiple processors – be they physical or virtual.

To evaluate the performance of the software it was necessary to nominate a single

computer to act as the client for which the other computers would serve results. Tests

demonstrated that it was most effective for the quickest machine to act as the client in order

to ensure the responsiveness necessary for distributing and collating the network solutions in

a timely fashion. To this end, computer D, the dual-core AMD machine was selected for this

purpose. In addition to serving the other computers, computer D also continued to act as a

server in its own right, returning results to its own client.

Computer Baseline
score

Distributed score
(single threads)

Distributed score
(dual threads)

A 11.97 11.81 11.82
B 3.45 3.69 3.54

C 7.07 6.17
Thrd. #1 4.30 8.65

(combined) Thrd. #2: 4.35

D 13.95 11.10
Thrd. #1 11.52 23.04

(combined) Thrd. #2: 11.52

Totals 36.44 32.77 47.05

Table 5-3: Results obtained from running single threads on each of the computers and
dual threads on the multiprocessor computers.

The results in the single thread column of Table 5-3 illustrate a drop in performance of

around 10% when compared to the baseline score representing the overhead of transmitting

the data across the network. Much of the drop in performance is attributable to computer D,

which is now responsible for distributing solutions to all of the other computers. It should

be noted that a direct comparison between the baseline results and the distributed results is

not entirely valid as the baseline results would represent individual optimization runs

operating on separate computers whereas the results from the distributed arrangement

contribute to a single optimization run – potentially a more useful scenario when considering

multi-objective optimization algorithms.

Chapter 5: Distributed Evaluation for EPANET: deEPANET

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 125

It has been shown that running two threads on the HyperThreading and Dual-Core

machines greatly improves their performance and the results obtained by adding a second

thread to these machines is shown in the dual threads column of Table 5-3. As can be seen,

the addition of the second threads on the multiprocessor machine demonstrates much the

same performance improvement that it did in the standalone case.

An analysis of processor utilization at this point revealed that each of the computers

was failing to reach 100% by some margin. This is due to the inherent latency in sending and

receiving network messages that causes a thread to wait whilst this information is processed.

Accordingly, an additional thread was added to each of the machines in order to allow this

“wasted” time to be directed to undertaking the network analysis. The results from this

addition are shown in Table 5-4. A further test was made by restricting the network switch

that connects the computers to a maximum operating speed of 100 Mb/s – the effect of this

change is also related in the following table.

Computer Baseline
score

Distributed Score
(Gigabit Ethernet)

Distributed Score
(Fast Ethernet)

A 11.97
Thrd. #1: 6.24 12.46

(combined)
Thrd. #1: 4.57 9.08

(combined) Thrd. #2: 6.22 Thrd. #2: 4.51

B 3.45
Thrd. #1: 1.91 3.83

(combined)
Thrd. #1: 1.65 3.29

(combined) Thrd. #2: 1.92 Thrd. #2: 1.64

C 7.07
Thrd. #1: 2.79

9.33
(combined)

Thrd. #1: 2.83
9.23

(combined) Thrd. #2: 3.81 Thrd. #2: 2.82
Thrd. #3: 2.73 Thrd. #3: 3.58

D 13.95
Thrd. #1: 6.39

22.51
(combined)

Thrd. #1: 6.66
22.95

(combined) Thrd. #2: 9.85 Thrd. #2: 6.34
Thrd. #3: 6.27 Thrd. #3: 9.95

Totals 36.44 48.13 44.55

Table 5-4: Results utilizing one thread per processor (virtual or physical) plus one supplementary thread.

Further tests have shown that further increasing the number of threads on each machine

does not yield further improvements in performance. Preliminary results suggest that this

technique remains scalable and a network comprised of four computers with a similar

configuration to computer A in collaboration with the server D have achieved in excess of 75

solutions per second on the example problem. Identifying, the extent of this scalability is

difficult – being dependent both on the configuration of the problem, the network topology

and the performance of the individual computers involved.

Chapter 5: Distributed Evaluation for EPANET: deEPANET

126 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 5-5: Results utilizing one thread per processor (virtual or physical) plus one supplementary thread.

5.6. Distributing Stochastic Computation

In attempting to determine the level of scalability that the application of deEPANET enjoys,

the system was applied to the network topology shown in Figure 5-6. In addition to the

computers used for the case study above, four additional computers have been introduced to

the network. Two of these, F and G are machines similar in specification to A and are

connected to the server D via a Gigabit Ethernet connection.

E is a laptop connected by an IEEE 802.11b wireless connection that has a peak

speed of 11mbps (just over 1% of the bandwidth available to the Gigabit connection). The

last addition is H which is to be found attached to the Internet via a residential ADSL

(Asymmetric Digital Subscriber Line) connection around 200 metres from the campus of the

University of Exeter. Despite its apparent proximity, however, the gateway between the

ADSL provider and the University’s SuperJANET network is in London.

Preliminary results from running deEPANET on this network were encouraging in

that the additional computers attached to the Gigabit network continued the scaling trends

seen previously. However, what was unexpected was the relatively poor performance of the

13.95 11.81

3.69

6.17

11.10

11.82

3.54

8.65

23.04

12.46 (2)

3.83 (2)

9.33 (3)

22.51 (3)

0

5

10

15

20

25

30

35

40

45

50

So
lu

ti
on

s
pe

r
Se

co
nd

 Baseline
(quickest single

computer)

 deEPANET
(1 thread/server)

 deEPANET
(2 threads/server)

Optimized
deEPANET

(number of threads)

Computer

Piedemonte San Germano Case Study

D (Client & Server)

C (Server)

B (Server)

A (Server)

13.95

32.77

47.05 48.13

Chapter 5: Distributed Evaluation for EPANET: deEPANET

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 127

wireless connection and that of the WAN (Wide Area Network) connection off campus.

Whilst both connections are acceptably fast for data transfer, the latency associated with both

wireless networks and WAN connections meant that the transport times for small packets of

data were compromised.

In an effort to reduce the implications of this – and to improve the practicability of

deEPANET – a decision was made to offload the computation of the stochastic variables to

the remote servers. In the original configuration of deEPANET, the client computer would

generate a queue of networks to be solved by varying the stochastic variables according to a

Probability Distribution Function (PDF) specific to each input variable.

A typical configuration would mean that for each solution generated by the genetic

algorithm, the stochastic loop (see Figure 5-3) would run 20-50 times, producing that number

of individual, slightly-differing networks to be solved hydraulically – in a distributed fashion

through deEPANET. Devolving the stochastic computation to the servers entails passing

the description of each PDF for each stochastic variable, in this instance the nodal demands,

rather than the generated values obtained from the PDF. The server computers are then in a

position to generate the stochastic variables directly from the PDF themselves. This has a

twin-effect on the performance of the algorithm, as can be seen from Table 5-5:

Chapter 5: Distributed Evaluation for EPANET: deEPANET

128 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 5-6: Extended test network for deEPANET simulations

The amount of data transferred across the network is thus greatly reduced. Each

network solution only requires the transfer of the pipe configuration and the PDF

Chapter 5: Distributed Evaluation for EPANET: deEPANET

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 129

specification – rather than one set of pipe configurations and nodal demands for each

sample. A saving proportionate to the number of samples can be achieved in terms of a

reduction in network traffic. In terms of the results returned there are two techniques that

can be applied. The server can either collect all of the results from the individual hydraulic

evaluations and return them to the client, as before, or aggregate the statistics for a given

solution – significantly reducing the amount of data transferred and the load on the client.

The data transfers are also consolidated into two transfers that occur at the beginning of

the evaluation of a solution and when all of the samples have been hydraulically evaluated.

This has the effect of reducing the effect of the latency on the algorithm as most of time that

is wasted in deEPANET is involved in facilitating a network connection rather than actually

transferring the data.

 Data Transfer
(bytes per network solution)

Number of
Data

Transfers
(per network

solution)

Performance
(sample solutions per second)

 Outbound Inbound Total using four LAN
computers

using one
WAN

computer

Standard1 15,200 6,200 21,400 100 48.13 0.18

Devolved2 550 6,200 6,750 2 48.58 7.02

Devolved with
Aggregated

Results3
550 32 582 2 49.54 7.75

1 sending 45 pipe diameters and 31 nodal demands and receiving 31 nodal pressures – for each of 50 samples.
2 sending 45 pipe diameters and 31 PDF descriptions for each network solution and receiving 31 nodal pressures for each of 50
samples.
3 sending 45 pipe diameters and 31 PDF descriptions and receiving 8 statistics for each network solution.

Table 5-5: Comparison of data transfer and performance for standard and devolved stochastic
configurations (for the Piedemonte San Germano case study as before – assuming 50 stochastic samples)

Table 5-5 clearly illustrates the type of performance improvement that can be

achieved when devolving the stochastic sample generation to the server machines – with the

attendant benefits of reducing and consolidating the network traffic necessary. From the

table it can be noted that there is a small improvement in the performance of the four, LAN

connected computers. Given that this network is not badly affected by latency in the first

instance, it can be assumed that this improvement can be principally be attributed to the

reduction in the amount of data processing that has to take place on both sides of the

network connection. The result for the WAN connected computer is more significant,

however. Under the original implementation, 100 packets (not IP packets) of data are sent

across the network, averaging 214 bytes in size. Under the devolved and

devolved/aggregated implementations this reduces to 2 packets (550 bytes sent and 6,200

Chapter 5: Distributed Evaluation for EPANET: deEPANET

130 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

bytes received) and 2 packets (550 bytes sent and 32 bytes received), respectively. Clearly,

reducing the number of packets sent has a dramatic effect on the network overheads as can

be seen from the marked performance improvement witnessed for the WAN connected

computer – some 43 times quicker. It should also be noted that reducing the throughput

required of the network is likely to result in improved scalability of the entire solution.

One issue that arises with reducing the granularity of the elements distributed across

the network is that it is less straightforward to balance the performance of servers. Before, a

server that outperformed its peers undertook a larger share of the workload – which has the

net effect of all of the servers returning their final contribution to an individual network

solution at approximately the same time. This effect may be mitigated by selecting smaller

numbers of stochastic samples where appropriate. For this reason, deEPANET is

configurable as to which technique is to be applied depending on the topology of the

network that is available for use.

5.7. Conclusions

The results presented demonstrate that deEPANET can significantly shorten runtimes for

optimization algorithms by distributing evaluations to computers across a network and by

exploiting multi-threading techniques on standalone computers equipped with virtual or

physical multiprocessors.

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 131

Chapter 6. Single Objective Optimization Problems

6.1. Introduction

In order to demonstrate the applicability of the techniques outlined in Chapter 4 and 5, a

number of case studies have been undertaken. This chapter introduces three problems

formulated as single-objective optimization problems, which are then revisited as multiple

objective optimizations in Chapter 7. For each problem, the effect of the novel

methodologies, i.e. genetic representation, caching and updated mutation operators, are

identified.

These single objective optimizations are formulated thus:

:݁ݖ݅݉݅݊݅ܯ ݐݏ݋ܥ ൌ ௜௡௙ܥ ൅ ௣௘௡ܥ

iii)

௜௡௙ܥ ൌ ݂൫ܦଵ, . . , ே೗൯ܦ ൌ෍ܥ൫ܦ௝, ௝൯ܮ
ே೗

௝ୀଵ

iv)

௣௘௡ܥ ൌ ݂൫ܪଵ, . . , ே೙൯ܪ ൌ ܭ ·෍max൫0;ܪ௜,௠௜௡ െ ௜൯ܪ
ே೙

௜ୀଵ

v)

௝ܦ א ሺ݆ ܦ ൌ 1, . . , ௗܰሻ

vi)

where: Cost is the total cost, to be minimized, Cinf is the total infrastructure cost, Cpen is the

penalty cost term, Nl is the number of links in the network for which reinforcement or

installation is an option, C(Dj,Lj) is the cost of the jth pipe with diameter Dj (chosen from a

discrete set of available diameters D) and length Lj. K is the penalty multiplier constant, Hi is

the pressure head at node i (as computed by the hydraulic solver), Hi,min is the minimum

pressure head requirement sufficient to fully satisfy the demand at node i and Nn is the

number of nodes in the network. Nd is the number of decision variables in the optimization.

Chapter 6: Single Objective Optimization Problems

132 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

6.1.1. Genetic Representation

In Chapter 4.2, an introductory examination is made of the effect of varying the genetic

representation used for the candidate GA solutions. This section contrasts this variation and

the use of heterozygous chromosomes for each of the three applications introduced above.

Each of the networks under consideration was subject to 100 optimization runs on the above

basis using the different genotype representations. The results of this experimentation are

presented in the form of charts which can be considered as a two dimensional form of “box-

plot” (Chambers et al., 1983), an example of which is shown in Figure 6-1.

Figure 6-1: Example result graph

The results presented show the maximum and minimum fitness values of the best individual

in the population throughout the lifetime of the optimization, along with the upper and lower

quartiles and the median fitness. Combined as a graphical presentation, they provide an

effective illustration of the algorithmic performance for a single-objective algorithm. It

should be noted that in order to reduce the amount of data produced by the optimizations to

a manageable level, the state of the population was sampled every 20 generations – thus the

resolution of the graphs presented is limited in this respect.

6.1.2. Heterozygous Chromosomes

The New York Tunnels and Piedemonte San Germano problems examined were

reformulated as heterozygous problems in which the chromosome of the solution contains

not only the pipe diameter to be applied, but also the identity of the pipe to apply it to. In

this fashion, it is possible to constrain the optimization by limiting the number of changes

Maximum value Upper Quartile

Median Value

Lower Quartile

Minimum Value

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 133

made to the network. In this analysis, ten pipes were permitted to be changed for both

problems. It should be noted that from the optimizations performed previously it had been

seen that the optimal solutions for both problems were achieved with the modification of up

to just six pipes in the network.

Owing to the fact that the Hanoi network is a design problem, in which each pipe

needs to have a diameter value set, this network has not been tested with a heterozygous

formulation.

6.1.3. Caching

For each of the three networks, an experiment has been performed to quantify the

performance improvement that might be achieved by adopting the two caching strategies

outlined in Chapter 4.4. As the integer-based representations have been shown to

outperform those of the true binary strings, the caching analysis will concentrate on that

representation. Caching is purely an exercise in reducing the runtime performance of the

algorithm and, for deterministic algorithms at least, should have no effect on the final results

of the optimization. As the binary strings have a longer and more complex structure to

search for in the cache they will intuitively produce significantly poorer performance than the

integer or hybrid representations. The search times for the different caches have been

determined experimentally with the evaluation function of the GA disabled. This allows a

good measure of the average search time of the cache. This, coupled with the cache hit

statistics generated over repeated runs of the algorithm allows the computation of any

performance saving afforded by using the cache. Owing to the variable chromosome

representations employed by the heterozygous algorithms, the caching has not been

evaluated against these models.

Chapter 6: Single Objective Optimization Problems

134 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

6.1.4. Adaptive Differential Mutation

To determine the efficacy of the differential mutation it was initially applied to a

simple General Assignment Problem in which trend information is largely irrelevant. The

General Assignment Problem has no scalar relationships between the decision variable values

and any real-world property of the agents they represent – which means that the trend

information collected will be unusable. The differential mutation was allowed to operate

once the algorithm had proceeded beyond 100,000 iterations.

Figure 6-2: Mutation performance comparison - Generalized Assignment Problem

The results shown in Figure 6-2 are the average performances of at least 40 runs for

each mutation type. A steady state GA was employed, as the analysis requires statistics

collected by the Replacer component of the GA in order to determine the relative fitness of

new solutions. This component is not used in generational algorithms because all new

solutions are accepted unconditionally into the population for the next generation.

The effectiveness of the differential mutation is somewhat questionable on this

problem: beyond the 100,000 iteration point where the revised algorithm starts operating, a

marginal improvement in performance can be discerned – although this is not immediately

apparent in the graph above. Overall, the differential mutation appears to offer minimal

advantages over the standard GA for this problem.

Mutation peformance comparison
(GAP problem)

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000

0 50,000 100,000 150,000 200,000 250,000

Iterations

Fi
tn

es
s

Differential mutation

Standard GA

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 135

6.1.5. Distributed Performance

Computer Processor Memory Network
X 2.4 GHz Intel Core 2 Quad 4 GB Fast
Y 2.4 GHz AMD Athlon64x2 2 GB Fast
Z 1.8 GHz Intel Core 2 Duo 2 GB Fast

Table 6-1: Hardware specifications of distributed test environment computers

Each of the three networks under consideration were employed to assess the effectiveness of

the Distributed Evaluation for EPANET. Table 6-1 relates the computers employed for this

task. Computer X is equipped with a quad-core processor, whilst Computers X and Y both

have dual core processors. Computer X, as the most powerful, was nominated as the server

for the group. Computer X, as the most powerful, was nominated as the server for the

group. None of the computers is equipped with a HyperThreading processor – which has

been shown to improve performance under initial testing – and accordingly the two dual core

machines were configured to run three instances of the deEPANET server each and four

instances for Computer X – which would also be responsible for running the client on which

the optimization would actually proceed.

To minimize the effects of external network traffic impacting on the performance

metrics, the machines were connected on a private, gigabit Ethernet network via a switch.

Before each distributed test was run, the same optimization was performed on each

individual machine in order to obtain a baseline figure for its performance.

Because of the hardware differences between these evaluations and those presented

for the initial testing in Chapter 5, the performance figures are not directly comparable and

should not be taken as a measure of the relative complexity of the problems.

6.2. New York Tunnels

6.2.1. Problem Formulation

The problem that has come to be known as “New York Tunnels” was introduced by

Schaake and Lai (1969) as an illustration of a large-scale optimization problem for the

reinforcement of the water supply for New York City. The “Tunnels” name stems from the

fact that the pipes are of inordinately large diameter, ranging from 60 inches (1.5 metres) to

204 inches (5.2 metres). In this problem, each of the 21 pipes in the network may be

duplicated with one of 15 commercially available pipe sizes or left unduplicated. This gives a

solution space of 1621 = 1.93×1025 solutions.

Chapter 6: Single Objective Optimization Problems

136 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

This network has become a favourite benchmark for optimization applications and

has been employed widely in the literature. From Schaake and Lai’s original solution of

$78.1m the best known solution for the problem has been advanced by, among others,

Morgan & Goulter (1985 – $39.229m) and Murphy et al. (1993 - $38.814m). Savić and

Walters (1997) used the problem to illustrate the sensitivity of such optimization problems to

small changes in the coefficients used in calculating the frictional losses observed in the

system, demonstrating solutions ranging from $37.140m to $40.452m representing the best

solutions found for the gamut of coefficients used for this problem by other workers in the

field. At the time of writing, the best-known feasible solution to the problem of $38.644m

was first published by Meier et al. (2003) using an Ant Colony Simulation (ACS) approach.

6.2.2. Network Configuration

Figure 6-3: New York Tunnels Topology

The network topology consists of two loops and two branches supplied under gravity by a

single, fixed-head reservoir. In the original, pressure deficient configuration, nodes 16, 18,

19, 20 and 21 at the periphery of the network fall below the required minimum pressures (see

Table 6-2). This problem was originally formulated in Imperial units – metric equivalents are

given.

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 137

Node
ID

Elevation
(feet)

Demand Minimum Pressure
(cubic feet
per second)

(litres per
second)

(pounds per
square inch) (metres H2O)

2 0 92.4 2,616.47 255.0 179.28

3 0 92.4 2,616.47 255.0 179.28

4 0 88.2 2,497.55 255.0 179.28

5 0 88.2 2,497.55 255.0 179.28

6 0 88.2 2,497.55 255.0 179.28

7 0 88.2 2,497.55 255.0 179.28

8 0 88.2 2,497.55 255.0 179.28

9 0 170.0 4,813.86 255.0 179.28

10 0 1.0 28.31 255.0 179.28

11 0 170.0 4,813.86 255.0 179.28

12 0 117.1 3,315.90 255.0 179.28

13 0 117.1 3,315.90 255.0 179.28

14 0 92.4 2,616.47 255.0 179.28

15 0 92.4 2,616.47 255.0 179.28

16 0 170.0 4,813.86 260.0 182.80

17 0 57.5 1,682.22 272.8 191.24

18 0 117.1 3,315.90 255.0 179.28

19 0 117.1 3,315.90 255.0 179.28

20 0 170.0 4,813.86 255.0 179.28

Table 6-2: New York Tunnels Node Characteristics

Reservoir ID
Elevation

(feet)

Total Head
(feet H2O) (metres H2O)

1 0 300 91.44

Table 6-3: New York Tunnels Reservoir Characteristics

Pipe From
Node

To
Node

Diameter Length H-W
Friction
Factor (inches) (mm) (feet) (m)

1 1 2 180 4,572 11,600 3,535.68 100

2 2 3 180 4,572 19,800 6,035.04 100

3 3 4 180 4,572 7,300 2,225.04 100

4 4 5 180 4,572 8,300 2,529.84 100

5 5 6 180 4,572 8,600 2,621.28 100

6 6 7 180 4,572 1,9100 5,821.68 100

7 7 8 132 3,352.8 9,600 2,926.08 100

8 8 9 132 3,352.8 12,500 3,810.00 100

9 9 10 180 4,572 9,600 2,926.08 100

10 11 9 204 5,156.2 11,200 3,413.76 100

11 12 11 204 5,156.2 14,500 4,419.6 100

12 13 12 204 5,156.2 12,200 3,718.56 100

Chapter 6: Single Objective Optimization Problems

138 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Pipe From
Node

To
Node

Diameter Length H-W
Friction
Factor (inches) (mm) (feet) (m)

13 14 13 204 5,156.2 24,100 7,345.68 100

14 15 14 204 5,156.2 21,100 6,431.28 100

15 1 15 204 5,156.2 15,500 4,724.4 100

16 10 17 72 1,828.8 26,400 8,046.72 100

17 12 18 72 1,828.8 31,200 9,509.76 100

18 18 19 60 1,524.0 24,000 7,315.2 100

19 11 20 60 1,524.0 14,400 4,389.12 100

20 20 16 60 1,524.0 38,400 11,704.32 100

21 9 16 72 1,828.8 26,400 8,046.72 100

Table 6-4: New York Tunnels Pipe Characteristics

Pipe
option

Diameter Cost Pipe
option

Diameter Cost
(inches) (mm) ($/foot) ($/metre) (inches) (mm) ($/foot) ($/metre)

0 No Duplication 0.00 8 120 3,048.0 416.46 1,366.34

1 36 914.4 93.59 307.05 9 132 3,352.8 468.71 1,537.76

2 48 1,219.2 133.70 438.65 10 144 3,657.6 522.11 1,712.96

3 60 1524.0 176.32 578.48 11 156 3,962.4 576.59 1,891.70

4 72 1828.8 221.05 725.23 12 168 4,267.2 632.09 2,073.79

5 84 2,133.6 267.61 877.99 13 180 4,572.0 688.54 2,258.99

6 96 2,438.4 315.80 1,036.09 14 192 4,876.8 745.91 2,447.21

7 108 2,743.2 365.46 1,199.02 15 204 5,181.6 804.14 2,638.25

Table 6-5: New York Tunnels Pipe Duplication Options

The pipe costs per unit length seen in Table 6-5 are shown to two decimal places. Within the

optimization software itself, however, the cost versus diameter function defined by Schaake

& Lai (1969) is used thus:

ݐݏ݋ܥ ൌ 1.1 · ଵ.ଶସݎ݁ݐ݁݉ܽ݅ܦ · ݄ݐ݃݊݁ܮ

vii)

Where Diameter is in inches and Length in feet and Cost is in US Dollars.

6.2.3. GA Configuration

An Elitist Generational GA was employed for the Gene Expression and Heterozygous

comparisons, preserving the two best solutions in each population. Single-point crossover

was used with a probability of 95% occurrence. The “standard” mutation operator was used

which gave a 70% probability of a single gene being mutated. A penalty term was introduced

into the optimization to penalize infeasible solutions, which produce insufficient pressure at

the demand nodes equating to $100,000,000 per psi of head deficit.

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 139

6.2.4. Genetic Representation

6.2.4.1. Binary String

For the standard binary string representation 23% of the runs converged to the best-known

optimal solution and the variation in the range of solutions obtained visible in

Figure 6-4.

Figure 6-4: Algorithmic Performance: New York Tunnels - Binary String

6.2.4.2. Gray Binary String

As can be seen from Figure 6-5 the Gray-coded Binary String clearly outperforms its

conventionally coded relative, with 43% of the solutions converged to the optimal solution as

well as a clearly superior algorithmic performance overall.

Chapter 6: Single Objective Optimization Problems

140 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 6-5: Algorithmic Performance: New York Tunnels - Gray Binary String

6.2.4.3. Integer

The use of the Integer encoding for the genes leads to 41% of the runs identifying the best-

known solution of $38.644m. Again, the integer representation is clearly shown (Figure 6-6)

to be superior to that of the conventional binary string.

Figure 6-6: Algorithmic Performance: New York Tunnels – Integer

6.2.4.4. Hybrid Integer

The results obtained for the hybrid integer gene, shown in Figure 6-7, demonstrate a tightly

confined set of results. The median value reaches the known global optimum after around

5,750 generations (563,600 evaluations) – indeed, 53% of the runs converged to the optimal

solution for this representation. This is the only representation for which the median

performance for the runs was seen to reach the optimal solution. The Gray-coded version of

the standard binary string representation can expected to perform identically, in terms of

algorithmic performance, as this hybrid integer gene given that they both use the same

underlying genetic representation and are acted upon by the recombination routines in the

same fashion and the results shown in Figure 6-5 and Figure 6-7 confirm this assertion.

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 141

Figure 6-7: Algorithmic Performance: New York Tunnels - Hybrid Binary String

 The best run located this minimum after 260 generations (or 25,482 evaluations). This

compares favourably with some of the best performances reported in the literature:

Paper Technique Solution Cost Least Evaluations
Required

Dandy et al. (1996)
GA

$38.81m 96,750
Wu et al. (2001) $37.13† 37,186

Lippai et al. (1999) $38.13m† 46,016
Eusuff & Lansey (2003a) Shuffled Frog

Leaping
Algorithm

$35.27m‡ 28,200

Eusuff & Lansey (2003b)
$38.13m† 31,267
$38.81m 21,569

Maier et al. (2003) Ant Colony $38.64m 13,928

Table 6-6: New York Tunnels: Comparison with Literature Results

† Solution feasible when using “relaxed” Hazen-Williams headloss coefficient, c.f. Savić & Walters (1997).
‡ Infeasible solution.

6.2.4.5. Comparative Analysis

Figure 6-8 illustrates the best values obtained from each of the genotype representations. It

is clear from the figure that the best Hybrid run identifies the minimum after around 260

generations, similar to the conventional binary string. The Gray-coded binary string,

however, outperforms both identifying the minimum around 200 generations. In terms of

numbers of evaluations, these figures relate to evaluations of 25,482 and 19,602 respectively.

Chapter 6: Single Objective Optimization Problems

142 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 6-8: Algorithmic Performance: New York Tunnels - Combined Best

The above results are combined in Figure 6-9 which, for clarity, has the maximum and

minimum range for each result removed – leaving the upper and lower quartiles and the

median value for each genotype representation. The weak performance of the classically

coded binary string is highlighted in this composite. The improvement in performance

achieved by the Hybrid Integer gene over its conventional integer counterpart is also clear.

This can be attributed to the crossover and mutation characteristics the hybrid gene takes

from the Gray-coded binary string. The broad equivalence of the Gray-coded binary string

and the Hybrid Integer gene is demonstrated by their overlap in the above figure –

consequently, the Gray-coded binary string representation will be omitted from further

analysis.

Figure 6-9: Algorithmic Performance: New York Tunnels - Combined Upper/Lower Quartiles

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 143

6.2.4.6. Runtime Performance

Each of the optimization runs was timed and averaged to give a realistic performance rate for

the optimization. In order to minimize the influence of external factors on the timing, runs

were undertaken on a computer equipped with a quad-core processor with no other

processes running other than standard operating system services.

Chromosome Representation Average Performance
(evaluations per second) % of best performance

Binary String 8,893.63 86.9%

Integer 10,234.89 100%

Gray Binary String 8,111.29 79.3%

Hybrid Integer 8,880.60 86.8%

Table 6-7: New York Tunnels Runtime Performance

As can be seen from Table 6-7, the performance of the integer gene outstrips that of the

other representations, although its algorithmic performance was weaker than the two Gray-

coded alternatives. The hybrid integer continues to outperform the Gray coded binary string

and, for this length of chromosome, performs almost identically to the conventional binary

string (c.f. Table 4-4). Thus it can be seen that, for this problem, a trade-off exists between

run-time performance and the algorithmic performance.

6.2.5. Heterozygous Chromosomes

The heterozygous form of the New York Tunnels has been encoded to allow 10 pipes to be

modified at once. The chromosome comprises 10 pairs of genes, the first being allowed to

vary between 1and 21 represents the pipe to be modified. The second gene of the pair

encodes the pipe diameter as previously. Thus for the New York Tunnels problem, the total

chromosome length is reduced by one gene.

6.2.5.1. Binary String

The results from the runs of the heterozygous form of the binary string can be seen in Figure

6-10.

Chapter 6: Single Objective Optimization Problems

144 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 6-10: Algorithmic Performance: New York Tunnels - Heterozygous Binary String

Overlain with the original results from Chapter 6.2.4 in Figure 6-11 the heterozygous results

can be seen to be superior to the original configuration– improving more rapidly and

converging to the optimal solution on more occasions (47% vs 23%).

Figure 6-11: Algorithmic Performance: New York Tunnels - Heterozygous Binary String results overlain with

conventional results

6.2.5.2. Integer

Figure 6-12 illustrates the results obtained for the heterozygous runs with the integer

representation for the genes.

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 145

Figure 6-12: Algorithmic Performance: New York Tunnels - Heterozygous Integer

Once more, the heterozygous version of the algorithm can be seen, in Figure 6-13, to be

outperforming the conventionally encoded version when the results are overlain. Here 56%

of the runs identified the best-known solution compared to just 41% of the conventionally

encoded runs.

Figure 6-13: Algorithmic Performance: New York Tunnels - Heterozygous Integer results overlain with

conventional results

6.2.5.3. Hybrid Integer

The results of the hybrid integer representation employing the heterozygous implementation

of the New York Tunnels problem are illustrated in Figure 6-14.

Chapter 6: Single Objective Optimization Problems

146 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 6-14: Algorithmic Performance: New York Tunnels - Heterozygous Hybrid Binary String

As can be seen from Figure 6-15, the differential in performance between the two versions of

the Hybrid Integer is much reduced in comparison to the other representations. Indeed in

terms of success in finding the optimal solution, the performance of the Hybrid Integer

dipped below that of the pure Integer representation – managing 47% of runs versus 53% of

the equivalent, conventionally encoded runs.

Figure 6-15: Algorithmic Performance: New York Tunnels - Heterozygous Hybrid Integer results overlain

with conventional results

6.2.5.4. Comparative Analysis

In general, the best performing runs of the heterozygous configurations, for all

representations, converged quicker to the best known solution than their conventionally

configured equivalents – as can be seen in Figure 6-16 (c.f. Figure 6-8). Here it can be seen

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 147

that the best binary string run identified the optimum solution after just 160 generations

(15,682) evaluations with that of the hybrid integer and integer representations after 220

generations (21,660 evaluations) and 420 generations (41,260 evaluations) respectively.

Figure 6-16: Algorithmic Performance: New York Tunnels – Combined Heterozygous Best

Figure 6-17 combines the algorithmic performance for the three genetic representations for

the heterozygous problem implementation. For clarity, the maximum/minimum curves are

omitted.

Figure 6-17: Algorithmic Performance: New York Tunnels - Combined Heterozygous Upper/Lower

Quartiles

6.2.5.5. Runtime Performance

The principal advantage of adopting a heterozygous encoding for the GA is that it can reduce

runtimes of the algorithm by shortening the chromosome length. In this instance, however,

Chapter 6: Single Objective Optimization Problems

148 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

the chromosome length is only one element shorter than the standard representation since

each chromosome encodes 10 pipes IDs to modifiy and 10 diameters vs. 21 diameters for the

standard representation. Thus with the additional overhead of decoding the genes for

identifying the pipes to apply the diameters to, the heterozygous representations are all

marginally slower than their conventional counterparts, as shown in Table 6-8. This result

would not be expected to be seen with more complex chromosomes, for instance those of

the Piedemonte San Germano problem below.

Chromosome
Representation

Conventional Heterozygous
 (evaluations
 per second) % of best (evaluations

per second) % of best

Binary String 8,893.63 86.9% 7,474.96 73.0%

Integer 10,234.89 100% 8,433.48 82.4%

Hybrid Integer 8,880.60 86.8% 7,590.13 74.2%

Table 6-8: New York Tunnels Heterozygous vs. Conventional Runtime Performance

6.2.6. Caching

Table 6-9 shows that the caching performance for the New York Tunnels problem is

relatively poor compared to that experienced with the GAP problems in the initial trials in

which up to ~8% of solutions were cached. Here only 1.1% (binary tree) and 2.9% (Judy

tree) of solutions were cached despite the solution space for the New York Tunnel problem

being considerably smaller.

Cache Size
Runtime

performance Cache Performance Relative
Runtime

Performance (solutions/second) (no. hits) (% of evaluations)

None 8,880.60 n/a n/a 100%

40,000 8,207.58 21,713 1.1% 108.2%

Judy (unlimited) 8,506.32 57,391 2.9% 104.4%

Table 6-9: Cache results: New York Tunnels

The degradation of performance when using the cache with this problem is clear with both

cached runtimes exceeding those of the uncached algorithm. This occurs because the

objective function is too simple to justify the application of the cache in this instance.

However, the performance of the Judy cache, in both runtime performance and the number

of cache hits is encouraging.

6.2.7. Adaptive Differential Mutation

The New York Tunnels problem has a significantly smaller solution space than the GAP

problem and, accordingly, the differential mutation was introduced much earlier in the

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 149

optimization after just 2,000 iterations (4,000 evaluations) had been performed. Figure 6-44

shows that until the 2,000th iteration, the algorithms with and without the differential

mutator perform broadly similarly – as would be expected as they are indeed the same

algorithm. Beyond that point, though, the effect of switching on the differential mutation –

in which trend is considered - is significant. At this point, the differential mutator begins to

concentrate on the four or five genes that are critical to this optimization. At first it was

suspected that this was a manifestation of an effective increase in the mutation rate (although

the probability of mutation occurring does not, itself, change. However, beyond the 2,000

iteration mark the effective mutation rate for an individual gene actually decreases –

illustrating how effective it is to steer the mutation to certain genes preferentially.

Figure 6-18: Mutation performance comparison - New York Tunnels problem

6.2.8. Distributed Performance

The single objective New York Tunnels problem (normal representation using the hybrid

integer gene) was evaluated with the deEPANET distributed hydraulic solver. The baseline

performance figures, for the machines employed, suggest that the maximum performance for

this problem is as shown in Table 6-10. Two important caveats should be stated about these

figures. Firstly, the baseline performance figures do not include any overhead imposed by

the operating system which would have a deleterious effect on the throughput when all of

the processing capacity of the computer is committed to deEPANET. Secondly, the figures

for the computers Y and Z which will be improved marginally because, when employed as

servers in the deEPANET network, they no longer have the overhead of running the

Chapter 6: Single Objective Optimization Problems

150 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

optimization part of the algorithm. Instead, they are tasked solely with undertaking the

hydraulic simulations.

Computer
Baseline

Performance
(evaluations/second)

Number of
Processor Cores

Theoretical Maximum
Throughput

(evaluations/second)
X 8,881 4 35,524
Y 6,227 2 12,454
Z 5,952 2 11,904

Total 21,060 8 59,882

Table 6-10: Theoretical maximum performance for distributed New York Tunnels problem

The results for the distributed optimization are presented in Table 6-11. As can be seen from

the baseline performance figures, the computational load of the New York Tunnels hydraulic

simulation is trivial for a modern computer with a single processor of Computer X managing

to perform almost 9,000 evaluations per second as well as managing the optimization

algorithm itself.

Computer
Baseline

Performance
(evaluations/second)

Distributed Performance
(evaluations/second)

X 8,881

5,826

23,490
5,929
5,898
5,837

Y 6,227
3,112

11,082 3,628
4,342

Z 5,952
3,046

8,182 2,492
2,644

Totals 21,060 42,754

Table 6-11: New York Tunnels distributed performance results

The distributed performance is, however, somewhat disappointing with the total solution

throughput approximately doubling – reaching 71% of the theoretical maximum - despite an

additional five processor cores being employed in the optimization. The results for the two

dual-core computers are somewhat better – given that, individually, they are no longer

bearing the load of managing the optimization. The performance of Computer X is

negatively impacted by having to serve large volumes of solutions across the network for

Computers Y and Z to handle.

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 151

6.3. Hanoi

6.3.1. Problem Formulation

The Hanoi problem is introduced by Fujiwara & Kang (1990). It is a network design

problem in which 34 pipes may take one of six pipe diameters giving a search space size of

634 = 2.87 × 1026 – an order of magnitude larger than the New York Tunnels problem above.

A global minimum pressure constraint of 30 metres applies to the optimization.

This is also a familiar benchmark network from the literature and many results have

been obtained with different optimization techniques. As with the New York Tunnels

problem, Savić & Walters (1997) observed that differences in the coefficients applied to the

Hazen-Williams headloss formula make it difficult to make direct comparisons between these

results and adopted upper and lower bounds for their analyses of ω = 10.9031 and ω =

10.5088 – being the limits identified as being used in other research. For the ω = 10.5088

constraint, the best know result is that of Cunha and Sousa (1999) who identified it with

simulated annealing, costing $6.056m. This same result has subsequently also been

confirmed by Geem et al. (2002) using Harmony Search and by Kadu et al. (2008). The more

restrictive ω = 10.9031 has seen optimal solutions of $6.195m (Savić & Walters, 1997) and

more recently $6.190m (Kadu et al., 2008). Eusuff & Lansey (2003) identify the former result

as being, at the time, the best known result obtained using EPANET’s default ω value of

10.6744 which is what will be used in this analysis. They further propose a solution of

$6.073m which is marginally infeasible (by 0.41m at node 13) which was obtained in 26,987

evaluations. Zecchin et al. (2007) review the application of a number of classes of algorithm

to this subject and conclude that the best-published result for the Hanoi problem using

EPANET is that of Zecchin et al. (2006) of $6.134m which was obtained using the Max-Min

Ant System of Stützle & Hoos (2000).

6.3.2. Network Configuration

The network comprises three loops and two short branches fed by a single fixed-head

reservoir as shown in Figure 6-19. Table 6-12 to Table 6-15 describe the characteristics of

the network components.

Chapter 6: Single Objective Optimization Problems

152 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 6-19: Hanoi Network Topology

Node ID
Elevation

(metres)

Demand
(cubic metres

per hour)

Minimum Pressure
(metres H2O)

2 0 890 30.0

3 0 850 30.0

4 0 130 30.0

5 0 725 30.0

6 0 1,005 30.0

7 0 1,350 30.0

8 0 550 30.0

9 0 525 30.0

10 0 525 30.0

11 0 500 30.0

12 0 560 30.0

13 0 940 30.0

14 0 615 30.0

15 0 280 30.0

16 0 310 30.0

17 0 865 30.0

18 0 1,345 30.0

19 0 60 30.0

20 0 1,275 30.0

21 0 930 30.0

22 0 485 30.0

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 153

Node ID
Elevation

(metres)

Demand
(cubic metres

per hour)

Minimum Pressure
(metres H2O)

23 0 1,045 30.0

24 0 820 30.0

25 0 170 30.0

26 0 900 30.0

27 0 370 30.0

28 0 290 30.0

29 0 36 30.0

30 0 360 30.0

31 0 105 30.0

32 0 805 30.0

Table 6-12: Hanoi Node Characteristics

Reservoir ID
Elevation

(metres)

Total Head
(metres)

1 0 100

Table 6-13: Hanoi Reservoir Characteristics

Pipe From Node To Node
Length
(metres)

H-W Friction
Factor

1 1 2 100 130

2 2 3 1,350 130

3 3 4 900 130

4 4 5 1,150 130

5 5 6 1,450 130

6 6 7 450 130

7 7 8 850 130

8 8 9 850 130

9 9 10 800 130

10 10 11 950 130

11 11 12 1,200 130

12 12 13 3,500 130

13 10 14 800 130

14 14 15 500 130

15 15 16 550 130

16 17 16 2,730 130

17 18 17 1,750 130

18 19 18 800 130

19 3 19 400 130

20 3 20 2,200 130

21 20 21 1,500 130

22 21 22 500 130

Chapter 6: Single Objective Optimization Problems

154 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Pipe From Node To Node
Length
(metres)

H-W Friction
Factor

23 20 23 2,650 130

24 23 24 1,230 130

25 24 25 1,300 130

26 26 25 850 130

27 27 26 300 130

28 16 27 750 130

29 23 28 1,500 130

30 28 29 2,000 130

31 29 30 1,600 130

32 30 31 150 130

33 32 31 860 130

34 25 32 950 130

Table 6-14: Hanoi Pipe Characteristics

The Hanoi problem is defined in mixed, metric/imperial units, the available pipe diameters

being specified in inches.

Pipe option
Diameter Cost

($ per metre) (inches) (mm)

0 12 304.8 45.73

1 16 406.4 70.40

2 20 508.0 98.39

3 24 609.6 129.33

4 30 762.0 180.75

5 40 1,016.0 278.28

Table 6-15: Hanoi Pipe Options

The cost function is non-linear and is expressed in Equation viii) with the results summarized

in Table 6-15.

ݐݏ݋ܥ ൌ 1.1 · ଵ.ହݎ݁ݐ݁݉ܽ݅ܦ · ݄ݐ݃݊݁ܮ

viii)

Where Diameter is in inches and Length in metres and Cost is in US Dollars

6.3.3. GA Configuration

The GA configuration employed was identical to that of the New York Tunnels problem

above except the penalty cost was modified to be $250,000 per metre of head deficit

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 155

6.3.4. Genetic Representation

6.3.4.1. Binary String

The results from the runs of the Hanoi problem with the binary string representation are

shown in Figure 6-20. As with the New York Tunnels problem before (Figure 6-4), the

results show a wide variation between runs.

Figure 6-20: Algorithmic Performance: Hanoi - Binary String

These results for the Hanoi are immediately of interest as some of the algorithm runs identify

a solution of $6.081m – considerably cheaper than the next best known solution of $6.190m

(Kadu, 2008). Altogether just 5% of runs identify this solution with the median remaining

high at $6.279m over the 10,000 generations of the optimization.

6.3.4.2. Integer

In contrast to the New York Tunnels, which has a solution space an order of maginitude

smaller, the Integer representation can be seen in Figure 6-21 to be outperforming that of the

standard binary string. A slight improvement over the binary string representation, the

integer runs identified the (newly found) optimal solution on 7% of its runs.

Chapter 6: Single Objective Optimization Problems

156 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 6-21: Algorithmic Performance: Hanoi – Integer

6.3.4.3. Hybrid Integer

The hybrid integer run results, shown in Figure 6-22, represent a further improvement on the

other representations with 28% of runs identifying the best known solution of $6.081m.

Figure 6-22: Algorithmic Performance: Hanoi - Hybrid Integer

6.3.4.4. Comparative Analysis

The plot of the best results, seen in Figure 6-23, demonstrates that, at its most rapid, the best

known solution was identified after 160 generations (15,682 evaluations). This contrasts

favourably with the most rapid solutions generated in 53,000 evaluations for the simulated

annealing approach of Cunha & Sousa (1999) and 18,000 of Kadu et al. (2008) using their

modified GA approach.

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 157

Figure 6-23: Algorithmic Performance: Hanoi - Combined Best

The superiority of the hybrid integer representation is less clear-cut in this example in terms

of algorithmic performance. Figure 6-24 shows the aggregated results for all three

representations analysed. For clarity, the maximum and minimum curves have been omitted

from this figure. It can be seen that the performance of the hybrid integer is generally better

than that of the other representations – although the median performance of the integer

form is better over the lifetime of the optimization.

Figure 6-24: Algorithmic Performance: Hanoi - Combined Upper/Lower Quartiles

6.3.4.5. Runtime Performance

However, it can be seen that on this longer chromosome the Hybrid Integer now

outperforms the Binary string whilst the Integer representation maintains its lead in

performance (Table 6-16).

Chapter 6: Single Objective Optimization Problems

158 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Chromosome Representation Average Performance
(evaluations per second) % of best performance

Binary String 6,934.57 87.5%

Integer 7,921.42 100%

Hybrid Integer 7,107.57 89.7%

Table 6-16: Hanoi Runtime Performance

6.3.5. Caching

Despite the larger solution space of the Hanoi problem with respect to New York Tunnels,

the number of cache hits has improved dramatically. However, from the graphs of the

algorithmic performance (Figure 6-22) it can be seen that there is little improvement in the

population in the latter stages of the optimization, which would improve the likelihood of the

optimization generating previously encountered individuals.

Cache Size
Runtime

performance Cache Performance Relative
Runtime

Performance (solutions/second) (no. hits) (% of evaluations)

None 7,107.57 n/a n/a 100%

40,000 7,237.85 28,411 1.4% 98.2%

Judy (unlimited) 7,553.21 83,682 4.2% 94.1%

Table 6-17: Cache results: Hanoi

6.3.6. Adaptive Differential Mutation

A similar pattern to the performance of the New York Tunnels problem can be seen when

the differential mutator is applied to the Hanoi problem (Figure 6-25) although the rate of

improvement appears to be less significant – possibly due to a larger number of pipes

proving critical to the system performance.

Figure 6-25: Mutation performance comparison - Hanoi

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 159

6.3.7. Distributed Performance

As can be seen from the baseline performance figures for the Hanoi problem (Table 6-18),

the hydraulic simulation for this 34 pipe problem is seen to produce a greater computational

load than that of the 21 pipe, 2 loop New York Tunnels problem (Table 6-7): the baseline

evaluation figures being around 20% lower than for the smaller problem when using the

Hybrid Integer representation.

Computer
Baseline

Performance
(evaluations/second)

Number of
Processor Cores

Theoretical Maximum
Throughput

(evaluations/second)
X 7,108 4 28,432
Y 5,024 2 10,048
Z 4,702 2 9,404

Total 16,834 8 47,884

Table 6-18: Theoretical maximum performance for distributed Hanoi problem

Despite the baseline performance being inferior to that of the New York Tunnels runs, it is

immediately apparent with reference to Table 6-19 that the throughput for Computer X has

increased, in terms of the number of evaluations perform. It is suggested that this is a result

of the two other server computers, Y and Z, taking longer to perform the jobs allocated to

them and thus reducing the number of solutions that were distributed across the network

(17,436 vs 19,264).

Computer
Baseline

Performance
(Evaluations/Second)

Distributed Performance
(Evaluations/Second)

X 7,108

6,022

24,000
5,988
6,103
5,887

Y 5,024
4,422

9,779 4,283
1,074

Z 4,702
3,401

7,657 3,332
924

Totals 16,834 41,436

Table 6-19: Hanoi distributed performance results

This reduction allows the Client computer X to allocate more time to its four server threads,

allowing for an increased throughput from those. This leads to the distributed system

achieving 86.6% of the the theoretical maximum reported in Table 6-18. If this is the case

Chapter 6: Single Objective Optimization Problems

160 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

then this trend should be continued with the computationally more demanding Piedemonte

San Germano network.

6.3.8. Optimal Solution Details

The optimal solution for the Hanoi problem identified by the GA throughout this

experimentation does not appear to have been published before. In Table 6-20 the details of

this solution are reported and contrasted with that of Cunha & Sousa (1999) which is the

lowest cost solution published – albeit with a relaxed Hazen-Williams coefficient where ω =

10.5088 – and the lowest cost solution published that is feasible with EPANET of Zecchin et

al. (2006) which has a cost of $6,134m. An unmodified version of the standalone EPANET2

software of Rossman (2000) has been used to populate the results in the table.

Pipe

Diameter

Node

Pressure

Thesis Cunha & Sousa
(1999)

Zecchin
et al.

(2006)
 Thesis

Cunha
& Sousa
(1999)

Zecchin
et al.

(2006)

(inches) (mm) (inches) (mm) (inches) (mm) (metres H2O)

1 40 1,016 40 1,016 40 1,016 1 100.00 100.00 100.00

2 40 1,016 40 1,016 40 1,016 2 97.14 97.17 97.14

3 40 1,016 40 1,016 40 1,016 3 61.67 62.00 61.67

4 40 1,016 40 1,016 40 1,016 4 56.92 57.23 57.08

5 40 1,016 40 1,016 40 1,016 5 51.02 51.32 51.38

6 40 1,016 40 1,016 40 1,016 6 44.81 45.07 45.40

7 40 1,016 40 1,016 40 1,016 7 43.35 43.61 44.01

8 40 1,016 40 1,016 40 1,016 8 41.61 41.85 42.36

9 40 1,016 40 1,016 40 1,016 9 40.23 40.44 41.06

10 30 762 30 762 30 762 10 39.20 39.40 40.11

11 24 609.6 24 609.6 24 609.6 11 37.64 37.85 38.55

12 24 609.6 24 609.6 24 609.6 12 34.21 34.43 35.12

13 20 508 20 508 16 406.4 13 30.01 30.24 30.91

14 16 406.4 16 406.4 12 304.8 14 35.52 35.49 37.21

15 12 304.8 12 304.8 12 304.8 15 33.72 33.44 32.89

16 12 304.8 12 304.8 12 304.8 16 31.30 30.36 32.16

17 16 406.4 16 406.4 20 508 17 33.41 30.51 41.36

18 24 609.6 20 508 24 609.6 18 49.93 44.29 48.55

19 20 508 20 508 24 609.6 19 55.09 55.90 54.33

20 40 1,016 40 1,016 40 1016 20 50.61 50.89 50.61

21 20 508 20 508 20 508 21 41.26 41.58 41.26

22 12 304.8 12 304.8 12 304.8 22 36.10 36.42 36.10

23 40 1,016 40 1,016 40 1,016 23 44.52 44.73 44.53

24 30 762 30 762 30 762 24 38.93 39.03 39.39

25 30 762 30 762 30 762 25 35.34 35.34 36.18

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 161

Pipe

Diameter

Node

Pressure

Thesis Cunha & Sousa
(1999)

Zecchin
et al.

(2006)
 Thesis

Cunha
& Sousa
(1999)

Zecchin
et al.

(2006)

(inches) (mm) (inches) (mm) (inches) (mm) (metres H2O)

26 20 508 20 508 24 609.6 26 31.70 31.44 32.55

27 12 304.8 12 304.8 12 304.8 27 30.76 30.15 31.61

28 12 304.8 12 304.8 12 304.8 28 38.94 39.12 35.90

29 16 406.4 16 406.4 16 406.4 29 30.13 30.21 31.23

30 12 304.8 12 304.8 16 406.4 30 30.42 30.47 30.29

31 12 304.8 12 304.8 12 304.8 31 30.70 30.75 30.77

32 16 406.4 16 406.4 16 406.4 32 33.18 33.20 32.04

33 16 406.4 16 406.4 16 406.4

34 24 609.6 24 609.6 20 508 Pipe: smaller diameter than optimal solution

Cost $6,081,127.54 $6,056,370.68 $6,134,015.72 Pipe: larger diameter than optimal solution

Table 6-20: Comparison of optimal solutions to Hanoi problem

6.4. Piedemonte San Germano

6.4.1. Problem Formulation

The Piedemonte San Germano network model (hereafter PSG) is a real-world network

model from a small Italian village in southern Lazio. The network is in a highly looped

configuration and is characterised by extremely low flows in some of the loops even at peak

demand. The network was introduced by Tricarico et al. (2006) in which extensive statistical

analysis of the demand characteristics of the network were undertaken and predictions of

future demand were made in line with the projected population expansion of the village.

Each of the 45 pipes may be duplicated with one of 14 commercially available diameters, or

left unduplicated, leading to a search space for this problem of 1545 = 8.4 × 1052. A

minimum head constraint of 20m is applied across the network. The future demand

scenarios from Tricarico et al. (2006) has been considered for the single-objective problem: a

more onerous demand condition than the present day state derived in order to represent

predicted future demand. For this future demand scenario, the best-published solution is

€31,002 (Tricarico et al., 2006). It should be noted that the costs used in this model relate

only to the cost of purchasing the additional pipes required and other factors, such as the

cost of installation, are not considered.

Chapter 6: Single Objective Optimization Problems

162 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

6.4.2. Network Configuration

Figure 6-26: Piedemonte San Germano Network Topology

Node ID Elevation
(metres)

Demand
(litres per second)

Minimum Pressure
(metres H2O)

1 120.6 2.158 140.6

2 118.0 1.385 138.0

3 115.4 1.080 135.4

4 113.7 1.190 133.7

5 111.0 1.217 131.0

6 110.0 1.080 130.0

7 108.0 1.080 128.0

8 107.9 1.080 127.9

9 106.9 1.080 126.9

10 108.8 1.096 128.8

11 108.0 1.190 128.0

12 105.9 1.190 125.9

13 104.6 1.134 124.6

14 104.4 3.082 124.4

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 163

Node ID Elevation
(metres)

Demand
(litres per second)

Minimum Pressure
(metres H2O)

15 107.4 1.583 127.4

16 107.7 1.080 127.7

17 107.7 1.072 127.7

18 108.0 1.163 128.0

19 109.5 1.147 129.5

20 109.4 1.080 129.4

21 109.2 1.249 129.2

22 111.4 1.292 131.4

23 112.0 1.163 132.0

24 112.4 1.107 132.4

25 109.6 1.080 129.6

26 115.6 1.080 135.6

27 109.0 1.436 129.0

28 111.0 1.249 131.0

29 111.0 1.027 131.0

30 118.2 1.427 138.2

31 122.6 3.501 142.6

32 114.5 3.360 134.5

33 106.9 3.845 126.9

Table 6-21: Piedemonte San Germano Node Characteristics

Reservoir ID Total Head
(metres)

34 151.0

Table 6-22: Piedemonte San Germano Reservoir Characteristics

Pipe From Node To Node Diameter
(mm)

Length
(metres)

C-M Friction
Factor

1 34 1 80 121.0 0.02

2 1 2 80 52.0 0.02

3 2 3 80 70.0 0.02

4 3 4 80 38.0 0.02

5 4 5 80 50.0 0.02

6 5 6 80 45.0 0.02

7 6 7 80 71.0 0.02

8 7 8 80 65.0 0.02

9 8 9 80 52.0 0.02

10 9 10 60 59.0 0.02

11 10 11 60 60.0 0.02

12 11 12 60 94.0 0.02

13 12 9 80 97.0 0.02

Chapter 6: Single Objective Optimization Problems

164 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Pipe From Node To Node Diameter
(mm)

Length
(metres)

C-M Friction
Factor

14 12 13 80 46.0 0.02

15 13 14 80 66.0 0.02

16 13 16 60 124.0 0.02

17 14 15 80 152.0 0.02

18 15 16 60 63.0 0.02

19 16 17 60 3.0 0.02

20 17 18 60 94.0 0.02

21 18 11 60 28.0 0.02

22 18 19 60 61.0 0.02

23 17 20 60 60.0 0.02

24 19 20 60 115.0 0.02

25 20 21 60 80.0 0.02

26 19 23 60 57.0 0.02

27 21 22 80 54.0 0.02

28 22 23 60 113.0 0.02

29 22 1 80 232.0 0.02

30 23 24 60 44.0 0.02

31 24 4 60 56.0 0.02

32 24 25 50 44.0 0.02

33 25 5 60 76.0 0.02

34 3 26 60 64.0 0.02

35 26 28 80 98.0 0.02

36 28 29 80 10.0 0.02

37 29 27 80 97.0 0.02

38 27 8 80 68.0 0.02

39 7 10 60 51.0 0.02

40 15 21 80 60.0 0.02

41 6 29 60 64.0 0.02

42 1 30 80 179.0 0.02

43 30 31 63 130.0 0.02

44 8 33 80 43.0 0.02

45 27 32 63 224.0 0.02

Table 6-23: Piedemonte San Germano Pipe Characteristics

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 165

Pipe option Diameter
(mm)

Cost
(€ per
metre)

 Pipe option Diameter
(mm)

Cost
(€ per
metre)

0 None 0.00 8 250.0 82.35

1 90.0 33.73 9 280.0 95.39

2 110.0 40.60 10 315.0 106.29

3 125.0 41.92 11 355.0 131.89

4 140.0 46.88 12 400.0 159.12

5 160.0 55.54 13 450.0 187.66

6 180.0 58.53 14 500.0 219.16

7 200.0 65.32

Table 6-24: Piedemonte San Germano Pipe Duplication Options

6.4.3. GA Configuration

Again, the same GA configuration was applied for this model as to the other two networks.

The penalty cost was set to €250,000 per metre of head deficit.

6.4.4. Genetic Representation

6.4.4.1. Binary String

As can be seen from

Figure 6-27, some of the runs (37%) converge to a deterministic optimal solution of €30,082.

This value is a significant improvement on the previous best result achieved of €31,002

(Tricarico et al,. 2005)– somewhat surprising given that the same basic algorithm had been

employed.

Chapter 6: Single Objective Optimization Problems

166 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 6-27: Algorithmic Performance: PSG - Binary String

Further investigation into this result revealed that the optimization algorithm employed by

Tricarico et al. (2005) was compromised in the way that the selection routine was employed.

Instead of exerting a positive selection pressure on the algorithm it, effectively, selected

organisms at random from the population. However, the algorithm appears to work

effectively, albeit extremely slowly, because the NSGA-II algorithm employed has an implicit

selection pressure applied through its ranking procedure during each generation. However,

this was seen to, in no way, promote the selection of fitter individuals for recombination in

the first instance.

6.4.4.2. Integer

As with the Hanoi problem, the integer representation appears to produce inferior results

(Figure 6-28) to the binary string representation with 24% of the solutions converging to the

newly identified best-known solution.

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 167

Figure 6-28: Algorithmic Performance: PSG – Integer

6.4.4.3. Hybrid Integer

Once again, the performance of the Hybrid Integer is clearly superior to that of the other

representations with 94% of the solutions converging to the best-known solution. The

results illustrated in Figure 6-29 demonstrate excellent performance with the median (i.e.

50% of the runs) reaching the optimal solution after just 2,240 generations.

Figure 6-29: Algorithmic Performance: PSG - Hybrid Integer

6.4.4.4. Comparative Analysis

At their best, the hybrid integer and binary string representations identified the best known

solution of €30,082 after 380 generations (37,340 evaluations) versus the 1,340 generations

(131,420 evaluations) achieved by the integer representation. Tricarico et al. (2005) do not

identify the performance of their algorithm and so a direct comparison is not possible.

Chapter 6: Single Objective Optimization Problems

168 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 6-30: Algorithmic Performance: PSG - Combined Best

The aggregated results for the three representations, seen in Figure 6-31, demonstrate clearly

the superior average performance of the hybrid integer representation over the other two

formats. For clarity, the maximum and minimum curves for each distribution have been

omitted in this figure.

Figure 6-31: Algorithmic Performance: PSG - Combined Upper/Lower Quartiles

6.4.4.5. Runtime Performance

The Integer representation is, once more, the fastest representation with the Binary String

and Hybrid Integer returning very similar performances as shown in Table 6-25.

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 169

Chromosome Representation
Average Performance
(evaluations per second)

% of best performance

Binary String 4,129.84 90.0%

Integer 4,589.79 100%

Hybrid Integer 4,056.80 88.4%

Table 6-25: PSG Runtime Performance

6.4.5. Heterozygous Chromosomes

As with the New York Tunnels problem, Piedemonte San Germano has been reconfigured

as a heterozygous problem in which the chromosome is encoded to allow 10 pipes to be

modified at once. This selection of 10 pipes is an arbitrary decision made to limit the scope

of the optimization and any number of pipes may have been chosen in this fashion. Thus

the chromosome, in this example, comprises 10 pairs of genes. The first gene being allowed

to vary between 1and 45 to represent the pipe to be modified. The second gene of the pair

encodes the pipe diameter, as previously. Thus for the Piedemonte San Germano problem,

the total chromosome length is reduced from 45 genes to 20.

6.4.5.1. Binary String

Figure 6-32 shows the results obtained for the heterozygous, binary string runs. This same

data is overlain with that obtained with the conventionally-coded binary string in Figure 6-33.

A mere 7% of the heterozygous solutions found the best-known optimal solution for the

problem, compared to 37% of the conventionally coded solution. 88% of the runs

converged to a solution of €32,061.60. It is not clear why there is such a preference for this

result with the heterozygous configuration.

Figure 6-32: Algorithmic Performance: PSG – Heterozygous Binary String

Chapter 6: Single Objective Optimization Problems

170 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 6-33: Algorithmic Performance: PSG- Heterozygous Binary String results overlain with conventional

results

6.4.5.2. Integer

Nineteen percent of the runs of the heterozygous Integer algorithm identified the optimal

solution, compared to 24% for the conventional-coded equivalent. Of the remainder, 80%

converged to the solution of €32,061.60 as can be seen from Figure 6-34. These results can

be compared with those of the conventional encoding in Figure 6-35 in which the

conventional results are overlain.

Figure 6-34: Algorithmic Performance: PSG – Heterozygous Integer

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 171

Figure 6-35: Algorithmic Performance: PSG- Heterozygous Integer results overlain with conventional results

6.4.5.3. Hybrid Integer

In contrast to the conventional algorithm where 94% of the hybrid integer-based solutions

converged to the best-known optimum, the heterozygous algorithm could manage this in

only 19% of cases (Figure 6-36). The remainder of the runs all converged to the same

solution of €32,061.60 as has been seen in the optimizations of the other heterozygous

representations. Figure 6-37 shows the heterozygous hybrid integer results overlain with

those of the conventional encoding.

Figure 6-36: Algorithmic Performance: PSG – Heterozygous Hybrid Integer

Chapter 6: Single Objective Optimization Problems

172 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 6-37: Algorithmic Performance: PSG- Heterozygous Hybrid Integer results overlain with conventional

results

6.4.5.4. Comparative Analysis

Figure 6-38 illustrates the best performance for the runs of each of the three representations

employed in the heterozygous configuration. It can be seen clearly that the heterozygous

representations identify the optimal solution quicker for each of the representations:

• hybrid integer: 160 generations (15,682 evaluations) vs. 380 generations (37,340

evaluations).

• binary string: 200 generations (19,602 evaluations) vs. 380 generations (37,340

evaluations).

• integer: 220 generations (21,562 evaluations) vs. 1,340 generations (131,322

evaluations).

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 173

Figure 6-38: Algorithmic Performance: PSG – Heterozygous Combined Best

The combined performance for the three heterozygous representations is portrayed

in Figure 6-39. For clarity, the minimum and maximum curves have been omitted from this

graph which shows the upper/lower quartiles and the median for the performance of the

combined runs. This graph shows that there is little substantial difference between the three

representations, although the hybrid integer can be seen to marginally outperform the other

two representations. In addition, the convergence of the algorithms, in most cases, to the

solution of €32,061.60 is further highlighted.

Figure 6-39: Algorithmic Performance: PSG - Combined Upper/Lower Quartiles

With reference to the equivalent New York Tunnels result (Figure 6-17) it would appear that

the relative algorithmic performance advantage of the hybrid gene diminishes as

Chapter 6: Single Objective Optimization Problems

174 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

chromosome length decreases. In addition, the algorithmic performance of the heterozygous

representation of the problem improves, relative to the full representation, as the number of

decision variables grows, as might be expected.

6.4.5.5. Runtime Performance

As anticipated, the longer chromosomes of the conventional representation cause it to show

significantly reduced performance with respect to the heterozygous approach – as seen in

Table 6-26. Once more, as with the other analyses, the integer runtime proves to be the

quickest representation with the hybrid integer and binary string having roughly equal

runtime performance.

Chromosome
Representation

Conventional Heterozygous
 (evaluations
 per second) % of best (evaluations

per second) % of best

Binary String 4,129.84 71.2% 5,471.21 94.8%

Integer 4,589.79 79.6% 5,770.00 100%

Hybrid Integer 4,056.80 70.3% 5,543.54 96.1%

Table 6-26: PSG Heterozygous Runtime Performance vs. Conventional Performance

6.4.6. Caching

Although the Piedemonte San Germano network optimization has by far the largest solution

space of the three steady state algorithms investigated, it also produces the best caching

results as seen in Table 6-27. However, as with the Hanoi problem part of this success

would appear to be because the optimization converges quickly – at least when using the

hybrid integer representation – to the optimal solutions. As a consequence, an increasing

proportion of the population is likely to be encountering repeatedly as the algorithm

proceeds.

Cache Size
Runtime

performance Cache Performance Relative
Runtime

Performance (solutions/second) (no. hits) (% of evaluations)

None 4,056.80 n/a n/a 100%

40,000 4,221.44 44,122 2.2% 96.1%

Judy (unlimited) 4,371.55 155,782 7.8% 92.8%

Table 6-27: Cache results: Piedemonte San Germano

6.4.7. Adaptive Differential Mutation

Running the Piedemonte San Germano model with the Adaptive Mutation caused some

difficulty. Firstly, the model did not optimize well with the steady-state genetic algorithm –

the prior runs of this problem have been performed using a generational GA whilst the

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 175

Adaptive Mutation is coded to work only with a steady-state optimization. As can be seen in

Figure 6-40, the runs converged to solutions around €60,000 – almost double the best-

known solution of around €30,082. Because of the considerably larger search space for this

problem, the introduction of the differential mutator was delayed until 10,000 iterations or

20,000 evaluations. The above figure clearly shows that the mutator continues to play a

positive part in promoting the convergence of the population although, with the increased

search space, the effect appears to be much diminished compared to the other problems.

This phenomenon is likely to result from the Piedemonte San Germano being less sensitive

to be the value of a few “critical genes” – i.e. pipe reinforcement selections – than the other,

smaller models.

Figure 6-40: Mutation performance comparison - Piedemonte San Germano

6.4.8. Distributed Performance

The Piedemonte San Germano problem is the most complex of the three networks analysed

in this chapter and shows a baseline performance approximately half that of the New York

Tunnels network (Table 6-7).

Computer
Baseline

Performance
(evaluations/second)

Number of
Processor Cores

Theoretical Maximum
Throughput

(evaluations/second)
X 4,057 4 16,228
Y 3,043 2 6,086
Z 2,515 2 5,030

Total 9,615 8 27,344

Table 6-28: Theoretical maximum performance for distributed Piedemonte San Germano problem

Chapter 6: Single Objective Optimization Problems

176 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

The results presented in Table 6-29 appear to confirm the trend that continuing reduction in

network load results in an increase in throughput for the distributed system. Here it can be

seen that, relative to the theoretical maximum determined in Table 6-28, the system as a

whole achieves 91% performance – continuing the increases seen in comparison to the other,

smaller network simulation problems.

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 177

Computer
Baseline

Performance
(Evaluations/Second)

Distributed Performance
(Evaluations/Second)

X 4,057

3,755

14,004
3,424
3,320
3,505

Y 3,043
2,620

5,973 2,581
772

Z 2,515
2,152

4,923 2,073
698

Totals 9,615 24,900

Table 6-29: Piedemonte San Germano distributed performance results

6.5. Conclusions

The hybridized integer gene introduced in Chapter 4.2.3 is demonstrated to be the most

efficient representation for the single-objective hydroinformatics applications analysed in

terms of algorithmic performance – clearly beating the conventional binary string and integer

representations. However, it is shown to be slower than both the conventional binary string

the integer representation for the simpler problems. However, for the Piedemonte San

Germano example, which has a chromosome length of 45 genes, the computational

performance advantage of the conventional binary string is reversed, implying that, as might

be expected, the overhead of managing binary strings increases with the string length. In

Chapter 7, these representations will be evaluated on a fourth problem with a much longer

chromosome. It should be noted also that the version of the hybridized integer gene

employed is Gray-coded and this is an additional overhead on the computational

performance – making the performance of this novel representation more impressive. In

addition, it is believed that these optimizations have identified new, best known solutions for

both the Hanoi ($6.081m) and Piedemonte San Germano (€30,082) network problems whilst

matching the best known solution for the New York Tunnels problem ($38.644m - Meier et

al., 2003).

The application of caching to these problems is shown to be mostly ineffectual in

terms of runtime savings because of the relatively trivial nature of the hydraulic computation.

It is encouraging though that the efficiency of the Judy cache routines is evident even for

Chapter 6: Single Objective Optimization Problems

178 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

relatively short chromosome lengths – demonstrating improvements in performance even as

the chromosome length improves – though this is likely due to the nature of the individual

problems and their convergence behaviour.

Employing a mutator that can “learn” from the improvements occasioned by other

mutations is shown to have a beneficial effect on the performance of the algorithm.

However, the effect of the Adaptive Differential Mutator is constrained significantly by the

number of “critical genes” within a specific problem. However, given that the computational

cost of maintaining the statistics associated with the mutations is relatively trivial, it is

possible that it will assist larger optimizations as well as providing valuable, additional

information on the search space by identifying genes that have a particular influence on the

solution.

Chapter 6: Single Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 179

Chapter 7: Multiple Objective Optimization Problems

180 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Chapter 7. Multiple Objective Optimization Problems

7.1. Introduction

The network optimization problems presented in Chapter 6 have been reformulated as

multiple-objective optimization problems. The single objective problems illustrated

previously accommodated a second objective through the use of a “penalty cost” function

which penalises the violation of one or more additional constraints. An alternative approach

is to model each constraint as an objective in its own right. Multiple-objective algorithms do

not converge towards a single solution rather towards a Pareto-optimal front that represents

the trade-off between the objectives as illustrated in Figure 7-1.

Figure 7-1: Multiple Objective Pareto-Optimal Front

In the example illustrated in Figure 7-1, a two objective problem, both objectives are to be

minimized thus the optimization algorithm seeks to drive the Pareto front into the bottom-

left corner of the figure.

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 181

The multi-objective algorithm employed in this analysis is the Non-Dominated,

Sorted GA-II (NSGA-II) of Deb et al. (2001). This algorithm is a refinement of Srinivas &

Deb’s (1994) NSGA algorithm and is noteworthy for being one of the earliest multiple-

objective algorithms that is self-tuning. Diversity in the population is managed through the

use of a Crowding Sort which preferentially preserves members of the population who are

well spaced from their neighbours along the Pareto fronts as they are generated.

Given that multiple objective algorithms produce Pareto-fronts containing multiple,

non-dominated solutions each, in its own right, an optimal solution it is more difficult to

compare the quality of results obtained through different techniques. To this end, two

multiple objective performance metrics introduced by Zitzler & Thiele (1999) have been

applied to the obtained Pareto-fronts to gauge their relative strengths: space and coverage

metrics.

Space Metric

The “size of space covered” metric S evaluates the hypervolume enclosed by the

points on the Pareto-optimal front. For a problem in which both objectives (cost and

aggregate head deficit) are to be minimised – as is the case here – the S metric represents a

smaller volume as the quality of the front improves (i.e., the lower the value, the better the

front is). This is a relatively simplistic measure performance and, of itself, is not a good

measure of how good a front is relative to another.

Coverage Metric

To achieve this comparison between fronts, a coverage metric, C, is employed. This

metric expresses the proportion of points from one front that dominate those from another.

Thus, a C value of 1.0 indicates that all of the points in Pareto front A are equal to or

dominate those in Pareto front B. This gives an acceptable measure of the relative strength

of the Pareto-fronts but does nothing to inform about how good a front is in absolute terms.

,ܣሺܥ ሻܤ ൌ
ห൛ܾ א ܽ׌หܤ א ܣ ׷ ܽ ط ܾൟห

|ܤ|

ix)

The analyses presented in this chapter are performed on 100 runs of each algorithm. As well

as a graphical analysis, the C and S metrics are applied to each of the Pareto fronts developed

Chapter 7: Multiple Objective Optimization Problems

182 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

from these runs after 20, 100 and 1,000 generations in order to gauge the progress of the

algorithms throughout the optimization.

Each of the problems is formulated with the two objectives in equations x)and xi)

thus:

:݁ݖ݅݉݅݊݅ܯ ௜௡௙ܥ ൌ ݂൫ܦଵ, . . , ே೗൯ܦ ൌ෍ܥ൫ܦ௝, ௝൯ܮ
ே೗

௝ୀଵ

x)

:݁ݖ݅݉݅݊݅ܯ ܶ ൌ ݂൫ܪଵ, . . , ே೙൯ܪ ൌ෍max൫0;ܪ௜,௠௜௡ െ ௜൯ܪ
ே೙

௜ୀଵ

xi)

௝ܦ א ሺ݆ ܦ ൌ 1, . . , ௗܰሻ

xii)

where: Cinf is the total infrastructure cost, Nl is the number of links in the network for which

reinforcement is an option, C(Dj,Lj) is the cost of the jth pipe with diameter Dj (chosen from a

discrete set of available diameters D) and length Lj. T is the total head deficit (negative if a

pressure surplus exists), Hi is the pressure head at node i (as computed by the hydraulic

solver), Hi,min is the minimum pressure head requirement sufficient to fully satisfy the demand

at node i and Nn is the number of nodes in the network. Nd is the number of decision

variables in the optimization.

Distributed performance is not analysed in this chapter, as the sole differential in

performance will be the runtime of the genetic algorithm itself. As far as the server

computers involved in deEPANET are concerned, there is no difference to producing

solutions for a multiple-objective algorithm rather than a single objective.

7.2. New York Tunnels

7.2.1. Genetic Representation

7.2.1.1. Binary String

A scatter plot illustrating the results for the binary string representation can be seen in Figure

7-2. This figure shows the distribution of solutions for the 100 runs after 20, 100 and 1,000

generations. After 20 generations (2,000 evaluations), none of the runs had identified the

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 183

best-known feasible single objective solution of $38,643,500 (Meier et al., 2003), whilst 100%

had identified the solution at the other extreme which, for an investment of $0 results in an

aggregate head deficit of 353.13m. Following 100 generations, the success rate for the

optimal solution has improved to 3% of runs and ultimately at the end of the runs, after

1,000 generations, 18% of runs.

Figure 7-2: New York Tunnels – Multiple Objective Binary String Results

7.2.1.2. Integer

The results from the integer representation are shown in Figure 7-3. After 20 generations

none of the runs had identified the single objective optimal solution, however all had

identified the other extreme of the distribution. By the completion of 1,000 generations,

14% of the runs had continued to identify the optimal solution – fewer than for the binary

string representation.

Chapter 7: Multiple Objective Optimization Problems

184 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 7-3: New York Tunnels – Multiple Objective Integer Results

7.2.1.3. Hybrid Integer

The results for the Hybrid Integer representation are shown in Figure 7-4. After 1,000

generations, merely 3% of the runs had identified the single-objective optimal solution of

$38.644m: a considerably inferior result to the other two representations. In fact, by 100

generations (10,000 evaluations), none of the runs had encountered this solution.

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 185

Figure 7-4: New York Tunnels – Multiple Objective Hybrid Integer Results

7.2.1.4. Comparative Analysis

Space Metrics

Examination of the S space metrics (Figure 7-5) for these runs suggests that the binary string

representation outperforms both the integer and hybrid integer versions.

Figure 7-5: Box plots of S metric for Multiple Objective New York Tunnels after 20, 100 & 1,000

generations

Chapter 7: Multiple Objective Optimization Problems

186 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

From the figure, it can be seen that the binary string (green) Box plots indicates that these

runs were more consistent and generally produced lower S values – which is preferable for a

minimization problem such as this. After 1,000 generations, all of the representations are

seen to be occupying a similar proportion of the solution space.

Coverage Metrics

The coverage metrics for the runs were calculated for the Pareto-optimal fronts obtained

after 20, 100 and 1,000 generations of each of the 100 runs undertaken for each

representation. The aggregate values obtained for the metric C(A,B) are listed in Table 7-1 to

Table 7-3 for 20, 100 and 10,000 generations respectively. The Binary String representation

can be seen in Table 7-1to be outperforming that of the integer and hybrid integer – covering

65.3% and 59.3% respectively.

 Front B
Binary String Integer Hybrid Integer

Fr
on

t
A

B
in

ar
y

St
rin

g

Min 0.138 0.388 0.311

Mean 0.387 0.653 0.593

Max 0.652 0.980 0.943

In
te

ge
r Min 0.000 0.041 0.000

Mean 0.234 0.453 0.328

Max 0.550 0.900 0.736

H
yb

rid

In
te

ge
r Min 0.000 0.171 0.022

Mean 0.263 0.551 0.438

Max 0.485 0.940 0.792

Table 7-1: C metrics for Multiple Objective New York Tunnels after 20 generations

The results shown in Table 7-2 demonstrate that after 100 generations, the variation in

coverage between the representations is diminished and the gap between the binary string

and the hybrid integer is reduced – though the integer representation can be seen to continue

to be the weakest performing of the representations.

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 187

 Front B
Binary String Integer Hybrid Integer

Fr
on

t
A

B
in

ar
y

St
rin

g

Min 0.073 0.120 0.020

Mean 0.215 0.258 0.167

Max 0.375 0.343 0.289

In
te

ge
r Min 0.096 0.163 0.020

Mean 0.215 0.260 0.159

Max 0.354 0.364 0.330

H
yb

rid

In
te

ge
r Min 0.110 0.163 0.060

Mean 0.249 0.282 0.187

Max 0.385 0.414 0.320

Table 7-2: C metrics for Multiple Objective New York Tunnels after 100 generations

The low values seen in Table 7-3, for all combinations of representation, suggest that

after 1,000 generations, that all of the populations have converged to very similar Pareto-

fronts – which can be assessed visually with reference to the distribution of green dots in

Figure 7-2 to Figure 7-4 - and that there is no advantage to having started with one

representation or the other.

 Front B
Binary String Integer Hybrid Integer

Fr
on

t
A

B
in

ar
y

St
rin

g

Min 0.000 0.000 0.000

Mean 0.018 0.016 0.022

Max 0.070 0.050 0.050

In
te

ge
r Min 0.010 0.000 0.020

Mean 0.056 0.031 0.054

Max 0.110 0.090 0.100

H
yb

rid

In
te

ge
r Min 0.000 0.000 0.000

Mean 0.031 0.024 0.036

Max 0.110 0.080 0.090

Table 7-3: C metrics for Multiple Objective New York Tunnels after 1,000 generations

7.2.1.5. Runtime Performance

The figures presented in Table 7-4 demonstrate that the runtime performance of the multiple

objective GA is significantly diminished over that of the single objective optimization results

(Table 6-7). This difference is accounted for by the additional complexity of the NSGA-II

algorithm that requires a number of sorting routines to be applied to the population,

according to the number of objectives being considered.

Chapter 7: Multiple Objective Optimization Problems

188 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Chromosome Representation
Average Performance
(evaluations per second)

% of best performance

Binary String 1,868.98 86.3%

Integer 2,164.93 100%

Hybrid Integer 1,886.79 87.2%

Table 7-4: New York Tunnels Multiple Objective Runtime Performance

7.2.2. Heterozygous Chromosomes

7.2.2.1. Binary String

The heterozygous binary string results, presented in Figure 7-6, are broadly comparable with

those of the normal representation with the exception that, visually, they exhibit a wider

distribution of results for the 20 and 100 generation points. By the end of the optimizations,

11% of the runs had identified the single-objective optimal solution compared to 18% of

runs employing the normal encoding of the problem.

Figure 7-6: New York Tunnels – Multiple Objective Heterozygous Binary String Results

7.2.2.2. Integer

Figure 7-7 illustrates the heterozygous integer results which appear to be very similar to those

obtained with the standard representation, albeit with a less tightly confined distribution for

the solutions found after 100 generations. Over the lifetime of the optimization, 20% of the

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 189

runs identified the single-objective optimal solution compared with 14% for the normal

encoding.

Figure 7-7: New York Tunnels – Multiple Objective Heterozygous Integer Results

7.2.2.3. Hybrid Integer

The performance of the hybrid integer representation is much improved in heterozygous

form (Figure 7-8) with 17% of solutions identifying the single-objective optimal solution

compared to 3% of the normally encoded runs.

Chapter 7: Multiple Objective Optimization Problems

190 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 7-8: New York Tunnels – Multiple Objective Heterozygous Hybrid Integer Results

7.2.2.4. Comparative Analysis

Graphical

Figure 7-9 allows a side-by-side graphical comparison of the algorithm performance for the

three representations and two encodings. The less confined distributions, after 20

generations, exhibited by the heterozygous binary string and heterozygous hybrid integer

representations are apparent in this figure.

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 191

Binary String Binary String Heterozygous

Integer Integer Heterozygous

Hybrid Integer Hybrid Integer Heterozygous

Figure 7-9: Graphical Comparison of Multiple Objective New York Tunnels results

Space Metrics

The S metric results for the heterozygous results are considered in Figure 7-10. These results

show better performance for the hybrid integer representation compared to the other two –

with the integer representation again performing the worst of all three.

Chapter 7: Multiple Objective Optimization Problems

192 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 7-10: Box plots of S metric for Multiple Objective Heterozygous New York Tunnels after 20, 100 &

1,000 generations

This analysis is extended in Figure 7-11 where the performance of the normal and

heterozygous encodings of the problem can be compared. As can be seen, the heterozygous

versions generally outperform their normally encoded counterparts, with the exception of the

standard binary string representation, which performs best of all – a possible indication that

the multiple-objective algorithm favours the greater stochasticity introduced by this format.

Figure 7-11: Box plots of S metric for Multiple Objective New York Tunnels for Normal and Heterozygous

New York Tunnels after 20, 100 & 1,000 generations

Coverage Metrics

The coverage metrics for the above runs are reported in Table 7-5 - Table 7-7 which relate to

the coverage performance of the algorithm after 20, 100 and 1,000 generations respectively.

These tables allow a direct comparison to be made between the performance of the normally

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 193

and heterozygous-encoded algorithms for each of the three representations. Table 7-5 clearly

shows the strong performance of the normal binary string representation followed by that of

the normal hybrid integer representation.

 Front B

Conventional Heterozygous

Binary
String Integer Hybrid

Integer
Binary
String Integer Hybrid

Integer

Fr
on

t
A

N
or

m
al

B
in

ar
y

St
rin

g

Min 0.138 0.388 0.311 0.453 0.543 0.395

Mean 0.387 0.653 0.593 0.642 0.740 0.680

Max 0.652 0.980 0.943 0.852 0.933 0.892

In
te

ge
r Min 0.000 0.041 0.000 0.141 0.130 0.047

Mean 0.234 0.453 0.328 0.400 0.482 0.398

Max 0.550 0.900 0.736 0.679 0.911 0.730

H
yb

rid

In
te

ge
r Min 0.000 0.171 0.022 0.156 0.217 0.140

Mean 0.263 0.551 0.438 0.505 0.599 0.521

Max 0.485 0.940 0.792 0.736 0.911 0.784

H
et

er
oz

yg
ou

s

B
in

ar
y

St
rin

g

Min 0.030 0.171 0.022 0.172 0.217 0.140

Mean 0.186 0.538 0.419 0.419 0.574 0.499

Max 0.348 0.940 0.792 0.642 0.911 0.784

In
te

ge
r Min 0.000 0.049 0.022 0.047 0.109 0.047

Mean 0.123 0.366 0.247 0.297 0.399 0.342

Max 0.283 0.840 0.736 0.698 0.867 0.768

H
yb

rid

In
te

ge
r Min 0.000 0.131 0.065 0.094 0.130 0.116

Mean 0.168 0.420 0.307 0.387 0.487 0.423

Max 0.417 0.780 0.736 0.679 0.867 0.784

Table 7-5: C metrics for Multiple Objective Heterozygous New York Tunnels after 20 generations

The results presented in Table 7-6 after 100 generations demonstrate the continued (relative)

dominance of the normally encoded binary string and hybrid integer over the other

representations – albeit to a lesser degree than that apparent after 20 generations. The

heterozygous representations show poor performance relative to their normally encoded

counterparts – as evidenced by the low values presented in the lower-left quadrant of Table

7-6.

Chapter 7: Multiple Objective Optimization Problems

194 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

 Front B

Conventional Heterozygous

Binary
String Integer Hybrid

Integer
Binary
String Integer Hybrid

Integer

Fr
on

t
A

N
or

m
al

B
in

ar
y

St
rin

g

Min 0.073 0.120 0.020 0.144 0.151 0.099

Mean 0.215 0.258 0.167 0.338 0.311 0.298

Max 0.375 0.343 0.289 0.453 0.489 0.424

In
te

ge
r Min 0.096 0.163 0.020 0.222 0.154 0.176

Mean 0.215 0.260 0.159 0.328 0.303 0.302

Max 0.354 0.364 0.330 0.453 0.468 0.414

H
yb

rid

In
te

ge
r Min 0.110 0.163 0.060 0.247 0.154 0.198

Mean 0.249 0.282 0.187 0.352 0.334 0.319

Max 0.385 0.414 0.320 0.453 0.500 0.414

H
et

er
oz

yg
ou

s

B
in

ar
y

St
rin

g

Min 0.031 0.074 0.020 0.041 0.080 0.077

Mean 0.106 0.260 0.168 0.222 0.309 0.293

Max 0.260 0.414 0.320 0.421 0.500 0.414

In
te

ge
r Min 0.010 0.050 0.000 0.093 0.011 0.022

Mean 0.120 0.153 0.068 0.256 0.214 0.196

Max 0.271 0.237 0.186 0.442 0.405 0.354

H
yb

rid

In
te

ge
r Min 0.010 0.110 0.010 0.072 0.090 0.033

Mean 0.114 0.170 0.076 0.271 0.234 0.194

Max 0.229 0.242 0.247 0.442 0.457 0.343

Table 7-6: C metrics for Multiple Objective Heterozygous New York Tunnels after 100 generations

Once more, the very small coverage ratios related in Table 7-7 indicate that all of the six

combinations of representation analysed converge to almost identical Pareto fronts with few

significant differences between them.

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 195

 Front B

Conventional Heterozygous

Binary
String Integer Hybrid

Integer
Binary
String Integer Hybrid

Integer

Fr
on

t
A

N
or

m
al

B
in

ar
y

St
rin

g

Min 0.000 0.000 0.000 0.000 0.000 0.000

Mean 0.018 0.016 0.022 0.031 0.053 0.030

Max 0.070 0.050 0.050 0.070 0.100 0.070
In

te
ge

r Min 0.010 0.000 0.020 0.010 0.030 0.020

Mean 0.056 0.031 0.054 0.063 0.075 0.056

Max 0.110 0.090 0.100 0.110 0.110 0.090

H
yb

rid

In
te

ge
r Min 0.000 0.000 0.000 0.000 0.000 0.000

Mean 0.031 0.024 0.036 0.043 0.062 0.039

Max 0.110 0.080 0.090 0.090 0.120 0.080

H
et

er
oz

yg
ou

s

B
in

ar
y

St
rin

g

Min 0.000 0.000 0.000 0.000 0.000 0.000

Mean 0.024 0.029 0.045 0.036 0.068 0.045

Max 0.120 0.090 0.100 0.100 0.120 0.090

In
te

ge
r Min 0.000 0.000 0.000 0.000 0.000 0.000

Mean 0.022 0.014 0.026 0.030 0.047 0.030

Max 0.080 0.060 0.070 0.070 0.100 0.070

H
yb

rid

In
te

ge
r Min 0.000 0.000 0.000 0.000 0.010 0.000

Mean 0.033 0.027 0.035 0.042 0.066 0.039

Max 0.080 0.070 0.070 0.080 0.110 0.070

Table 7-7: C metrics for Multiple Objective Heterozygous New York Tunnels after 1,000 generations

7.2.2.5. Runtime Performance

As can be seen from Table 7-8, for the New York Tunnels problem in which the

chromosome length is very similar between the conventional and heterozygous encodings,

the additional overhead of interpreting the heterozygous chromosomes leads to a deleterious

effect on performance for this representation.

Chromosome
Representation

Conventional Heterozygous
 (evaluations
 per second) % of best (evaluations

per second) % of best

Binary String 1,868.98 86.3% 1,574.30 72.7%

Integer 2,164.93 100% 1,801.72 83.2%

Hybrid Integer 1,886.79 87.2% 1,630.70 75.3%

Table 7-8: New York Tunnels Multiple Objective Heterozygous Runtime Performance vs. Conventional
Performance

7.2.3. Caching

The caching results for the multiple objective New York Tunnels problem are presented in

Table 7-9. As with the single objective formulation of the problem, despite the cache being

Chapter 7: Multiple Objective Optimization Problems

196 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

used, the runtimes are increased when the caching is enabled – for either type of cache. This

is the result of the search performance of the caches taking, on average, a longer interval than

the hydraulic simulation of the network. The ten-fold increase in the proportion of cache

hits compared to the maximum of 3% for the single objective problem supports the concept

of the caching methodology.

Cache Size
Runtime

performance Cache Performance Relative
Runtime

Performance (solutions/second) (no. hits) (% of evaluations)

None 1,886.79 n/a n/a 100%

40,000 1,355.01 28,290.3 28.3% 139.2%

Judy (unlimited) 1,292.55 34,538.9 34.5% 146.0%

Table 7-9: Cache results: Multiple Objective New York Tunnels

7.3. Hanoi

7.3.1. Genetic Representation

7.3.1.1. Binary String

A considerable overlap can be seen in Figure 7-12, which shows the binary string results,

between the 100 generation and 1,000 generation distributions suggesting that this

representation converges rapidly toward the Pareto-optimal front. None of the 100 runs of

this optimization configuration resulted in the best know solution of $6.081m being

identified.

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 197

Figure 7-12: Hanoi – Multiple Objective Binary String Results

7.3.1.2. Integer

The results for the integer representation, presented in Figure 7-13, show a greater diversity

of results than those seen with the binary string representation. The overlap between the 100

generation and 1,000 generation distributions, whilst present, is diminished. In common with

the binary string representation, none of the runs identified the best-known solution for this

problem.

Chapter 7: Multiple Objective Optimization Problems

198 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 7-13: Hanoi – Multiple Objective Integer Results

7.3.1.3. Hybrid Integer

Figure 7-14 illustrates the results of the hybrid integer representation – which appear very

similar to those of the integer. Again, no runs of this optimization identified the optimum.

Figure 7-14: Hanoi – Multiple Objective Hybrid Integer Results

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 199

7.3.1.4. Comparative Analysis

Graphical

Figure 7-15 allows a direct graphical comparison of the results presented above:

Binary String

Integer

Hybrid Integer

Figure 7-15: Graphical Comparison of Multiple Objective Hanoi results

Chapter 7: Multiple Objective Optimization Problems

200 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

The less well-defined results of the integer and hybrid integer representations, particularly

after 20 generations, are visible in this figure.

Space Metrics

The S metric for the Hanoi optimization is related in the box plots in Figure 7-16. These

show the superior convergence of the binary string in the earlier stages of the optimization

but suggest that the integer, and particularly the hybrid integer, runs converge better.

Figure 7-16: Box plots of S metric for Multiple Objective Hanoi after 20, 100 and 1,000 generations

Coverage Metrics

The coverage metrics for the Hanoi optimization are reported in Table 7-10 - Table 7-12 for

20, 100 and 1,000 generations respectively. Table 7-10 shows that the binary string

representation again dominates that of the other two representations – whilst the integer

representation outperforms the hybrid integer at this stage.

 Front B
Binary String Integer Hybrid Integer

Fr
on

t
A

B
in

ar
y

St
rin

g

Min 0.062 0.197 0.232

Mean 0.421 0.438 0.494

Max 0.899 0.740 0.831

In
te

ge
r Min 0.050 0.110 0.250

Mean 0.323 0.415 0.514

Max 0.617 0.720 0.854

H
yb

rid

In
te

ge
r Min 0.040 0.062 0.105

Mean 0.244 0.343 0.432

Max 0.535 0.582 0.740

Table 7-10: C metrics for Multiple Objective Hanoi after 20 generations

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 201

After 100 generations very little, relative, difference can be discerned in the

performance of the representations – as seen in Table 7-11 – where the mean figures for the

variation in coverage are almost equal for each combination.

 Front B
Binary String Integer Hybrid Integer

Fr
on

t
A

B
in

ar
y

St
rin

g
Min 0.080 0.140 0.100

Mean 0.328 0.316 0.323

Max 0.620 0.530 0.590

In
te

ge
r Min 0.090 0.160 0.100

Mean 0.347 0.359 0.349

Max 0.600 0.600 0.590

H
yb

rid

In
te

ge
r Min 0.100 0.120 0.080

Mean 0.352 0.368 0.355

Max 0.630 0.660 0.660

Table 7-11: C metrics for Multiple Objective Hanoi after 100 generations

The relative coverage of the fronts at the conclusion of the optimizations is shown in

Table 7-12. This shows that at this stage, the integer and hybrid integer representations are

performing better than the binary string and that the hybrid integer is marginally

outperforming the integer – a fact reflected in the box plots in Figure 7-16.

 Front B
Binary String Integer Hybrid Integer

Fr
on

t
A

B
in

ar
y

St
rin

g

Min 0.090 0.050 0.040

Mean 0.297 0.154 0.154

Max 0.540 0.360 0.400

In
te

ge
r Min 0.210 0.150 0.120

Mean 0.444 0.264 0.261

Max 0.610 0.420 0.490

H
yb

rid

In
te

ge
r Min 0.130 0.120 0.080

Mean 0.444 0.271 0.264

Max 0.610 0.430 0.490

Table 7-12: C metrics for Multiple Objective Hanoi after 1,000 generations

7.3.1.5. Runtime performance

The runtime result presented in Table 7-13 demonstrates that, relative to the binary string

representation, the hybrid integer is considerably better performing on the length of

chromosome employed by this problem. The pure integer representation remains the

quickest of all.

Chapter 7: Multiple Objective Optimization Problems

202 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Chromosome Representation
Average Performance
(evaluations per second)

% of best performance

Binary String 1,579.28 84.8%

Integer 1,862.80 100%

Hybrid Integer 1,747.57 93.8%

Table 7-13: Hanoi Multiple Objective Runtime Performance

7.3.2. Caching

With the caching enabled, the throughput of the algorithm using the hybrid integer

representation exceeds that of the uncached integer (Table 7-13). As with the New York

Tunnels problem, these results represent a marked improvement over those of the single

objective version of the problem. However, given the greater computational demand of the

Hanoi problem for the hydraulic solver, the advantages of the cache utilisation are clearly

demonstrated with savings in runtime of between 6.5 and 12%.

Cache Size
Runtime

performance Cache Performance Relative
Runtime

Performance (solutions/second) (no. hits) (% of evaluations)

None 1,747.57 n/a n/a 100%

40,000 1,868.46 5,916.3 5.9% 93.5%

Judy (unlimited) 1,980.47 7,972.1 8.0% 88.2%

Table 7-14: Cache results: Multiple Objective Hanoi

7.4. Piedemonte San Germano

7.4.1. Genetic Representation

7.4.1.1. Binary String

A scatter plot illustrating the results for the binary string representation after 20, 100 and

1,000 generations can be seen in Figure 7-17. For this representation, no solutions for any of

the runs identified the optimal solution determined in the single-objective analysis of

€30,082.10. A large discontinuity is visible in the aggregate head deficit objective. This

discontinuity is apparent owing to the fact that the feed from the reservoir (pipe 101 in

Figure 6-26) is critical to system performance. In the absence of this reinforcement, the head

deficits throughout the system are high c.30,000m and higher; whilst reinforcement, even of

the smallest diameter option, results in head deficits of c.12,000m and lower.

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 203

Figure 7-17: Piedemonte San Germano– Multiple Objective Binary String Results

7.4.1.2. Integer

Figure 7-18 relates the results for the integer representation when applied to the multiple

objective PSG problem. These results can be seen to cover a wider distribution than those of

the binary string. As with the latter representation, none of the runs identified the best-

known solution. It can be seen from these results that a large number of results are identified

with near-zero head deficits and cost varying between c.€60,000 and €30,000. This wide

variation occurs as the PSG model has a number of very short pipes that are included in the

optimization and yet have an insignificant effect on the performance of the hydraulic model,

which is characterised by extremely low flows in some locations. Thus, from the point of

view of the optimization, the reinforcement of these pipes contributes significantly to the

capital cost objective but has little bearing on that of the head deficit. Ideally, these pipes

should be identified a priori and omitted from the optimization process.

Chapter 7: Multiple Objective Optimization Problems

204 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 7-18: Piedemonte San Germano– Multiple Objective Integer Results

7.4.1.3. Hybrid Integer

The results for the Hybrid Integer representation are shown in Figure 7-19. Again, after

1,000 generations, none of the runs had identified the optimal solution of €30,082.10.

Figure 7-19: Piedemonte San Germano– Multiple Objective Hybrid Integer Results

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 205

7.4.1.4. Comparative Analysis

Space Metrics

Examination of the S space metrics (Figure 7-20) for these runs demonstrate that, in

common with the New York Tunnels and Hanoi problems, the binary string representation

outperforms both the integer and hybrid integer versions in terms of convergence towards an

optimal solution. The performance of the hybrid integer representation appears superior to

that of the integer representation throughout the lifetime of the optimization. However, the

box plots suggest that, ultimately, the hybrid integer and integer representations have

generally converged to superior Pareto-optimal fronts – although analysis of the C coverage

metric is necessary to confirm this.

Figure 7-20: Box plots of S metric for Multiple Objective Piedemonte San Germano after 20, 100 and 1,000

generations

Coverage Metrics

The coverage metrics for the runs were calculated for the Pareto-optimal fronts obtained

after 20, 100 and 1,000 generations of each of the 100 runs undertaken for each

representation. The aggregate values obtained for the metric C(A,B) are listed in Table 7-15

to Table 7-17 for 20, 100 and 10,000 generations respectively. The Binary String

representation can again be seen in Table 7-15 to be outperforming that of the integer and

hybrid integer – covering 58.1% and 51.6% of the points of fronts respectively.

Chapter 7: Multiple Objective Optimization Problems

206 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

 Front B
Binary String Integer Hybrid Integer

Fr
on

t
A

B
in

ar
y

St
rin

g

Min 0.222 0.241 0.193

Mean 0.415 0.581 0.516

Max 0.672 0.974 0.868

In
te

ge
r Min 0.000 0.000 0.000

Mean 0.300 0.439 0.371

Max 0.567 0.949 0.755

H
yb

rid

In
te

ge
r Min 0.014 0.130 0.053

Mean 0.331 0.483 0.424

Max 0.697 0.949 0.906

Table 7-15: C metrics for Piedemonte San Germano after 20 generations

The same C metric after 100 generations (Table 7-16) shows that the binary string

representation continues to perform well, although the hybrid integer, on average, can now

be seen to cover a greater proportion of points than those of the other two representations.

 Front B
Binary String Integer Hybrid Integer

Fr
on

t
A

B
in

ar
y

St
rin

g

Min 0.200 0.320 0.160

Mean 0.363 0.484 0.336

Max 0.500 0.707 0.590

In
te

ge
r Min 0.110 0.090 0.050

Mean 0.260 0.388 0.254

Max 0.460 0.636 0.470

H
yb

rid

In
te

ge
r Min 0.140 0.190 0.090

Mean 0.410 0.513 0.365

Max 0.630 0.747 0.630

Table 7-16: C metrics for Piedemonte San Germano after 100 generations

At the completion of the optimizations, the C metrics (Table 7-17) show very similar levels

of average coverage although the hybrid integer representation can be seen to outperform the

other representations, covering a greater proportion of their Pareto-optimal solutions.

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 207

 Front B
Binary String Integer Hybrid Integer

Fr
on

t
A

B
in

ar
y

St
rin

g

Min 0.090 0.090 0.100

Mean 0.204 0.256 0.197

Max 0.300 0.410 0.310
In

te
ge

r Min 0.070 0.080 0.070

Mean 0.191 0.230 0.180

Max 0.330 0.420 0.320

H
yb

rid

In
te

ge
r Min 0.100 0.090 0.090

Mean 0.247 0.292 0.214

Max 0.350 0.450 0.360

Table 7-17: C metrics for Piedemonte San Germano after 1000 generations

7.4.1.5. Runtime Performance

The runtime performance comparison for these representations is presented in Table 7-18.

In common with the other network problems analysed, the integer representation performs

best with a marginal difference apparent between the binary string and hybrid integer results.

Chromosome Representation Average Performance
(evaluations per second) % of best performance

Binary String 3,837.22 90.8%

Integer 4,223.89 100%

Hybrid Integer 3,766.36 89.0%

Table 7-18: Piedemonte San Germano Multiple Objective Runtime Performance

7.4.2. Heterozygous Chromosomes

7.4.2.1. Binary String

The heterozygous binary string results, presented in Figure 7-21, are broadly comparable with

those of the normal representation with the exception that, visually, they exhibit a narrower

distribution of results for the 20 and 100 generation points – the opposite of the equivalent

results obtained for the smaller New York Tunnels problem, suggesting that the

heterozygous arrangement performs better for convergence for the larger problem. As with

the normally-encoded version of this problem, none of the binary string runs was able to

identify the optimal solution determined in the single-objective optimization.

Chapter 7: Multiple Objective Optimization Problems

208 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 7-21: Piedemonte San Germano– Multiple Objective Heterozygous Binary String Results

7.4.2.2. Integer

Figure 7-22 illustrates the heterozygous integer results, which appear to be very similar to

those obtained with the standard representation. In common with the binary string results,

above, the heterozygous version of the integer appears to show better convergence

behaviour. Again, none of the runs for this representation managed to identify the best

known-solution for the single objective problem formulation.

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 209

Figure 7-22: Piedemonte San Germano– Multiple Objective Heterozygous Integer Results

7.4.2.3. Hybrid Integer

Figure 7-23 shows the results for the heterozygous hybrid integer representation of the

problem showing, once more, more rapid convergence than the prior encoding.

Figure 7-23: Piedemonte San Germano– Multiple Objective Heterozygous Hybrid Integer Results

Chapter 7: Multiple Objective Optimization Problems

210 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

7.4.2.4. Comparative Analysis

Graphical

Figure 7-24 permits a direct graphical comparison of the algorithm performance for the three

representations and two encodings. The more constrained distributions, after 20 and 100

generations, exhibited by the heterozygous binary string and heterozygous hybrid integer

(and to a lesser extent the heterozygous integer) representations are apparent in this figure –

particularly with reference to the solutions to the right of the head deficit discontinuity.

Binary String Binary String Heterozygous

Integer Integer Heterozygous

Hybrid Integer Hybrid Integer Heterozygous

Figure 7-24: Graphical Comparison of Multiple Objective Piedemonte San Germano results

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 211

Space Metrics

The S metric results for the heterozygous results are presented in Figure 7-25. These results

illustrate the better convergence of the binary string representation compared to the other

two – with the integer representation again performing the worst of all three. However, as

with the normally encoded representation, the superior performance of the hybrid integer

representation towards the end of the optimization is demonstrated.

Figure 7-25: Box plots of S metric for Multiple Objective Heterozygous Piedemonte San Germano after 20,

100 & 1,000 generations

A comparison between the S metrics of both the normally and heterozygous encoded

representations is shown in Figure 7-26. In contrast to the results obtained for the simpler

New York Tunnels problem (Figure 7-11) the improved performance of the heterozygous

encoding relative to the normal encoding, in terms of rapidity of convergence, is clearly seen.

Chapter 7: Multiple Objective Optimization Problems

212 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 7-26: Box plots of S metric for Multiple Objective Normal and Heterozygous Piedemonte San

Germano after 20, 100 & 1,000 generations

Coverage Metrics

In the early stages of the optimization (20 generations) the C coverage metrics (Table 7-19)

for the normally-encoded binary string show that it is the most effective of the combinations

in terms of relative quality of the Pareto fronts obtained. This is at variance with what might

be expected from the S space metric above (Figure 7-26) in which all of the heterozygous

representations appear to outperform the normally encoded binary string.

 Front B

Conventional Heterozygous

Binary
String Integer Hybrid

Integer
Binary
String Integer Hybrid

Integer

Fr
on

t
A

N
or

m
al

B
in

ar
y

St
rin

g

Min 0.222 0.241 0.193 0.102 0.192 0.109

Mean 0.415 0.581 0.516 0.360 0.386 0.381

Max 0.672 0.974 0.868 0.607 0.542 0.732

In
te

ge
r Min 0.000 0.000 0.000 0.082 0.071 0.065

Mean 0.300 0.439 0.371 0.317 0.315 0.341

Max 0.567 0.949 0.755 0.589 0.521 0.756

H
yb

rid

In
te

ge
r Min 0.014 0.130 0.053 0.102 0.212 0.077

Mean 0.331 0.483 0.424 0.317 0.372 0.389

Max 0.697 0.949 0.906 0.625 0.576 0.732

H
et

er
oz

yg
ou

s

B
in

ar
y

St
rin

g

Min 0.106 0.111 0.053 0.041 0.130 0.026

Mean 0.276 0.453 0.397 0.307 0.348 0.369

Max 0.508 0.949 0.906 0.625 0.576 0.732

In
te

ge
r Min 0.152 0.130 0.175 0.041 0.093 0.026

Mean 0.284 0.272 0.296 0.346 0.285 0.355

Max 0.460 0.462 0.434 0.564 0.484 0.780

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 213

 Front B

Conventional Heterozygous

Binary
String Integer Hybrid

Integer
Binary
String Integer Hybrid

Integer

H
yb

rid

In
te

ge
r Min 0.074 0.093 0.158 0.020 0.042 0.026

Mean 0.314 0.297 0.306 0.336 0.312 0.355

Max 0.537 0.667 0.566 0.714 0.593 0.780

Table 7-19: C metrics for Multiple Objective Heterozygous Piedemonte San Germano after 20 generations

The superior performance trend for the conventionally encoded representations is continued

later in the optimization as evidenced by the results presented in Table 7-20. Here their

average coverage ratios are improved over Table 7-19 above. The hybrid integer is the

strongest performer followed by the binary string representation.

 Front B

Conventional Heterozygous

Binary
String Integer Hybrid

Integer
Binary
String Integer Hybrid

Integer

Fr
on

t
A

N
or

m
al

B
in

ar
y

St
rin

g

Min 0.200 0.320 0.160 0.330 0.350 0.310

Mean 0.363 0.484 0.336 0.516 0.479 0.416

Max 0.500 0.707 0.590 0.710 0.610 0.520

In
te

ge
r Min 0.110 0.090 0.050 0.310 0.360 0.310

Mean 0.260 0.388 0.254 0.499 0.463 0.408

Max 0.460 0.636 0.470 0.660 0.590 0.530

H
yb

rid

In
te

ge
r Min 0.140 0.190 0.090 0.290 0.390 0.330

Mean 0.410 0.513 0.365 0.533 0.496 0.419

Max 0.630 0.747 0.630 0.720 0.590 0.520

H
et

er
oz

yg
ou

s

B
in

ar
y

St
rin

g

Min 0.090 0.160 0.090 0.090 0.110 0.110

Mean 0.234 0.459 0.316 0.301 0.456 0.381

Max 0.420 0.747 0.630 0.610 0.590 0.520

In
te

ge
r Min 0.110 0.130 0.060 0.080 0.040 0.080

Mean 0.223 0.257 0.209 0.307 0.278 0.193

Max 0.310 0.390 0.340 0.520 0.480 0.310

H
yb

rid

In
te

ge
r Min 0.100 0.170 0.100 0.110 0.150 0.130

Mean 0.263 0.303 0.258 0.349 0.344 0.248

Max 0.370 0.420 0.390 0.600 0.600 0.470

Table 7-20: C metrics for Multiple Objective Heterozygous Piedemonte San Germano after 100 generations

At the completion of the optimization runs, the C coverage metrics (Table 7-21) it can be

seen that the Pareto fronts obtained with the conventional encoding tend to dominate those

obtained with the heterozygous encoding, with over 50% coverage for all of the genotype

representations.

Chapter 7: Multiple Objective Optimization Problems

214 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

 Front B

Conventional Heterozygous

Binary
String Integer Hybrid

Integer
Binary
String Integer Hybrid

Integer

Fr
on

t
A

N
or

m
al

B
in

ar
y

St
rin

g

Min 0.090 0.090 0.100 0.390 0.490 0.250

Mean 0.204 0.256 0.197 0.539 0.565 0.518

Max 0.300 0.410 0.310 0.740 0.660 0.680

In
te

ge
r Min 0.070 0.080 0.070 0.340 0.490 0.250

Mean 0.191 0.230 0.180 0.524 0.547 0.501

Max 0.330 0.420 0.320 0.740 0.620 0.660

H
yb

rid

In
te

ge
r Min 0.100 0.090 0.090 0.370 0.490 0.240

Mean 0.247 0.292 0.214 0.534 0.553 0.505

Max 0.350 0.450 0.360 0.760 0.630 0.680

H
et

er
oz

yg
ou

s

B
in

ar
y

St
rin

g

Min 0.030 0.080 0.040 0.010 0.080 0.050

Mean 0.089 0.265 0.193 0.298 0.499 0.469

Max 0.180 0.450 0.360 0.750 0.630 0.680

In
te

ge
r Min 0.030 0.020 0.000 0.020 0.070 0.030

Mean 0.064 0.088 0.060 0.263 0.238 0.266

Max 0.110 0.150 0.130 0.690 0.330 0.630

H
yb

rid

In
te

ge
r Min 0.020 0.020 0.010 0.000 0.010 0.010

Mean 0.092 0.115 0.088 0.240 0.254 0.264

Max 0.230 0.280 0.270 0.720 0.450 0.680

Table 7-21: C metrics for Multiple Objective Heterozygous Piedemonte San Germano after 1,000 generations

7.4.2.5. Runtime Performance

The more complex genetic structure of the conventional representation cause it to show

significantly reduced performance with respect to the heterozygous approach – as seen in

Table 7-22. Once more, as with the other analyses, the integer runtime proves to be the

quickest representation with the hybrid integer and binary string having roughly equal

runtime performance although the hybrid integer representation proves to be marginally

quicker for the heterozygous encoding and marginally slower for the conventional encoding.

Chromosome
Representation

Conventional Heterozygous
 (evaluations
 per second) % of best (evaluations

per second) % of best

Binary String 1,040.43 71.5% 1,380.77 94.9%

Integer 1,145.28 78.7% 1,455.56 100%

Hybrid Integer 1,021.22 70.2% 1,397.16 96.0%

Table 7-22: PSG Multiple Objective Heterozygous Runtime Performance vs. Conventional Performance

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 215

7.4.3. Caching

As with the other two networks employed, the caching performance of this multiple

objective algorithm is much improved with respect to the single objective formulation of the

same problem. Table 7-23 illustrates these results: demonstrating a significant improvement

in runtime for the Judy cache. The search effectiveness of the Red-Black binary tree cache is

compromised by the length of the chromosome for this problem and is seen to have nearly

the same performance as the uncached algorithm – despite the cache being “hit” for 15% of

the evaluations.

Cache Size
Runtime

performance Cache Performance Relative
Runtime

Performance (solutions/second) (no. hits) (% of evaluations)

None 1,021.22 n/a n/a 100%

40,000 1,028.60 15,145.2 15.1% 99.3%

Judy (unlimited) 1,098.90 14,605.2 14.6% 92.9%

Table 7-23: Cache results: Multiple Objective Piedemonte San Germano

7.5. Conclusions

Identifying the benefits accrued by the individual representations is more difficult to quantify

for a multiple objective optimization because of the nature of the multiple results returned

and how best to compare them. The Space-Covered metric, S and Coverage metric, C, of

Zitzler and Thiele (1999) are employed to undertake the comparisons of the Pareto-optimal

fronts obtained from repeated optimizations using the different combinations of

representation.

The most instructive result seen relates to the performance of the binary string

representation during the initial stages of the optimization. For all three networks analysed,

this representation can be seen to perform best in terms of the convergence of the algorithm

– in direct contrast to the results observed for this representation in the single-objective

optimizations. To verify the results observed for the binary string representation, each of the

experiments were repeated with a version of the hybrid integer, which does not incorporate

the Gray coding and, instead, behaves as a conventional binary string. The results obtained

for this representation were almost identical to those obtained for the standard binary string

– as would be expected. The only variation apparent was owing to the selection of different

random seeds for the initialization of each optimization. Despite the more rapid

convergence characteristics of the binary string representation, the hybrid integer

Chapter 7: Multiple Objective Optimization Problems

216 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

representation ultimately produced the best optimization results for all of the problems

investigated.

That the hybrid arrangement ultimately outperforms the conventional binary string is

not surprising - owing to its superior mutation performance identified in Chapter 4.2.4. The

binary string behaviour at the beginning of the optimization should be explored, however. It

might be speculated that the addition stochasticity afforded by the non-Gray code binary

string representation is beneficial in driving the algorithm to explore the Pareto front in the

early stages of the optimization. In this case, a more aggressive crossover regime, such as

Uniform Random (Syswerda, 1989) may exert more evolutionary pressure on the other

representations and permit them to converge more rapidly. To test this hypothesis, the

hybrid integer runs for the multiple objective Piedemonte San Germano network were

repeated with such a crossover and the results were seen to be far worse than both the binary

string implementation and the original performance of the hybrid integer. A similar test in

which the effective mutation rate was increased yielded a slight improvement in the

performance of the hybrid integer representation but this remained considerably short of that

seen for the binary string. It is recommended that this behaviour be examined in more detail

and an opportunity for exploiting the nature of the hybrid integer representation to take

account of these results is detailed for further research in Chapter 9.1

The performance of the caching methodology is significantly improved relative to

that of the single-objective formulations of the optimization problems. In the reruns of the

hybrid integer algorithms outlined above, the proportion of hits of the cache dropped from

around 15% to around 3% - more in line with the initial experimentation results seen in

Chapter 4.4.3.

Chapter 7: Multiple Objective Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 217

Chapter 8: Large Scale Optimization Problems

218 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Chapter 8. Large Scale Optimization Problems

8.1. Introduction

In order to establish whether the conclusions drawn in Chapter 7 are more widely applicable,

some of the techniques introduced are applied to two further optimization problems, which

are characterized by an increase in scale and an increase in the computational complexity

associated with its hydraulic-related calculations. The first network is analysed in a similar

fashion to those in the previous chapter to determine its sensitivity to the different genetic

representations under consideration. Moreover, its performance with the caching and the

distributed evaluation methodologies is examined. The second network is derived from

Piedemonte San Germano model seen previously; in this instance, the problem is

reformulated as a hydraulic model with uncertain demands that are required to be simulated

over a 24-hour period. This uncertainty is accommodated using sampling techniques that,

when coupled to the optimization process, significantly increase the runtimes of the

algorithm through repeated, addition hydraulic simulations. This problem is used to evaluate

the efficacy of the Non-Repeating Genetic Algorithm introduced in Chapter 4.5 and the

distributed evaluation methodology. Owing to the stochasticity introduced as a means of

accommodating the uncertainty in the hydraulic model, this problem is not suitable for

analysis with respect to its caching performance. This is because, in such problems, there is

no longer a one-to-one mapping between a given set of decision variables and the values of

the objectives.

8.2. “Real World” Network

8.2.1. Problem Formulation

The “Real World” network was introduced by Savić et al. (2000) and is an anonymized

network from a UK water company. This model is gravity fed by a single reservoir via 632

pipes to 535 demand nodes – the topology is illustrated in Figure 8-1. Each of these pipes

may be implemented as one of 20 potential pipe diameters, which results in a very large

search space of 20632 = 1.78×10822. Because of the extended runtimes associated with this

problem, a restricted set of four runs was performed with the best Pareto front obtained

from each representation used in the following analysis.

Chapter 8: Large Scale Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 219

Figure 8-1: "Real World" network topology

In common with the previous multiple objective optimizations, the problem formulation is

for the minimization of infrastructure cost and aggregate nodal head deficit and can be

represented, thus:

:݁ݖ݅݉݅݊݅ܯ ௜௡௙ܥ ൌ ݂൫ܦଵ, . . , ே೗൯ܦ ൌ෍ܥ൫ܦ௝, ௝൯ܮ
ே೗

௝ୀଵ

xiii)

:݁ݖ݅݉݅݊݅ܯ ܶ ൌ ݂൫ܪଵ, . . , ே೙൯ܪ ൌ෍൫ܪ௜,௠௜௡ െ ௜൯ܪ
ே೙

௜ୀଵ

xiv)

௝ܦ א ሺ݆ ܦ ൌ 1, . . , ௗܰሻ

xv)

where: Cinf is the total infrastructure cost, Nl is the number of links in the network for which

reinforcement is an option, C(Dj,Lj) is the cost of the jth pipe with diameter Dj (chosen from a

Chapter 8: Large Scale Optimization Problems

220 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

discrete set of available diameters D) and length Lj. T is the total head deficit (negative if a

pressure surplus exists), Hi is the pressure head at node i (as computed by the hydraulic

solver), Hi,min is the minimum pressure head requirement sufficient to fully satisfy the demand

at node i and Nn is the number of nodes in the network. Nd is the number of decision

variables in the optimization.

8.2.2. Genetic Representation

8.2.2.1. Comparative Analysis

Graphical

The results from the best front produce by runs of each representation are illustrated in

Figure 8-2 for the state after 100 generations. As can be seen, the binary string

representation performs well, although the integer and hybrid integer arrangements perform

appear to perform better at the extremes of the Pareto-optimal front. Outside the range

illustrated in Figure 8-2, the standard binary string performs poorly relative to the other

representations demonstrated by the results seen in the coverage metrics for this stage of the

optimization (Table 8-2).

Figure 8-2: Best Pareto fronts for "Real World" problem after 100 generations

Chapter 8: Large Scale Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 221

After 1,000 generations, the performance of the three representations is much closer, as can

be seen from Figure 8-3. In contrast with the earlier stage of the algorithm, however, the

hybrid integer variant is performing well, achieving a better spread of solutions.

Figure 8-3: Best Pareto fronts for "Real World" problem after 1,000 generations

As for the previous problems explored in Chapter 7, by the end of the optimization the

different representations have largely converged to similar Pareto fronts as can be seen in

Figure 8-4, below.

Chapter 8: Large Scale Optimization Problems

222 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure 8-4: Best Pareto fronts for "Real World" problem after 10,000 generations

Space Metric

Table 8-1 shows the space-covered, S, metrics for the best runs of each genetic

representation after 100, 1,000 and 10,000 generations. These figures show that, as for the

prior multiple-objective runs in Chapter 7, the binary string representation converges more

quickly – though ultimately the other representations produce similar results.

Generation Binary String Integer Hybrid Integer
100 8.52589×1010 9.28513×1010 8.76128×1010

1,000 4.30702×1010 4.87071×1010 4.20156×1010

10,000 3.38164×1010 3.56136×1010 3.61863×1010

Table 8-1: S metrics for Real World network after 100, 1,000 and 10,000 generations

Coverage Metric

The C coverage metrics for the obtained fronts are compared for the state of the population

after 100, 1,000 and 10,000 generations. In contrast to the S metric above, it can be seen

from Table 8-2 that, after 100 generations the integer representation can be seen to be the

best performing of all, in terms of coverage, followed by the hybrid integer. These results are

due to the large number of points identified at the extreme of the Pareto fronts in which the

two integer representations dominate the binary string.

Chapter 8: Large Scale Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 223

 Front B
Binary String Integer Hybrid Integer

Fr
on

t
A

 Binary String 0.31 0.34

Integer 0.68 0.59

Hybrid Integer 0.63 0.36

Table 8-2: C metrics for Real World network after 100 generations

Table 8-3 represents the state after 1,000 generations in which it can be seen that the

hybrid integer clearly dominates the fronts obtained by the other representations – though

the integer representation is now the least well performing in terms of coverage.

 Front B
Binary String Integer Hybrid Integer

Fr
on

t
A

 Binary String 0.47 0.26

Integer 0.20 0.09

Hybrid Integer 0.39 0.70

Table 8-3: C metrics for Real World network after 1,000 generations

At the conclusion of the optimization, it is seen, once more, that the optimization has

converged to similar Pareto fronts – evidenced by the graphical overlap, the similar S metrics

and the very similar C metrics presented in Table 8-4

 Front B
Binary String Integer Hybrid Integer

Fr
on

t
A

 Binary String 0.29 0.32

Integer 0.23 0.39

Hybrid Integer 0.26 0.34

Table 8-4: C metrics for Real World network after 10,000 generations

8.2.2.2. Runtime Performance

The influence of the scale of the network problem is clear from the runtime performance

related in Table 8-5. It can be seen that the algorithm manages ~34 solutions per second for

this 632 pipe problem versus the next slowest network, Piedemonte San Germano, for which

in excess of a thousand solutions per second were obtained.

Chapter 8: Large Scale Optimization Problems

224 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Chromosome Representation
Average Performance
(evaluations per second)

% of best performance

Binary String 33.53 96.3%

Integer 34.81 100%

Hybrid Integer 33.88 97.3%

Table 8-5: Real World network Multiple Objective Runtime Performance

The similarity of these performance results reveal that with such an intensive evaluation

function, the performance advantages of any particular representation are negated as they

become dominated by the runtime of the evaluation function, reinforcing the need to

intelligently steer the optimization process.

8.2.3. Caching

The results of the caching for this large-scale problem are presented in Table 8-6.

Application of a genetic algorithm to this problem results in a long chromosome of 632

genes being employed. The effect of this on the two caching strategies investigated is

profound. The Red-Black binary tree suffers poor search performance owing to the length

of the chromosome being used as the search key into the cache. The Judy cache on the other

hand can be seen to improve the overall performance of the optimization. A runtime saving

of 3.8% may not seem particularly significant but it represents a saving of around 20 minutes

on an optimization that took approximately eight hours to complete.

Cache Size
Runtime

performance Cache Performance Relative
Runtime

Performance (solutions/second) (no. hits) (% of evaluations)

None 33.88 n/a n/a 100%

40,000 25.09 12,613.8 1.26% 135.0%

Judy (unlimited) 35.22 18,191.6 1.82% 96.2%

Table 8-6: Cache results: Multiple Objective Real World problem

8.2.4. Distributed Performance

The Real World problem is by far the most complex problem analysed in this thesis and

shows a baseline performance (Table 8-7) comparable to that of the extreme version of the

Piedemonte San Germano network employed in Chapter 5.4, which simulates that network

for 24 hours at 1-minute intervals.

Chapter 8: Large Scale Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 225

Computer
Baseline

Performance
(evaluations/second)

Number of
Processor Cores

Theoretical Maximum
Throughput

(evaluations/second)
X 33.9 4 135.6
Y 18.2 2 36.4
Z 12.2 2 24.4

Total 64.3 8 196.4

Table 8-7: Theoretical maximum performance for distributed “Real World” problem

For this large, complex network, it can be seen in Table 8-8 that the performance of

deEPANET is improved such that the system as a whole has a higher throughput relative to

the baseline performance than for all the other models employed previously. The

performance reaches some 97.8% of the theoretical maximum derived from the baseline

performance. The most complex of the other models, the Piedemonte San Germano

problem, achieved 91% of the maximum throughput when evaluated with deEPANET.

This can be seen as a direct consequence of the reduced quantity of network traffic allowing

the Client X to commit more processor time to its Server threads. However, for this model,

this will be offset to some extent by the fact that for such a large model, the volume of data

transferred for each evaluation (i.e. the pipe diameter settings and the nodal pressures

returned) is significantly greater than for the smaller models. Irrespective of this, given that

much of the overhead in network communication, for small amounts of data, is incurred in

establishing connections between computers rather than the actual data transfer, this negative

impact should be minimized.

Computer
Baseline

Performance
(Evaluations/Second)

Distributed Performance
(Evaluations/Second)

X 33.5

31.7

130.7
33.7
34.1
31.2

Y 18.2
17.1

38.9 19.0
2.8

Z 12.2
10.7

22.4 9.8
1.9

Totals 63.9 192

Table 8-8: “Real World” distributed performance results

Chapter 8: Large Scale Optimization Problems

226 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

8.3. Stochastic Piedemonte San Germano

8.3.1. Problem Formulation

Tricarico et al. (2005) investigated the demand characteristics of the Piedemonte San

Germano network through long-term instrumentation and recording of network flow data

and water meter readings. A probabilistic model was then developed to account for the

uncertainty associated with the demand at the daily peak hour. A probability density function

(PDF) was derived for each node in the network, according to the nature of its consumers

and the number of consumers associated with the node. This work was later extended by de

Marinis et al. (2007b) in which the extended period simulation (EPS) of the network was

considered and it was noted that different PDF models, Poisson, Normal and Log Normal,

were found to be appropriate for modelling different demand levels during the day. This

latter model is used here as a test for the Non-Repeating Genetic Algorithm formulation and

to demonstrate the effectiveness of the deEPANET distributed evaluation software

introduced in this thesis.

In terms of the complexity of the genetic algorithm, the genetic representation of this

problem is identical to the multiple-objective problem presented previously in Chapter 7.4.

However, the formulation of the objectives is entirely different. Instead of the twin

objectives of infrastructure cost and aggregate head deficit seen in equations xiii) and xiv), the

stochastic optimization considers infrastructure cost (equation xvi) and reliability – measured

as the probability of demands being met whilst meeting minimum pressure requirements at

all nodes (equation xvii), thus:

:݁ݖ݅݉݅݊݅ܯ ௜௡௙ܥ ൌ ݂൫ܦଵ, . . , ே೗൯ܦ ൌ෍ܥ൫ܦ௝, ௝൯ܮ
ே೗

௝ୀଵ

xvi)

:݁ݖ݅݉݅ݔܽܯ ܴ ൌ ௜ܪൣܲ ൒ ݅ ׊ ௜,௠௜௡൧ܪ א ሼ1, . . , ௡ܰሽ

xvii)

௝ܦ א ሺ݆ ܦ ൌ 1, . . , ௗܰሻ

xviii)

where: Cinf is the total infrastructure cost, Nl is the number of links in the network for which

reinforcement is an option, C(Dj,Lj) is the cost of the jth pipe with diameter Dj (chosen from a

Chapter 8: Large Scale Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 227

discrete set of available diameters D) and length Lj. R is the reliability, Hi is the pressure head

at node i (as computed by the hydraulic solver), Hi,min is the minimum pressure head

requirement sufficient to fully satisfy the demand at node i and Nn is the number of nodes in

the network. P[Hi≥Hi,min] is the probability that Hi is equal to or exceeds Hi,min for all of the

nodes in the network simultaneously and is assessed as the ratio of stochastic demand

samples (see below) for which this condition is true. Nd is the number of decision variables

in the optimization.

The computation complexity of the objective function is significantly greater than

that of the steady state, deterministic problem, requiring the hydraulic solver to run 96 times

(providing results for 24 hours at 15-minute intervals). Furthermore, in order to

accommodate uncertainty in the level of demand at each node, this extended hydraulic

solution is performed for each of 20 stochastic samples of demand (applied individually at

each node) for each candidate solution developed by the genetic algorithm. The results of

this stochastic sampling are aggregated as a number of statistical measures of performance

and stored as part of the individual in the population.

8.3.2. Non-Repeating Genetic Algorithm

The Non-Repeating GA (NRGA) introduced in Chapter 4.5 is an amalgam of a conventional

GA and the caching technology developed in this thesis, which permits a GA to avoid

unnecessary duplication of solutions within a population and, in the case of a robust

stochastic GA, Kapelan et al. (2003a), to maintain the statistics for solutions that are removed

from the population but which are later reintroduced. The methodology operates as an

extension to the recombination operations. Following the selection and recombination that

results in two new children, the existing population is searched to determine whether an

existing chromosome matches that of either child. If a match is identified in the current

population then the selection and recombination process is repeated, until two unique

children have been identified – thus preventing duplicate solutions from entering the

population in the first instance. Having identified these children, an archive is then searched

to determine whether the chromosomes of the children have been encountered before. The

archive is populated with the individuals that are removed from the population during the

optimization process – the archive being implemented with the same Judy technique

employed by the caching methodology of Chapter 4.4. If a child is identified in the archive

then instead of it starting in the population with null statistics, the statistics from its former

Chapter 8: Large Scale Optimization Problems

228 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

incarnation are used. The net effect of this arrangement is that an individual chromosome

may pass in and out of the population as the optimization proceeds without this affecting its

aggregated statistics.

In order to evaluate the performance of the NRGA on the stochastic Piedemonte

San Germano problem, the stochastic algorithm outlined above has been run using three

conditions:

1. The baseline scenario adopts the GA parameterization of Tricarico et al.

(2005) used for solving the steady state (i.e. non-EPS) rehabilitation problem

for the hour of peak water demand. The principal differences between this

parameterization and that subsequently employed are the use of integer genes

and the adoption of the Uniform Random (Syswerda, 1989) crossover

operator. A direct comparison between the results of Tricarico et al. (2005)

and those presented in this thesis is not possible owing to the significant

underperformance of the former resulting from significant shortcomings in

the implementation of the basic NSGA-II algorithm.

2. The second parameterization is that employed by de Marinis et al. (2007b) for

solving the EPS version of the Piedemonte San Germano problem. This

form uses the standard one-point crossover and adopts the hybrid integer

genes introduced in this thesis in Chapter 4.2.3.

3. The third scenario is identical to that of de Marinis et al. (2007b) with the

addition of the NRGA operation, which determines whether proposed new

solutions are extant in the current population or have been encountered

previously, before the evaluation process is undertaken.

In each of these cases, the robust NSGA-II of Kapelan et al. (2003a) is employed with a

minimum chromosome age of 20 generations. That is to say, that the solutions are only

reported as being part of the Pareto-optimal front if they have survived for 20 generations or

more. Figure 8-5 illustrates the results (i.e., Pareto solutions) obtained for the above three

scenarios after the optimization has run for 100 generations (or 10,000 evaluations – given a

population size of 100 individuals). A fourth curve in this figure shows the further progress

of the first scenario after an additional 300 generations (i.e., 40,000 evaluations in total) have

been undertaken.

Chapter 8: Large Scale Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 229

Figure 8-5: Non-Repeating GA performance comparison

The outstanding performance of the NRGA relative to the other scenarios is clearly shown

by the red line in Figure 8-5. In this experiment, the NRGA identified 483 individuals (4.8%

of the evaluations undertaken) that were either already extant in the population or that had

been previously encountered and which were resurrected with their previously obtained

statistical data intact. The effect of this is quite dramatic with the NRGA returning 52

solutions along the Pareto-optimal front after 100 generations compared with just 13 and 8

for scenarios (1 - blue) and (2 - green) above. It should be reiterated that the only difference

in the algorithm applied by de Marinis (2007b) and that of scenario (3 - red) is the addition of

the NRGA analysis. The fourth (orange) curve in Figure 8-5 is that of the first scenario after

a further 300 generations (30,000 evaluations) have been undertaken. As can be seen, this

result, though significantly improved over the 100-generation result with 22 solutions on the

Pareto-optimal front, continues to be wholly dominated by the NRGA result obtained with

one quarter of the evaluations.

This result appears to be driven, principally by the resurrection of individuals that

have previously been encountered in the population but have been removed. In the normal

algorithm, as applied in the first two scenarios, when an individual is removed from the

population no memory of it is retained – thus if it is later reintroduced by the GA then its age

will revert to zero. With the NRGA operative, the age is reset to the age the individual had

Chapter 8: Large Scale Optimization Problems

230 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

when it was removed from the population making it much easier for that solution to,

cumulatively, reach the minimum age threshold specified by the optimization. This is

evidenced by the five-fold increase in the number of solutions identified on the Pareto-

optimal front by the NRGA-enabled algorithm after 100 generations, compared to the other

approaches and the clear improvement in solution quality evidenced by the NRGA Pareto

front in Figure 8-5.

8.3.3. Distributed Performance

The deEPANET distributed evaluation methodology introduced in this thesis in Chapter 5

was designed specifically to reduce the extensive runtimes associated with the stochastic

optimization techniques presented by Kapelan et al. (2003a). Accordingly, deEPANET was

designed with the capability to offload the generation of the statistical samples to the server

computers. For each solution generated by the GA, a PDF describing the demand for each

node is transferred to the server computer, which then generates the appropriate number of

samples according to the PDF and simulates the hydraulic network for each set of samples.

deEPANET was utilised by de Marinis et al. (2007b) to reduce the runtime of this

EPS version of the Piedemonte San Germano problem and a reduction in runtime was

reported from 17 hours on a single computer to 2 hours using the distributed system.

Computer
Baseline

Performance
(evaluations/second)

Number of
Processor Cores

Theoretical Maximum
Throughput

(evaluations/second)
X 78.8 4 315.2
Y 45.7 2 91.4
Z 32.0 2 64.0

Total 156.5 8 470.6

Table 8-9: Theoretical maximum performance for distributed, stochastic Piedemonte San Germano
problem

Table 8-10 shows the aggregated performance values obtained while optimizing the

stochastic formulation of the Piedemonte San Germano problem. Once more, these results

demonstrate good scalability with the total throughput of the algorithm approaching that of

the theoretical maximum. In this instance, this is achieved partly by the devolution of the

PDF generation to the individual servers and partly by the consequent reduction of the

amount and, more importantly, the frequency of the network traffic involved in the

optimization.

Chapter 8: Large Scale Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 231

Computer
Baseline

Performance
(Evaluations/Second)

Distributed Performance
(Evaluations/Second)

X 78.8

75.2

305.5
76.1
76.5
73.8

Y 45.7
40.9

85.8 39.7
5.2

Z 32.0
26.2

54.4 24.5
3.7

Totals 156.5 445.7

Table 8-10: Stochastic Piedemonte San Germano distributed performance results

8.4. Conclusions

The introduction of the large scale, “Real World” network demonstrates that a fixation with

the runtime performance of individual gene representations is inappropriate when

considering the optimization of large-scale hydraulic networks as any advantage thus accrued

is dominated by the runtime of the evaluation function. In such situations, however, the

caching methodologies proposed might be expected to have a significant impact on runtime

– and this is indeed the case with the Judy cache demonstrating improved runtimes for this

problem of the order of 4%. Nevertheless, this improvement on its own reinforces the case

for streamlining the optimization process as much as possible, reducing unnecessary function

evaluations.

The application of the deEPANET distributed evaluation methodology to these two,

computationally intensive problems, establishes that the relative performance of the method

improves as the complexity of the objective function increases. In the examples given, the

performance of the distributed evaluation approaches the theoretical maximum that could be

obtained by applying the computers employed separately. These cooperating computers are

contributing, however, to a single optimization. This raises the prospect of using genetic

algorithm techniques on ever more complex problems, which would previously have been

beyond the capabilities of hydroinformatic optimization applications or to apply these

techniques to problems in near-real time. This research contributes significantly to realising

this application of many processors distributed across many computers to a single

optimization at a level of performance approaching the theoretical maximum.

Chapter 8: Large Scale Optimization Problems

232 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

The Non-Repeating Genetic Algorithm introduced in Chapter 4.5, which draws upon

the Judy caching technique explored previously, is shown to be highly effective at reducing

the number of evaluations required to perform stochastic optimization. Moreover, the

application of this method results in significantly better solutions (i.e. Pareto-optimal fronts)

This has been achieved by preserving a statistical memory of individuals that are removed

from the population and later resurrected and by preventing the GA from considering

solutions, which are already extant in the population and thus avoiding unnecessary

duplication. Such an improvement in performance may have considerable implications for

other optimization applications in hydroinformatics in which stochastic sampling, is

performed.

Chapter 8: Large Scale Optimization Problems

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 233

Chapter 9: Conclusions

234 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Chapter 9. Conclusions

An extensible, open architecture for the implementation of Genetic Algorithms applied to

Water Distribution Systems is presented. Several novel, problem-independent techniques are

presented for improving the performance of evolution algorithms within the context of

hydroinformatic applications.

The objectives as originally formulated were to:

• Evaluate the effectiveness and relative performance of alternative genetic

representations for chromosomes in evolution algorithms with respect to runtime

and solution quality considerations.

• Assess the potential for advanced caching and archiving techniques to reduce the

runtime of evolution algorithms.

• Determine the value of distributed evaluation of hydraulic network simulation to

facilitate the massive parallelization and acceleration of evolution algorithms for the

optimization of water distribution networks.

In the fulfilment of these objectives, a number of significant outcomes have been achieved in

the following areas:

• Genetic Representation – the development of a hybrid integer gene which combines

the algorithmic advantages of the classical binary string representation with the

performance advantages afforded by integer gene implementations.

• Solution Caching – Caching techniques have been examined and have been found to

accelerate evolution algorithms with computationally intensive objective functions.

• Non-Repeating GA – an extension of the caching methodology is found to radically

improve the performance of multiple objective algorithms that employ stochastic

sampling to accommodate conditions of uncertainty.

• Adaptive Mutation – the improvement of single objective algorithm convergence

performance is demonstrated through the use of a “learning” mutator which

identifies, statistically, individual genes which have greater significance to the fitness

of an individual.

Chapter 9: Conclusions

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 235

• Distributed Evaluation – a technique for the parallel evaluation of hydraulic networks

is presented and demonstrated to offer effective and scalable acceleration for

evolution algorithms.

These contributions are further elaborated in the following sections.

Genetic Representation

A hybridized integer gene representation that offers improved computational performance

over the conventional “binary string” representation commonly used in GA applications.

Whilst this hybrid seems to perform less efficiently in terms of raw performance (i.e. the

proportion of runtime associated directly with the manipulation of genetic material) than the

adoption of an integer or floating-point representation, the nature of its binary string-like

representation is shown to allow it superior algorithmic performance during recombination

whilst outperforming the conventional binary string representation. The case studies

performed demonstrated the clear superiority of the algorithmic performance of this

representation when applied to the single-objective optimization problems: the progress of

the optimization runs was seen to converge more rapidly than the alternative representations

and, further, to reach better solutions more consistently. The results from the multiple

objective optimizations are less clear-cut, however. In these optimizations, the conventional

binary string representation was seen to outperform the other representations in terms of

convergence during the initial stages of the optimization. By the conclusion of the

optimizations, however, the hybrid integer representation demonstrated, on average, superior

results.

The investigation into the algorithmic performance of these representations led to

the identification of two results for the case study networks that are believed to be the best-

published solutions to those problems. The prior best published solution to the Hanoi

network, that is deemed feasible when solved with an unmodified version of the EPANET

hydraulic solver (Rossman) is seen to have a capital infrastructure cost of $6,134,015.72

(Zecchin et al., 2006) with a minimum surplus head of 0.29m. The solution found during this

analysis has a cost of $6,081,127.54 and a minimum surplus head of 0.01m. Whilst lower-

cost solutions have been published, these are achieved by relaxing the values of Hazen-

Williams coefficients determining the head-loss in the pipes of the system. This results in

higher system pressures and, consequently, makes it easier for the optimization process to

identify lower-cost solutions that meet the minimum-head requirement. A new optimal

Chapter 9: Conclusions

236 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

solution was also identified for the deterministic form of the Piedemonte San Germano

problem, €30,082 versus the previous best-published result of €31,002 (Tricarico et al,. 2005).

Caching

Exploiting caching techniques is demonstrated to have a significant improvement in

performance on large and complex optimization problems. This caching takes place at many

scales throughout the implementation of the algorithm, for example retaining values for

binary strings instead of recalculating them on every access as well as retaining objective

function results in a solution cache. It is shown that the use of such caches has the potential

to improve GA performance by ensuring that processor effort is not expended on solutions

that have been encountered previously during the optimization. The development of a

solution caching methodology for Genetic Algorithms in this thesis represents a novel

technique for enhancing their performance and an approach that is under-explored in the

literature. Whilst the applicability of the caching has been clearly demonstrated on smaller

problems in reducing optimization runtime, it is noted that the effectiveness of the caching,

in terms of runtime performance, is highly dependent both on the parameterization of the

optimization itself and on the nature of the solution space being explored – related to the

propensity of the algorithm to identify the same solution in the solution space. Thus, it is

considered that the case for widespread solution caching is yet to be proven. A highly

specialised data structure, the Judy Tree is introduced as a repository for population-based

data and is seen to outperform alternative representations for maintaining a solution cache.

Non-Repeating GA

The Non-Repeating GA (NRGA) is presented in Chapter 4.5 as a twin approach to

improving the performance of the multiple-objective optimization. Firstly, a small-scale

cache is used to identify the current members of the population. On the creation of new

candidate solutions, this cache is searched to ensure that the candidate solution does not

already exist in the population – preserving genetic diversity and, in the case of the stochastic

optimization, avoiding the maintenance of separate statistics for identical individuals. The

second improvement is achieved through the deployment of a further Judy tree structure, as

used in the solution caching methodology, in order to maintain an archive of previously

encountered solutions. In doing so, it permits individual solutions to be removed from the

general population whilst retaining their accumulated statistics. This is undertaken in order

that, should the individual be encountered again, the statistical aggregation may continue

Chapter 9: Conclusions

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 237

from the point at which the individual was removed rather than restarting the statistical

analysis from scratch. A consequence of this is that it is far easier for individuals to meet the

minimum-age criterion used in the robust NSGA-II optimization of Kapelan et al. (2003a) as

they no longer have to survive for a certain number of contiguous generations. Instead, they

need only meet the minimum-age criterion by existing in the population for that total number

of generations.

When applied, in Chapter 8.3, to the stochastic Extended Period Simulation (EPS)

extension to the Piedemonte San Germano problem (de Marinis et al., 2007b), the NRGA

methodology was shown to accelerate the convergence of the algorithm significantly and

demonstrated a five-fold increase in the number of solutions identified along the Pareto-

optimal front which met the minimum-age criterion.

These results have demonstrated that better solutions (Pareto fronts) are identified

due to better utilisation of the collective system memory introduced through the archiving of

the statistical data associated with the individual solutions encountered during the progress of

the optimization. This improvement in performance could have considerable implications for

other optimization applications where stochastic sampling is employed, for example,

groundwater remediation, water resources management, etc.

Adaptive Mutation

Novel modifications to the mutation operator are demonstrated. By determining the genes

whose values dominate the results of the objective function, the ability to improve GA

performance is demonstrated by concentrating mutation operations on these genes. The

operator presented is, however, thought to be constrained significantly by the number of

“critical genes” within the decision space and its level of performance is, thus, likely to be

highly problem specific.

Distributed Evaluation

The Distributed Evaluation for EPANET (deEPANET) - (Morley et al., 2006) implements a

specialized application which offers significant performance improvements to optimization

applications by allowing parallelized processing of hydraulic simulations either on a single

machine or through cooperating computers connected by a local area network. In contrast

to the caching methodology, the Distributed Evaluation arrangement for hydraulic networks

is shown to be highly effective, and scalable (in that the performance improvements scale

according to the number of computer s committed to the problem), for improving the

Chapter 9: Conclusions

238 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

performance of applications that require repeated hydraulic solutions. The case studies

undertaken demonstrate that as the computational complexity of the optimization

undertaken increases, the proportion of the theoretical maximum throughput attained, for

the computers utilised, increases. In practice, for the larger problems, upwards of 90% of the

theoretical maximum performance was consistently obtained demonstrating the scalability of

this technique for reducing runtimes for the most complex of optimization problems – those

that will most benefit from the application of this technique.

Commercial Exploitation

The methodologies and software developed in this thesis have been employed in a number

of commercial software applications: GAnet (Morley et al., 2000), GAcal (Walters et al., 1998)

and the WiLCO software (Engelhardt & Skipworth, 2005). These applications have all used

one or more of the components for undertaking the optimization of optimal design and

rehabilitation, calibration and whole-life-costs in water distribution and sewer networks,

respectively. In addition components of the system have been deployed in other research

projects, e.g. Fullerton et al. (2002) (storm water flow modelling and optimization), Savić et al.

(1999) (optimal design of expansion to a large-scale hydraulic network), Engelhardt et al.

(2002) (whole-life-costing for water distribution network management) and de Marinis et al.

(2007a,b) (estimation of the economic level of reliability for the rehabilitation of water

distribution systems).

9.1. Further Research

A number of avenues for further research are proposed to extend the efficiency and

effectiveness of the optimization methodologies and software components introduced and

their application to the wider domain of hydroinformatics. In particular, the coupling of the

caching technology to the stochastic optimization technique in the Non-Repeating GA

methodology deserves careful consideration in its application to other optimization

applications where uncertainty is considered. The results of the case studies employed

demonstrate that the technique delivers considerably improved Pareto-optimal solutions over

existing techniques. As such, the effectiveness of this methodology should be assessed on

other hydroinformatics applications that employ stochastic sampling.

Genetic Representation

Chapter 9: Conclusions

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 239

The performance of the binary string representation in the multiple objective experiments

demonstrate that it possesses superior performance in convergence whilst the Gray-coded

hybrid integer representation behaves better in the local search towards the end of the

optimization. It is proposed, therefore, to investigate a new type of hybrid integer gene,

which can behave as a conventionally coded and Gray-coded value simultaneously and

evaluate its performance relative to the original implementations. Thus for recombination,

which dominates the early phase of the optimization, the genes could behave as conventional

binary strings as they have shown good performance in these tests. For mutation, which

dominates the local search phase towards the end of the optimization, the genes could

behave as Gray-coded binary strings. This modification could be accomplished with minimal

overhead in performance over and above that of the normal Gray-coded hybrid integer gene.

This variation in representation would be a unique attribute of the new genotype and one

that would not be possible – or would be computationally undesirable – when using

conventional binary string representations.

Caching techniques

Whilst the case for the use of caching as an integral part of evolution algorithms is not

conclusive, the methodologies developed to facilitate it may have other application in the

field. Given the apparent sensitivity of cache performance to the parameters of the GA –

particularly to mutation – it may be possible to apply the cache as an aid to dynamically tune

the performance of the algorithm to ensure that it continues to investigate solutions that have

not previously been encountered. For example, a methodology could be envisaged where the

rate of cache “hits” is continuously monitored and, should that rate vary outside of

predefined bounds, the mutation rate – or other operator parameter – could be dynamically

changed in an attempt to return the level of cache hits to the accepted bounds.

At present, the caching methodology cannot, reliably, be applied to heterozygous

chromosomes. This restriction results from the nature of these chromosomes which are

used for the search terms in the cache. Given that two sets of decision variables that

implement the same decisions may be defined in the chromosome in different orders, the

caching techniques as they stand would be unable to identify this circumstance. Accordingly,

it is proposed to investigate mechanisms that will arrange the elements of a heterozygous

chromosome in a predetermined order that will allow the caching methodology to correctly

identify identical sets of decision variables.

Chapter 9: Conclusions

240 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Non-Repeating GA

The NRGA assists in preventing the re-evaluation of previously encountered

solutions for stochastic optimization in both single and multiple objective scenarios and is

shown to improve dramatically the performance of such optimization. However, the likely

members of the solution space that will exhibit the behaviour of moving in and out of the

population in the multi-objective circumstance are those that will lie along the periphery of

the Pareto front. As such, they may be better accommodated by an archiving multi-objective

optimization technique such as emerging optimization techniques, which include some form

of archiving of a more restricted set of solutions, such as the ε-NSGA-II algorithm of Reed et

al. (2005) or the archiving trees of Fieldsend et al. (2003). A comparison of such techniques –

and their applicability to stochastic optimization, in particular, should be undertaken with a

view to identifying the approach that delivers the best algorithmic and runtime performance.

Further Applications

Distributed Evaluation

At present, for evolutionary optimization purposes, deEPANET, transfers data across the

network in phenotypic terms – that is in terms of the network element attributes that are to

be changed, rather than in genotypic terms – the native genetic representation of the network

element attributes being optimized. It would be instructive to examine the effect of

offloading further processing onto the server computers by passing the genotypic

information from the optimization algorithm directly to the servers in a similar fashion to

that, which has been undertaken with the devolving of the stochastic sample generation to

the servers. That said, one of the attractions of deEPANET is that the server-side logic is

very simple and can be used for many applications without the need for specialization.

Distributed Evaluation for Wastewater Networks

The distributed evaluation methodology presented herein has concentrated on the provision

of tools for the modelling of water distribution systems – using the EPANET pressurized

hydraulic solver (Rossman, 2000) allied to the OpenNet network modelling architecture

described in the Appendices. The range of applications for which this methodology could be

brought to bear would be greatly enhanced by the addition of a solver for mixed open-

channel/pressurized flow such as SWMM (Rossman, 2005) developed by the United States

Environment Protection Agency. Like EPANET, this software is in the public domain and

Chapter 9: Conclusions

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 241

the source-code can be freely obtained. However, in addition to obvious differences in the

modelling approach employed in the two models, the SWMM software differs from

EPANET in that it does not expose a coherent Application Programming Interface (API)

for controlling the model in the fashion that would be required to integrate it with the

existing methodology. Although an API is available, it does not include, for example, the

necessary functions for interactively interrogating or condition of the network or for

modifying its constituent attributes. This falls far short of the level of control that would be

required to marry it to an optimization algorithm in the fashion that EPANET has been used

hitherto.

It is proposed develop a suite of “hooks” within the SWMM library to enable the

layering of an additional API onto the model to provide the functionality to facilitate the

interactive control and interrogation of the network condition. With this in place, the

SWMM components can be mapped directly onto their analogues in the OpenNet modelling

library – the sewer representations already being extant – and a similar level of optimization

functionality as has been achieved with EPANET will be available.

Owing to the extended runtimes associated with sewer modelling, and associated

components, it is anticipated that the application of similar distributed evaluation techniques

as those applied with deEPANET in Chapter 5 will result in significant shortening of

optimization algorithm runtimes. The additional complexity of the model solution would

benefit the distributed evaluation technology because of the reduced time overhead

associated with network latency relative to the time taken to perform a solution – as has been

seen by devolving the stochastic sampling in deEPANET to the server computers.

OpenMI Connectivity

OpenMI is an effort to harmonize the interfacing of related models – particularly those from

the hydrologic domain (Blind & Gregersen, 2004). The OpenMI interface specification

imposes a number of requirements on the implementation of “models” that conform to it.

These constraints arise, principally, as a result of the decision to forego any centralized

control module for OpenMI – instead “models” freely interact, synchronously, on a peer-to-

peer basis. Thus to proceed to integrate these models without any formal direction from a

controller, it is necessary to tightly prescribe the operations of the individual components to

ensure their correct interoperation.

Chapter 9: Conclusions

242 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

One of the key concepts in understanding the operation of the OpenMI is that the

system operates entirely synchronously – i.e. in a single thread. This is a sensible approach as

it avoids having to accommodate thread-contention issues. However, there is a measure of

inflexibility that is the price to pay for this approach – though there appears to be no

impediment in adopting an asynchronous approach, provided that it is wholly-contained

within components. Whether this would offer sufficient flexibility is a matter for debate and,

indeed, depends largely on the granularity of the components to be used in “models” in the

first instance.

The potential for adding OpenMI compliant extensions to the optimization software

developed in this thesis should be investigated, in order that the optimization techniques

herein may applied, without additional programming, to OpenMI-based models.

Chapter 9: Conclusions

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 243

Appendix A: Network Infrastructure Modelling: OpenNet

244 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Appendix A Network Infrastructure Modelling: OpenNet

A.1 Introduction

A recurring necessity in developing the optimization methodologies for this thesis has been

for an abstracted network model representation to assist in interfacing between the

optimization software developed using the methodologies, e.g. GAnet (Morley et al., 2001)

and the hydraulic solvers and other data sources that contribute to the optimization, e.g.

StruMap GIS and network modeller (Structural Technologies Ltd., 1996), EPANET

(Rossman, 2000) and MapInfo (MapInfo Corporation, 1998). Such an abstracted model is

necessary to decouple the optimization from the other elements of the software, in order that

dependencies are minimized and flexibility is maintained to integrate additional components

as required.

A further fundamental issue with the optimization of water networks has been

accommodating the plethora of different hydraulic simulation software packages that might

be used as a data source. This has highlighted the absence of an agreed standard for

representing water network infrastructure and operating conditions in software. Commonly,

in order to optimize commercial networks it has been necessary to translate the network

infrastructure from the clients’ network-modelling software into a form that can be

understood by the used by the optimization software – particularly the hydraulic solver. This

process is hampered by differing conventions for representing different hydraulic elements

such as valves, pumps etc.

To address these problems, an object-oriented class-library developed in C++

(Stroustrup, 1997), called OpenNet (Morley et al., 2000), has been developed as an abstraction

to hide the inner workings of the network solver from the optimization software. This class

library is allied to an XML (W3C, 2000) metafile representation of the network, which is

designed to facilitate easier dissemination of network infrastructure data – the definitions for

which can be found in Appendix B. XML is employed to provide an extensible and

transparent means to create network definitions in a file format that is independent of any

particular hydraulic solver and which can be adopted as a “halfway-house” between specific

modelling representations. OpenNet is equipped with a suite of translators which can read

and write not only its own XML format but also the import/export formats of many popular

hydraulic modelling packages including SynerGEE (née Stoner Workstation - Advantica Inc.,

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 245

2003), InfoWorks WS (Wallingford Software, 2005), Aquis (7-Technologies, 2002) and

EPANET (Rossman, 2000).

Figure A-1: New York Tunnels-specific version of GAnet with OpenNet visualization component

The class library and XML document structure integrate directly with visualisation

routines that can be used to interact with the network model – as seen in Figure A-1. These

routines allow the structure and behaviour of the network to be viewed without recourse to

an external GIS module or that of a specific modelling package - although data exchange is

supported with common desktop GIS applications, including MapInfo (MapInfo Corp.,

1998).

Appendix A: Network Infrastructure Modelling: OpenNet

246 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

A.2 Implementation

The OpenNet abstract network-model class-hierarchy is implemented as a collection of

nodes and links and has similarities to other hierarchies, such as that proposed by Solomatine

(1996) and subsequently implemented in OOTEN (van Zyl et al., 2003), in that it has an

implicit geographic framework as shown in Figure A-2. This allows the network model,

which is not limited to hydraulic applications, to link seamlessly with a GIS application,

which represents data in a similar fashion. Whereas Solomatine (1996) uses a single

registration structure for all hydraulic elements, the OpenNet library implicitly divides all

hydraulic elements into node (point), link (line) and area (polygon) elements. Each element

type is stored in an independent ONElementStore object. This simplifies the maintenance of

the referential integrity of the network, facilitates implicit links to objects stored in external

GIS applications and exposes a straightforward user interface to third-party developers. To

ensure equivalent functionality to Solomatine's single registration store, iterator functions are

provided to facilitate easy access to all hydraulic elements.

Figure A-2: Constituents of a network representation

As with the Population-based Optimization library before it, OpenNet was initially

conceived as a ObjectPascal-based library in Delphi (Borland International, 1997). However,

in order to overcome severe performance constraints when handling large networks, the

Areas

Links

Nodes

Curve data

AreasAreas

LinksLinks

NodesNodes

Curve dataCurve data

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 247

library was ported to C++ to leverage the more efficient data structures incorporated in its

Standard Template Library. The resulting class hierarchy can be seen in Figure A-3.

Figure A-3: OpenNet class hierarchy (partial)

A

ONElement

ONWater
ReferenceNode

A

ONArea
Element

A

ONNode
Element

A

ONLink
Element

ONCurve

ONElement
List

ONPipeGroup

ONElement
Store

A

ONWaterNode
Element

ONWater
DemandNode

A

ONWater
Reservoir

ONWater
GenericNode

ONWaterReservoir
VariableHead

ONWaterReservoir
FixedHead

A

ONWater
LinkElement

A

ONWater
Valve

ONWater
Pipe

A

ONWaterPumpONWater
PumpingStation

ONWater
Meter

A

ONWater
ValveControl

ONWater
ValvePRV

ONWater
ValvePSV

ONWater
ValveMTV

ONWater
ValveNRV

ONWater
ValvePBV

ONWater
ValveTHV

ONWaterPump
LevelControl

ONWaterPump
TimeSwitched

ONWater
ValveFloat

ONWater
ValveSluice

Appendix A: Network Infrastructure Modelling: OpenNet

248 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

A.3 Network Constituents

Each network is comprised of a number of collections of elements that represent the physical

infrastructure of the network. These basic elements are wholly abstract and can be extended

to implement any form of network desired - indeed, classes derived from this base have been

used to represent fracture patterns in impermeable rock masses and for use in the simulation

of Air Traffic Control patterns. In this form, they are generalised and need to be derived

from before any useful functionality is achieved.

A.3.1 Elements

Elements are the fundamental units of the object hierarchy that implements the network

representation. The ONElement concept is abstract - though it is possible to instantiate

objects of this class. Each of the hydraulic components of the network ultimately derives

from this class. However, this and the other basic classes are not specialised in any fashion

and can consequently be used for any network representation that has a node/link/area

configuration.

The basic characteristics of an ONElement include:

• Unique identifier – a common prerequisite for efficient data handling is the

provision of a unique key to reference an individual.

• Description

• Element status – whether an element is available (open) or not (closed).

• Assignment

• XML and stream handling

 Foremost amongst these is the ability to assign ONElement derivatives to each other. This is

analogous to overriding the assignment (=) operator in C++ (which, in the C++ version of

the library is also used). The assign method copies the contents of a specified ONElement

object into the object, which calls the method. For example, the statement:

anElement.assign(anotherElement);

copies the contents of anotherElement into anElement. The assign method implemented by

ONElement merely calls the method assignTo on the specified object thus:

anotherElement.assignTo(anElement);

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 249

The assignTo method propagates up through the class hierarchy copying across each

data member that can be copied by checking the class type of the object to receive the data

members.

In this way, it is possible to ensure that the objects copy only the data members that

they have in common. Ordinarily it is only necessary for a derived class to supply a new

overridden assignTo method when a derived class introduces a new data member. The assign

method may be overridden if special processing is required after the data members are

copied. However, the widespread use of properties within the library (or correctly defined

“getter” and “setter” methods in the C++ version) makes this facility largely obsolete since

properties can be used to centralise 'intelligent' processing of this sort.

Closely associated with the object assignment facilities are those of object stream

handling. Streams are a concept familiar to C++ programmers, though there is no implicit

analogue present in the ObjectPascal language. Streams are used to store sequences of

objects - be it in memory, or more commonly to disk or other storage medium. A disk

stream is implemented as a conventional binary file. An object is written to a stream, using

the write method, by first committing a unique identifier to the stream - in this case the

object class name - followed by the data members that make up the class.

Resurrecting an object from the stream is performed by the read method, although

this is made more difficult without specific language support. Fortunately, ObjectPascal

provides the ability to construct programmatically an object from a class name.

Conventionally you would create an object thus:

anObject= new aClass();

The alternative representation allows the construction from a String variable using

the class function GetClassType inherited from TObject, the ultimate ancestor of all objects in

C++Builder and Delphi:

aString= "aClass";
anObject= new (GetClassType(aString))();

Both read and write methods are to be overridden in descendent classes wherever a

new data member is introduced. It is vital, during development, however to ensure that the

order of reading and writing the objects to the stream is not compromised. Both methods

operate recursively across ONElement derivatives, thus it is possible to save an entire

OpenNet network configuration simply by executing the write method on an ONNetwork

Appendix A: Network Infrastructure Modelling: OpenNet

250 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

object. The same basic mechanism is used to implement the writing and reading of objects

to XML metafiles.

The implementation of the C++ version differs slightly in that it is not possible in

standard C++ to create an object by supplying its name as a string. Instead, a generic Create

method is provided in the C++ version and must be overridden by any descendents to

return a new instance of that class type. Since OpenNet classes are centrally registered in

C++ applications they can be associated with an identifier which can be written to streams

and examined when recreating objects.

A.3.2 Element Lists and Stores

Element lists and stores are specialised container classes for storing instances of elements.

They differ in that ONElementList stores only references to the objects whilst ONElementStore

contains the objects themselves and is responsible for their safe destruction.

Both classes are implemented using C++ Standard Template Library (STL) underpinnings

and there are two variants of each – optimized for small-scale and large-scale networks

respectively:

• The first representation uses the STL vector class. The vector class is the

functional equivalent of an array – allowing rapid, random access to the

contents both by iteration and through the index number of a given element.

This representation is better suited to smaller networks – minimizing the

scale of the vector resizing necessary as well as the scope of any sorting

operations that take place over the lifetime of the vector.

• Based on the STL map class, the second, and preferred, representation is

implemented as red/black binary tree structure in a similar fashion to the

caching data structure discussed in Chapter 4. The map implementation

facilitates uncomplicated access to the contents through the use of iterators.

Access through indices is, however, computationally intensive as the map

obliges the use of an iterator to traverse the tree to the required index. For

this reason, the algorithms that use this representation need a little more

forethought as to their design.

A.3.2.1 Addition

In the case of the vector representation of a list or store the addition operation pushes the

new element to the end of the vector – necessitating the extension of the contiguous memory

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 251

required by the array. This expansion is potentially time-consuming and is to be avoided if

possible. To this end, the length of the vector can be set manually at the beginning of a

series of addition operations to prevent a sequence of expansion operations. Following the

addition, the contents of the vector must be sorted to ensure that the vector remains in

element ID order.

The advantages of the map representation for large-scale networks are clear when it

comes to implementing the addition operation. When adding an element to the map, the

map is traversed and the element inserted at the appropriate point, without the requirement

of an additional sorting procedure. Because the data structure is implemented as a number

of discrete data items, rather than an array, there is none of the overhead of the array

management as seen with the vector representation other than those related to allocating

memory for the pointer to the new element, which is common to both representations.

A.3.2.2 Deletion

Removing elements from either data structure is straightforward. Again, however, the

efficiency of the map representation over that of the vector is apparent when considering

large networks. Deleting the element from the vector involves remapping the remainder of

the vector to begin at the point of the deleted element – or, alternatively, by maintaining a list

of the “deleted” elements so that they may be ignored when iterating over the structure. If

the underlying implementation of a vector were that of a linked list, this remapping can be

made with minimal disruption. However, as the implementation is as an array, the

remapping requires the copying of the remainder of the vector in memory.

A.3.2.3 Searching

The ONElementList and ONElementStore classes introduce support for retrieving their

contents in various fashions. The index method returns the array index of a given object or

element ID. This function works with both representations – despite index access being

prohibitively time-consuming under the map representation. This allows the use of source

code using either representation to run unchanged if the underlying representation is

changed. Similarly, the find method returns an object with a given element ID or array index.

An array property, Element, allows random access to any element in the list. This property is

supported by both map and vector implementations although for the map implementation

this function is expensive in performance terms.

Appendix A: Network Infrastructure Modelling: OpenNet

252 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

For optimal performance when searching, the map based ONElementList class

implements tree balancing, triggered manually, which traverses the map and attempts to

construct tree branches to approximately the same depth – minimizing the average search

time for elements in the map.

The time complexity for searching for a given element among n items in the vector

representation is O(n) whilst for the map representation it is O(log n).

A.3.2.4 Other functionality

The assignment functions of the ONElement class are also represented in the OnElementList

and ONElementStore classes, as would be expected as they are derived from the basic

ONElement class.

Assignment for classes that contain other objects is, however, more complicated, as

there are two possible interpretations of the assignment:

• A shallow copied object – equivalent to a binary copy of the original object.

• “Deep” copying, by contrast, ensures that the resulting object is fully

independent of the original object. It achieves this by creating new,

equivalent objects of those within the container.

By default, the List class implements shallow copying whilst the Store class, since it is

intended to maintain ownership of any contained objects, implements deep level copying.

A.3.3 Network

In order to maintain the referential integrity of the connectivity information in the network,

the ONNetwork object is responsible for managing all additions and deletions to/from the

network. To achieve this, the ONNetwork class uses three ONElementStore objects to contain

all of the objects that fall into the categories of Nodes, Links and Areas. Further

specialization is possible by using ONElementList objects to maintain lists of specific types

of Node, Link or Area – as seen in the hydraulic specialization of OpenNet.

A.3.4 Node Elements

ONNodeElement objects are the points on a network – representing demand points on a water

network, junctions, substations or other such elements. Each node maintains a list of all the

links that are connected to it as well as a list of other elements that refer to it. This is useful

for determining relationships between nodes and other objects, which are not strictly defined

by connectivity – such as a valve pressure-setting point.

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 253

Creating a node element entails specifying the geographic location of that node as

either a two or three-dimensional Cartesian coordinate. If a node is removed from the

system then all its associated links and references, such as valve controls, are also removed

from the system or disabled automatically.

A.3.5 Link Elements

ONLinkElement link elements represent the linear constituents of the network. They may

represent water pipes, telephone lines, electricity transmission wires or other elements that

connect nodes. These elements have a “from” node and a “to” node along with, an optional,

series of points which represent waypoints along the link. Waypoints can be expressed as

either two or three-dimensional coordinates. Any two-dimensional waypoints in the link are

resolved to their three dimensional equivalents by interpolating between points with known

elevations (if any).

In order for a link (ONLinkElement) to be added to the network, it must supply the

identities of two node objects (ONNodeElement) that it links. When a link is added to the

network, it requests that these “from” and “to” nodes add it to the connection lists they

themselves maintain. Adding a link to a network ordinarily requires the specification of the

“from” and “to” nodes that the link is to connect – thus requiring that node elements be

created before link elements. However, in some circumstances, this is inappropriate and this

linking can be deferred by supplying the unique IDs of the “from” and “to” nodes instead.

The linking process can then take place following the construction of the rest of the network.

This deferment is particularly important when dealing with translation from other network

representations – particularly those stored in text files where it would be highly inefficient to

retrieve data from different locations within the source file. Deleting a link element from a

network removes the references from its “from” and “to” nodes.

A.3.6 Element Type Registration

Each element class is registered with the OpenNet system so that related libraries can

determine attributes of the element. The registration process can also optionally nominate a

user-interface component, derived from a specialised dialog box class - to be used to edit the

properties of the element. Figure A-4 illustrates the edit for a pipe object. Discrete panels on

the editor are accessible by using the tabs at the top of the dialog. Derived classes can

introduce further tabs to add custom extensions to the dialog if necessary.

Appendix A: Network Infrastructure Modelling: OpenNet

254 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure A-4: OpenNet pipe properties dialog box

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 255

Figure A-5: High level class hierarchy of OpenNet implementation

Appendix A: Network Infrastructure Modelling: OpenNet

256 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

A.4 Hydraulic specialisation

From the outset, the hydraulic network-model has been designed to interface with GIS

implementations and relational databases as well as specific hydraulic solver implementations.

Independence from the hydraulic solver is achieved through an abstract ONNetworkSolver

object from which all solver implementations are derived.

The various commercially available hydraulic modelling packages elect to use quite

distinct strategies to model specialist hydraulic components of the network such as valves,

pumping stations etc. OpenNet was originally conceived as an abstraction layer for an

EPANET solver and accordingly, it adopts many of the representations and conventions

used by that hydraulic solver.

Generic nodes

The simplest node class, from which all of the hydraulic nodes are derived, is the generic

node. This adds to the basic properties of an ONNodeElement object the ability to store nodal

hydraulic results, for example, pressure, total demand etc. for a number of time intervals.

Demand nodes

Demand nodes are elements of the network where water is extracted. The concept of

demand nodes is somewhat contrived: demand nodes are a geographic aggregation of the real

demands made of the system by domestic and industrial users. The demand on the network

at a given node can be specified either in absolute terms or as a factor to be applied to a

demand curve – of which many may be applied to a single node. OpenNet can

accommodate an unlimited number of demand types per node.

Demand curves are used to describe the pattern of water usage for a particular

demand type, such as domestic or industrial usage. The example in Figure A-6 illustrates a

typical demand curve for domestic consumption – note the peaks around the morning and

early evening.

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 257

Figure A-6: Typical 24 hour domestic demand curve

Transfer nodes

Transfer nodes are a specialised case of demand node that are used to model outflow and

inflow into a network from an adjoining network. OpenNet models inflows by assigning a

negative demand to a conventional demand node. This type of nodes is useful for modelling

distinct District Metered Areas (DMAs) which might make up a larger water supply area.

Reservoirs

OpenNet models two forms of reservoir object in addition to negative demand nodes.

A fixed-head reservoir provides a constant head irrespective of the amount of water drawn

down from it. The head can be varied through the lifetime of the hydraulic simulation by

applying a total-head setting curve to an object of this class. This type of reservoir is often

used for modelling purposes as an alternative to transfer nodes to represent fixed pressure

inflows or outflows from adjacent networks.

A variable-head reservoir behaves differently in that the shape and dimensions of a

“tank” are specified allowing the computation of the pressure at the reservoir outlet. As an

alternative to specifying dimensions, this type of reservoir is commonly associated with a

0

1

2

3

4

5

6

7

8
D

em
an

d
fa

ct
or

Time

Domestic demands

Appendix A: Network Infrastructure Modelling: OpenNet

258 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Level/Volume curve which defines the reservoir level (and hence outlet pressure) associated

with a given volume of water in the reservoir.

Generic Water Links

The base class for links in the water specialisation of OpenNet is the ONWaterLinkElement.

This class adds the properties that are common to all link elements in water networks, such

as the concepts of diameter and hydraulic parameters. This class also introduces data

structures for storing the link-related results of a hydraulic simulation, such as flow and

headloss, for a number of time-steps.

Pipes

The basic pipe class introduces properties for recording the material, lining and age of a pipe.

Derivatives of this pipe class are used in optimization applications. These descendants

include specialized attributes for storing penalty and costing information.

Valves

OpenNet implements a number of valve types. The basic ONWaterValve object describes

the basic geometry and the hydraulics of the valve.

Other valve types implemented are:

• Float valves (FLV) – used for regulating reservoir levels.

• Throttle Valves (THV)

• Motorised Throttle Valves (MTV)

• Non-Return Valves (NRV)

• Sluice Valves – simple valves that can either be open or closed.

• Control valves – control valves belong to a derived class, which include a reference

to a node that is used in some fashion to control the valve setting.

• Pressure Reducing Valve (PRV) – closes to reduce pressure downstream.

• Pressure Sustaining Valve (PSV) – opens to maintain pressure downstream

• Pressure Break Valve (PBV)

• Remote Control Valve (RCV)

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 259

Pumps

Pumps are elements that introduce hydraulic pressure into the network. The pumping

station class can be used to aggregate pump objects. This is implemented as a link element

and all pumps belonging to the station share the same connectivity. Such an abstraction is

useful in optimization applications, which can size pumping stations to match minimum-

pressure requirements.

Curves

In order to perform a hydraulic simulation it is normally required to introduce some element

of time-dependent data to the network, be it nodal demands or reservoir levels etc. Other

data used by the hydraulic model is also commonly represented as curves such as level vs.

volume curves for variable head reservoirs.

The ONCurve class offers facilities for:

• interpolating missing values.

• aggregating curves – including those with different timebases.

• applying multipliers and offsets to timebase (or x value) and y values.

Water Network

The water network class, ONWaterNetwork, implements water specific behaviour over and

above that of the ONNetwork. Nine additional referential lists and their associated

management functions are introduced to maintain collections of pipes, generic nodes,

demand nodes, valves, pumps, pumping stations, meters, reservoirs and curve data.

A.5 Network analysis

A.5.1 Connectivity

Conventional relational database management systems (RDBMS) do not allow for the easy

implementation of databases representing connective structures like networks. Ironically, the

outmoded hierarchical database architecture was much better suited to such applications.

Riggs (1994) relates the variety of information that needs to be stored in a conventional

RDBMS and GIS to model networks on a basic level. By considering the application of

some object-oriented techniques, it is possible, however, to implement rules and constraints

that are used to define network connectivity in a much more natural fashion.

Appendix A: Network Infrastructure Modelling: OpenNet

260 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Meaningful analyses of the network may be achieved with very limited GIS analysis

tools. As found previously most commercially available GIS applications have little or no

connectivity functionality, let alone network analysis capabilities. Tsakiris & Salahoris (1993)

describe a possible vector based representation of a water distribution network. The

implementation they suggest is quite simple and does not address connectivity issues -

although the authors do note that this is an important concern in any GIS that aspires to be

anything other than a straightforward inventory of the infrastructure components.

The venerable Arc/INFO GIS (ESRI, 1999) stands apart from other PC based GIS

implementations by offering a connectivity analysis module, which can be used to good

effect to develop the data provided by RDBMS to implement rudimentary network analysis

functionality. Examples of these are the ‘ROUTE’ and ‘TRACE’ procedures from the

standard ‘NETWORK’ module, used by Taher & Labadie (1996) to determine least-cost

routing and resource allocation. The background to these networking implementations is

covered in Lupien et al. (1987) and Djokic & Maidment (1993). The former, working for the

Environmental Systems Research Institute - Arc/INFO’s publishers - perhaps

unsurprisingly, espouse the inclusion of these facilities in GIS systems. They do not enter

into a detailed description of the techniques than can be used although a common

implemented facility is Dijkstra’s algorithm (1959), which is concerned with shortest-path

routes with respect to some concept of ‘cost’. The NETWORK implementation of

Arc/INFO is based on this work and it has been implemented in the abstract network model

allowing the use of GIS applications without inherent connectivity functionality such as the

low-end MapInfo package.

A.5.2 Network Traversal

The concordant connectivity information maintained within OpenNet’s node and link

structure allows for the development of powerful algorithms for analysing the network.

A.5.2.1 Basic functions

The OpenNet Network class implements a number of core routines to facilitate traversing

the network. Most of the routines are of a recursive nature – such routines operate by calling

themselves with new parameters until an end condition is satisfied. The most common

illustration of a recursive routine is used to calculate factorials. The non-recursive form of

the function is:

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 261

int factorial(int x)
{
 int Result= 1;
 for (i=2; i<=x; i++)
 Result= Result * i;
 return Result;
}

int factorial(int x)
{
 if (x= 0)
 return 1;
 else
 return x * factorial(x-1);
}

One of the considerations of implementing recursive functions is that of stack usage.

Every time a procedure, function or object method is called its return address and any

parameters are pushed onto the application’s memory stack. With large-scale recursion, the

depth of these stack calls can become critical as a limited amount of memory is given over to

the application stack. Under modern 32 and 64-bit operating systems this limitation is largely

irrelevant but remains important under more dated operating systems where a 64 kilobyte

limitation on stack memory size was common.

The most important of the basic tree tracing functions is recurseSubtree. The operation

of this function is illustrated in Figure A-7 and Figure A-8. Given a starting node, startNode,

and an initial link to traverse, startLink, the function performs the following algorithm:

procedure recurseSubtree(startNode,startLink)
begin
 if startLink is not Selected then
 begin
 set startLink Selected to true
 set endNode to Node at other end of startLink from startNode
 for each link connected to endNode
 recurseSubtree(endNode,link)
 end
end

Two further base functions, isSubtreeBranch and isSubtreeLoop determine whether a part

of a network is purely dendritic (tree-like) or whether it contains loops. This determination is

made by starting a recursion from a given point on the network down a specific link – if the

sub-tree is purely dendritic then the recursion will never encounter a link that it has visited

before – otherwise the sub-tree contains one or more loops.

Appendix A: Network Infrastructure Modelling: OpenNet

262 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure A-7: Recursive network traversal

a
b

c

d e

f

g

h

i
j

k

a
b

c

d e

f

g

h

i
j

k

a
b

c

d e

f

g

h

i
j

k

a
b

c

d e

f

g

h

i
j

k

a
b

c

d e

f

g

h

i
j

k

a
b

c

d e

f

g

h

i
j

k

a
b

c

d e

f

g

h

i
j

k

a
b

c

d e

f

g

h

i
j

k

1

10
8

7

6
5

4
3

2

9

1

10

8

7

6
5

4
3

2

9

1

10
8

7

6
5

4
3

2

9

1

10
8

7

6
5

4
3

2

9

1

10
8

7

6
5

4
3

2

9

1

10
8

7

6
5

4
3

2

9

1

10
8

7

6
5

4
3

2

9

1

10
8

7

6
5

4
3

2

9

1

2

3

4

5

6

7

8

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 263

Figure A-8: Recursive network traversal (continued)

A.5.2.2 Network Simplification

To assist in the automated construction of efficient genomes for evolution algorithms a

number of network simplification routines have also been developed. These are particularly

relevant to network calibration applications. These routines include the grouping of pipes to

user-specified criteria. These groupings can be used to reduce the length of the genome and

thus increase algorithm performance.

Figure A-9: Network schematic simplification with OpenNet

a
b

c

d e

f

g

h

i
j

k

a
b

c

d e

f

g

h

i
j

k

a
b

c

d e

f

g

h

i
j

k

a
b

c

d e

f

g

h

i
j

k

1

10
8

7

6
5

4
3

2

9

1

10
8

7

6
5

4
3

2

9

1

10
8

7

6
5

4
3

2

9

1

10
8

7

6
5

4
3

2

9

9

10

11

12

Appendix A: Network Infrastructure Modelling: OpenNet

264 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

The automated pruning of selected loops or dendritic structures that play no part in a

calibrated solution realises a similar objective. It should be noted that these routines do not

modify the components used in the hydraulic solution, merely the information on which the

evolution algorithm operates. Figure A-9 illustrates one of these applications in which

unnecessary intermediate nodes have been removed from the hydraulic network model after

translating it from a GIS-sourced representation.

A.6 Hydraulic Evaluation

Foremost amongst the aims of modelling the infrastructure of a hydraulic network is the

evaluation of its hydraulic performance. This involves determining the pressure at each node

of the network and the flows in the intermediate pipes – often for multiple time steps

(Extended Period Simulation – EPS). The specialised OpenNet hydraulic classes establish a

connection to the EPANET2 hydraulic solver (Rossman, 2000) for the purposes of

providing hydraulic solutions. The interface to the solver is abstracted so that alternative

solvers may be substituted if available. Direct control over the hydraulic solver is offered

through the abstraction, including the ability to pause after intermediate time-steps to retrieve

results from the network – crucial when undertaking an optimization that operates in EPS

mode.

A.6.1 Pressure Driven Demand

Predominantly, Demand-Driven hydraulic simulators such as EPANET used in optimization

processes are configured to deliver water even when there is insufficient pressure to do so –

Demand-Driven network solver (as in EPANET – Rossman, 2000). In the analysis of

structurally inadequate systems, however, studies (Germanopoulos, 1985; Fujiwara & Li,

1998; Ang & Jowitt, 2006), have highlighted limitations related to the use of such demand-

driven solvers.

A PDD extension for EPANET has been developed (Morley & Tricarico, 2008) in

order to be able to determine more accurately the non-revenue water unsupplied in a

pressure-deficient network in order to better estimate a network’s Economic Level of

Reliability (Tricarico et al., 2006). A logical extension of that work required that the PDD

simulator should also be able to operate in an EPS mode. The EPANETpdd extension has

been derived from two existing modifications to the core EPANET library: OOTEN

(Object Oriented Toolkit for EPANET) (van Zyl et al., 2003), provided by the University of

Johannesburg and a revised PDD version of EPANET obtained from its author, Lewis

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 265

Rossman. The functionality of the EPANETpdd code has been further extended to

incorporate Extended Period Simulation – something that neither the OOTEN nor revised

EPANET algorithms facilitated. This is accommodated through the dynamic computation

of demand ahead of each timestep in OpenNet. The nodal demand is then converted into an

appropriate emitter coefficient and applied to the node in EPANET accordingly and

transparently.

A.7 Extensions

A.7.1 Tracing

A simple hydraulic-flow tracing algorithm is integrated into OpenNet. This module allows

an individual node to determine the proportion of source waters that it receives via other

points on the network. This functionality has been used to determine the probability of

upstream contaminants reaching distal nodes.

A.7.2 Generalized Attributes

OpenNet implements a scheme of generalized attributes that can be used for representing

user-defined data within the network.

Figure A-10: UML Class Hierarchy for generalized attributes

Whilst other modules also include this functionality, it is put to most use in the

network modelling component as it can be used to store data obtained from other data

+AddAttribute() : bool
+DeleteAttribute() : bool
+FindAttribute() : Attribute

-Attributes[] : Attribute
Attribute List

+GetValueString() : string
+IsValid() : bool
+WriteXML() : bool
+ReadXML() : bool

+Name : string
Attribute

+IsValid() : bool

+Value : Element
#Default : Element = null

Element Attribute

+Bounded upper : bool
+Bounded lower : bool

Numeric Attribute

+Value : string
#Default : string = ""

String Attribute

+IsValid() : bool
+GetValueString() : string

+Mask : string
String Mask Attribute

+IsValid() : bool
+GetValueString() : string

Date Attribute

+GetValueString() : string
+IsValid() : bool
+WriteXML() : bool
+ReadXML() : bool

+Prev : float
+UpperBound : float
+LowerBound : float
#Default : float = 0.0
-Precision : int = 0

Floating Point Attribute

+GetValueString() : string
+IsValid() : bool

+Value : int
+Upper bound : int
+Lower bound : int
#Default : int = 0

Integer Attribute

+DeleteAttribute() : bool

Attribute Store

+Value[] : byte
Binary Attribute

-Contains

0..10..*

-References

0..1

0..*

Compound Attribute

Ennumerated Attribute

Custom Type Register

-End11

*

-End12 *

Record Enumerated Attribute
Description

-Is described by

0..*

-Describes 1

+AddAttribute() : bool
+DeleteAttribute() : bool
+FindAttribute() : Attribute

-Attributes[] : Attribute
Attribute List

+AddAttribute() : bool
+DeleteAttribute() : bool
+FindAttribute() : Attribute

-Attributes[] : Attribute
Attribute List

+GetValueString() : string
+IsValid() : bool
+WriteXML() : bool
+ReadXML() : bool

+Name : string
Attribute

+IsValid() : bool

+Value : Element
#Default : Element = null

Element Attribute

+Bounded upper : bool
+Bounded lower : bool

Numeric Attribute

+Value : string
#Default : string = ""

String Attribute

+IsValid() : bool
+GetValueString() : string

+Mask : string
String Mask Attribute

+IsValid() : bool
+GetValueString() : string

Date Attribute

+GetValueString() : string
+IsValid() : bool
+WriteXML() : bool
+ReadXML() : bool

+Prev : float
+UpperBound : float
+LowerBound : float
#Default : float = 0.0
-Precision : int = 0

Floating Point Attribute

+GetValueString() : string
+IsValid() : bool

+Value : int
+Upper bound : int
+Lower bound : int
#Default : int = 0

Integer Attribute

+DeleteAttribute() : bool

Attribute Store

+DeleteAttribute() : bool

Attribute Store

+Value[] : byte
Binary Attribute

-Contains

0..10..*

-References

0..1

0..*

Compound Attribute

Ennumerated Attribute

Custom Type Register

-End11

*

-End12 *

Record Enumerated Attribute
Description

-Is described by

0..*

-Describes 1

Appendix A: Network Infrastructure Modelling: OpenNet

266 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

sources, such as GIS tables directly with the network elements that they refer to. For

example, pipe-burst data obtained in a spatial form from a GIS dataset may be directly

attached to the pipes in the hydraulic model that they relate to – allowing the development of

analysis techniques that operate on the hydraulic model that are then able to consider this

data. Figure A-10 illustrates the hierarchy of customized attributes that may be attached to

any network element.

A.8 Network model translation

Hydraulic modelling software used within the water industry is dominated by the products of

a small number of commercial vendors. Writing software to directly interface with these

applications is often either difficult - for example no publicly available interface specification

– or impossible – where there is no interface at all. Without the intervention of the

commercial entities developing the software, it is therefore necessary to operate on the raw

data that can be exported from these applications. Most if not all of the software in this

market allows the topology and operating characteristics of the network to be exported in

some form, often an ASCII text file. A number of the packages, SynerGee (Advantica, 2003)

and InfoWorks (Wallingford Software, 2005) natively store their data in the form of an

Access database that can be operated upon by third-party applications using a standard

ODBC driver.

A.8.1 Translation suite

 To promote the ease of using disparate hydraulic modelling systems with third party

applications developed with the optimization methodologies presented in this thesis, a suite

of translator utilities has been developed which permit the exchange of network-model

information between a variety of third-party hydraulic modelling software using OpenNet as

an intermediate, representation-independent format for describing the network. In addition

to the translation suite, OpenNet also has the ability to store and load models that it has

imported in its own native XML representation – thus once an imported model has been

validated satisfactorily, the resulting model can be stored in the native XML format for reuse.

Figure A-11 illustrates the import and export translators that are available to OpenNet at the

time of writing:

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 267

Figure A-11: Translation options available through OpenNet

EPANET (Rossman, 2000) has emerged as a de-facto standard amongst the research

community – partly because of its public domain licensing but also because the source-code

is freely available and can be easily modified to extend the functionality of the software. It is

perhaps unsurprising, then, that many of the conventions used within EPANET are reflected

in the underlying structure of OpenNet. The widespread use of EPANET in research is also

the reason for this being one of the few packages supported with both input and output

translators.

A.8.2 Translator structure

OpenNet provides and abstracted translator class ONTranslator which provides a basic

framework for implementing translators – including robust file-handling for ASCII files.

Two subsidiary classes ONTranslatorImport and ONTranslatorExport are provided which

handle, respectively, loading a network whilst ensuring a concordant OpenNet representation

and saving a network. The individual translator implementations then need only provide

functions to import/export the individual elements from/to the file.

A.8.3 User interface support

Owing to the fact that there is a degree of uncertainty involved in the reliability of the

translation process, the OpenNet library provides interactive feedback on the process of the

translation for the end-user. This dialog, an example of which is shown in Figure A-12, alerts

the user to any incompatibilities or uncertainties, which may have been encountered in the

translation process for the purposes of manually fixing-up the model at a later stage.

 SynerGee

WESNET

EPANET

LICWater

InfoWorks

Aquis

SynerGee

EPANET

StruMap

MapInfo

OpenNet

XML

Appendix A: Network Infrastructure Modelling: OpenNet

268 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure A-12: Translator progress window showing a SynerGEE model being imported into OpenNet.

A.8.4 Difficulties

Table A-1 illustrates one of the major issues that has to be accommodated in handling

translations from one hydraulic modelling package to another: the varying representations of

basic infrastructure elements.

Element OpenNet SynerGee WesNet StruMap EPANET Aquis
Valve Link Link Node Node Link Link
Pump Link Link Link Node Link Link

Reservoir Node Link Node Node Node Node
Pumping Sta. Link n/a Link n/a n/a n/a

Meter Link Link Node Node Link n/a

Table A-1: Differences in network element representation between common hydraulic modelling packages

Not only do the different modelling packages have different representations of

common elements (for example representing a valve as a link element rather than a node) but

also in the specification of the more complex network devices. For example, SynerGee (née

Stoner) offers an unrivalled number of ways to specify the performance of a pump. The

majority of these specifications are unavailable in any of the other packages – making such a

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 269

translation dependent on the end-user applying expert judgement to the translated model to

obtain an appropriate translation.

Accounting for differing node/link representations is rather more straightforward

with the base ONTranslator class providing functions to generate automatically dummy nodes

and links, as appropriate, to maintain the correct representation and to ensure that a

consistent hydraulic performance is retained. Information regarding these dummy nodes is

nominally stored in any exported models so that, if encountered again by the OpenNet

importer, the dummy elements can be safely removed from the model. Otherwise, repeated

use of the OpenNet translator system moving from one modelling scheme to another would

lead to ever increasingly complex models.

Other problematic elements include “remote controlled valves” where the valve

setting is controlled by the pressure state at a node elsewhere in the network. Whilst all

modelling packages provide PRV (Pressure Reducing Valves) and PSV (Pressure Sustaining

Valves) which operate on a point immediately downstream of the valve, few of them allow

this control point to be elsewhere in the network.

A.9 Linking hydraulic models to GIS applications

Atkinson et al. (1998) illustrate some of the advantages of a close-coupled integration

between a GIS and a genetic algorithm solver - including the speed of processing and a

common user interface. The GAnet user interface of Morley et al. (2001) takes this

integration a step further and integrates the interface of the GIS application into its own.

Initially, this was designed to integrate the StruMap GIS application but in addition, the

interface can also act as an OLE container, or client, for OLE automation servers. One such

server is the GIS application, MapInfo (MapInfo Corporation, 1998) which can also be

instantiated as a COM object. The modular nature of the design allows it to be

comprehensively extended without the need for recompilation – making it ideal for

distributing as an end-user product. Functionality can be extended using “plug-ins”, as can

the definitions of the genetic algorithms themselves.

The algorithm control window is extensible and can be modified by any organism to

show application specific information – again without recompilation. The simplest

mechanism for linking GIS information into a GA application is by reading the data in

through some common file format. It is often desirable, however, for the geographic

information to remain in the GIS in order to make geographic queries against it. Both of the

Appendix A: Network Infrastructure Modelling: OpenNet

270 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

approaches taken by OpenNet and GAnet allow this, the latter effectively acting as a plug-in

to the StruMap GIS. Integrating the GIS as a COM object provides a unique framework

with easy and complete manipulation of the data in the GIS coupled with the complete

integration and customization of the user interface. Through the use of Microsoft’s COM

technology it is possible to embed application objects within other applications. Both

MapInfo and Arc/INFO have COM or OLE2 variants that can be used by third-party

developers. The use of both these technologies affords a hitherto unavailable level of

integration for applications. Future development of Distributed COM objects or CORBA

communications raises the potential for offloading the GIS querying functionality to a

dedicated server to improve performance, along with the possibility of using more powerful

workstations to perform the hydraulic network solutions.

Water companies often have two sources of data with respect to their pipeline

networks. As well as hydraulic models of their networks, they will commonly use a GIS-

based system for asset management purposes.

The hydraulic model is often an idealized, simplified version of the all-mains model

contained within the asset management system. Simplification of the network model can

improve the performance of hydraulic evaluation through having fewer pipes and nodes to

evaluate. For example, one simplification commonly performed is the aggregation of

contiguous pipe assets with identical characteristics such as diameter and age and the sharing

of intermediate nodal demands between the end nodes of the aggregated pipe.

Given that hydraulic models rarely contain data other than that directly associated

with the hydraulic performance of the network it is often necessary in optimization

applications to have access to other data elements such as pipe age, material, burst history etc.

This information will usually be contained within the asset management system. Relating

these two sources of data is often time-consuming and difficult – not least because individual

water companies maintain their own policies with regard to the form that the data is stored

and, indeed, what data is retained.

Owing to the fact that the development of hydraulic models is often a completely

segregated process from the maintenance of the asset management system, it is common for

there to be no direct means for associating records from the asset management system with

their counterparts in the hydraulic model. Asset management records should have a unique

identifier for the individual pipes across an entire Water Supply Zone. Elements in a

hydraulic model are much less likely to maintain unique identifiers even if the model has been

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 271

derived directly from the asset management data owing to the simplification processes

employed in generating the hydraulic model.

As part of a research contract with a UK Water Company, the candidate devised a

system for attempting to produce a concordant data set, which could be used by analytical

processes including optimization applications. Identifying co-located geographic features in

the two datasets was the principal technique used in this analysis – allowing for the direct

matching of pipes from one model to another. Pipes that remain unmatched after a

geographic analysis are then permuted in aggregations with their neighbours, pipe grouping,

and then resubmitted to the matching process.

A.9.1 Pipe matching

In performing the pipe matching, it is assumed that both networks contain some form of

geographic referencing for the data elements. The matching process operates as follows:

A.9.1.1 Import Hydraulic Network

As a preliminary step, the hydraulic model is loaded into the OpenNet generic network

modelling through one of a number of translators described earlier in this appendix. The

translated network is output to a MapInfo-compatible dataset.

Early test networks imported using this procedure highlighted a number of issues

with the geographic information associated with the source data. In some cases, the

coordinate system applied to the model appeared to be entirely arbitrary: geographic

information is not necessary for the successful operation of a hydraulic model where only the

elevations of network nodes and lengths of pipes need to be accurately described. Other

networks illustrated significant displacements or scaling issues, which necessitated

modifications to the OpenNet import translators to apply user-defined offsets and scaling

factors. Other hydraulic models required rotational corrections as they had been recorded in

either magnetic north or true north orientations whereas the Asset Management System used

OSGB (Ordnance Survey Great Britain) grid north. One network, which had been

composited from two separate District Metered Areas (DMAs) managed to contain both

orientation errors in the different sections of the network.

A.9.1.2 Import Asset Management Database

The asset management GIS can be translated from an ArcInfo-compatible dataset or opened

natively from a MapInfo compatible or SpatialWare-wrapped dataset. Owing to the size of

Appendix A: Network Infrastructure Modelling: OpenNet

272 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

such databases, opening the dataset natively is much preferred as the dataset can remain on a

remote server and utilise the remote querying functionality of the server to accelerate

performance. However, due to the remote location of the Water Company involved in this

research and the security concerns regarding access to their asset management system, a full

copy of the database was provided to the candidate on DVD-ROM.

Once access to the dataset has been established, if a geographic representation of the

network is not already available then a new geographic dataset is created in a MapInfo

compatible format.

A.9.1.3 ID Matching

Although much of the network model stock held by the Water Company predates their asset

management system, some more recent models have been generated directly from this data.

Many of the elements in these models are transferred unchanged – although some are

aggregated during the transfer process. The unchanged elements retain their unique identifier

from the AMS in the hydraulic model and, consequently, as a first step in the matching

process, the software determines whether any elements in the hydraulic network match the

unique identifiers in the AMS. Due to a constraint in the length of identifier that the

hydraulic modelling software used by the Water Company can handle, the 11-digit numeric

identifiers used in the AMS were encoded into base 24 in the network model in order to

allow them to fit the capacity allotted of 8 ASCII characters.

A.9.1.4 Geographic matching

The geographic matching technique is initially applied to the link elements of a network as

they define the unique connectivity and geographic arrangement of the network.

Each link in the hydraulic network is analyzed to determine how well it fits a number

of criteria. Firstly, a short-list of candidate links from the AMS is drawn-up by identifying all

links in the AMS that fall within a user-defined distance (a “buffer”) of the link in question.

Then four criteria are analyzed for each of the nodes located within the buffer.

• End node location. A geographic “buffer” is erected around each end of the link

(with a user-defined diameter). Each link in the shortlist, which falls into one – or

preferably both – of the buffer areas, is scored according to how closely the end

points match. Experiments have determined that an upper tolerance of 20 metres

for the link endpoints is sufficient to accommodate most hydraulic models that have

not been derived from the Asset Management System.

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 273

• Link lengths. The length of the link is compared against each of those in the

shortlist. An upper tolerance limit of 20% has been found to work well. The end-

user may define a cut-off limit for the pipe length below which this analysis is not

performed. This is to prevent very short pipes of circa 15 metres or less being

penalised excessively.

• Pipe centroids. The centroids of the curve described by the link elements are

compared. This can be considered to being similar to the concept of “a centre of

gravity” for a three dimensional form. An upper tolerance of 30 metres has been

found to be most appropriate for this option. This technique appears to be more

accurate at correctly identifying links that share the same start/end nodes (common

in loops) than analyzing the locations of intermediate waypoints along the link.

• Pipe trends. Compares the angles on the ground of the intermediate elements of a

link – for those defined with one or more intermediate waypoints. A upper tolerance

of 35% is considered a good delimiter for correctly identifying pipes.

A confidence score is generated for each of the short-listed elements analyzed,

according to how well it meets each of the geographic matching criteria. The shortlisted pipe

with the highest overall score is associated with that in the hydraulic model. The weightings

for each criterion can be modified by the end-user to suit the type of network under

consideration. For example, for large-scale rural networks, the end node locations were

found to be a less important discriminator than the overall link length – the reverse of the

situation seen in the urban environment with a higher density of nodes.

A.9.1.5 Pipe grouping

Following the geographic matching process outlined above, the algorithm then seeks to

improve the solution obtained by aggregating adjacent pipes in the AMS shortlist with similar

characteristics and repeating the geographic matching procedure. Aggregates that score

higher than previous results will be matched instead. An example of an aggregated, matched

pipe-group can be seen highlighted in Figure A-13.

A.9.1.6 Interactive matching

The final stage of the pipe matching process is an optional, interactive matching arrangement

where the end-user is presented with the two models in side-by-side windows and can fine-

tune the matches that the automated processes have determined as well as associating any

remaining unmatched links.

Appendix A: Network Infrastructure Modelling: OpenNet

274 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Figure A-13: Pipe matching application

Figure A-13 illustrates the interactive matching mode available to the algorithm. The

right hand map pane represents the data extracted from the Asset Management System. That

on the left is from the imported hydraulic model. As can be seen, there is a good

concordance between the topological arrangement of the pipes in this model as this is an

example where the hydraulic model was originally derived directly from the AMS dataset.

However, there are, unusually, a number of additional nodes in the hydraulic model that have

been inserted for the purposes of attaching demands. Often, the simplification is the reverse

with more nodes being present in the AMS dataset that are then removed as part of a

simplification process. Highlighted is a single pipe from the AMS data, which corresponds to

four separate pipe elements in the hydraulic model. The modeless dialog seen at the bottom

of Figure A-13 allows the user to locate any unmatched pipes and to select interactively their

analogues from the AMS dataset. This interface display can also be configured to show a

thematic map that colours each pipe in accordance with the confidence level ascribed to the

match by the automated matching process. This allows the end user to identify quickly any

pipes that may have been incorrectly matched by the process.

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 275

When the operator is confident in the quality of the matched models, the results can

be exported back to the Asset Management System to preserve the link between the two

datasets.

A.9.1.7 Results

The accuracy of the pipe-matching software is generally very good and nominally exceeds

95% for GIS derived datasets. The principal problems with this algorithm arise in the

attachment of service reservoirs to the network under consideration. Network modellers use

non-existent pipes to connect reservoirs to the network as each DMA is usually fed from

another DMA or through a large number of pipes. This simplification means that the

algorithm cannot match these pipes (since they have no basis in reality) and these anomalies

constitute most of the 5% of pipes in a network that cannot be automatically matched.

Once the pipe matching has been completed, it is then possible to use the association

found with the AMS to extract pertinent data that can be used in an application as well as

providing an accurate geo-referencing which can be used for, amongst other things, for

associating leakage complaints etc. directly with the hydraulic model.

For a network comprising around 2,000 pipes, this process is completed in around

15-20 seconds – although this can vary significantly depending on the complexity of the

network and the number of potential aggregates encountered by the pipe-grouping algorithm.

Appendix A: Network Infrastructure Modelling: OpenNet

276 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

A.10 Representing networks using XML

The eXtensible Markup Language (XML) is a subset of the Standard Generalized Markup

Language (SGML - ISO, 1986) and has been designed primarily for data description and

dissemination over the Internet. Unlike its close relative, HTML, XML allows the use of

custom tags to extend its feature-set.

The structure of XML documents is defined through the use of a schema which may

reside either in the document itself or in an external file – commonly referenced over the

Internet. This Document Type Definition (DTD) is the key to the extensibility of XML.

XML documents are normally manipulated using a suite of parser routines, which combine

the information present in the DTD and the XML document itself. Consequently, an

application that uses an XML document is abstracted from the actual contents and instead

communicates with the parser as a broker, which performs such functions as filling in default

values where they are not specified in the document.

XML definitions have three main components:

• Notations, which are used to describe application-specific, non-XML data (not used

in OpenNet).

• Elements which represent individual data elements in the document.

• Entities which can be used as shorthand for XML markup in any part of a

document. The following sections describe the basic structure of an XML document

and its related DTD in relation to a network representation.

A.10.1 Elements

A simple example of an XML element is the basic co-ordinate class. A co-ordinate in

OpenNet is defined as having an X and Y value along with an optional Z value representing

the elevation of the point. The DTD definition of the co-ordinate element is as follows:

<!ELEMENT coordinate EMPTY>
 <!ATTLIST coordinate
 x CDATA #REQUIRED
 y CDATA #REQUIRED
 z CDATA “undefined”
 >

The first line defines the co-ordinate element as having no children using the

EMPTY directive. This is followed by a list of attributes that this element can have. The

most basic type of attribute is Character Data, CDATA, which is a textual data member.

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 277

The XML schema makes no attempt to enforce data type conventions so CDATA is used

for both numeric and textual data, leaving the application developer to ensure that the correct

type of data is present in the attribute. The first two attributes, x and y, are declared using the

#REQUIRED directive that indicates that these attributes must be specified with any co-

ordinate element that is created. The z attribute is not mandatory and the parser will return

the text “undefined” if an alternative value is not specified in the XML document.

Some examples of valid declarations of co-ordinate elements in an XML document

are as follows:

<coordinate x=”5” y=”7” z=”22.5”/>
<coordinate x=”5” y=”7”/>
<coordinate x=”5” y=”7”></coordinate>

Elements without children can be terminated with the “/>” tag closure without

necessitating the use of a formal closing tag as seen in the third example.

The flexibility of the Element specification scheme becomes clear when children are

considered. Every element can contain child elements for which it is possible to specify

whether “zero or one”, “one”, “one or more” or “zero, one or more” element definitions are

allowed. In addition, mutually exclusive children can be defined The following example

shows how a line element might be formed in the DTD:

<!ELEMENT line (coordinate,coordinate*,coordinate)>

This definition requires the presence of a co-ordinate for the start and end-points of

the line along with “zero, one or more” interior co-ordinates – identified by the “*” suffix.

Valid examples of lines in an XML document may look like:

<line>
 <coordinate x="744" y="1384" z="11"/>
 <coordinate x="756" y="1322" z="0"/>
</line>

<line>
 <coordinate x="744" y="1384" z="11"/>
 <coordinate x="747" y="1360" z="5"/>
 <coordinate x="756" y="1322" z="0"/>
</line>

The construction of such compound elements allows the representation of complex

data structures complete with a measure of data validation. An XML document containing a

line element, as outlined above, with only one co-ordinate will be rejected as invalid by the

XML parser.

Appendix A: Network Infrastructure Modelling: OpenNet

278 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Further data-set validation is achieved through the use of ID and IDREF attributes.

These attributes allow relationships between elements to be defined and again, XML

documents containing unresolved relationships will be rejected by the parser. This approach

is illustrated by the relationship between node and link elements in which each link must

specify a valid “from node” and “to node.” The basic structure of a node is thus:

<!ELEMENT node (coordinate)>
 <!ATTLIST node
 id ID #REQUIRED
 >

Using an ID attribute and making its presence mandatory requires that every node

specified in an OpenNet representation has a unique identifier. In practice, this attribute is

included in every OpenNet element to allow for connectivity relationships to be defined

between different types of element. The associated link element is defined as follows:

<!ELEMENT link (coordinate*)>
 <!ATTLIST link
 from_node IDREF #REQUIRED
 to_node IDREF #REQUIRED
 >

from_node and to_node are defined as IDREF – references to the ID attributes of other

elements and are mandatory. The link element also allows any number of co-ordinate

children to be specified. These co-ordinates represent the interior points of the line

associated with the link (if any), since the start and end points of the line may be obtained

from the co-ordinate attached to the from and to nodes specified.

A.10.2 Entities

The object-oriented nature of the underlying OpenNet class library means that large numbers

of properties are shared, through inheritance, by different object classes. Fortunately, the use

of XML entities facilitates the inheritance of attributes and child data-structures between

elements.

At their simplest, entities are analogous to expansion macros where the entity

keyword is replaced by the entity definition wherever it appears in the Document Type

Definition. The most straightforward use of entities is where they are simple constructions,

used in many places, for instance to implement a friction regime attribute:

<!ENTITY % on_true_false “(0|false|no|1|true|yes)”>

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 279

<!ENTITY % on_friction "(colebrook-white|
 hazen-williams|darcy-weisbach)">

<!ELEMENT pipe (link)>
 <!ATTLIST pipe
 friction %on_friction; “hazen-williams”
 open %on_true_false;
 >

<!ELEMENT valve (link)>
 <!ATTLIST valve
 friction %on_friction; “hazen-williams”
 >

In this example, both the simplified pipe and valve elements share a common friction

attribute, which is expanded inline. This representation is not particularly efficient and does

not implement the inherited properties in a meaningful fashion. Instead, entities can be

nested. The following example, from node elements, shows the different attributes that are

added in each level of the class hierarchy.

<!ENTITY % on_common_attributes "
 id ID #REQUIRED
 name CDATA #IMPLIED
">

<!ENTITY % on_node_common_attributes " %on_common_attributes;
 area_id IDREF ""
">

<!ENTITY % on_waternode_common_attributes "
 %on_node_common_attributes;
 calibration %on_true_false; "false" calibration_curve
IDREF ""
">

Each of the entities illustrated above implicitly includes the attributes from the level

above. The “"” in the above example is used to represent a double-quote character as

these cannot be placed directly into entities. Using this mechanism, it is possible to emulate

the inheriting characteristics of the object-oriented model. Each element can subscribe to the

appropriate inherited attributes in this fashion and add any attributes specific to its

requirements thus:

<!ELEMENT node (coordinate)>
 <!ATTLIST node
 %on_waternode_common_attributes;
 highest_elevation CDATA ""
 dummy %on_true_false; "false"
 >

Appendix A: Network Infrastructure Modelling: OpenNet

280 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Consequently, each node element implicitly includes a mandatory ID attribute, along

with the other common attributes included above. In practice, element children are also

inherited in a similar fashion:

<!ELEMENT node (%on_waternode_common_children;
 coordinate)>

It can be seen from the examples that the types of representation offered by XML

documents map appropriately onto the needs of object-oriented databases and class

hierarchies. The same cannot be said for the relationship between XML and conventional

relational databases which struggle to deal with the feature-rich and variant content that can

be implemented in XML documents. The full schema for representing OpenNet networks

in XML may be found in Appendix B along with an example network file.

Appendix A: Network Infrastructure Modelling: OpenNet

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 281

Appendix B: OpenNet XML Representation

282 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Appendix B OpenNet XML Representation

B.1 XML Schema

<!--###-->
<!-- Core entities -->
<!--###-->

<!--~~~-->
<!-- Unit declarations -->
<!--~~~-->

<!ENTITY % on_friction "(colebrook-white|hazen-williams|darcy-
weisbach)">
<!ENTITY % on_area_unit "(square-metres|square-feet)">
<!ENTITY % on_length_unit "(millimetres|metres|inches|feet)">
<!ENTITY % on_true_false "(true|false|0|1)">

<!--~~~-->
<!-- Default declarations -->
<!--~~~-->

<!ENTITY % on_default_length_unit "metres">
<!ENTITY % on_default_elevation_unit "metres">
<!ENTITY % on_default_diameter_unit "millimetres">

<!--~~~-->
<!-- Common child declarations -->
<!--~~~-->

<!ENTITY % on_common_children
 "description?"
>

<!ENTITY % on_node_common_children
 "%on_common_children;,
 coordinate"
>

<!ENTITY % on_waternode_common_children
 "%on_node_common_children;,
 calibration_curve?"
>

<!ENTITY % on_link_common_children
 "%on_common_children;,
 link"
>

<!ENTITY % on_waterlink_common_children
 "%on_link_common_children;,
 calibration_curve?"
>

Appendix B: OpenNet XML Representation

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 283

<!ENTITY % on_watervalve_common_children
 "%on_waterlink_common_children;"
>

<!ENTITY % on_curve_common_children
 "%on_common_children;"
>

<!ENTITY % on_datacurve_common_children
 "%on_curve_common_children;,datastep+"
>

<!ENTITY % on_timecurve_common_children
 "%on_curve_common_children;,timestep+"
>

<!--~~~-->
<!-- Common attribute declarations -->
<!--~~~-->

<!ENTITY % on_common_attributes "
 id ID #REQUIRED
 name CDATA #IMPLIED
">

<!ENTITY % on_node_common_attributes "
 %on_common_attributes;
">

<!ENTITY % on_waternode_common_attributes "
 %on_node_common_attributes;
 area_id IDREF ""
 calibration %on_true_false; "false"
 calibration_curve IDREF ""
">

<!ENTITY % on_link_common_attributes "
 %on_common_attributes;
 length CDATA "0"
 length_unit %on_length_unit; "%on_default_length_unit;"
">

<!ENTITY % on_waterlink_common_attributes "
 %on_link_common_attributes;
 area_id IDREF ""
 calibration %on_true_false; "false"
 calibration_curve IDREF ""
 diameter CDATA #REQUIRED
 diameter_unit %on_length_unit;
"%on_default_diameter_unit;"
 friction %on_friction; "hazen-williams"
 friction_factor CDATA "0"
 minor_loss CDATA "0"
">

<!ENTITY % on_watervalve_common_attributes "
 %on_waterlink_common_attributes;
">

Appendix B: OpenNet XML Representation

284 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

<!ENTITY % on_curve_common_attributes "
 %on_common_attributes;
 ybase CDATA "0"
 ybias CDATA "1"
">

<!ENTITY % on_timecurve_common_attributes "
 %on_curve_common_attributes;
 timebase CDATA "0"
 timebias CDATA "1"
">

<!ENTITY % on_datacurve_common_attributes "
 %on_curve_common_attributes;
 xbase CDATA "0"
 xbias CDATA "1"
">

<!--###-->
<!-- Core elements -->
<!--###-->

<!ELEMENT description (#PCDATA)>

<!ELEMENT coordinate EMPTY>
 <!ATTLIST coordinate
 x CDATA #REQUIRED
 y CDATA #REQUIRED
 z CDATA #REQUIRED
 xyunit %on_length_unit; "%on_default_length_unit;"
 zunit %on_length_unit; "%on_default_elevation_unit;"
 >

<!ELEMENT line (coordinate,coordinate*,coordinate)>

<!ELEMENT link (coordinate*,line?)>
 <!ATTLIST link
 from_node IDREF #REQUIRED
 to_node IDREF #REQUIRED
 >

<!--###-->
<!-- Node elements -->
<!--###-->

<!-- Node group element -->
<!ELEMENT nodes (node|reservoir|fixed-head)*>

<!--~~~-->
<!-- Calibration -->
<!--~~~-->

<!ELEMENT calibration_curve (%on_timecurve_common_children;)>
 <!ATTLIST calibration_curve %on_timecurve_common_attributes;>

<!--~~~-->

Appendix B: OpenNet XML Representation

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 285

<!-- Generic and demand nodes -->
<!--~~~-->

<!ELEMENT node (%on_waternode_common_children;,demand*)>
 <!ATTLIST node
 %on_waternode_common_attributes;
 highest_elevation CDATA ""
 dummy %on_true_false; "false"
 >

<!ELEMENT demand_curve (%on_timecurve_common_children;)>
 <!ATTLIST demand_curve %on_timecurve_common_attributes;>

<!ELEMENT demand (demand_curve?)>
 <!ATTLIST demand
 curve IDREF ""
 demand CDATA #REQUIRED
 type CDATA #REQUIRED
 >

<!--~~~-->
<!-- Reservoirs -->
<!--~~~-->

<!ELEMENT level_curve (%on_datacurve_common_children;)>
 <!ATTLIST level_curve %on_datacurve_common_attributes;>

<!ELEMENT head_curve (%on_timecurve_common_children;)>
 <!ATTLIST head_curve %on_timecurve_common_attributes;>

<!ELEMENT fixed-head (%on_waternode_common_children;,head_curve?)>
 <!ATTLIST fixed-head
 %on_waternode_common_attributes;
 curve IDREF ""
 head CDATA "0"
 head_type (total-head|available-head) "available-head"
 >

<!ELEMENT reservoir (%on_waternode_common_children;,level_curve?)>
 <!ATTLIST reservoir
 %on_waternode_common_attributes;
 curve IDREF ""
 top_level CDATA #REQUIRED
 bottom_level CDATA #REQUIRED
 level CDATA #REQUIRED
 >

<!--###-->
<!-- Link elements -->
<!--###-->

<!-- Link group element -->
<!ELEMENT links (pipe|valve|meter|pump)*>

<!--~~~-->
<!-- Pipes -->
<!--~~~-->

Appendix B: OpenNet XML Representation

286 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

<!ELEMENT pipe (%on_waterlink_common_children;)>
 <!ATTLIST pipe %on_waterlink_common_attributes;>
 <!ATTLIST pipe
 material CDATA ""
 pipe_type CDATA ""
 year_laid CDATA ""
 >

<!--~~~-->
<!-- Valves -->
<!--~~~-->

<!ELEMENT valve (%on_watervalve_common_children;)>
 <!ATTLIST valve %on_watervalve_common_attributes;>

<!ELEMENT prv (%on_watervalve_common_children;)>
 <!ATTLIST prv %on_watervalve_common_attributes;>

<!ELEMENT sluice (%on_watervalve_common_children;)>
 <!ATTLIST sluice %on_watervalve_common_attributes;>

<!ELEMENT psv (%on_watervalve_common_children;)>
 <!ATTLIST psv %on_watervalve_common_attributes;>

<!ELEMENT mtv (%on_watervalve_common_children;)>
 <!ATTLIST mtv %on_watervalve_common_attributes;>

<!ELEMENT nrv (%on_watervalve_common_children;)>
 <!ATTLIST nrv %on_watervalve_common_attributes;>

<!ELEMENT pbv (%on_watervalve_common_children;)>
 <!ATTLIST pbv %on_watervalve_common_attributes;>

<!ELEMENT thv (%on_watervalve_common_children;)>
 <!ATTLIST thv %on_watervalve_common_attributes;>

<!ELEMENT flv (%on_watervalve_common_children;)>
 <!ATTLIST flv %on_watervalve_common_attributes;>

<!--~~~-->
<!-- Meters -->
<!--~~~-->

<!ELEMENT meter (%on_waterlink_common_children;)>
 <!ATTLIST meter %on_waterlink_common_attributes;>

<!--~~~-->
<!-- Pumps -->
<!--~~~-->

<!ELEMENT pump (%on_waterlink_common_children;)>
 <!ATTLIST pump %on_waterlink_common_attributes;>

<!--###-->

Appendix B: OpenNet XML Representation

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 287

<!-- Area elements -->
<!--###-->

<!-- Area group element -->
<!ELEMENT areas EMPTY>

<!--###-->
<!-- Curve Elements -->
<!--###-->

<!ELEMENT timestep EMPTY>
 <!ATTLIST timestep
 time CDATA #REQUIRED
 y CDATA #REQUIRED
 >

<!ELEMENT datastep EMPTY>
 <!ATTLIST datastep
 x CDATA #REQUIRED
 y CDATA #REQUIRED
 >

<!-- Curve group element -->
<!ELEMENT curves (head_curve|level_curve)*>

<!--###-->
<!-- Network element -->
<!--###-->

<!-- Network element -->
<!ELEMENT network (nodes*,links*,areas*,curves*)>
 <!ATTLIST network
 friction %on_friction; "hazen-williams"
 >

Appendix B: OpenNet XML Representation

288 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

B.2 Example XML Network File

<?xml version='1.0' standalone="no" ?>

<!DOCTYPE network PUBLIC "OpenNet v1.0 XML" "OpenNet.dtd">

<network friction="colebrook-white">

 <nodes>

 <node id="n27">
 <coordinate x="552" y="1245" z="72"/>
 </node>

 <node id="n13">
 <coordinate x="780" y="1781" z="50"/>
 </node>

 <node id="n19">
 <coordinate x="1419" y="1594" z="22"/>
 </node>

 <node id="n18">
 <coordinate x="1110" y="1574" z="43"/>
 </node>

 <node id="n12">
 <coordinate x="748" y="1570" z="71"/>
 </node>

 <node id="n11">
 <coordinate x="732" y="1334" z="10"/>
 </node>

 <node id="n9">
 <coordinate x="642" y="1074" z="-45"/>
 </node>

 <node id="n20">
 <coordinate x="1061" y="1131" z="50"/>
 </node>

 <node id="n16">
 <coordinate x="963" y="716" z="33"/>
 </node>

 <node id="n17">
 <coordinate x="317" y="505" z="22"/>
 </node>

 <node id="n10">
 <coordinate x="553" y="915" z="35"/>
 </node>

 <node id="n8">
 <coordinate x="553" y="1224" z="72"/>
 </node>

 <node id="n7">

Appendix B: OpenNet XML Representation

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 289

 <coordinate x="455" y="1395" z="45"/>
 </node>

 <node id="n6">
 <coordinate x="443" y="1793" z="29"/>
 </node>

 <node id="n5">
 <coordinate x="427" y="1893" z="42"/>
 </node>

 <node id="n4">
 <coordinate x="431" y="2000" z="38"/>
 </node>

 <node id="n14">
 <coordinate x="695" y="2122" z="17"/>
 </node>

 <node id="n3">
 <coordinate x="496" y="2240" z="61"/>
 </node>

 <node id="n2">
 <coordinate x="528" y="2468" z="88"/>
 </node>

 <node id="n15">
 <coordinate x="687" y="2403" z="52"/>
 </node>

 <fixed-head id="n1" head_type="total-head">
 <coordinate x="610" y="2716" z="100"/>
 <head_curve id="curve_n1">
 <timestep time="0" y="174.2"/>
 <timestep time="5" y="188.35"/>
 <timestep time="8" y="151.02"/>
 <timestep time="15" y="172.1"/>
 </head_curve>
 </fixed-head>

 <fixed-head id="fh1" head="15.5" head_type="available-head">
 <coordinate x="632" y="2723" z="72.5"/>
 </fixed-head>

 <fixed-head id="fh2" curve="curve_fh2" head_type="total-head">
 <coordinate x="146" y="1547" z="86.2"/>
 </fixed-head>

 <reservoir id="r1" bottom_level="35" level="52" top_level="71">
 <coordinate x="610" y="2716" z="100"/>
 <level_curve id="curve_r1">
 <datastep x="35" y="78.2"/>
 <datastep x="71" y="192.8"/>
 </level_curve>
 </reservoir>

 </nodes>

Appendix B: OpenNet XML Representation

290 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

 <links>

 <pipe id="P14" length="0" diameter="0" length_unit="metres">
 <link from_node="n15" to_node="n14"/>
 </pipe>

 <pipe id="P8" diameter="150">
 <link from_node="n8" to_node="n9"/>
 </pipe>

 <pipe id="P7" diameter="150" diameter_unit="inches">
 <link from_node="n7" to_node="n8"/>
 </pipe>

 <pipe id="P6" diameter="150">
 <link from_node="n6" to_node="n7"/>
 </pipe>

 <pipe id="P4" diameter="150">
 <link from_node="n4" to_node="n5"/>
 </pipe>

 <pipe id="P3" diameter="150">
 <link from_node="n3" to_node="n4"/>
 </pipe>

 <pipe id="P21" diameter="150">
 <link from_node="n9" to_node="n16"/>
 </pipe>

 <pipe id="P16" diameter="150">
 <link from_node="n10" to_node="n17"/>
 </pipe>

 <pipe id="P9" diameter="150">
 <link from_node="n9" to_node="n10"/>
 </pipe>

 <pipe id="P10" diameter="150">
 <link from_node="n11" to_node="n9"/>
 </pipe>

 <pipe id="P20" diameter="150">
 <link from_node="n20" to_node="n16"/>
 </pipe>

 <pipe id="P5" diameter="150">
 <link from_node="n5" to_node="n6"/>
 </pipe>

 <pipe id="P2" diameter="150">
 <link from_node="n2" to_node="n3"/>
 </pipe>

 <pipe id="P1" diameter="150">
 <link from_node="n1" to_node="n2"/>
 </pipe>

 <pipe id="P13" diameter="150">

Appendix B: OpenNet XML Representation

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 291

 <link from_node="n14" to_node="n13"/>
 </pipe>

 <pipe id="P18" diameter="150">
 <link from_node="n18" to_node="n19"/>
 </pipe>

 <pipe id="P15" diameter="150">
 <link from_node="n1" to_node="n15"/>
 </pipe>

 <pipe id="P17" diameter="150">
 <link from_node="n12" to_node="n18"/>
 </pipe>

 <pipe id="P11" diameter="150">
 <link from_node="n12" to_node="n11"/>
 </pipe>

 <pipe id="P12" diameter="150">
 <link from_node="n13" to_node="n12"/>
 </pipe>

 <pipe id="P19" diameter="150">
 <link from_node="n11" to_node="n20"/>
 </pipe>

 <valve id="V1" diameter="150">
 <link from_node="n11" to_node="n20">
 <coordinate x="744" y="1384" z="11"/>
 <line>
 <coordinate x="744" y="1384" z="11"/>
 <coordinate x="744" y="1384" z="11"/>
 </line>
 </link>
 </valve>

 </links>

 <curves>

 <head_curve id="curve_fh2">
 <timestep time="0" y="90.9"/>
 <timestep time="12" y="114.2"/>
 </head_curve>

 </curves>

</network>

Bibliography

292 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Bibliography

Papers presented by the candidate
MORLEY, M.S., ATKINSON, R.M., SAVIĆ, D.A. & WALTERS, G.A. 2000. OpenNet: An

application-independent framework for hydraulic network representation, manipulation
and dissemination. Proceedings 4th Hydroinformatics Conference of the International Association for
Hydraulic Research, Iowa City, U.S.A. p10.

MORLEY, M.S., ATKINSON, R.M., SAVIĆ, D.A. & WALTERS, G.A. 2001. GAnet: Genetic
Algorithm platform for pipe network optimization. Advances in Engineering Software. 32,
pp467-475.

MORLEY, M.S., MAKROPOULOS, C.K., SAVIĆ, D.A. & BUTLER, D. 2004. Decision-Support
System Workbench for Sustainable Water Management Problems. In: PAHL-WOSTL, C.,
SCHMIDT, S., RIZZOLI, A.E. AND JAKEMAN, A.J. (eds.) Complexity and Integrated Resources
Management, Transactions of the 2nd Biennial Meeting of the International Environmental Modelling
and Software Society, University of Osnabrück, Germany. iEMSs: Manno, Switzerland.

MORLEY, M.S., TRICARICO, C., KAPELAN, Z., SAVIĆ, D.A. & DE MARINIS, G. 2006.
deEPANET: A Distributed Hydraulic Solver Architecture for Accelerating
Optimization Applications Working With Conditions of Uncertainty. In:
GOURBESVILLE, P., CUNGE, J., GUINOT, V. & LIONG, S-Y. (eds.) Proceedings 7th
International Conference on Hydroinformatics, Nice, France. pp2465-2472.

MORLEY, M.S. & TRICARICO, C. 2008. Pressure Driven Demand Extension for EPANET
(EPANETpdd) – Technical Report 2008-02. Centre for Water Systems, University of
Exeter, UK. 10pp.

Other Papers arising from this work

Published

ATKINSON, R.M., MORLEY, M.S., SAVIĆ, D.A. & WALTERS, G.A. 1998. The Integration of
GIS, Network Analysis and Genetic Algorithm Optimization Software for Water
Network Analysis. In: BABOVIC, V. & LARSEN, L.C. (eds.) Proceedings 3rd Hydroinformatics
Conference of the International Association for Hydraulic Research, Balkema, Rotterdam,
Netherlands. pp357-362.

BICIK, J., MORLEY, M.S. & SAVIĆ, D.A. 2008. A Rapid Optimization Prototyping Tool for
Spreadsheet-Based Models. In: VAN ZYL, J.E, ILEMOBADE, A.A. & JACOBS, H.E. (eds.)
Proceedings of the 10th Annual Water Distribution Systems Analysis Conference WDSA2008,
August 17-20, 2008, Kruger National Park, South Africa. pp472-482.

Bibliography

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 293

1DE MARINIS, G., GARGANO, R., KAPELAN, Z., MORLEY, M.S., SAVIĆ, D.A. & TRICARICO,
C. 2007a. The Influence of the Hydraulic Simulator in Water Distribution System
Rehabilitation Analysis. In: ULANICKI, B., VAIRAVAMOORTHY, K., BUTLER, D., BOUNDS,
P.L.M. & MEMON, F.A. (eds.) Supplementary Proceedings of the Combined International
Conference of Computing and Control for the Water Industry (CCWI2007) and Sustainable Urban
Water Management (SUWM2007) de Montford University, Leicester, UK. pp7-14.

1DE MARINIS, G., GARGANO, R., KAPELAN, Z., MORLEY, M.S., SAVIĆ, D.A. & TRICARICO,
C. 2007b. Extended Period Simulation in the Estimation of the Economic Level of
Reliability for the Rehabilitation of Water Distribution Systems. Proceedings 2nd Leading
Edge Conference on Strategic Asset Management – LESAM 2007, Lisbon, Portugal. IWA and
LNEC, Lisbon, Portugal on CD-ROM.

1DE MARINIS, G., GARGANO, R., KAPELAN, Z., MORLEY, M.S., SAVIĆ, D.A. & TRICARICO,
C. 2008. Risk-Cost Based Decision Support System for the Rehabilitation of Water
Distribution Networks. In: VAN ZYL, J.E, ILEMOBADE, A.A. & JACOBS, H.E. (eds.)
Proceedings of the 10th Annual Water Distribution Systems Analysis Conference WDSA2008,
August 17-20, 2008, Kruger National Park, South Africa. pp652-664.

MAKROPOULOS, C., MORLEY, M., MEMON, F., BUTLER, D., SAVIĆ, D. & ASHLEY, R. 2006.
A Decision Support Framework for Sustainable Urban Water Planning and
Management in New Urban Areas. Water Science & Technology, 54, nos. 6-7, pp 451-458.

SAVIĆ, D.A., WALTERS, G.A. & MORLEY, M.S. 1997. Applications of Genetic Algorithms
in the Water Industry. 2nd meeting of the EPSRC Advanced Computing Techniques Community
Club, Rutherford-Appleton Laboratory, Didcot,U.K. Poster presentation.

WALTERS, G.A., SAVIĆ, D.A., MORLEY, M.S., DE SCHAETZEN, W.F.B. & ATKINSON, R.M.
1998. Calibration of Water Distribution Network Models Using Genetic Algorithms.
Proceedings 7th International Conference on Hydraulic Engineering Software, Como, Italy.
Computational Mechanics Publications, Southampton, U.K. pp131-140.

In preparation

KEEDWELL, E.C., MORLEY, M.S. & SAVIĆ, D.A. 2008. An Investigation into Caching for
Evolutionary Algorithms. IEEE Transactions on Evolutionary Computing (submitted).

1 The authors on these papers are presented in alphabetical order and are not intended to be a reflection of the relative
contribution of the individual authors to the research presented therein.

Bibliography

294 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

List of References

7-TECHNOLOGIES A/S. 2002. Aquis User Manual. 7-Technologies A/S, Birkerød,
Denmark.

ADVANTICA, INC. 2003. SynerGEE Water User Manual. Advantica Inc./Stoner Software,
Houston, Texas, U.S.A.

ALPEROVITS, E. & SHAMIR, U. 1977. Design of Optimal Water Distribution System. Water
Resources Research. 13, 6. pp885-900.

ANG, W.K. & JOWITT, P.W. 2006. Solution for Water Distribution Systems under
Pressure-Deficient Conditions. Journal of Water Resources Planning and Management -
ASCE, 132(3) pp175-182.

BABAYAN, A.V., SAVIĆ, D.A. & WALTERS, G.A. 2003. Least-cost design of water
distribution networks under uncertain demand. In: MAKSIMOVIC, C., BUTLER, D. &
MEMON, F. (eds.). Advances in Water Supply Management. A.A. Balkema Publishers, pp.
139-146.

BAKER, J.E. 1985. Adaptive Selection Methods for Genetic Algorithms. In:
GREFENSTETTE, J.J. (ed.) Proceedings of the First International Conference on Genetic Algorithms.
Lawrence Erlbaum Associates, Hillsdale, U.S.A. pp101-111.

BALLA, M.C. & LINGIREDDY, S. 2000. Distributed genetic algorithm model on network of
personal computers. Journal of Computing in Civil Engineering., ASCE, 14(3), pp199-205.

BHAVE, P.R. 1978. Noncomputer Optimization of Single-Source Networks. ASCE, Proc.
J. Environmental Engineering Division. 104(4). pp799-813.

BLIND, M. & GREGERSEN, J.B. 2004. Towards an Open Modelling Interface (OpenMI) –
The HarmonIT Project. In PAHL-WOSTL, C., SCHMIDT, S., RIZZOLI, A.E. AND
JAKEMAN, A.J. (eds), Complexity and Integrated Resources Management, Transactions of the 2nd
Biennial Meeting of the International Environmental Modelling and Software Society, iEMSs:
Manno, Switzerland. ISBN 88-900787-1-5

BORLAND INTERNATIONAL. 1997. Delphi version 3.0 User’s Guide. Borland International,
Scotts Valley, U.S.A.

BULLNHEIMER, B., HARTL, R.F. & STRAUSS, C. 1999. “A new rank based version of the
Ant System: A computational study. Central European Journal for Operations Research and
Economics, 7(1), pp25-38.

CHU, P.C. & BEASLEY, J.E. 1997. A genetic algorithm for the generalised assignment
problem. Computers & Operations Research, 24, pp17-23.

CORCORAN, A.L. 1993. libGA User’s Manual. University of Tulsa, U.S.A.

CORMEN, T.H., LEISERSON, C.E., RIVEST, R.L. & STEIN, C. 2001. Introduction to Algorithms,
Second Edition. MIT Press and McGraw-Hill.

CUNHA, M. DA C. & SOUSA, J. 1999. Water Distribution Network Design Optimization:
Simulated Annealing Approach. Journal of Water Resources Planning and Management -
ASCE, 125(4), pp215-221.

DANDY, G.C., SIMPSON, A.R. & MURPHY, L.J. 1996. An improved genetic algorithm for
pipe network optimization. Water Resources Research, 32(2), pp449–458.

Bibliography

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 295

DANDY, G.C. & ENGELHART, M. 2001. Optimal scheduling of water pipe replacement
using genetic algorithms. Journal of Water Resources Planning and Management - ASCE,,
127(4), pp214-223.

DARWIN, C.R. 1859. On the origin of species by means of natural selection, or the preservation of
favoured races in the struggle for life. John Murray, London. 502pp.

DEB, K. 2001. Multi-objective optimization using evolutionary algorithms, Wiley Interscience,
Hoboken, U.S.A.

DIJKSTRA, E.W. 1959. A note on two problems in connection with graphs. Numerische
Mathematik, 1, pp269-271.

 1993. Application of GIS network routines for water-flow and transport. Journal of Water
Resources Planning and Management - ASCE, 119(2), pp229-245.

DORIGO, M., MANIEZZO, V. & COLORNI, A. 1996. The ant system: optimization by a
colony of cooperating ants. IEEE Transactions on Systems, Man & Cybernetics – Part B,
26(1), pp29–42.

EBEHART, R. C. & KENNEDY, J. 1985. A new optimizer using particles swarm theory.
Proceedings 6th International Symposium on Micro Machine and Human Science, IEEE Service
Centre, Piscataway, U.S.A., pp39-43.

ENGELHARDT, M.O., SKIPWORTH, P.J., CASHMAN, A., SAVIĆ, D., SAUL, A.J. & WALTERS,
G.A. 2002. A Whole Life Costing for Water Distribution Network Management. Thomas
Telford Ltd, London UK (ISBN 0-7277-3166-1), 216pp.

ENGELHARDT, M. & SKIPWORTH, P. 2005. WiLCO – State of the art decision support .
Water Management for the 21st Century – Prooceedings Computing and Control in the Water
Industry, Exeter, UK.

ESRI. 1999. ArcInfo User’s Manual. Environmental Systems Research Institute, Redlands,
California, U.S.A.

EUSUFF, M.M. & LANSEY, K.E. 2003a. Water Distribution Network Design Using The
Shuffled Frog Leaping Algorithm. Proceedings World Water and Environmental Resources
Congress (ASCE), Orlando, U.S.A.

EUSUFF, M.M. & LANSEY, K.E. 2003b. Optimization of water distribution network design
using the shuffled frong leaping algorithm. Journal of Water Resources Planning and
Management - ASCE, 129(3), pp210-225.

FIELDSEND, J.E., EVERSON, R.M. & SINGH, S. 2003. Using Unconstrained Elite Archives
for Multi-Objective Optimization, IEEE Transactions on Evolutionary Computation 7(3), pp
305-323.

FONSECA, C.M. & FLEMING, P.J. 1993. Genetic algorithms for multi-objective
optimization; optimization, formulation discussion and generalization. In: FORREST, S.
Proceedings 5th International Conference on Genetic Algorithms, University of Illinois at Urbana-
Champaign, U.S.A. pp416-423.

FUJIWARA, O. & KHANG, D.B. 1990. A two-phase decomposition method for optimal
design of looped water distribution networks. Water Resources Research, 26(4), pp539-549.

FUJIWARA, O. & LI, J. 1998. Reliability Analysis of Water Distribution Networks in
Consideration of Equity, Redistribution and Pressure-Dependent Demand. Water
Resources Research, 34(7) pp1843-1850.

Bibliography

296 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

FULLERTON, J.N., WALTERS, G.A. & SAVIĆ, D.A. 2002 Simplified Modelling of Storm
Water Flows for Optimization. In: BREBBIA, C.A. & BLAIN, W.R. (eds.), Hydraulic
Information Management, WIT press, Southampton, U.K. pp133-142.

GARDNER, M. 1970. Mathematical Games: The Fantastic Combinations of John Conway’s
new Solitaire Game, “Life”. Scientific American. (223). pp120-123.

GEEM, Z.W., KIM, J.H. & LOGANATHAN, G.V. 2002. Harmony Search Optimization:
Application to Pipe Network Design. International Journal of Model Simulation, 22(2),
pp125-133.

GERMANOPOULOS, G. 1985. A technical note on the inclusion of pressure dependent and
leakage terms in water supply network models, Civil Engineering Systems, 2(3), pp171-179.

GERMANOPOULOS, G. 1985. Pipe network optimization by enumeration. Proc. Spec. Conf.
on Computer Applications in Water Resources. ASCE, New York, U.S.A. pp572-581.

GOLDBERG, D.E. 1989. Genetic algorithms: in search, optimization and machine learning.
Addison-Wesley, Reading, Massachusetts, U.S.A. 412pp.

GOLDBERG, D.E. 1987. Genetic algorithms in pipeline optimization. Journal of Computing
in Civil Engineering - ASCE, 1(2), pp128-141.

GOLDBERG, D.E. & RICHARDSON, J. 1987. Genetic Algorithms with Sharing for
Multimodal Function Optimization. In:GREFENSTETTE, J.J. (ed.) Proceedings of the Second
International Conference on Genetic Algorithms. Lawrence Erlbaum Associates, Hillsdale,
U.S.A. pp41-49.

GOLDBERG, D.E., KORB, B. & DEB, K. 1989. Messy genetic algorithms: motivation,
analysis and first results. Complex Systems, 3, pp493-530.

GOLDBERG, D.E., DEB, K. & KORB, B. 1991. Do not Worry, Be Messy. In: BELEW, R. &
BOOKER, L. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms.
Morgan Kaufmann Publishers, San Mateo, U.S.A. pp24-30.

GRAY, F. 1953. Pulse Code Communication, U. S. Patent 2 632 058.

GUPTA, I., GUPTA, A. & KHANNA, P. 1999. Genetic algorithm for optimization of water
distribution systems. Environmental Modelling and Software, 14, pp437-446.

HALHAL, D., WALTERS, G.A., SAVIĆ, D.A. & OUAZAR, D. 1999. Scheduling of Water
Distribution System Rehabilitation using Structured Messy Genetic Algorithms,
Evolutionary Computation, 7(3), pp311-329.

HALHAL, D., WALTERS, G.A., OUAZAR, D. AND SAVIĆ, D.A. 1997. Water network
rehabilitation with structured messy genetic algorithm. Journal of Water Resources, Planning
and Management, ASCE, 123(3), pp137-146.

HEWLETT PACKARD COMPANY. 2001. Programming with Judy: C Language, Judy version 4.0.
Hewlett Packard, Fort Collins, Colorado, USA. p/n B6841-90001.

HOLLAND, J.H. 1975. Adaptation in natural and artificial systems. MIT Press, Cambridge,
Massachusetts, U.S.A.

ISO (INTERNATIONAL ORGANIZATION FOR STANDARDIZATION). 1986. ISO 8879:1986(E).
Information processing – Text and Office Systems – Standard Generalized Markup Language
(SGML). First edition. International Organization for Standardization, Geneva,
Switzerland.

Bibliography

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 297

JANIKOW, C. & MICHALEWICZ, Z. 1991. An Experimental Comparison of Binary and
Floating Point Representations in Genetic Algorithms. In: BELEW, R. & BOOKER, L.
(eds.) Proceedings of the Fourth International Conference on Genetic Algorithms. Morgan
Kaufmann Publishers, San Mateo, U.S.A. pp31-36.

JOSUTTIS, N.M. 1996. The C++ Standard Library: A Tutorial and Reference. Addison-Wesley.
ISBN 0-201-37926-0.

KADU, M.S., GUPTA, R. & BHAVE, P.R. 2008. Optimal Design of Water Networks Using a
Modified Genetic Algorithm with Reduction in Search Space. Journal of Water Resources
Planning and Management - ASCE, 134(2), pp147-160.

KAPELAN, Z., SAVIĆ, D.A. & WALTERS, G.A. 2003a. Robust least cost design of water
distribution systems using GAs. In: MAKSIMOVIĆ, C., BUTLER, D. & MEMON, F. (eds.).
Advances in Water Supply Management. A.A. Balkema Publishers, pp. 147-155.

KAPELAN, Z., SAVIĆ, D.A. & WALTERS, G.A. 2003b Multiobjective sampling design for
water distribution model calibration. Journal of Water Resources Planning and Management -
ASCE, 129(6), pp466-479.

KAPELAN, Z., SAVIĆ, D.A. & WALTERS, G.A. 2004. A multiobjective approach to
rehabilitation of water distribution networks under uncertainty, Proceedings of the 6th
International Symposium on Systems Analysis and Integration Assessment, WATERMATEX,
IWA Beijing, China.

KAPELAN, Z., SAVIĆ, D.A. & WALTERS, G.A. 2005. Multiobjective Design of Water
Distribution Systems under Uncertainty. Water Resources Research. 41(11), W11407.

KEEDWELL, E.C. & KHU, S-T. 2006. Novel Cellular Automata Approach to Optimal
Water Distribution Network Design. Journal of Computing in Civil Engineering- ASCE,
20(1), pp49-56.

KERNIGHAN, B.W. & RITCHIE, D.M. 1988. The C Programming Language - 2nd edition,
Prentice Hall, Englewood Cliffs, New Jersey, U.S.A.

KNUTH, D.E. 1997a. The Art of Computer Programming. Voume 1: Fundamental Algorithms
(Third Edition). Addison-Wesley, Reading, U.S.A.

KNUTH, D.E. 1997b. The Art of Computer Programming. Voume 3: Sorting and Searching (Third
Edition). Addison-Wesley, Reading, U.S.A.

KRATICA, J., TOSIC, D., FILIPOVIC, V. & LJUBIC, I. 2001. Solving the Simple Plant
Location Problems by Genetic Algorithm, RAIRO Operations Research, 35, pp127–142.

LIPPAI, I., HEANEY, J.P. & LAGUNA, L. 1999. Robust water system design with commercial
intelligent search optimizers. Journal Computing in Civil Engineering – ASCE. 13(3).
pp135-143.

LUPIEN, A.E., MORELAND, W.H. & DANGERMOND, J. 1987. Network analysis in
Geographic Information Systems. Journal of Photogrammetric Engineering and Remote Sensing,
53, 10, pp1417-1421.

MAPINFO CORPORATION. 1998. MapInfo Professional User’s Reference. MapInfo Corporation,
Troy, New York, U.S.A.

MAIER, H.R., SIMPSON, A.R., ZECCHIN, A.C., FOONG, W.K., PHANG, K.Y., SEAH, H.S.&
CHAN LIM TAN, C.L. 2003. Ant Colony Optimization for Design of Water

Bibliography

298 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

Distribution Systems. Journal of Water Resources Planning and Management - ASCE, 129(3),
pp200-209.

MAKROPOULOS, C.K., BUTLER, D. & MAKSIMOVIĆ, C. 2003. Fuzzy Logic Spatial Decision
Support System for Urban Water Management. Journal of Water Resources Planning and
Management - ASCE, 129(1), pp69-77.

MAKROPOULOS, C.K. & BUTLER, D. 2005. A multi-objective evolutionary programming
approach to the 'object location' spatial analysis and optimisation problem within the
urban water management domain. Civil Engineering and Environmental Systems, 22(2), pp85-
101.

MEIER, R. W. & BARKDOLL, B. D. 2000. Sampling design for network model calibration
using genetic algorithms. Journal of Water Resources Planning and Management - ASCE,
126(4), pp245-250.

MICHALEWICZ, Z. 1992. Genetic algorithms + data structures = evolution programs. Springer-
Verlag, Berlin, Germany..

MORGAN, D.R. & GOULTER, I.C. 1985. Optimal urban water distribution design. Water
Resources Research, 21, 5, pp642-652.

MUNAVALLI, G.R. & KUMAR, M.S. 2003. Optimal scheduling of multiple chlorine sources
in water distribution systems. Journal of Water Resources Planning and Management - ASCE,
129(6), pp493-504.

MURPHY, L.J., DANDY, G.C. & SIMPSON, A.R. 1993. Design of a Pipe Network Using
Genetic Algorithms. Water, 20(4), pp40-42.

PFAFF, B. 2004. Performance Analysis of BSTs in System Software. In: COFFMAN, E.G.
(Jr.), LIU, Z. & MERCHANT, A. (eds.) Proceedings of the Joint International Conference on
Measurement and Modeling of Computer Systems, ACM, New York, U.S.A. pp410-411.

POVINELLI, R. & FENG, X. 1999. Improving Genetic Algorithms Performance by Hashing
Fitness Values. Proceedings Artificial Neural Networks in Engineering, St. Louis, Missouri,
U.S.A. pp399-404.

REED, P., KOLLAT, J.B. & DEVIREDDY, V. 2007. Using Interactive Archives in
Evolutionary Multiobjective Optimization: A Case Study for Long-Term Groundwater
Monitoring Design, Environmental Modeling & Software, 22(5), pp683-692.

RIGGS, R.L. 1994. Application of AM/FM/GIS technology to the pipeline industry.
Proceedings AM/FM GIS 1994, pp437-447.

ROSSMAN, L.A. 1993. EPANET User’s Manual. United States Environmental Protection
Agency, Cincinnati, U.S.A.

ROSSMAN, L.A. 2000. EPANET 2 User’s Manual. United States Environmental Protection
Agency, Cincinnati, U.S.A.

ROSSMAN, L.A. 2005. Storm Water Management Model User’s Manual version 5.0. United States
Environmental Protection Agency, Cincinnati, U.S.A.

SAVIĆ, D.A. & WALTERS, G.A. 1994. Evolution Programs in Optimal Design of Hydraulic
Networks. In: PARMEE, I.C. (ed.) Adaptive Computing in Engineering Design and Control -
‘94. pp146-150. University of Plymouth, U.K..

SAVIĆ, D.A. & WALTERS, G.A. 1995. An evolution program for optimal pressure
regulation in water distribution networks. Engineering Optimization, 24(3), pp197-219.

Bibliography

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 299

SAVIĆ, D.A. & WALTERS, G.A. 1997. Genetic algorithms for least-cost design of water
distribution networks. Journal of Water Resources Planning and Management - ASCE, 123(2),
pp67–77.

SAVIĆ, D.A. & WALTERS, G.A, RANDALL-SMITH, M. & ATKINSON, R.M. 2000. Large
Water Distribution Systems Design through Genetic Algorithm Optimization. In:
HOTCHKISS, R.H. & GLADE, M. (eds.) ASCE 2000 Joint Conference on Water Resources
Engineering and Water Resources Planning and Management, July 30-August 2, Minneapolis,
USA. (proceedings published on CD), p10.

SCHAAKE, J. & LAI, D. 1969. Linear programming and dynamic programming application of water
distribution network design (Report 116). MIT Press, Cambridge, U.S.A.

DE SCHAETZEN, W.B.F., WALTERS, G.A. & SAVIĆ, D.A. 2000. Optimal sampling design
for model calibration using shortest path, genetic and entropy algorithms. Urban Water,
2, pp141-152.

SILVERSTEIN, A. 2002. Judy IV Shop Manual. Hewlett Packard, Fort Collins, Colorado,
U.S.A.

SIMPSON, A.R., DANDY, G.C. & MURPHY, L.J. 1994. Genetic algorithms compared to
other techniques for pipe optimization. Journal of Water Resources Planning and Management -
ASCE, 120(4), pp423-443.

SOLOMATINE, D.P. 1996. Object orientation in hydraulic modelling architectures. Journal
of Computing in Civil Engineering - ASCE, 10, 2, pp125-135.

SRINIVAS, N., DEB, K. 1994 Multiobjective function optimization using non-dominated
sorting genetic algorithm, EvolutionaryComputation, 2(3): pp221–248.

STEPANOV, A.A. & LEE, M. 1994. The Standard Template Library. Technical Report HPL-
94-34. Hewlett Packard, Fort Collins, Colorado, USA.

STROUSTRUP, B. 1997. The C++ Programming Language (Third Edition). Addison-
Wesley, Reading, U.S.A.

STRUCTURAL TECHNOLOGIES LTD. 1996. StruMap Geographic Information System User’s
Manual. Structural Technologies Ltd., Studley, U.K.

STÜTZLE, T. & HOOS, H.H. 2000. MAX-MIN Ant System. Future Generation Computer
Systems, 16, pp889-914.

SYSWERDA, G. 1989. Uniform Crossover in Genetic Algorithms. In: SCHAFFER, J. (ed.)
Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann
Publishers, San Mateo, U.S.A. pp2-9.

TAHER, S.A. & LABADIE, J.E. 1996. Optimal design of water-distribution networks with
GIS. Journal of Water Resources Planning and Management - ASCE, 122, 4, pp301-311.

TEMPLEMAN, A.B., 1982. Discussion of “Optimization of Looped Water Distribution
Systems”, by QUINDRY, G.E., BRILL, E.D. AND LIEBMAN, J.C. Journal Environmental
Engineering. Division - ASCE, 108(EE3), pp599–602.

THURLEY, R.W.F., SAVIĆ, D.A. & WALTERS, G.A. 1999. The application of parallel
processing to GA-based optimization of water supply systems. In: POWELL, R. & HINDI,
K.S. (eds.) Computing and Control for the Water Industry. Research Studies Press, Baldock,
Hertfordshire, U.K. pp329-336.

Bibliography

300 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

TODINI, E. & PILATI, S. 1987. A Gradient Method for the Analysis of Pipe Networks.
Proceedings International Conference on Computer Applications for Water Supply and Distribution.
Leicester Polytechnic, U.K.

TRICARICO, C. 2005. A Rehabilitation Model for Water Distribution Systems: Multiobjective
Optimization Based on the Cost of Reliability (PhD Thesis). Università degli Studi di Cassino,
Cassino FR, Italy. 238pp.

TRICARICO, C., DE MARINIS, G., GARGANO, R. & LEOPARDI, A. 2005. Peak Demand for
Small Towns. In: SAVIĆ, D.A., WALTERS, G.A., KING, R. & KHU, S.-T. (eds.) Proceedings
of the Eighth International Conference on Computing and Control for the Water Industry
(CCWI2005). University of Exeter, UK. 2, pp113-118.

TRICARICO, C., GARGANO, R., KAPELAN, Z., SAVIĆ, D.A. & DE MARINIS, G. 2006.
Economic Level of Reliability for the Rehabilitation of Hydraulic Networks, Journal of
Civil Engineering and Environmental Systems. 23(3) pp191-207.

TSAKIRIS, G. & SALAHORIS, M. 1993. GIS technology for management of water
distribution networks. In: CABRERA, E. & MARTÍNEZ, F. (eds.) Water Supply Systems: State
of the art and future trends. Computational Mechanics Publications, Southampton, U.K.
pp359-378.

VAN ZYL, J.E., BORTHWICK, J. & HARDY, A. 2003. OOTEN: An Object-Oriented
Programmer’s Toolkit for EPANET. In: MAKSIMOVIĆ, C., BUTLER, D. & MEMON, F.A.
(eds.) Proceedings of the Seventh International Conference on Computing and Control for the Water
Industry (CCWI2003). Imperial College London, UK. Supplementary Paper.

VITKOVSKY, J.P. & SIMPSON, A.R. 1997. Calibration and Leak Detection in Pipe Networks
Using Inverse Transient Analysis and Genetic Algorithms. Department of Civil and
Environmental Engineering, University of Adelaide: Adelaide, Australia. 97pp.

VON NEUMANN, J. 1966. Theory of Self-Reproducing Automata. University of Illinois Press,
Urbana, U.S.A. 388pp.

W3C (WORLD WIDE WEB CONSORTIUM). 2000. Extensible Markup Language (XML) 1.0
(Second Edition).

WALLINGFORD SOFTWARE. 2005. InfoWorks WS User Manual. Wallingford Software,
Wallingford, U.K.

WALSKI, T.M. 1984. Analysis of Water Distribution Systems. van Nostrand Reinhold Co.,
New York, U.S.A.

WALSKI, T.M, BRILL, E.D., GESSLER, J., GOULTER, I.C., JEPPSON, R.M., LANSEY, K., HAN-
LIN LEE, LIEBMAN, J.C., MAYS, L., MORGAN, D.R. & ORMSBEE, L. 1987. Battle of the
Network Models: epilogue. Journal of Water Resources Planning and Management - ASCE,
113(2), pp191-203.

 WALSKI, T.M. 1990. Water distribution systems: simulation and sizing. Lewis Publishers, Boca
Raton, U.S.A.

WALTERS, G.A., SAVIĆ, D.A., MORLEY, M.S., DE SCHAETZEN, W.F.B. & ATKINSON, R.M.
1998. Calibration of Water Distribution Network Models Using Genetic Algorithms.
Proceedings 7th International Conference on Hydraulic Engineering Software, Como, Italy.
Computational Mechanics Publications, Southampton, U.K. pp131-140.

Bibliography

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 301

WALTERS, G.A., HALHAL, D., SAVIĆ, D.A. & OUAZAR, D. 1999. Improved design of
“Anytown” distribution network using structured messy genetic algorithms. Urban
Water, 1(1), pp23-38.

WU, Z.Y. & SIMPSON, A.R. 2001. Competent genetic-evolutionary optimization of water
distribution systems. Journal of Computing in Civil Engineering - ASCE, 15(2), pp89-101.

ZECCHIN, A.C., MAIER, H.R., SIMPSON, A.R., LEONARD, M. & NIXON, J.B. 2007. Ant
Colony Optimization Applied to Water Distribution System Design: Comparative Study
of Five Algorithms. Journal of Water Resources Planning and Management - ASCE, 133(1),
pp87-92.

ZECCHIN, A.C., SIMPSON, A.R., MAIER, H.R., LEONARD, M., ROBERTS, A.J. & BERRISFORD,
M.J. 2006. Application of Two Ant Colony Optimization Algorithms to Water
Distribution System Optimization. Mathematical and Computing Modelling, 44(5-6), pp451-
468.

ZITZLER, E. & THIELE, L. 1999. Multiobjective Evolutionary Algorithms: A Comparative
Case Study and the Strength Pareto Approach. IEEE Transactions of Evolutionary
Computation. 3(4), pp257-271.

Bibliography

302 A Framework for Evolutionary Optimization Applications in Water Distribution Systems

