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Abstract 
 

The application of optimization to Water Distribution Systems encompasses the use of 

computer-based techniques to problems of many different areas of system design, 

maintenance and operational management.  As well as laying out the configuration of new 

WDS networks, optimization is commonly needed to assist in the rehabilitation or 

reinforcement of existing network infrastructure in which alternative scenarios driven by 

investment constraints and hydraulic performance are used to demonstrate a cost-benefit 

relationship between different network intervention strategies.  Moreover, the ongoing 

operation of a WDS is also subject to optimization, particularly with respect to the 

minimization of energy costs associated with pumping and storage and the calibration of 

hydraulic network models to match observed field data. 

Increasingly, Evolutionary Optimization techniques, of which Genetic Algorithms 

are the best-known examples, are applied to aid practitioners in these facets of design, 

management and operation of water distribution networks as part of Decision Support 

Systems (DSS).  Evolutionary Optimization employs processes akin to those of natural 

selection and “survival of the fittest” to manipulate a population of individual solutions, 

which, over time, “evolve” towards optimal solutions.  Such algorithms are characterized, 

however, by large numbers of function evaluations.  This, coupled with the computational 

complexity associated with the hydraulic simulation of water networks incurs significant 

computational overheads, can limit the applicability and scalability of this technology in this 

domain. 

Accordingly, this thesis presents a methodology for applying Genetic Algorithms to 

Water Distribution Systems.  A number of new procedures are presented for improving the 

performance of such algorithms when applied to complex engineering problems.  These 

techniques approach the problem of minimising the impact of the inherent computational 

complexity of these problems from a number of angles.  A novel genetic representation is 

presented which combines the algorithmic simplicity of the classical binary string of the 

Genetic Algorithm with the performance advantages inherent in an integer-based 

representation.  Further algorithmic improvements are demonstrated with an intelligent 

mutation operator that “learns” which genes have the greatest impact on the quality of a 

solution and concentrates the mutation operations on those genes.  A technique for 
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implementing caching of solutions – recalling the results for solutions that have already been 

calculated - is demonstrated to reduce runtimes for Genetic Algorithms where applied to 

problems with significant computation complexity in their evaluation functions.  A novel 

reformulation of the Genetic Algorithm for implementing robust stochastic optimizations is 

presented which employs the caching technology developed to produce an multiple-objective 

optimization methodology that demonstrates dramatically improved quality of solutions for 

given runtime of the algorithm. 

These extensions to the Genetic Algorithm techniques are coupled with a supporting 

software library that represents a standardized modelling architecture for the representation 

of connected networks.  This library gives rise to a system for distributing the computational 

load of hydraulic simulations across a network of computers.  This methodology is 

established to provide a viable, scalable technique for accelerating evolutionary optimization 

applications. 

Keywords 
Evolutionary Optimization, Genetic Algorithms, Hydroinformatics, Caching, Multiple-

Objective Optimization, Distributed Computing. 
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Glossary 

Definitions 
Allele The alleles of a gene are the set of values that this gene can 

take.  The most straightforward example taken from biology 

is that of the gene that determines eye colour.  The alleles of 

this gene are the different colours (Brown, Blue...etc...) 

Application Programming Interface 

A specification for the public interface to a software library to 

be used by developers. 

Chromosome Many workers in the field of evolutionary algorithms use the 

term chromosome instead of organism above.  As will be 

shown, it is convenient to maintain a distinction between the 

two (as well as maintaining the biological analogue) and to 

preserve the chromosome moniker to describe a group of genes 

that are related in some fashion.  Thus, a chromosome is some 

sub-division of an organism’s genome. 

Common Object Model A technology developed by Microsoft for the implementation 

of a componentized software architecture featuring a 

standardized API for the introspection of methods and 

members.  Microsoft Windows specific.  Largely supplanted 

by the .NET technology but still underpinning many 

Microsoft Products (e.g. Office).   

Distributed Common Object Model.   

As COM but with additional functionality to allow the 

instantiation of objects remotely, across a network. 

Dynamic Link Library A mechanism for dynamically linking software functions into 

an application.  Promotes componentization through code 

reuse – applications can be composed from smaller building 

blocks. Unlike COM, however, DLLs do not have a standard 

mechanism for implementing object classes – which has 
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resulted in compiler vendors implementing their own, 

incompatible techniques for doing so. 

Elitism Applied to generational GAs, elitism allows the most fit 

individuals from a source population to transfer directly to the 

destination population without undergoing recombination – 

ensuring that they are preserved from generation to 

generation. 

Fitness The measure by which individual organisms are compared to 

each other to judge their relative suitability for the 

optimization problem at hand.  For single objective 

algorithms this is a single value, often combined with a penalty 

function to penalise constraint violation. 

Gene Genes are the fundamental unit of genetic algorithms.  Each 

gene represents a specific attribute that is encoded within the 

genome at a specific location known as a locus.  This attribute  

normally represents a decision variable to be considered in the 

optimization but can also convey other information specific 

to an organism. 

Generational GA A type of Genetic Algorithm used for both single and 

multiple objective optimization.  Following selection and 

recombination, child organisms are inserted into a new 

population rather than replaced into the existing population as 

with a Steady-State GA.  The selection and recombination 

process continues until the new population reaches the 

nominal size of the previous generation.  The new population 

then forms the basis for selection for the next generation. 

Genome The total genetic representation of an organism is described 

as its genome.  In mammalian biology, a genome is ordinarily 

sub-divided into chromosomes. 

Genotype The representation of the information contained within the 

genome in its native form.  For example, a decision variable 
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containing the value 5 may represent a pipe diameter of 

80mm.  The genotypic value of the decision variable is 5. 

Locus The locus of a gene is the position it occurs in a chromosome.  In 

Genetic Algorithms, the locus is usually fixed for a given 

gene.  However, in certain types of GA with variable-length 

or heterozygous chromosomes the locus can vary. 

Network Calibration An optimization problem to calibrate a Water Distribution 

System hydraulic model to match observed field data – 

commonly by varying pipe friction factors or diameters. 

Network Design An optimization problem to layout new pipes for a Water 

Distribution System. 

Network Rehabilitation/Reinforcement 

An optimization problem that determines intervention 

strategies in a WDS for rehabilitating existing pipes or 

reinforcing the network through pipe duplication. 

Organism This is the representation of an individual in the population.  It 

is a term not normally associated with genetic algorithms and 

is a by-product of the underlying object-oriented library 

described here.  Conventionally, the term “chromosome” has 

been the preferred term for an individual in GAs.  However, 

because this use of chromosome is significantly at variance 

with the biological analogue – and the necessity for the 

object-oriented library to have an appropriate naming strategy 

for classes – it was decided to break with convention and to 

use “organism” as the fundamental unit of a population instead.  

Because each organism always has exactly one genome and that 

genome can only belong to a single organism they can be 

considered concomitant. 

Penalty Function A function commonly used in single objective optimization to 

represent constraint violation by an individual organism – 

normally used in combination with a fitness value to give an 

overall relative measure of fitness for a solution. 
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Phenotype The representation of the information contained within the 

genome in its appliedform.  For example, a decision variable 

containing the value 5 may represent a pipe diameter of 

80mm.  The genotypic value of the decision variable is 80 

when translated into the domain of the solution. 

Population A collection of organisms – the pool of genetic material 

operated on by a Genetic Algorithm. 

Recombination The derivation of child solutions from their parents – 

ordinarily as a result of crossover and mutation. 

Steady-state GA A type of single-objective Genetic Algorithm in which a pair 

of solutions are selected from a population, recombined to 

form two children and those children inserted, according to 

some rule, back into the original population.  c.f. Generational 

GA. 
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List of Abbreviations 
ACS Ant Colony Simulation 

ADSL Asymmetric Digital Subscriber Line 

AMS Asset Management System 

ANSI American National Standards Institute 

API Application Programming Interface 

ASCII American Standard Code for Information Interchange 

CA Cellular Automata 

COM Common Object Model.  

CORBA Common Object Request Broker Architecture 

CPU Central Processing Unit 

CWS Centre for Water Systems, University of Exeter 

DCOM Distributed Common Object Model 

DLL Dynamic Link Library 

DMA District Metered Area 

DSS Decision Support System 

DTD Document Type Definition (XML) 

EPS Extended Period Simulation 

FLV Float Valve 

GA Genetic Algorithm 

GAP Generalized Assignment Problem 

GIS Geographic Information System 

IP Internet Protocol 

ISO International Standards Organisation 

LAN Local Area Network 

LP Linear Programming 
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LSB Least Significant Bit (binary number) 

MGA Messy Genetic Algorithm 

MOGA Multiple Objective Genetic Algorithm 

MSB Most Significant Bit (binary number) 

MTV Motorised Throttle Valve 

NLP Non-Linear Programming 

NRGA Non-Repeating Genetic Algorithm 

NRV Non-Return Valve 

NSGA Non-dominated Sorted Genetic Algorithm 

NYT New York Tunnels (benchmark problem) 

OLE Object Linking & Embedding 

OOTEN Object-Oriented Toolkit for EPANET 

OSGB Ordnance Survey of Great Britain 

PBV Pressure Break Valve 

PDD Pressure-Driven Demand 

PDF Probability Density Function 

PRV Pressure Reducing Valve 

PSG Piedemonte San Germano (benchmark problem) 

PSO Particle Swarm Optimization 

PSV Pressure Sustaining Valve 

RCV Remote Control Valve 

RDBMS Relational Database Management Software 

rNSGA-II Robust NSGA-II 

SA Simulated Annealing 

SDSS Spatial Decision Support System 

SFLA Shuffled Frog Leaping Algorithm 
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SGML Standard Generalized Markup 

SMGA Structured, Messy Genetic Algorithm 

SMP Symmetric Multi-Processing 

SOGA Single Objective Genetic Algorithm 

STL Standard Template Library 

SWMM Storm Water Management Model 

TCP Transmission Control Protocol 

THV Throttle Valve 

UDP User Datagram Protocol 

UML Unified Modelling Language 

WAN Wide Area Network 

WAP Wireless Access Point 

WDS Water Distribution Systems 

XML eXtensible Markup Language 

XOR eXclusive OR (logical operation) 
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Chapter 1. Introduction 

1.1. Background 

Automated analysis and optimization tools have been used to provide a mechanism for 

improving various facets of water system networks including, amongst others, model 

calibration, network design and rehabilitation, leakage detection and pump scheduling.  Such 

tools represent an attempt to provide assistance to practitioners through the means of 

intelligent, knowledge-based techniques.  These Decision Support Systems (DSS) encompass 

a wide-range of computer-enabled applications that are conventionally based on some form 

of analytical model, coupled to some form of optimization.  The application of optimization 

to Water Distribution Systems is generally characterised, however, by extended runtimes 

owing to the computational load imposed by the numerical solution of a hydraulic network 

model in order to determine the pressures and flows throughout the system.  This solution is 

iterative in nature and the time taken to compute the solution is largely dependent on the size 

and configuration of the network model itself.  Evolution Algorithms, which, by their nature 

require large numbers of evaluations of an objective function would, on first sight, appear to 

be ill-suited to Water Distribution System applications.  However, their ability to converge 

rapidly on an optimal or near-optimal solution, whilst having analysed a mere fraction of the 

total solution space, has made such algorithms popular subjects for research.  Despite 

inexorable improvements in computer power, there is still a need to improve the 

performance of these algorithms to allow for more complex optimizations to be undertaken 

with acceptable efficiency and effectiveness.  If multiple settings of the hydraulic network are 

to be considered, for example to allow an optimization to take account of variable network 

conditions during a 24-hour period or to allow for conditions of uncertainty to be evaluated, 

the computational workload associated with this hydraulic simulation becomes even more 

significant.   

A software framework for implementing Genetic Algorithms for hydroinformatic 

applications is presented.  This framework employs object-oriented programming techniques 

to provide a flexible, extensible system for implementing single and multiple-objective 

algorithms.  The framework developed has been deployed in a number of research projects 

as well as commercial undertakings and has been adopted to provide optimization facilities to 

three commercial products from two vendors. 
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1.2. Aims of Research 

The research presented in this thesis builds on previous work in the Centre for Water 

Systems on evolution-based algorithms by introducing a framework for the development of 

such methodologies.  This thesis presents novel approaches for simplifying the deployment 

of optimization techniques in hydroinformatic applications through the introduction of a 

componentized methodology that can be extended to implement new evolutionary 

algorithms with a minimal requirement for additional development work.  

Relative to the implementation of the optimization algorithm itself, the operation of a 

hydraulic network solver incurs significantly greater computation overhead.  To this end, 

novel approaches are proposed in the thesis to accommodate this issue from two 

perspectives.  Firstly, novel approaches for improving the algorithmic efficiency of the 

evolutionary optimization algorithms themselves are explored.  This includes investigations 

of new modifications to the representation of the genetic material employed and the 

operators that act on it in order to promote the efficient convergence of the population to an 

optimal solution.  Other considerations include ensuring that the algorithms minimize 

wastage by avoiding the evaluation of solutions that have already been considered.  The 

acceleration of stochastic optimization techniques is of particular importance, given the even 

greater runtimes common with such optimizations.  The second approach undertaken is to 

improve the operational efficiency of the algorithms.  This is achieved, herein, through the 

development of a methodology for massively parallelizing the evaluation of hydraulic 

network simulations by employing a cooperating network of computers. 

1.3. Objectives 

The following objectives have been formulated  

• Evaluate the effectiveness and relative performance of alternative genetic 

representations for chromosomes in evolution algorithms with respect to runtime 

and solution quality considerations. 

• Assess the potential for advanced caching and archiving techniques to reduce the 

runtime of evolution algorithms. 

• Develop and implement a framework for distributed evaluation of hydraulic network 

simulation and determine its value for facilitating the massive parallelization and 

acceleration of evolution algorithms for the optimization of water distribution 

networks. 



Chapter 1: Introduction  

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 37 

•  Develop and implement a modelling architecture for representing connected 

hydraulic networks to assist in the above objectives. 

1.4. Thesis Structure 

This thesis is arranged in nine chapters with two supplementary appendices.  Following this 

introduction and statement of the thesis aims and objectives, this thesis adopts the following 

structure: 

The second chapter, the literature review, provides a background to the application 

of optimization techniques, with particular emphasis on evolutionary approaches, to the 

optimization of Water Distribution Systems.   

Chapter Three introduces the concept of Evolution Algorithms (EAs) and relates the 

design, implementation and continuing development of a methodology for the application of 

EAs to hydroinformatic optimization problems.   

Novel extensions to the classical implementations of these algorithms are presented 

in the Fourth Chapter with the aim of improving algorithm performance – both in terms of 

execution speed and quality of result.   

Chapter Five presents a new methodology for the distribution of the computational 

workload associated with optimization applications that involve hydraulic network simulation 

between computers connected by a Local Area Network (LAN) or on 

multiprocessor/multicore computers. 

Chapter Six demonstrates the applicability of the techniques introduced in the prior 

chapters through their application to a number of small-scale single-objective optimization 

problems from the literature.   

This analysis is extended in Chapter Seven where the small-scale problems are 

refactored as multiobjective optimization problems.  Having demonstrated the effectiveness 

of the novel techniques on small-scale networks, the analysis is concluded with the 

application of the techniques to a more computationally demanding network optimization 

problem. 

Chapter Eight reapplies the methodologies presented to more complex problems – 

computationally and algorithmically – to demonstrate the wider applicability of the research 

to optimization of hydroinformatic problems.   
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The final chapter details the conclusions that can be drawn from this research and 

the proposed methodologies and suggest further avenues of research. 

The first Appendix introduces a software component, OpenNet, used for the 

modelling of networks.  This library implements a generic system for representing connected 

networks and for undertaking analysis upon them.  A specialization for representing 

pressurized hydraulic networks is presented along with a generic, adaptable technique for 

representing networks using eXtensible Markup Language (XML) the specification of which 

can be found in the second appendix.  The research is supported by the application of these 

tools to a number of practical applications.  Those described in the first appendix include the 

translation of third-party hydraulic networks from one format to another and integrating 

hydraulic models with disparate GIS data sources. 
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Chapter 2. Optimization in Water Distribution Systems 

2.1. Literature Review 

2.1.1. Genetic Algorithms 

Genetic Algorithms (GAs) are part of a group of stochastic optimization techniques called 

Evolutionary Optimization, inspired by Darwinian theories of natural selection.  This class of 

algorithm is noted for its ability to tackle large, NP-hard (Templeman, 1982) optimization 

problems without any domain-specific configuration.  Such NP-hard problems are those 

which are difficult to solve in polynomial time.  Holland (1975) was the first to coin the term 

‘genetic algorithm’ and identified the mathematical basis for the operation of the algorithms 

in terms of schema theory and the basis for the selection and recombination of genetic 

material, chromosomes, representing problem solutions.  The implementation and 

techniques underpinning GAs are described in more detail in Chapter 3.  Holland’s GAs 

implement the archetypal chromosomal representation which use strings of binary digits 

(bits) to encode the genotype of a solution. 

A number of workers in the field have investigated the extension of GAs to operate 

on multiple objectives simultaneously.  Instead of allowing a population of individual 

chromosomes to converge to a single solution, a multiple objective algorithm maintains 

multiple trade-off solutions for two or more objectives.  An early description of a conceptual 

multiple-objective algorithm by Goldberg (1989) was followed by functional algorithms 

including Non-dominated Sorted GA (NSGA) (Srinivas & Deb 1994) and multiple-objective 

GA (Fonseca & Fleming, 1993).  Deb (2001) describes the substantially reworked NSGA-II 

algorithm, which forms the basis of the robust multiple-objective optimization developed by 

Kapelan et al. (2005) and subsequent developments described in Chapter 4.5. 

2.1.1.1. Pump Optimization 

One of the first applications of Genetic Algorithms to Water Distribution System 

(WDS) optimization is reported by Goldberg and Kuo, (1987).  This work demonstrates the 

efficacy of applying the GA methodology to pipeline optimization problems.  In this case, 

the optimization is applied to a 40 pump, serial pipeline and seeks to minimize the cost of 

pumping (in terms of power consumption) whilst meeting constraints of maximum discharge 

pressure and maximum and minimum suction pressure.  The GA is implemented in terms of 

a simple binary string and employs single-point crossover and simple mutation (see 3.2.1.3).  
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The results are compared with the optimal solution determined using mixed-integer 

programming and the GA is found to have performed well, having achieved within 0.72% of 

the optimal solution on average whilst exploring a minute fraction of the search space of size 

1.1×1012. 

2.1.1.2. Network Design and Rehabilitation 

Murphy et al. (1993) present one of the earliest applications of a GA to a real-world 

WDS optimization problem.  In this paper, they demonstrate the ability of a GA to produce 

an optimal design layout for a new housing development using discrete, commercially 

available pipe diameters.  A theme returned to by Simpson et al. (1994) who review the 

alternatives for the optimization of water distribution systems, comparing “traditional” 

Linear Programming (LP)  approaches with non-linear techniques and the, emergent GAs.  

Of particular interest is the ability of the GA to select discrete, rather than the continuous 

variable outputs of the LP technique – obviating the need to convert the solutions obtained 

by the algorithm into a commercially feasible installation. 

Simpson et al. (1994) describe one of the first applications of GAs to a conventional 

supply system.  Here the GA is applied to the combined network rehabilitation and design 

problem introduced by Gessler (1985).  In this problem, a small network (1 reservoir, 1 tank 

and nine demand nodes) is to be upgraded through the provision of new pipes and the 

duplication or cleaning or others – minimising the cost of implementation whilst meeting a 

minimum pressure criterion at each node.  A conventional binary string representation is 

employed with three bits being used to represent the options available for each pipe.  In the 

case of the duplicated/cleaned pipes, this value represents either a decision to clean the pipe 

or the diameter of the replacement.  For the new-build pipes, this value represents the 

diameter of the new pipe.  The results obtained were compared to those derived from an 

exhaustive simulation of the possible solutions – thus, it is possible to compare the GAs 

performance against the global optimum for the problem.  The GA as formulated using a 

single-point crossover and simple by gene mutation arrangement is shown to achieve the 

global optimum on the majority of its runs despite exploring between 0.1% and 0.15% of the 

solution space (16,777,216 possible solutions).  Further to this comparison, a Non-Linear 

Programming (NLP) approach was also employed.  This method uses gradient techniques to 

refine a single solution to a problem, producing continuous results for the decision variables.  

In this example, the decisions need to be made in terms of discrete, commercially available 

pipe diameters and, consequently, the solutions obtained from the NLP algorithm need to be 
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recast into discrete terms by rounding the continuous pipe diameters obtained to their 

nearest discrete equivalent.  The NLP output is shown to be significantly inferior to that of 

the GA – indeed the continuous variable results obtained are inferior to the GA even prior to 

being rounded into discrete diameters. 

Gupta et al. (1999) present an unconventional GA implementation for WDS design 

that does away with the normal chromosomal representation used by GAs.  Instead of 

employing binary strings to represent discrete pipe diameters, this work substitutes the actual 

diameters into the chromosome instead – ostensibly to avoid the encode/decode cycle 

associated with the use of binary strings.  It should be noted, however, that the overhead for 

maintenance of the binary string is trivial in comparison to the computational requirements 

of performing a hydraulic simulation and this improvement, of itself, is unlikely to be 

significant in substantially reducing the algorithm runtimes.  The GA itself is heavily 

influenced by a number of heuristic modifications, including the initial stratification of the 

network into different diameter groups using expert judgement.  The operation of the GA is 

steered through further iterative routines, which operate on a candidate solution to promote 

feasible solutions in the population.  The results for six related case study scenarios are 

contrasted with those obtained from the authors’ own WATDIS software which employs 

NLP and which is shown to be marginally inferior for all but one of the scenarios.  It is 

noted, however, that both the GA and the NLP software require several trials to identify 

near-optimal solutions.  In the case of the GA this is to accommodate different scenarios of 

initial stratification for the pipe diameter ranges whilst the progress of the NLP software is 

heavily dependent on the initial conditions as it has a tendency to identify local optima. 

Savić & Walters(1997) introduce the GANET software and apply it to three 

previously published case studies in design and rehabilitation of WDS – New York Tunnels, 

Hanoi (Fujiwara & Kang, 1990) and Alperovits & Shamir’s example network (1977).  A 

comprehensive comparison of the results obtained in previous work, using various 

optimization techniques, is presented and illustrates the sensitivity of such analysis to the 

minor variation of some modelling parameters between different researchers.  In particular, 

variation in the constants used to derive the Hazen-Williams coefficient (see Walski, 1984) is 

highlighted as being a cause for marked differences in the predicted hydraulic behaviour of 

the network.  Such differences in behaviour are shown to have consequences for the steering 

of the optimization algorithms employed and the comparability of the results obtained: a 

solution to the New York Tunnels problem is given which at $37.13m betters the current 
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known optimal solution – achieved by relaxing the Hazen-Williams coefficient.  The 

GANET tool, which combines an optimizing application coupled to a public domain 

hydraulic solver, EPANET (Rossman, 1993) which employs the Gradient technique (Todini 

and Pilati, 1987) for evaluating the hydraulic performance of networks. 

The integration of WDS analysis with commercial optimizers is the focus of Lippai et 

al. (1999).  They report the results of solving the New York Tunnels problem (Schaake & Lai, 

1969) with WinPipes (an EPANET-derived hydraulic solver) coupled to four commercial 

optimization applications including, GA-based Evolver (Palisade Corp., 1998) and 

GENOCOP  (Michalewicz, 1992).  Interestingly, they report a solution for New York 

Tunnels, obtained with Evolver, of $38.13m – which would be the best result obtained to 

date were it feasible.  Running the proposed solution through EPANET reveals an aggregate 

head deficit of 0.03psi.  This may be related to the sensitivity to the model to small changes in 

the Hazen-Williams coefficient, as noted by Savić  and Walters (1997) or through some 

rounding error.  

The Messy Genetic Algorithm (MGA) of Goldberg et al. (1989) differs from a 

conventional GA in that the MGA operates with variable chromosome lengths, allowing the 

algorithm to progressively build up a solution as it runs – constraining the search space 

encountered.  In this instance, integer-coded genes are employed.  An enhancement to the 

MGA is described by Halhal et al. (1997) with particular application to the rehabilitation of 

WDS.  They propose a modified algorithm termed Structured, Messy Genetic Algorithm 

(SMGA).  The SMGA extends the approach of the MGA by employing an initial population, 

each member of which contains each single decision element.  For example, in the small 

rehabilitation problem presented in this paper, there are 8 possible decisions to be made on 

each of 15 pipes which would lead to the SMGA having a starting population of 8×15 = 120 

individuals, representing each possible decision using one intervention.  Furthermore, the 

authors describe one of the first applications of multiobjective optimization to WDS 

problems.  With this technique, Pareto-optimal ranking and fitness sharing Goldberg & 

Richardson (1987) is used to coordinate the retention of individuals in the population 

according to how well they fit the twin objectives of minimizing cost and maximizing benefit.  

In contrast to the other techniques employed, such a multiobjective optimization produces a 

Pareto-curve illustrating the trade off between the objectives rather than a single “solution” 

to the problem.  The SMGA is shown to perform far better than a conventional GA for the 

presented problems, producing a better classification of individuals along the Pareto front 
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than the standard GA.  This technique is later applied to the “Anytown” WDS benchmark 

system (Walski et al., 1987) by Walters et al. (1999).  This problem is a network reinforcement 

for increasing demand scenarios, which is constrained not only by infrastructure but also by 

pumping costs.  The SMGA as presented by the authors is seen to improve the then best 

published result for this benchmark by between 4 and 5%. 

Wu and Simpson (2001) seek to optimize the same network arrangement solved by 

Simpson et al. (1994) using a similar MGA.  In addition, they demonstrate an improved 

performance, in terms of GA convergence to near-optimal solutions, for the MGA on the 

New York Tunnels problem over that achieved by the “Improved GA” of Dandy et al. 

(1996).   

Dandy and Engelhart (2001) relate the use of GAs to optimize pipe-replacement 

schedules for single and multiple time-horizons.  The algorithm described includes the use of 

a hybrid selection scheme in which Tournament selection (Goldberg et al., 1991) is combined 

with the conventional Roulette-wheel technique (Holland, 1975).  In addition, Uniform 

crossover (Syswerda, 1989) and the creep mutation of Dandy et al. (1996) were employed to 

operate on an integer-coded chromosome.  The authors demonstrate that this approach 

employed on a problem with a large solution space (~1×10100) produces good results by 

identifying pipes requiring replacement, within the required budget.  The results were 

validated by comparison with a simplified asset model for which decisions were made on a 

case-by-case basis. 

Kadu et al. (2008) present a modified Genetic Algorithm for undertaking optimal 

design of WDS employing techniques to reduce the optimization search space.  A real-coded 

chromosome is employed, along with single-point, uniform and multi-parent crossover, non-

uniform and neighbour mutation (amongst others) coupled with a Critical Path technique 

(Bhave, 1978) to reduce the search space -the different genetic operators being selected at 

random during the operation of the algorithm.  The algorithm is demonstrated on a number 

of familiar networks from the literature including the Hanoi network where the algorithm is 

shown to match the best known result (Cunha & Sousa, 1999) and to better the result 

achieved for the stricter problem introduced by Savić & Walters (1997) where ω = 10.9031.  

For performing the hydraulic analysis, the authors introduce GRA-NET a hydraulic solver 

which, like EPANET, is based on the Gradient Method (Todini & Pilati, 1987) but which 

allows the easy modification of the coefficient (ω) and exponents (α,β) used in the Hazen-

Williams head loss equation: 
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where hf is the head loss, L is the length of the pipe, Q is the flow through the pipe 

and C and D are the friction factor and diameter of the pipe respectively. 

The sensitivity of GAs to the genetic representation used to represent the problem 

and its interaction with the recombination operators of crossover and mutation is 

demonstrated by Dandy et al. (1996).  Specifically, they investigate the use of Gray coding to 

improve the performance of crossover in preserving schema in the chromosomes.  A 

variable power-scaling fitness function is employed to direct the search as the optimization 

progresses.  In addition, a novel mutation operator is introduced which permutes individual 

genes into adjacent values, rather than the traditional GA approach of randomizing gene 

values.  As a case study, they apply these modifications to the New York Tunnels problem 

(Schaake & Lai, 1969) and report the best result obtained by a Genetic Algorithm of $38.80m 

for a fully feasible solution using discrete pipe diameter selections.  The results obtained mark 

a considerable improvement in both computation performance and solution quality over the 

authors’ previously work (Murphy et al. 1993). 

2.1.1.3. Network Calibration 

Since their introduction into the domain of hydroinformatics, GAs have been used 

for calibrating WDS – modifying system parameters, ordinarily pipe roughnesses in order to 

match model results with data obtained from the field (e.g. Savić  & Walters, 1995).  

Vitkovsky and Simpson (1997) present a comprehensive analysis of the application of GAs 

to calibration, both for fitting roughness values to pipes and for transient calibration.  The 

authors use real numbers encoded as binary strings as the basis for a conventional GA 

approach.  The operation of an averaging crossover operator is improved by the occasional 

use of two-child average operators, which are seen to reduce the likelihood of a population of 

individuals converging prematurely. 

de Schaetzen et al. (2000) utilise the GA in a different fashion for calibration: 

attempting to find the optimal arrangement and density of sampling points for the analysis.  

The optimization here is formulated in terms of maximizing an entropy function, employing 

an integer-based chromosome with each gene representing a potential sampling point 

location.  The results are compared to those produced through expert judgement and are 
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found to be a useful tool for deriving a likely set of candidate sampling points.  A similar 

approach is adopted by Meier and Barkdoll (2000) where the objective function is to realize 

the maximization of the length of pipes in the network that have non-negligible flows when 

the sampling is being performed for the proposed sampling point distribution.  Kapelan et al. 

(2003b) further extend this analysis by formulating a multi-objective GA based on Fonseca & 

Fleming’s implementation (1993) for considering calibration-sampling design.  

2.1.1.4. Water Quality Optimization 

Genetic Algorithms are used by Munavalli and Kumar (2003) to optimize the rate, 

timing and concentration of chlorine dosing in a WDS.  Given predefined dosing locations, 

this methodology seeks to optimize chlorine dosing so as to minimise the maximum 

concentration found in the network whilst continuing to maintain the minimum level of 

chlorine residuals at all nodes in the network.  Using hydraulic results from EPANET 

(Rossman, 2000) for extended period simulation of the network in question, the authors 

apply their quality model for chlorine decay.  The GA employed uses a conventional binary 

string implementation but adds creep mutation, in which mutation permutes the variable by 

the smallest possible amount in a given direction, and a niching operator (multidimensional 

phenotypic sharing scheme - Goldberg 1989) to direct further the search. 

2.1.1.5. Accommodating uncertainty in GAs 

Kapelan et al. (2003a) report a technique for accommodating uncertainty in design 

constraints when optimizing using GAs.  This approach embeds a stochastic optimization 

cycle within the operation of a conventional single or multiple-objective GA.  The stochastic 

cycle evaluates samples for Probability Density Functions (PDFs) obtained for the stochastic 

variables (in this example, uncertain future demands) and aggregates statistics on the network 

performance over the lifetime of the chromosome – providing a measure of reliability of the 

network under the uncertain constraints. 

Babayan et al. (2003) and Kapelan et al. (2004) present differing approaches to the 

optimization of WDS design/rehabilitation under conditions of uncertainty.  The former 

approach employs the reformulation of the stochastic problem in deterministic terms.  This 

is accomplished through some simplification of the problem and the use of numerical 

methods in the quantification of the uncertainty in hydraulic reliability.  By comparison, the 

latter promotes a sampling-based technique for accommodating uncertainty that is 
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independent of the model under consideration.  Both of these methodologies employ single 

objective GAs to perform the optimization.  

2.1.2. Other Optimization Techniques 

2.1.2.1. Linear Programming 

One of the earliest efforts at computer-aided water distribution system (WDS) design was 

described by Alperovits & Shamir (1977) who developed a Linear Programming Gradient 

methodology for a least-cost implementation of a network.  In this context, “least-cost”   

refers to the minimization of the implementation cost of the network in terms of the cost of 

the pipes to be installed.  This methodology reduces the optimization to a series of sub-

problems regarding the possible flow routes to each point in the network.  The applicability 

of this approach is severely constrained by the complexity of the network involved and 

subsequent work has concentrated on reducing the computation complexity of optimizing 

such networks.   

Morgan & Goulter (1985), Taher & Labadie (1996) formulate their design 

optimization as a Linear Programming problem for which a componentized software 

package was developed comprising a number of individual applications working in concert.  

These papers, and several others, suggest a common theme - the direct integration of the 

network optimization software with spatial information – in this instance, the spatial 

component is used to perform network analysis for pressure zone distribution, node demand 

allocation and least-cost routing. 

2.1.2.2. Heuristic Approaches 

Heuristic techniques are employed in situations where classical optimization techniques 

would otherwise struggle to achieve good results with acceptable runtimes.  This is often 

achieved through the embedding into the optimization of some domain-specific knowledge, 

which can be used to steer the process more effectively.  Makropoulos et al. (2003) employ a 

random search technique to resolve a spatial optimization problem obtained from the 

aggregation of water demand management scenarios developed through fuzzy inference 

rules.  This work seeks to produce optimum strategies for maximizing water-saving whilst 

respecting investment constraints.  The application of such a heuristic, as with many 

optimization strategies, is not guaranteed to produce a global-optimum and the authors 

validate the results obtained through a Monte-Carlo sampling approach.  This technique is 
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expanded upon by Makropoulos & Butler (2005) where a heuristic approach is hybridised 

with a more conventional multiple-objective evolution algorithm for application to wider 

water sustainability issues. 

2.1.2.3. Cellular Automata 

Cellular Automata are a long established area of research in computer science having 

been first identified by John von Neumann and Stanisław Ulam whilst working at Los 

Alamos National Laboratory, New Mexico, U.S.A. (von Neumann, 1966).  They have been 

successfully employed as an optimization technique for Water Distribution Systems by 

Keedwell & Khu (2006) in which the nodes and pipes of a network are configured to 

communicate with each other, according to predefined rules, in such a fashion that a self-

optimizing behaviour emerges in the network.  Keedwell and Khu (2006) employ three rules 

to direct this behaviour: 

• If a demand node is pressure deficient then it requests connected pipes that 

supply it to be upsized. 

• Conversely, if a demand node has a pressure surplus then it attempts to 

downsize its supply pipes. 

• If a pipe receives an equal number of upsize and downsize requests it 

responds by upsizing. 

The emergent behaviour that these rules embody makes no attempt to find a global optimum 

as it is driven purely by pressure differentials rather than other, conventional optimization 

factors such as implementation cost.  Instead, it seeks a stable solution that it can achieve by 

making local changes to the network.  This technique is of particular interest as it is 

computationally very efficient with respect to other optimization techniques and can be seen 

as a effective form of local-search heuristic.  The authors suggest that it is well suited to the 

role of generating initial “seed” populations for other optimization techniques where the 

solution space for a given network problem is inordinately large. 

2.1.2.4. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is introduced by Eberhart and Kennedy (1995).  

Like GAs, this technique operates on a population of individuals that is, initially, randomly 

generated.  However, the mechanisms for improving the fitness of the population are quite 

different to those of evolutionary algorithms.  Here, individuals in the population use 
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retained information about the best solution they themselves have encountered in the 

solution hyperspace and, combined with the “group knowledge” of the global best solution 

encountered, the individual solutions are perturbed in the directions of the local and global 

optima according to some random term.  The Shuffled Frog Leaping Algorithm (SFLA) is 

related by Eusuff and Lansey (2003a,b), a memetic, meta-heuristic technique which combines 

a novel evolutionary technique with the PSO (Eberhart and Kennedy, 1995) to facilitate the 

local search element.  Once more, the New York Tunnels (NYT) example is employed, with 

EPANET providing the hydraulic computation, with the authors contrasting their results 

with those obtained by several others in the field – including the seemingly infeasible result of 

Lippai et al. (1999) and those obtained by Savić  & Walters (1997) through the variation of the 

Hazen-Williams coefficient.  In Eusuff and Lansey (2003a), the SFLA algorithm produces a 

result for the NYT expansion problem of $35.27m.  It is unclear from the paper as to how 

this result is obtained as the solution presented is infeasible when solved with EPANET (an 

aggregate head deficit of 7.27psi over three nodes) and remains infeasible even with the 

relaxed Hazen Williams constraint of Savić  and Walters (-6.36psi over the same three nodes).  

Eusuff and Lansey (2003b), however, report modified results in which SFLA’s best result is 

shown to be equal to that of Lippai et al. (1999) using a modified Hazen-Williams coefficient 

of 10.667. 

2.1.2.5. Simulated Annealing 

Simulated Annealing is an optimization technique which, in essence, applies the 

mutation operator familiar to the Genetic Algorithm to a single solution repeatedly.  Initially, 

a high “temperature” allows the mutation to vary widely the values of the decision variables.  

As the “temperature” cools, i.e. during the progress of the optimization, the freedom of the 

mutation to vary the values is constrained – as an analogue with metallurgical annealing in 

which crystalline solids begin to appear during cooling. 

Cunha & Sousa (1999) describe the application of the Simulated Annealing technique 

to WDS benchmark problems including one introduced by Alperovits & Shamir (1977) and 

the Hanoi network of Fujiwara & Kang (1990).  The application is successful in finding low-

cost solutions and has identified the lowest-cost solution for the Hanoi problem yet 

published of $6,056,370.68 – albeit with a relaxed Hazen Williams constraint. 
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2.1.2.6. Ant Colony Simulation 

The Ant Colony Simulation (ACS) approach was introduced by Dorigo et al. (1996) 

and first applied to the domain of WDS optimization by Maier et al. (2003) who used this 

technique to tackle a number of benchmark rehabilitation problems.  This work is notable, in 

particular, for finding the best-known solution, at the time of writing, for the New York 

Tunnels optimization problem introduced by Schaake & Lai (1969) and described in detail in 

Chapter 6.2.  ACS operates as an analogue of the essentially random process of ants foraging 

for food in which individual ants lay pheromone trails as they explore.  In the optimization 

technique, there is a higher probability of an ant following an existing pheromone trail that it 

encounters of a given threshold strength – resulting in a positive feedback mechanism which 

allows the “ants” to identify the most direct route to the food source.   

Several variants of the approach have emerged.  Following on from earlier work 

(Zecchin et al., 2006), Zecchin et al. (2007) present a comparative study of the performance of 

five ACS algorithms applied to Water Distribution System benchmarks and find that the 

Elitist-Rank Ant System (Bullnheimer et al., 1999) and the Max-Min Ant System (Stützle and 

Hoos, 2000) outperform the other types.   

2.2. Summary 

Evolution algorithms are no longer seen as an emergent technology in the field of Water 

Distribution System optimization.  The traditional techniques founded on linear and non-

linear programming have largely been usurped and new metaheuristic techniques have taken 

their place.  These techniques, Genetic Algorithms, Ant Colony Optimization, Particle 

Swarm Optimization amongst their number, are being employed for an increasingly diverse 

range of applications in the field.  The classical applications of network design and 

rehabilitation and model calibration have been supplemented with more complex and larger-

scale problems.  Hybrid optimization techniques are increasingly being employed to 

accommodate additional concepts to improve the reliability of optimized solutions – 

particularly by considering uncertainty in design criteria. 
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Chapter 3. Genetic Algorithms 

3.1. Introduction 

Evolution programs (Michalewicz, 1992), of which Genetic Algorithms (GAs) are probably 

the best-known types, are general, artificial evolution search methods based on natural 

selection and mechanisms of population genetics.  They emulate the natural processes of 

evolution (Darwin, 1859)– being based on preferential survival and reproduction of the fittest 

members of the population, the maintenance of a population with diverse members, the 

inheritance of genetic information from parents and the occasional mutation of genes.  These 

algorithms are best suited to solving combinatorial optimization problems that cannot be 

solved practicably using more conventional operational-research methods. Thus, they are 

often applied to large, complex problems that are non-linear with multiple local optima. 

GA optimization is a powerful approach with a proven ability to identify near-

optimal solutions (Savić & Walters, 1994; Halhal et al., 1999).  However, the correct operation 

of a GA optimization depends on careful configuration and parameter tuning - requiring 

appropriate skills and experience.  Inappropriate penalty levels will distort the results away 

from the end user’s perception of ‘optimum.’  Too high or low a rate of genetic interchange 

(‘crossover’ and ‘mutation’) result in degeneration to a random search or stagnation, causing a 

failure to converge on the global optimum.  Because of the complexity involved in setting up a 

GA to operate effectively, this form of optimization is not well suited to ‘trivial’ problems, i.e. 

those for which the number of possible solutions is small. 

Solving optimization problems related to water distribution networks is recognized as 

an NP-hard analysis that has conventionally been approached using a number of techniques 

including hill climbing, linear and dynamic programming.  Evolution algorithms represent a 

proven, alternative strategy for approaching these problems. 

The benefits of GAs stem from their ability to converge rapidly on an optimal or 

near-optimal solution, having analysed only a tiny fraction of the number of possible 

solutions available.  For large problems such as those typically associated with networks, the 

exhaustive analysis of all options is unlikely ever to be feasible.  In a water distribution 

network expansion and reinforcement problem (Atkinson et al., 1998) analysed in the Centre 

for Water Systems, University of Exeter, using GAs, there were approximately 300 pipe links, 

each of which could adopt any of 14 diameters (including the option of not employing a 

pipe).  This presents a problem size of 14300 or 6.89×10343.  Even if one billion design 
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evaluations (i.e. network simulation runs) could be performed in a second, the time needed to 

evaluate all possible schemes would be much longer than the age of the earth (estimated at 

4.6 billion years).  Given that, on current high-end PC platforms, design evaluations for 

multiple time-steps may take up to several seconds each, such iterative analyses are clearly 

redundant.  In this instance, the GA optimization search was able to converge on the lowest 

cost solutions by carrying out several hundred thousand evaluations. 

3.2. Methodology 

The basic genetic algorithm is implemented by means of selecting a number of organisms 

from a population; recombining them in some fashion to produce a number of offspring; 

introducing some mutation factor; evaluating the resultant offspring with respect to their 

fitness as solutions for the problem at hand and finally reintroducing (or replacing) the 

organisms into the base population.  The flowchart in Figure 3-1 illustrates the basic 

operation of a Genetic Algorithm through these repeated cycles of Selection, Recombination 

(crossover), Mutation and Replacement. 

In nature, the evolution of biological organisms takes place as a result of the adaptive 

pressure exerted upon them by the environment in which they have to survive.  Through the 

sexual competition between individuals, it happens that the strongest and most attractive 

individuals win the right to mate and to produce offspring. 

The adaptation of organisms is ordinarily considered to take place through the 

production of offspring.  Natural organisms, in general, produce numerous offspring, many 

of which will not survive.  These offspring have varied traits inherited genetically from their 

parents.  Natural selection acts in such a fashion that the offspring with the most useful traits 

for their environment are the most likely to survive and, hence, to perpetuate those traits. 

As with its natural analogue, a GA operates on a population of individuals that can be 

seen as representations of potential solutions to a given problem.  In nature, this problem is 

survival and procreation - in GAs it can be any problem for which there is a means to 

determine a solution's fitness (suitability).  This means is commonly described as an 

individual's objective function. 

3.2.1. Algorithm operation 

Genetic algorithms search for schemata (Holland, 1975), which result in better fitness scores.  

Schemata can be considered building blocks  An evaluation is implicitly processing a number 
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of schemata in parallel.  Therefore, each time the genetic information from an individual 

organism is evaluated by the algorithm, instead of merely sampling a single point in the 

solution space, the algorithm is sampling many simultaneously.  Holland finds that the 

relationship between population size (P) and the number of schema implicitly processed by 

each generation of that population is of the order of P3. 

It is also necessary to consider at what stage the operation of an algorithm should be 

terminated.  Although the algorithm can be executed for a given number of iterations or run 

for a specific length of time, it is more useful to examine some measure of the genetic 

diversity of the population.  This is normally done by some statistical analysis of the variance 

in the fitness of the organisms in the population - since if a population is composed of 

identical, or near-identical organisms, the prospects for advancement for the population are 

poor.  
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Figure 3-1: Flowchart illustrating basic Genetic Algorithm operation. 

3.2.1.1. Algorithm types 

There are three conventional methods for organising the operation of a basic single-objective 

genetic algorithm. 
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1. In a steady state algorithm, (Holland, 1975) a number of individuals (normally 

two) are selected for recombination.  Once generated, their offspring are, in 

some fashion, incorporated into the existing population - provided they are 

of sufficient fitness.  

2. The generational scheme (Goldberg, 1989) is markedly different in that the 

offspring borne of parents selected from the population are pooled in a new 

population.  This process of selecting from one population and storing the 

offspring in another is ordinarily repeated until the size of the offspring's 

population is the same as that of the original population.  At this time, the 

inhabitants of the original population are eliminated and the offspring's 

population becomes that from which selection takes place. 

3. Adding elitism (Goldberg et al., 1991) to the generation GA implementation 

involves preserving the best organisms from the original population and 

transferring them, unmodified, into the new population.  The degree of 

elitism can be controlled by varying the number of organisms copied between 

the populations. 

Extending GAs into the multiple objective domain was first undertaken by Fonseca 

& Fleming (1993) who formulated a Multiple Objective GA (MOGA) employing fitness 

ranking to produce a trade-off between competing objectives.  Further multiple objective 

implementations have been proposed, such as the NSGA-II by Deb (2001) which has the 

advantage of being largely self-tuning.  Both methodologies have been incorporated into the 

library described herein. 

3.2.1.2. Selection 

Although, conventionally, a GA does not have a concept of gender in its representation of 

organisms, it still possesses the notion of sexual selection in the initial selection phase of 

operation in that organisms are competing against each other for the perquisite of 

propagating themselves. 

The process of selection determines, in some fashion, which of the individuals will 

have some or all of their genetic material passed on to the next generation.  The selection 

scheme used by a GA seeks to give exponentially increasing selection to the fittest organisms 

in the population, thus differentiating a GA from a random search technique. 
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The "roulette-wheel" or proportional selection introduced by Holland (1975) and 

refined by Goldberg (1989) is amongst the most common means of performing selection.  It 

is best visualised as a roulette wheel in which each slot on the wheel represents an organism 

in the population.  The width of the slot is proportional to the fitness of the corresponding 

organism and thus the 'ball' is more likely to favour the fitter individuals in the population.  

Conventionally, the implementation of the roulette wheel relies on the objective function 

being configured for a maximization problem.  It is a small matter to ensure that the function 

correctly configures the roulette wheel for the minimization problems that are more common 

in the water industry.  A similar selection technique is proposed by Baker (1985) in which the 

basis of the proportional selection is the rank an organism holds, in terms of fitness, within a 

population. 

Tournament selection (Goldberg et al., 1991) can be thought of as a form of ranked 

selection as above.  Instead of operating on the population as a whole, it functions by 

selecting at random a number of individuals from the population and then comparing their 

fitness.  The fittest individual goes forward from the tournament to be one of the 

contributing individuals to the recombination process.  The tournament is repeated until 

enough individuals have been selected to perform the recombination.  One of the useful 

attributes of tournament selection is that the selection pressure can be tuned easily by 

modifying the size of the tournament: a smaller tournament promotes the likelihood that a 

weaker member from the population will be selected. 

3.2.1.3. Recombination 

A GA seeks to evolve fitter solutions through some means of selective recombination of 

parts of better, existing solutions.  This mimics the “survival of the fittest” stratagem of 

natural evolution in which the “fitter” solutions are predisposed to be more successful at 

reproduction.   This tends to lead to the removal of the less-fit individuals and an increase in 

the fitness of the population as a whole.  In Genetic Algorithms, this recombinative 

operation is known as “crossover”. 

Crossover, like selection, is one of the key traits of a Genetic Algorithm.  Ordinarily, 

it takes place on two organisms selected from the population and, conventionally, produces 

two offspring organisms - although this is not necessarily the case.  Each child is likely to be 

different from its parents, unless its parents are identical, and yet they will each retain a 

number of characteristics from their parents.  Given that both parents are likely to have high 
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fitness, since they prevailed in the selection process, there is a reasonable probability that the 

one or both of the children may prove to be more fit than either parent is. 

The most commonly used crossover methodologies for standard GAs are single and 

two point crossovers in which one or two loci are selected on the parent gene and the genes 

between the end and the locus (single point) or between the loci (two point) are transposed 

to produce the two offspring.  Syswerda (1989) introduced Uniform crossover in which the 

two children are produced by selecting at random, for each gene locus, from which parent 

the gene value should be copied.  As with the other methodologies, the two resulting children 

retain all of the genetic information from the parents – it having been transferred in part to 

one child or the other. 

3.2.1.4. Mutation 

To ensure that the solutions in a population do not become stuck at a non-optimal solution, 

a randomization element is introduced.  This stochastic alteration is known in GAs as 

"mutation".  The purpose of the mutation component of the algorithm is to permit local 

search around a given solution.  Various forms of mutation are commonly used, varying 

from those which permute individual bits of binary strings, randomize variables with their 

domain or adjacency operators that “nudge” gene values to adjacent values. 

3.2.1.5. Replacement 

After crossover, and potentially mutation, the final stage of the GA operation is 

Replacement.  This operation applies primarily to Steady State GAs, since generational GAs 

populate wholly new populations, to form each successive generation - making the 

application of a replacement strategy irrelevant.  Instead, the children produced in a 

Generational GA, following recombination, are automatically promoted to the new 

population.  Such GAs tend to promote genetic diversity as a result. 

The newly formed offspring have to be incorporated into the existing population in some 

fashion.  There are many potential strategies, including substitution of parents, replacement 

of the weakest member of the population, etc.  The choice of replacement strategy is dictated 

considerably by the nature of the algorithm being employed, be it steady state or generational 

and by the solution space itself. 

Rather than explicitly control the replacement strategy, some GA implementations 

seek to place a measure of control on it by introducing a probability factor on the crossover 
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operation.  This means that the parents pass through the crossover stage unaltered and, 

unless mutated, will find their way back into the population unaltered. 

A number of mechanisms can be used to implement this replacement: 

Replacement of Parents 

This mechanism is, perhaps, closest to the biological analogue.  Traditionally, organisms in 

GAs do not have a concept of age.  However, by causing children to replace their parents 

this can be simulated to an extent.  Ordinarily, this would only be done if they prove to be 

fitter than their parents are. 

Replace Weakest 

In this strategy, both children are added to the population and then the two weakest 

organisms are removed.  This has the effect that if either or both of the children are weaker 

than the weakest existing member of the population then they will be eliminated.  If they are 

stronger then an existing member is sacrificed, instead.  This mechanism has the effect of 

rapidly excluding the weakest members of the population whilst converging on the very 

strongest members. 

Replace First Weaker 

Each child is compared with the existing members of the population until a weaker organism 

is encounters, whose place it then takes in the population.  In the event that no weaker 

organisms are found (i.e. that the child is weaker than the weakest member) then that child 

becomes extinct.  This promotes less rapid convergence, being less destructive than the 

Replace Weakest strategy with respect to the weaker members who may still retain valuable 

genetic information. 

Replace By Rank 

The 'Replace by Rank' mechanism operates by ranking the organisms within the population 

according to their fitness values.  The newly produced children then replace the existing 

organism which has the rank that they would have, had they been part of the population.  If 

there is no such rank in the population then they are eliminated. 

3.2.2. Solution Representation 

In order for a GA to function there must be some mechanism to allow the computation of 

the fitness of an individual for the problem at hand.  The term genotype refers to the genetic 
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information stored in the genome of an individual organism.  In order to make use of this 

information, it has to be decoded into the phenotype – the “real-world” interpretation of this 

information, if you will.  The decoding process used depends on the representation used for 

the genotype. 

3.2.2.1. Genotype Representation (Encoding) 

Conventionally, Genetic Algorithms have used strings of binary digits to implement the 

genotype as in Figure 3-2.  This figure represents four genes each of which is comprised of 

four binary digits (bits) which allow the representation of 16 (24) different values.  The 

mechanism for encoding and decoding these values is covered in the following section. 

Figure 3-2: Example of a chromosome using binary strings 

Two other commonly used forms of alternate generic encoding are real numbers and 

integer (or ordinal) values.  Here, in contrast to the binary representation, the values required 

are stored directly in the chromosome as evidenced by Figure 3-3 which illustrates an integer-

based chromosome encoding the save gene values (alleles) as in Figure 3-2.   

Figure 3-3: Example of a chromosome using integer values (same values as Figure 3-2) 

Binary strings 

The bit string encoding used for the chromosomes described above is one of the genetic 

representations (allelomorphs) that can be used.  Figure 3-4 shows the structure of a 

conventionally encoded binary string with a value of 1,024 + 512 + 256 + 128 + 64 + 16 + 4 

= 2004.  The notations MSB and LSB indicate the Most and Least Significant Bit of the 

binary string respectively, referring to the influence that these bits have on the total value 

represented.   

0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 

1 2 4 8 1 2 4 8  1 2 4  8 1 2 4 8 

Gene 1 Gene 2 Gene 3 Gene 4 

0 7 13 4 

G
ene 3 

G
ene 4 

G
ene 2 

G
ene 1 
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Figure 3-4: Conventional Binary String 

Gray coding 

Gray coding (Gray, 1953) is a means of recoding the binary string such that successive values 

of the phenotype are guaranteed to be represented by binary strings that differ in only a 

single bit position.  There are many such Gray codes that can be developed for a given bit 

length - the type of coding implemented in this library is “binary-reflected” as this is quite 

simple to implement in an efficient manner.  In this technique, with each increasing integral 

value, the next binary string representation is derived by flipping the least-significant bit that 

will produce a binary string that has yet to be encountered. 

Value 0 1 2 3 4 5 6 7 
Normal 0000 0001 0010 0011 0100 0101 0110 0111 
Gray 0000 0001 0011 0010 0110 0111 0101 0100 
         
Value 8 9 10 11 12 13 14 15 
Normal 1000 1001 1010 1011 1100 1101 1110 1111 
Gray 1100 1101 1111 1110 1010 1011 1001 1000 

Table 3-1: Comparison of conventional binary strings and Gray-coded binary strings for 4-bit values 

Table 3-1 illustrates the “adjacency property” (Goldberg, 1989) in which adjacent 

values of Gray-coded binary strings differ only by a single bit value.  This has been shown 

(Michalewicz, 1992) to improve the performance of the mutation operation as it allows a 

more effective exploration of a local-search space.  For example, to progress from a value of 

7 to 8 with a conventional representation would require the flipping of four bits – clearly an 

unlikely mutation.  However, using the Gray-coded representation such a change – as with 

any other in the sequence – would result from the modification of a single bit.  With higher-

order binary string length, this issue becomes more apparent. 

Real Number Encoding 

This encoding strategy uses chromosomes whose genes are not represented by binary digits -

rather they use real numbers.  The principal advantage of such a representation is that the 

decoding stage to obtain the phenotype is unnecessary since the genes are already in the form 

that they are required.  This has a clear performance advantage for the algorithm, reinforced 

0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 

MSB LSB 

1 2 4 8 

16 

32 

64 

128 

256 

512 

1,024 

2,048 

4,096 

8,192 

16,384 

32,768 
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by the fact that floating-point genes are far easier to manipulate than their bit-string 

equivalents and occupy significantly less memory space. Janikow & Michalewicz (1991) 

found experimentally that such real number encodings vastly outperformed their binary 

equivalents both in computation performance but also in their flexibility for the 

implementation of operators that function as vectors in the solution space itself. 

Real encodings have significant benefit to the engineering design optimization field as 

there is typically a large number of parameters to describe the design options that can be 

chosen, as well as being more intuitive in the first place. As the size of the solution space is 

generally extremely large, the use of bit-strings for representing the solutions becomes 

prohibitive in terms of performance. 

The mechanisms of crossover and mutation that are normally associated with the bit-

string representation are appropriate for use with real number encoding.  However, the 

representation allows new forms of crossover to be considered, such as averaging the value 

in each parent, weighted averages, weighting each child to a particular parent. 

In a similar fashion, the mutation operations can be optimized for use with real 

numbers.  Rather than simply replacing a gene with a newly generated random version, it is 

possible to add or subtract from the existing value of the gene or average the value with a 

random number.  For the purposes of Water Distribution System design, however, real 

encodings are of lesser value – given that the decision variables are typically installation pipe 

diameters, tank sizing and the like: these things being more commonly represented as discrete 

values to reflect the reality of the “off-the-shelf” sizes of these elements.  However, they find 

some utility in applications such as network calibration in which friction factors of individual 

pipes are modified to produce a match between observed and modelled pressures and flows. 

Ordinal/Integral Value Encoding 

Where a problem can be described in terms of a discrete number of choices, as is often the 

case in design optimization an ordinal encoding can be appropriate.  Within an organism's 

objective function, the decoding of these ordinals often takes place using a look-up table. 

Ordinal encoding is also well suited to combinatorial optimization problems such as 

the oft-cited Travelling Salesman Problem (Cormen et al., 2001).  In this problem, a salesman 

is required to visit a number of towns and return home without travelling to any town more 

than once.  The aim of the optimization is to minimize the distance travelled by the salesman. 
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Whilst this problem can be encoded using a conventional bit-string arrangement, it is 

more intuitive to represent it as a chromosome of ordinal numbers, where each ordinal 

represents an individual town.  When using this representation, however, it is necessary to 

use crossover and mutation operators that are aware of this form of encoding.  The use of 

the conventional crossover and mutation operators are highly likely to result in the creation 

of invalid (illegitimate?) children.  An ordinal chromosome must not contain duplicates and 

must have every ordinal represented at some locus of the chromosome. 

3.2.2.2. Decoding 

The first step is to decode the chromosome.  The genome of the organism which is 

comprised, in this example, of bit-strings need have no implicit relationship to the values they 

relate to with respect to the problem - it is simply the organism’s genetic material.  The 

phenotype of a genome describes what the values of the genes actually mean and represents, 

therefore, the parameters used in determining the fitness of an organism.  Thus decoding is 

the process of mapping the genome (or genotype) onto the phenotype. 

3.2.2.3. Evaluation 

Once the chromosome has been decoded, the calculation part of the objective function is 

responsible for plugging the decoded phenotype values into some form of function to map 

these parameters to a positive number, the fitness.  The mapping function need not be a 

simple mathematical function, indeed in the case of hydraulic network optimization, the 

function in question is a complete hydraulic solver package, which produces a series of values 

for pressures and flows for given parts of the network that are further used to assess the 

fitness of an organism.  In order for acceptable performance it is important that the 

calculation part of the objective function must be as swift as possible given that this function 

will be executed many tens of thousands of times during the runtime of an algorithm.  

Indeed, it is this speed that determines whether many problems are suitable candidates for 

solution through GAs. 

3.3. Implementation 

The Centre for Water Systems at the University of Exeter had previously developed genetic 

algorithm applications using a public-domain library, ‘libGA’ (Corcoran, 1993).  This library 

was written in the C language (Kernighan & Ritchie, 1988) and was restricted to single-

objective, genetic algorithm applications only.  The author of this library had made a 
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concerted effort to ensure that the library was fully extensible through a complicated series of 

references to procedural variables.  Such a structure allowed for the straightforward 

interchange of a number of different components - however, no mechanism was in place to 

promote code-reuse between components or to provide for extensibility of the library. 

Prior to exposure to libGA, a number of design criteria had been identified as being 

desirable for creating a generic framework for implementing GA applications.  Among these, 

which were not available with the libGA library, were: 

• heterozygous chromosomes - where individual genes code for different 

phenotypical variables and the chromosomes themselves may have variable 

structure or length between the individuals in a population. 

• heterogeneous chromosomes to support the above where genetic 

representation may vary according to that which is most appropriate for 

modelling the phenotype involved. 

• parallelization of  the execution of GAs.   

These requirements and the absence of object-orientation from this C-based library 

led to its rejection as a basis for ongoing development. 

At the beginning of the development of the GA software presented in this thesis, 

applications being developed in the Centre for Water Systems at the University of Exeter, 

were using the Delphi programming environment (Borland International, 1997), which is 

based on an object-oriented version of the Pascal language.  In order to incorporate 

Corcoran’s library into a controlling program written in Delphi, it would have been necessary 

to encapsulate the GA library within a Dynamic Link Library (DLL) written in C adding 

significantly to the complexity of employing the library.  At the time, it was understood that 

this would effectively preclude the use of the library on any other platform other than 

Microsoft Windows operating systems running on Intel processors, as this was the only 

platform for which Delphi produced applications.  However, several years later, Borland 

began producing versions of Delphi that would compile to Intel-based Linux as well as 

Microsoft’s .NET platform.  Integrating a C++ (Stroustrup, 1997) library such as GAlib 

would have involved the creation and maintenance of a “wrapper” to interface with the 

object-oriented C++ routines. 

After many years of development, however, a decision was taken to improve the 

compatibility and portability of the library and all of the legacy Pascal code was replaced with 
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ANSI-compliant C++ code using the functionality provided by the C++ Standard Template 

Library (Stepanov & Lee, 1994) and the Boost extension library (www.boost.org).  This led to 

a “forking” of the codebase in which other developers continued to extend the Pascal 

implementation – notably Engelhardt et al. (2002) who added Fonseca and Fleming’s (1993) 

MOGA multi-objective optimization capability to the basic GA – testament to the flexibility 

of the original design was that this was accomplished with the minimum of structural changes 

to the library. 

3.3.1. Algorithm Modularity 

The processes that constitute the genetic algorithm are themselves represented by individual 

classes, known as Extensions, derived from a single parent.  This class is primarily tasked 

with providing hooks that can be accessed by the user interface to query the status and to 

configure a given extension. 

The basic genetic algorithm class contains placeholders for five Extension-derived 

objects. These represent Selection, Crossover, Mutation and Replacement.  This and the 

other basic class relationships can be seen illustrated in Figure 3-5. 

A virtual method configure is introduced which may be implemented by descendant 

classes if required. This would ordinarily be used to present interactive interface elements to 

the user to configure the operation of this extension. The user interface may query whether 

configuration is possible by examining the public Configurable property, which returns false by 

default.  Other public properties allow the interface to retrieve information about the type of 

extension, author, version number and a description of the extension's characteristics for 

display in the user interface. 
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Figure 3-5: Outline class diagram for GA library implementation (Pascal version) 

Selection 

The abstract selection class introduces an abstract, virtual method select which must be 

overridden in all descendents of this class - failure to do so will result in a compilation error.  

This function is called by the algorithm implementation as the first step in the GA.  The 

derived selection objects operate by querying the current crossover object as to the number 

of parent organisms required for its operation.  This number of parents is then selected, 

according to the implementation of the selection process and references to the parents are 

stored in the GA's Family member – a repository in which parents and their offspring are 

stored during the recombination and evaluation process and prior to replacement into the 

population. 
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Crossover 

The Crossover class implements the core functionality required for performing the crossover 

operation.  A virtual method cross is introduced which performs the crossover on the parent 

organisms found in the GA's Family member.  This method should be overridden in 

descendent classes, although this is not required - by default the children produced by the 

cross method are identical copies of their parents.  The cross method is the second method 

called by the GA algorithm class during its execution cycle. 

The base crossover class also exposes two properties for the use of other Extension 

classes.  These are used to indicate how many parent organisms are required for the 

crossover and how many children are produced as a result.  As these attributes are 

implemented using properties, it is possible to construct a descendent crossover class that 

dynamically varies the number of parents/children it manipulates.  The mechanism of these 

variations is hidden from the other extensions, which depend on this information. 

In addition, a number of protected tools are provided for descendent crossover 

classes.  These are intended to provide a level of abstraction from the type of chromosome 

representation being used (indirected or expansive map).  Although the genome class itself 

implements this abstraction, some operations, particularly those that iterate over the genome 

structure, are more efficient with one representation than the other.  Consequently, 

implementing a further level of abstraction in the crossover class, which is mostly concerned 

with iteration, allows the derivation of cross methods, which have variant implementations 

depending on which representation is being used.  Among these methods are functions to 

determine a valid crossover point and most importantly, to exchange the genes between the 

parent's genomes over a given range. 

Mutation 

Support for mutation is represented by the Mutator class.  This class introduces a single 

virtual method, mutate, which performs the implemented mutation operation on the child 

organisms present in the GA algorithm class's Family member.  By default, this method does 

nothing, leaving the children unmodified.  The mutate method is the third called by the GA 

algorithm class during its execution cycle.  Ordinarily, however, this execution is conditional - 

derived mutate methods should reference the GA algorithm class's MutationProbability 

property and determine, using a random number, whether to proceed with the mutation.  

Notwithstanding this, this behaviour has not been made obligatory,  
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A further method actsOn is provided for internal use.  This method takes a gene or a 

chromosome as a parameter and returns true or false depending on whether the 

implemented mutation method is able to mutate the referred object. 

Replacement 

The abstract replacement class, Replacer, introduces a single abstract, virtual method replace 

which according to some scheme, inserts the children present in the GA algorithm class's 

Family member into the population referenced by the GA.  In the case of the Generational 

GA implementation, the replacement technique is not specified as child organisms are always 

incorporated in the new population.  The replace function of this class is normally the last to 

be called by the execution cycle of the algorithm. 

3.3.2. Genetic Representation 

3.3.2.1. Chromosome 

This class is the immediate ancestor for all genetic elements that group genes together.  It 

may be used on its own, simply to group related genes, or in the case of derivatives, to add 

additional functionality.  Its most important descendents are those concerned with 

implementing bit strings and ordinal combinatorial optimization strings. 

The gene() property introduced in this class allows the retrieval of a gene from a given 

locus in the chromosome.  The implementation of this property is recursive, thus if gene n is 

to be found in a nested chromosome it will be correctly returned. 

Also prototyped at this level is the “repair” functionality, implemented virtually.  

Repair functions are applied to a chromosome, after recombination, in order to ensure that 

the decision variable values are valid.  Whilst having no effect at this point in the hierarchy, 

this method is used in derivative chromosome types, particularly those for permutation 

optimization in which duplicates within the chromosome are not permitted and need to be 

removed where generated during recombination.  By devolving this to this level, it is possible 

to specify repair mechanisms for small parts of the genome, rather than operating across the 

entire genome. 

3.3.2.2. Genome 

The genome class is a specialized derivation of the chromosome class.  It differs from the 

latter in that it transparently maintains the expansive map of the chromosome if that 
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representation is being used.  It also introduces a length property that can be queried to 

determine the total length of the chromosome in genes. 

3.3.3. Third Party Extensions 

Since the initial development of the Genetic Algorithm library, a number of researchers have 

exploited the extensibility afforded by the library to add significant new functionality. 

To bring the GA library to a wider audience of developers within the Centre for 

Water Systems, the library was encapsulated as a custom C++Builder Component by 

Edward Keedwell.  Offering a “plug-in” optimization component for use in the C++Builder 

environment, this development makes the production of a simple optimization application a 

matter of using the Builder user interface to drag a component onto a window and then to 

configure the parameters of the optimization  using the interactive dialog boxes provided.  

Additional components are provided to provide reporting functionality including a 

specialized charting component for graphing of the progress of the algorithm. 

In this form, the library has been used in a variety of research and commercial 

projects as well as by undergraduate and postgraduate projects. 

3.4. Conclusions 

A library for the development of evolution algorithms is presented.  This library 

makes extensive use of object-oriented programming techniques to implement an extensible, 

open architecture for genetic algorithms and related optimization techniques.  The modular 

nature allowing for the extension of all components of the algorithm is described and is 

demonstrated through the implementation of specific algorithm implementations.  The final 

state of the library is illustrated in Figure 3-7 for single objective algorithms and Figure 3-8 

for multiple objective algorithms. 
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Figure 3-7: GA methodology: final design (single objective) 
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Figure 3-8: GA methodology: final design (multiple objective) 
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The fitness for purpose of this library and its constituent methodologies is 

demonstrated through its deployment in a number of research applications covering a 

number of hydroinformatic subject areas, e.g. Fullerton et al. (2002) (storm water flow 

modelling and optimization), Savić et al. (2000) (optimal design of expansion to a large-scale 

hydraulic network) and Engelhardt et al. (2002) (whole-life-costing for water distribution 

network management).  In addition, the software has been used in a number of generic, 

commercial software applications.  GAnet (Morley et al., 2000) and GAcal (Walters et al., 

1998) were sold by Ewan Associates as bespoke software applications for 

design/reinforcement and calibration of water networks, respectively.  More recently, the 

library has provided the optimization functionality in SEAMS’ WiLCO software (Engelhardt 

& Skipworth, 2005) used for the optimization of asset rehabilitation strategies to minimize 

whole-life-costs in water distribution and sewer networks.   
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Chapter 4. Extending the GA methodology 

4.1. Introduction 

Evolution algorithms are particularly sensitive to unexpected performance impediments due 

to the tightly iterative nature of their design.  Thus, efficient implementation of the 

algorithmic structures themselves is essential.  Even small inefficiencies can be magnified 

when looped repetitively.  Several novel techniques have been investigated to improve the 

computational performance of generic genetic algorithms.  The representations of binary 

strings have been explored in this thesis and a novel representation combining attributes of 

the integer representation is proposed as a contribution.  In addition, techniques for caching 

decoded values and entire solutions are introduced along with mechanisms for directing the 

mutation of individuals during an optimization.  Where appropriate, fragments of C++ or 

pseudo-code have been incorporated to help illustrate the implementation of the techniques 

discussed. 

4.2. Binary String Implementation 

4.2.1. Introduction 

Classically, binary strings – strings of bits (binary digits) – have been used in Genetic 

Algorithms to represent the chromosomes of the population (Goldberg, 1989; Michalewicz, 

1992).  Whilst the binary representation is simple to manipulate and understand, it can suffer 

in terms of computational efficiency because it is both a larger structure to manipulate and 

typically requires encoding and decoding into the specific domain required by the evaluation 

function of the GA. 

A variety of representations is examined by the Author for implementing the genes 

(genotypes) and their relative efficiency in computational terms established.  A novel 

representation that combines characteristics from the binary string and integer 

representations is introduced in this thesis and contrasted with the established 

representations. 

4.2.1.1. Genotype Representations 

This section describes the basic binary string representations utilised in the thesis.  

Thereafter, the remainder of the chapter describes novel techniques that have been devised 

to improve the performance of such representations. 
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Binary strings 

Binary strings are the conventional representation for Genetic Algorithms.  The process for 

encoding a bit string is as follows: 

void binary string::setValue(int a_Value) 
{ 
 for (int loop=0; loop < m_BitLength; ++loop) 
 { 
  m_Bit[loop]= a_Value & 1; 
  a_Value >>= 1; 
 } 
} 

Figure 4-1: C++ code fragment for encoding a binary string 

The process is performed in reverse to decode the bit string.  It should be clear from 

the description of the encode process that performing the encode (Figure 4-1) or decode 

(Figure 4-2) cycle entails significant expenditure of processor if the process is repeated often - 

as is the case in a genetic algorithm.  Consequently, these routines are ideal for optimization 

in assembly language. 

int binary string::value() 
{ 
 int result= 0; 
 int multiplier= 0; 
 for (int loop= 0; loop < m_BitLength; ++loop) 
 { 
  result+= multiplier * m_Bit[loop]; 
  multiplier <<= 1; 
 } 
} 

Figure 4-2: C++ code fragment for decoding binary string 

Gray coding of binary strings 

To facilitate the (transparent) use of Gray-coded binary strings in the GA library a 

derived class of the standard binary string is provided.   This class overrides the getValue and 

setValue methods of the binary string class to perform the Gray encoding and decoding 

without the end-user or other constituents of the algorithm being aware of the change.  The 

setValue function has been optimized by the Author for C++ implementation and relies on a 

transformation of the incoming value to perform the Gray encoding. 

bool grayBinary string::setValue(int a_Value) 
{ 
 int newValue= a_Value ^ (a_Value >> 1); 
 binary string::setValue(newValue); 
} 
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Figure 4-3: C++ code fragment for encoding a Gray-coded binary string 

The encoding shown in Figure 4-3 permutes the incoming phenotypic value a_Value 

and produces a modified value by performing the XOR operation (see Table 4-1)on a_Value 

against itself when integer divided by 2. 

Value A Value B Result 
0 0 1 
1 0 1 
0 1 1 
1 1 0 

Table 4-1: Binary eXclusive OR (XOR) operation 

The C++ ‘>>’ operation above notates a bitwise right shift of 1 binary place which 

has the effect of integer dividing by two – any remainder is discarded implicitly.  This process 

is illustrated in the following where the example string (Figure 4-4) has a value of 1,024 + 512 

+ 256 + 128 + 64 + 16 + 4 + 1 = 2005. 

 
Figure 4-4: Binary string prior to right shift 

Figure 4-5 shows the same string following a right shift of one place in which each bit has 

moved one place to the right.  The end-most bit was shifted out of the string and has been 

discarded.  The resulting value is 512 + 256+ 128+ 64 + 32 + 8 + 2 = 1002 –the integer 

division by two of the original. 

 
Figure 4-5: Binary string following right shift 

  The C++ ‘^’ operator performs the XOR.  Once the modified value is calculated, it 

is passed to the inherited setValue method to be encoded in the binary string in the normal 

fashion.  Referring to Table 3-1 it can be seen that when using the binary-reflected means of 

Gray coding, a value of 10 (nominally 10102) should be encoded as 11112 equivalent to a 

0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 
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decimal value of 15.  Following the operation outlined in Figure 4-3 gives 10 XOR 5 = 15, as 

required. 

Decoding a Gray-coded value is, however, less straightforward than encoding and 

requires some iteration: 

int grayBinary string::getValue() 
{ 
 int result= binary string::getValue(); 
 int mask= result >> 1; 
 while (mask > 0) 
 { 
  result ^= mask; 
  mask >> 1; 
 } 
 return result; 
} 

Figure 4-6: C++ code fragment for decoding a Gray-coded binary string 

One of the properties of the binary-reflected Gray encoding is that the most-

significant bit remains the same between the encoded and decoded representations - thus the 

decode routine can start on the second-most-significant bit.  A dry run through this code is 

shown in Table 4-2 illustrating the reverse of the example above in which a Gray-coded 

genotype of 15 (11112) is converted back to the phenotype of 10 (10102). 

Program step Result Mask 
int result= binary string::getValue(); 15 11112 undefined undefined 

int mask= result >> 1; 15 11112 7 01112 
while (mask>0) 15 11112 7 01112 
result ^= mask; 8 10002 7 01112 

mask >> 1; 8 10002 3 00112 
result ^= mask; 11 10112 3 00112 

mask >> 1; 11 10112 1 00012 
result ^= mask; 10 10102 1 00012 

mask >> 1; 10 10102 0 00002 

return result; 10 10102 0 00002 

Table 4-2: Example dry run for decoding a Gray-coded binary string 

As with the conventionally encoded genotype, storing the value of the binary string – 

post Gray-decoding – would be expected to render a performance improvement. 

A number of different implementations for representing binary strings have been 

investigated by the Author to assess their relative benefits with respect to performance and 

memory requirements.  The details of implementation are specifically tailored to C++ 
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representations.  However, many of the principles involved remain relevant when considered 

across operating system platforms as a whole.   

4.2.2. Conventional Representations 

1 bit per bit  

In terms of memory efficiency, it is obvious that the most economical means of representing 

a string of bits is to represent each bit as a single bit.  However, modern operating systems do 

not permit the access of single bits in their own right – restricting the developer to the byte as 

the smallest unit of addressable memory.  Thus, it is necessary to employ “tricks” to achieve 

such representations by using classes to pack and unpack bits from a byte-wise 

representation.  Two such representations have been evaluated.  However, since much of the 

analysis of these representations is specific to C++, discussion of the differences in their 

implementation is not presented here. 

1 byte and 2 bytes per bit  

In C++, the one byte per bit representation is correctly implemented using the unsigned char 

type, which, at first sight, seems rather counterintuitive, given that this is the datatype used to 

store a textual character.  However, this is also the correct type for an integral variable that 

can take on the values in the range 0 to 255.  These two types were included in the analysis 

for completeness. 

1 word per bit  

The most straightforward representation that can be used is one in which an entire processor 

word (i.e. 32 bits under most current operating systems) is used to represent a single bit in the 

string.  Whilst this arrangement is the most expensive in terms of memory requirement, it 

should theoretically perform quickest because it is, by definition, using the processors native 

unit of memory access. 

STL implementation 

The Standard Template Library (STL) is an integral part of the C++ language and provides a 

number of simple containers, algorithms and other data structures to accelerate development 

in C++.  Unusually, for a library, the STL is a specification of how an implementation should 

behave rather than an implementation in its own right.  Compiler developers are free to 

choose whether to use an existing STL implementation or to provide their own.  The result 
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of this is that highly optimized STL implementations are available for most compilers and 

platforms. 

Using the STL container, vector<bool>, it is possible to implement a bit-string using 1 

bit per pixel.  vector<bool> achieves this by applying bitwise operators to set individual bits in a 

byte and is atypical because this means of access violates several of the principles of STL 

containers.  The use of bitwise operators involves a small, but tangible, processing overhead 

to each read and write access of the binary string.  

Boost implementation 

“Boost” is a third-party library that extends the basic STL containers, adds vital platform-

independent support for common development paradigms and can be considered a 

repository for candidate code for the STL itself.  Boost has come about primarily as a result 

of the lengthy times involved in ratifying changes to the STL proper. 

As well as vector<bool> the STL has a container called bitset, which allows bitwise 

operations to be applied to the binary string without needing to decode it first and has useful 

functions to directly translate binary strings to integers and vice-versa. Unfortunately, the 

implementation of bitset requires its size to be known at compile time - rendering it unsuitable 

for generic GA applications with variable chromosome lengths.  Boost, however, includes a 

dynamic_bitset container, which overcomes this limitation.   

4.2.3. Hybridized integer gene 

Binary string gene representations in genetic algorithms are traditionally viewed as being 

inefficient in terms of performance because of the additional processing required to encode 

and decode values as well as overheads incurred in the storage and recombination of large 

data structures, as described in 3.2.2.1. 

Since integer values are mapped directly to binary digits by the processor itself, it 

makes little sense to recreate the same representation for our own purposes.  Instead, by 

using modified crossover and mutation operators which effectively act on the binary 

representation of the gene value, it is possible to manipulate integer values as binary strings 

with all the attendant advantages of speed in manipulating integer values as well of those of 

schema preservation from binary strings – thus producing a hybrid between the two 

techniques.  The sole disadvantage of this representation is that the maximum length of the 

gene is limited to the length of the integer representation in the operating system/processor – 
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nominally 32 bits.  Clearly, though, as this still allows each gene to take on over 4.2 billion 

values, this should not be regarded as a significant constraint. This approach, as shown below 

is very close in performance to a pure integer-based approach, but maintains the crossover 

performance of a binary string.  In addition, many of the operations undertaken translate 

directly to the processor’s own microcode acting on its registers maximizing the performance 

benefit accrued. 

4.2.3.1. Crossover representation 

The crossover and mutation operations take the form of bitwise operators, which have the 

advantage of being directly supported by the floating-point processor in hardware.  Binary 

strings are represented with a sequence of bits, each one corresponding to a power of 2.  The 

value of a binary string is computed by summing the power of 2 represented by each bit that 

is set.  Conventionally, binary strings are represented right-to-left from the Least Significant 

Bit to the Most Significant Bit to conform to our own decimal numbering system.  However, 

in hardware, the strings are normally oriented in reverse. 

In the case of crossover – as in all of the representations surveyed here – whole genes 

are copied en masse.  Partially recombined genes are dealt with as follows: 

Given two parent genes [a] and [b] of values 8,221 and 392: 

 
Figure 4-7: Parent gene a (value= 8,221) 

 
Figure 4-8: Parent gene b (value= 392) 

Performing a crossover within the resulting gene will result in child genes as those 

seen in Figure 4-9.  This particular crossover is the result of a crossover at the eighth locus in 

the gene. 

 

 
Figure 4-9: Expected child outputs from crossover 

These recombined chromosomes give post-crossover values of 8,328 and 285 

respectively.  Crossover operators on binary strings conventionally swap each bit, as 

0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1

0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1

0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0
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0 

appropriate.  Using bitwise operators on integer variables has exactly the same outcome – but 

with far better performance characteristics. 

First, it is necessary to create a mask, which will be used to identify which genes of 

the chromosome are to be swapped.  The mask simply set to zeros for one side of the 

crossover and ones for the other: 

 
Figure 4-10: Crossover mask c (value= 255) 

Construction of the mask is simplified by retaining an array in memory containing the powers 

of 2 from 1 to 32.  Using this array it is straightforward to create a mask based on the start 

locus of the crossover (startLocus) and the number of genes to crossover (count): 

int mask= 0; 
int endLocus= startLocus + count; 
for (loop= startLocus; loop < endPoint; ++loop) 
 mask= mask | power2_32[loop]; 

Figure 4-11: C++ code to generate mask for crossover 

The C++ ‘|’ operator represents the OR operation.  This mask [c] is combined with 

each of the existing chromosomes [a] and [b]  using the Boolean AND (C++ ‘&’) operation 

to give us two halves of the new chromosomes: 

d = a & c; 
e = b & c; 

 
Figure 4-12: Masked parent d – least significant byte (value= 29) 

 
Figure 4-13: Masked parent e - least significant byte (value= 136) 

In order to isolate the other halves of the chromosomes for crossover, it is 

straightforward to subtract these newly created halves from the originals: 

f = a – d; 
g = b – e; 

 
Figure 4-14: Masked parent f - most significant byte (value= 8,192) 

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
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Figure 4-15: Masked parent g - most significant byte (value= 256) 

The final stage of the crossover is straightforward being merely to combine the 

opposing halves of the chromosomal fragments through the Boolean OR operation: 

h = e | f; 
i = d | g; 

 
Figure 4-16: Child h (value= 8,328) 

 
Figure 4-17: Child i (value= 285) 

As can be seen, the outputs [h] and [i] are the binary strings expected from Figure 4-9 

with values of 8,328 and 285 respectively.   

4.2.3.2. Mutation representation 

Application of mutation is uncomplicated using the array of powers of 2 used in creating the 

crossover mask.  Having determined a locus for the mutation to take place (locus), the XOR 

operation is performed with the value of the gene against the power of 2 represented by that 

locus – resulting in it being removed from the gene if it is already set or adding it if it is 

absent. 

4.2.4. Experimentation 

To determine the relative performance of the binary string representations a simple GA was 

devised that reflects the normal process of decoding, encoding and recombination that a 

binary string would undergo.  The performance of the representation was then evaluated 

over a series of five runs, each of one million evaluations.  This performance is measured in 

terms of evaluations per second. 

The organism representation was 25 binary string genes, each of which was 25 bits 

long – a total genome length of 625 bits.  To minimize the impact of an objective function 

on the performance it was assigned a simple task to sum the values of each gene and to 

return that sum as the fitness of the individual organism.  The memory requirements and 

performance results from the experimentation are presented in Table 4-3. 

0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1

0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
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Binary string representation Memory requirement † 
(bytes) 

Performance 
(evaluations/second) 

1 bit/bit (STL) 100 7,568 
1 bit/bit (Boost) 100 8,594 

1 byte/bit 625 9,714 
2 bytes/bit 1,250 9,581 
1 word/bit 2,500 9,263 

Hybridized integer 100 11,083 
Pure integer 100 13,339 

Table 4-3:  Binary string implementations: relative performance 

† Per individual.  Each representation has additional memory overheads associated with the implementation of 

the containing class – however, these overheads are largely constant and, for clarity, are not considered here. 

4.2.5. Conclusions 

Two clear conclusions may be drawn from the above results.  First is the surprisingly good 

performance of the 1 byte/bit representation relative to the 1 word/bit which was expected 

to have the highest performance.  This suggests that, despite the processor intrinsically using 

“words” in its manipulations, there is greater overhead in manipulating binary strings of this 

size than the overhead on the processor of having to perform manipulations on individual 

bytes. 

The second observation is the massive performance and memory advantage enjoyed 

by the hybridized integer representation.  This is due to it not having encode/decode cycles 

at all – rather the value is directly stored in an integer variable and is only considered as a 

binary string when used in crossover and mutation. 

Despite being fastest, the integer representation would not yield as good results for a 

given run-time as, using the conventional GA operators, it is only able to recombine 

chromosomes between genes and as such requires a higher mutation rate to operate effectively.  

This is because the only means by which the values of the individual genes may change is 

through mutation.  Running such a GA without specialised operators or an enhanced 

mutation rate often results in a population that quickly stagnates, converging to a local 

optimum owing to a lack of genetic diversity. 
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4.3. Binary String Caching 

4.3.1. Introduction 

Aside from memory requirements, binary string use in GAs is compromised because of the 

additional overheads in reading and writing values with them – although these overheads may 

ultimately prove to be insignificant compared to the runtime of the evaluation function.  One 

mechanism for improving this performance is to cache the decoded value of a binary string 

and then to keep track of any changes to the binary string.  During a GA run, only binary 

strings that are directly affected by a crossover or mutation operator will have their values 

changed.  This means that, particularly in the case of binary strings that represent real 

numbers, a significant amount of binary string processing and recalculation can be avoided. 

4.3.2. Implementation 

Along with the bit-wise data itself, each binary string will preserve an integral variable that 

represents the decoded value of the string.  In addition, a single Boolean variable is used to 

determine whether the binary string has been modified or not.  When returning the value of 

the string, this variable is tested and if the string is found to be unmodified – i.e. the 

representation has not changed – the pre-decoded value is returned.  When setting the string 

to a specific value, for instance during randomization, it is also sensible to store this value in 

the pre-decoded value to accelerate decoding.  All that remains is for the crossover and 

mutation operators to be adapted to ensure that they mark the modified flag of any binary 

string whose content they modify. 

4.3.3. Experimentation 

To analyse the relative performance of caching binary strings two simple genetic algorithms 

were developed each involving 25 binary strings each comprising 25 bits.  The evaluation 

function for both GAs involves extracting an integral value from the binary string, before 

transforming it to a certain range.  A summation of all of the values in the string is the value 

returned by the objective function, thus: 

ܨ ൌ  ෍ ௜ܸ ൅ ܥ
ଶହ

௜ୀଵ

 

ii) 
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Where F is the fitness of the individual, V is the value encoded by the gene, i, and C 

is a constant which is used to shift the value out of the range 0..n to C..n+C. 

Performance figures are also given for performing the same operations on a Gray-coded 

binary string.  Gray-coded strings have an additional performance overhead associated with 

their encoding and decoding and, as such, are likely to benefit from caching. 

Baseline figures for the pure integer implementation are also given – although it 

should be noted that this representation would not attain similar algorithmic performance 

without the provision of customized operators. 

Number 
Type Encoding Representation Memory 

(bytes) 
Uncached  
(eval./sec.) 

Cached 
(eval./sec.) 

Improvement 
% 

Binary String 
Integer 
(25 bits) 

Normal 

1 bit/bit (STL) 100 7,568 8,418 11.23% 

1 bit/bit (Boost) 100 8,594 9,206 7.12% 

2 bytes/bit 1,250 9,581 9,787 2.15% 

4 bytes/bit 2,500 9,263 9,498 2.54% 

Gray 

1 bit/bit (STL) 100 6,287 6,852 8.99% 

1 bit/bit (Boost) 100 7,018 7,404 5.50% 

1 byte/bit 625 7,581 7,582 0.01% 

2 bytes/bit 1,250 7,530 7,492 -0.50% 

4 bytes/bit 2,500 7,259 7,194 -0.90% 

Pure Integer native 100 13,339 13,339 n/a 

Hybridized 
Integer 

Normal native 100 11,083 11,093 n/a 
Gray native 100 8,491 10,087 18.80% 

Table 4-4: Comparison of cached/uncached performance for binary string representations 

4.3.4. Conclusions 

This per-string caching produces a marginal benefit for the fastest of the conventional binary 

string representations – and has a more significant impact on the slower implementations – 

as might be expected.  The Gray-coded representations also show significant improvements 

– though the effect of the caching on the faster routines is quite odd: impacting detrimentally 

on performance.  It is surmised that – having isolated environmental factors – this decrease 

in performance can be attributed largely to the additional overheads imposed by 

encoding/decoding Gray-coded binary strings relative to the complexity of the evaluation 

function, which, in this instance, is trivial.  Problems that are more complex could expect to 

see a more significant benefit from using the binary string caching. 

Once again, the hybridized integer representations win out – as with the pure integer 

representation, caching is redundant as the value is already stored natively as an integer 

variable.  However, the caching can be used in the Gray-coded variant to accelerate its 
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operations and, as can be seen from Table 4-4 above, Gray-coded binary strings can now be 

used with minimal performance impact as the hybridized integer version is shown to be 

faster than all of the conventional, normally encoded representations.  Despite the Integer 

representation being fastest, this representation would not yield as good results for a given 

run-time as it only recombines chromosomes between genes and as such requires a higher 

mutation rate to operate effectively. 

4.4. Solution Caching 

During the lifetime of a genetic algorithm – and in particular towards the end of a run – the 

algorithm may revisit solutions that it has already evaluated.  In a classical GA there is no 

mechanism to prevent this duplicated effort.  By maintaining a cache of previously visited 

solutions, it is possible to avoid repeated calls to the objective function.  This is clearly an 

important consideration when such a call may have significant processing requirements.  

Figure 4-18 shows how this technique is integrated into a classical GA.  Despite being an 

apparently obvious strategy to employ within Genetic Algorithms, there is a puzzling lack of 

literature on the subject.  Kratica (1999) and Povinelli & Feng (1999) investigate similar 

caching approaches utilising a simple hash table for storing the most-recently accessed, 

cached objective function results and finds that the approach is viable in reducing GA 

runtime performance.  It may be that the objective functions employed with GAs hereto may 

lack the computational complexity to merit the widespread application of the technique; 

certainly for most hydroinformatics applications this is not the case.  This section proposes 

two forms of cache for general use with GAs : 

• A simple, cache based on the common binary-tree data structure – both in a 

simple and “tiered” approach in which older, unused cached items percolate 

down through tiers of increasingly larger (and therefore slower) caches. 

• A novel cache utilising the “Judy Tree” algorithm, commonly used in large 

scale. intensive hardware data access caching applications (e.g. server hard 

drives) which offers unparalleled access performance. 
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Figure 4-18: Flowchart illustrating the role of caching in a simple GA 



Chapter 4: Extending the GA methodology 

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 87 

4.4.1. Red-Black Binary tree cache 

The basic caching structure is a variant of a conventional binary tree, which is ordered 

according to a representation of the genome and contains fitness information for that 

evaluated genome.  Trees offer an efficient data structure for storing ordered data.  Binary 

trees are among the most commonly used variants and have been specialised for various 

tasks (Knuth, 1997a).  Figure 4-19 illustrates a binary tree with seven data members 

comprising a “value” and two pointers to other data members.  Conventionally these 

pointers are used to point to “smaller” and “larger” data members.  In addition, each node 

possesses a data record of some type – in the context of caching for evolution algorithms, 

this record will contain information about the fitness of a solution. 

 
Figure 4-19: Traditional binary tree representation 

The tree is assembled as data is added to it and, as such, the resulting form of the tree 

is highly dependent on the order in which values are inserted.  Searching the tree for a given 

value begins at the root node of the tree (value “5” in Figure 4-19) and then proceeds to 

traverse the “smaller” or “larger” branches of the tree depending on the value sought and the 

value of the current node of the tree.  The search continues recursively until either the value 

is located or there is no branch to traverse – in which case the value sought is not present in 

the tree.  In the above example, Figure 4-19, a search for number “7” proceeds through the 

nodes of the tree in the sequence “5” – “10” –“7” comparing the target value with the node 

value at each stage and determining which branch to take through the tree.  Similarly, a 

search for the number “3” would proceed through nodes “5” – “1” – “4” whereupon the 
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search would conclude that “3” is not present in the tree owing to the fact that there is no 

node attached to the “less-than” branch of the “4” node. 

The tree shown in Figure 4-19 represents a “perfect” binary tree – one in which all of 

the nodes have exactly two branches and the depth of the tree (in this case 3) is constant.  

This is the most efficient tree structure for searching as, in the example, the maximum 

number of comparisons that would have to be made to locate a value in the tree is 3.  Figure 

4-20, however, shows an alternative scenario for a similar tree in which the data was inserted 

in a different order resulting in a lop-sided, unbalanced tree.  Despite having the same 

number of data members, a search of this particular tree may require as many as 5 

comparisons. 

 
Figure 4-20: Unbalanced binary tree 

Once a traditional binary tree has been populated with all the data it is possible to run 

a balancing algorithm to rearrange the tree in a more optimal fashion.  However, this is an 

expensive operation to run if the data in the tree is constantly changing – as is the case in a 

caching application.  Pfaff (2004) compared 20 different representations for Binary Search 
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Trees (BSTs) and found that the most efficient variant when considering the input of random 

or near-random data was the Red-Black binary tree (Cormen et al., 2001).  Thus, the first 

implementation considered in this thesis employs the C++ Standard Template Library (STL) 

container map (Josuttis, 1996) which, in most implementations of the STL, is an implemented 

with a red-black binary tree.  This algorithm practises a common form of self-organization.  

Self-organization is a vital characteristic for caching algorithms: searches of binary trees are 

most efficient when the tree is balanced such that the average depth of tree that needs to be 

searched to locate a record is minimized.  Figure 4-21 illustrates an example Red-Black binary 

tree.  Along with the perquisites of the binary tree structure above, Red-black binary trees 

have additional constraints in order to be valid: 

• Each node has two children, each coloured either Red or Black. 

• Every leaf node (those at the extremities of the network) is coloured Black. 

• Both children of Red nodes are coloured Black (a consequence of this is that 

there cannot be two consecutive Red nodes in a path from the root to a leaf). 

• Every path from the tree root to a leaf contains the same number of Black 

nodes (known as the “Black Height” of the tree). 

 
Figure 4-21: Example Red-Black binary tree 
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When a new node is added to a Red-Black binary tree, its nominal insertion point is 

identified.  If this insertion violates any of the conditions of the tree structure then a recursive 

series of reorganisations are undertaken to restructure the tree dynamically in order to 

conform to the constraints.  Thus, Red-Black binary tree searches will normally come close 

to the O (log n) search performance for a perfect binary tree – albeit with additional overhead 

associated with the reorganisation as data is inserted into the structure. 

For the purposes of caching, the search key is some representation of the decision 

variables – thus it is necessary to search the cache to determine whether a particular 

combination of decision variables has been encountered before and, if so, to return the result 

of the evaluation function without having to recalculate it. 

In addition to the tree data structure itself, a first-in, first-out (FIFO) queue, 

implemented as an STL deque is maintained in parallel, which allows the cache to identify 

which of the entries in the binary tree is oldest and to remove it when the maximum size of 

the cache is exceeded.  The core cache functionality is represented thus: 

if (findInCache(organism->genome())) 
 return cachedFitness(organism->genome) 
else 
 { 
  organism->evaluateFitness(); 
  addToCache(organism->genome(),organism->fitness()); 
 } 

Figure 4-22: Pseudo-code for cache search logic 

4.4.1.1. Multi-tier cache 

The principal constraint on the performance of the Red-Black binary string cache is the 

number of comparisons that have to be undertaken in order to locate – or otherwise – a 

cached record in the tree.  By creating a multi-layered or “tiered” cache, which has variable 

size layers, the most recently found solutions can be stored in smaller caches which are 

searched first whilst older solutions may be found by searching the larger, lower tiers.  Figure 

4-23 presents a schematic of the cache arrangement employed. 
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Figure 4-23: Tiered Cache 

Instead of the oldest solution being deleted when the maximum cache size is reached, it is 

instead demoted to a lower, larger tier.  Similarly, when a solution is located in one of the 

lower tiers it is promoted up a tier so that, gradually, the most commonly encountered 

solutions percolate up through the tier structure whilst the rarely encountered solutions move 

down and ultimately are removed from the cache altogether when newer solutions are added 

to the cache.  

4.4.2. Judy Tree Cache 

Whilst these Red-Black binary structures examined thus far are memory efficient in terms of 

the amount of memory required to retain each solution, they experience increasingly 

detrimental performance as the size of the cache increases – requiring a large number of 

memory access to determine whether a solution exists in the cache and, if so, to retrieve its 

fitness value.  Two related data structures, the Digital Tree (also known as a Trie – 

pronounced “try”- Knuth, 1997b) and a derivative, the Judy Tree (also known as a Judy 

Array) offer the potential to significantly improve the performance of genetic algorithm 

caching as well as being suitable for archiving solutions – dependent on available memory. 

The Digital Tree structure can be thought of as a n-way tree.  The Digital Tree in 

Figure 4-24 shows a 2-way representation for storing each of the eight permutations of two 

letters (A and B) in a sentence three characters long (i.e. AAA, AAB, ABA, ABB, BAA, BAB, 

BBA and BBB).  Unlike the binary tree representation of the same dataset (see Figure 4-26) it 

can be seen that the individual nodes do not contain the search key itself, rather one 
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component of it.  In this fashion, only the leaf nodes of the tree will contain an associated 

data as the intermediate and root nodes represent incomplete “sentences” or paths to the 

search key. 

 
Figure 4-24: Two-way Digital Tree (trie) 

Aside from the rationalisation of the manner in which the key is stored in the Digital 

Tree, it further differs from the conventional binary tree by not being restricted to two way 

operation.  Figure 4-25 shows a Three-way digital tree populated with each of the 

permutations of three letters (A, B and C) in a sentence two characters long (i.e. AA, AB, AC, 

BA, BB, BC, CA, CB and CC). 

 
Figure 4-25: Three-way Digital Tree (trie) 

Judy Trees are an implementation of a type of multi-way tree developed at Hewlett 

Packard’s UNIX Software Enablement Laboratory (Hewlett Packard, 2001) in the early 

1980s.  The name “Judy” not only encompasses the data structure implementation itself but a 

range of optimizations intended to maximize the benefits of CPU caching to the search 

process.  Until 2001, Judy was retained as an internal, commercial secret but has now been 
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released as a public library (Silverstein, 2002) for maintaining large, efficient in-memory 

structures and is a particularly appropriate representation for caching applications in genetic 

algorithms. 

Judy implements a structure similar to a Digital Tree in that it ordinarily decodes one 

or more 8-bit digits in its key (i.e. a 256 way digital tree).  However, unlike a Digital Tree 

where each node must have the same number of children, each node need not be a 256-way 

vector to store the possible values.  Judy has the ability to change dynamically the 

representation employed by each of the nodes depending on the number of elements that it 

contains.  This changing representation means that Judy may elect to represent part of the 

cache in one of three ways: 

• as a simple array containing pointers to child nodes, termed “uncompressed” 

which is useful if that part of the tree is nearly or fully populated (as in Figure 

4-27). 

• as a “bitmap” which contains 256 bits, each representing whether the 

corresponding child is populated or empty, interspersed with 8 pointers to 8 

ordered lists of up to 32 next-level pointers each which are created as they are 

required by the contents of the bitmap.  This is the second-most memory 

efficient arrangement. 

• as a “branch” which contains a count of how many children are populated, 

enumerates them and lists pointers to them.  This is the most memory-

efficient arrangement and is used when the population is sparse. 

In this fashion, the Judy Tree achieves much better memory usage than a 

conventional digital tree.  This makes the representation ideal for storing complex data, 

which are sparse in nature such as GA solutions in which only a minute proportion of the 

search space is actively explored (Goldberg, 1989).   

In comparison to binary trees, which have (at best) a search lookup time of O (log n), 

Digital Trees achieve O (logm n) – where m is the number of significant digits in the search 

key.  Insertion into a digital tree is also rapid compared to a binary tree, as at most m 

comparisons will be needed to insert an element into the tree.  The Judy tree maintains the 

search performance of the Digital Tree, being at most O (log256 n).  In addition, there is no 

need for either a Digital Tree or Judy Tree to undertake any form of balancing which is an 

expensive operation for a binary tree and its related forms. 
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The Judy data structure is characterised as being opaque, in that the end user need 

not know anything about the storage mechanisms that are being used in the algorithm – nor 

have to be concerned about initialising the data structures.  They are highly scalable in terms 

of memory consumption as memory use scales with the number of items in the array and 

does not require the pre-allocation of large data structures as would be the case with a 

conventional array structure.  One of their principal advantages for caching applications is 

that they are very efficient in terms of performance through the implicit compression of the 

search keys (which also reduces its memory requirement).  

 
Figure 4-26: Example Binary Tree representation 

Figure 4-26 shows a binary tree that has been populated with the eight permutations 

of two letters (A and B) in a three character sentence.  It can be seen that to store these 

search key values in the tree incurs a cost of 3 × 8 = 24 characters.  The equivalent Judy Tree 

representation is shown in Figure 4-27 where each node in the tree is itself a one-dimensional 

array.  The Judy Tree algorithm decomposes the search key into its constituent characters 

and only stores at each node the minimum information to represent the path.  In this fashion 

this representation requires only 2 × 7 = 14 characters to store the same data. 
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Figure 4-27: Example Judy Tree representation demonstrating implicit compression of search key. 

Whilst such an improvement may not seem particularly significant, when considering much 

longer strings as search terms, such as the chromosomes indexed by the caching, it can be 

seen that the Judy representation will offer a significant improvement in the memory 

footprint of the cache.  It should also be noted that even for this very simple example, the 

maximum number of comparisons that a Judy Tree search could require to find a given value 

is three – one less than that of the binary tree in this example.  Furthermore, each of these 

comparisons for the Judy Tree (and Digital Tree) is of only one character whereas for the 

binary tree, the entire search key is compared with the value in each node traversed – a 

significant difference if long chromosome keys are being cached. 

4.4.2.1. Example 

As Judy Trees offer significant advantages over Digital Trees without any 

disadvantages, their application to GA caching will be considered here using as an example 

appropriate to a hydroinformatic, genetic algorithm application: the representation of the 

chromosome applied to the New York Tunnels optimization problem (Schaake & Lai, 1969).  

This problem, described in detail in Chapter 6.1.2, is a hydraulic reinforcement problem in 

which 21 pipes may be duplicated with one of 15 commercially available pipe diameters in 

order to meet certain pressure requirements across the network.  Accordingly, New York 

Tunnels employs a chromosome of 21 genes – each of which can represent 15 different pipe 

diameters as well as a sixteenth, “do nothing” option – Figure 4-28 represents such a 

chromosome: 
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Figure 4-28: Example New York Tunnels chromosome 

A digital tree is characterized by the fact that the key of an element in the tree is decoded one 

byte (or one digit) at a time.  In this way, a tree structure is developed that has the same depth 

as the number of decision variables in the chromosome – thus the maximum number of 

comparisons that must be made to determine whether an particular chromosome for this 

problem has been encoded into a digital or Judy Tree is 21.  Figure 4-29 illustrates a portion 

of a digital tree structure for storing the representation of the chromosome in Figure 4-28 (ptr 

is used as an abbreviation for “pointer”).

 
Figure 4-29: Digital/Judy tree implementation for New York Tunnels chromosome 

In effect, this view is a hyper-dimensional slice through the Judy Tree data structure.  

If fully populated, the different levels of the Judy Tree would have vast numbers of nodes 

according to the relationship: 

݊ ൌ 16௟ 

where n is the number of nodes on level l.  Given that a Judy Tree structure like this 

would have 21 levels, one for each of the pipes in the optimization, this is an unrealistic 

amount of data to be handling.  However, considering an evolutionary optimization that has 

encountered 100,000 unique solutions in optimizing this problem, we can compare the 
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memory footprint and the maximum number of comparisons that may be required between 

the Judy Tree and the Red-Black binary tree – as seen in Table 4-5. 

Representation Memory Requirement Mean Search Comparisons 

Judy Tree 127 kilobytes 
(see below) 21 

Red-Black Binary Tree 100,000 ൈ 21 ݏ݁ݐݕܾ
ൌ 2 logଶ ݏ݁ݐݕܾܽ݃݁ܯ 16ଶଵ ൌ 84 

Table 4-5: Comparison of Red-Black Binary Tree and Judy Tree cache requirements for New York Tunnels 
Problem (100,000 solutions) 

Estimating the actual memory requirement for the Judy Tree for a given optimization 

a priori is difficult, given that it is dependent on the compression that can be achieved by 

encoding the chromosome’s gene values in the tree.  The worst case would occur where 

there is as little genetic commonality between the chromosomes as possible.  In this problem, 

this would result in a memory requirement of around 127 kilobytes – still a significant saving 

over that required by the conventional binary string. 

The final data pointer is used to point to the data to be associated with the cache 

record.  In this application, this record will contain information about the fitness of the 

individual so that it need not be evaluated again.  However, it may also contain statistical 

information for stochastic optimization routines (see the following Chapter 4.5 for an 

example). 

4.4.3. Experimentation 

To validate the performance of the solution caching a series of experiments were undertaken 

on a benchmark problem called the Generalized Assignment Problem (Chu & Beasley, 1997).  

This class of problem involves a number of workers, “agents” each of whom has a finite 

workload limit and an associated cost per unit work.  The optimization seeks to allocate 

“jobs” to the agent of varying workload on a least-cost basis.  This optimization was 

undertaken using a simple, steady-state GA – albeit without the heuristic extensions to the 

Genetic Algorithm that Chu & Beasley (1997) employed to good effect. 

Relative to evolution algorithm applications in hydroinformatics, the computational 

workload of the GAP algorithm is very small – although the solution space is comparable.  

To simulate a more complex objective function, the processor was made to “sleep” for a 

number of milliseconds (termed “ballast”) in addition to the computation required to 

compute the fitness.  The results obtained from this experimentation are related in Table 4-6. 
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Cache Size 

In the experiments below, several cache sizes are used.  Here 3 caches are used increasing in 

magnitude each time.  Therefore “10-100-1000” represents a top-tier cache of 10 solutions, 

level 2 cache of 100 solutions and level 3 cache of 1000 solutions. 

Algorithm Comparison 

To compare the solution caching with that of a non-cached run, two measures are used, run-

time and evaluations saved.  A run-time analysis should be more accurate in that it takes into 

account all of the computation required to maintain the cache, algorithm and to update the 

display – which can be a significant impact on runtimes.  However, evaluations saved gives 

an important benchmark so an expected saving can be computed for different objective 

function evaluation times.  In the following experiments, the cached individuals were 

compared with a theoretical-best-case solution.  This is computed as the number of objective 

function evaluations divided by the ballast, to give the minimum number of seconds it would 

take to evaluate N solutions.  This is the best case because it does not allow for any other 

computational load (incurred by the algorithm, the caching, or Operating System).  Therefore 

the benchmark seen here for comparison is the strictest possible.   

Results 

Table 4-6 provides a comparison between runs of the 200 job/20 agent GAP problem with 

different cache sizes against theoretical best case given the size of the ballast employed: 

Table 4-6: Comparison of cached and best-case theoretical performance for the 200 job/20 agent GAP 
problem using the tiered Red-Black Binary Tree cache 

Table 4-6, above, shows that - over 100,000 evaluations with a 50ms ballast - a run-

time saving of almost 8% is possible against the best-case.  However, the performance 

benefits are actually to be far higher than this as the computational disparity between the 

objective function and the other computation load on the system (Operating System, 

maintenance of the caching data structures), is not that marked.  The more noteworthy figure 

Cache 
status 

Cache 
sizes 

Runtime 
(seconds) 

% Runtime 
50ms Ballast 

% Runtime Saved # Evals Saved % Evals Saved 

OFF n/a 5,000 100.00 n/a n/a n/a 

ON 10-100-1000 4,610 92.80 7.20 22,947 22.95 

ON 20-200-2000 4,640 92.20 7.80 23,664 23.67 

ON 40-400-4000 4,606 92.12 7.88 23,895 23.90 
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is that almost a quarter of objective function calls were saved during a modest run on a large 

problem.   

Table 4-7: Long term 500,000 evaluation comparison of cached and best-case run-times and evaluations 

Table 4-7, above, shows that over a longer optimization period and a greater ballast, 

the caching run-time performance is close to that of the number of evaluations saved.  This is 

because with 125ms ballast, every objective function call saved is much more crucial to the 

overall performance of the algorithm.  Also, the caching becomes more effective as the 

optimization continues and the population begins to converge.   

Further Results 

In performing the initial experimentation above, it was noted that the caching algorithm was 

highly sensitive to the mutation regime employed by the algorithm and that that employed in 

the above experiments was unduly amenable to the caching strategy – i.e. that there was a low 

mutation rate which promoted the operation of the cache.  To that end, the experiments 

were repeated with a wide variation in mutation rates.  In the revised experiments, four 

caching strategies were adopted and compared:  

• None, i.e. caching disabled. 

• Tiered, the Red-Black Binary Tree cache with three tiers of 40, 400 and 4000 

individuals each. 

• Huge, the Red-Black Binary Tree cache with a single tier that is allowed to grow until 

constrained by the available memory of the system. 

• Judy, the Digital Tree derived cache which is unconstrained except for available 

memory. 

Small GAP problem (20 Agents, 100 Jobs) 

Two types of mutator were used: the first is expressed as a probability that mutation will take 

place applied to each of the 100 genes of the chromosome  in turn.  The mutation rates so 

examined were: 0% (i.e. no mutation), 0.2%, 0.5%, 0.75%, 1%, 1.5% and 2%.  The second 

Cache 
status 

Cache 
sizes 

Runtime 
(seconds) 

% Runtime 
125ms Ballast 

% Runtime Saved # Evals Saved % Evals Saved 

OFF n/a 62,500 100.00 n/a n/a n/a 

ON 40-400-
4000 27,426 43.89 56.12 310,616 62.12 



Chapter 4: Extending the GA methodology 

100   A Framework for Evolutionary Optimization Applications in Water Distribution Systems 

class of mutator is expressed as a probability that exactly one gene will be mutated.  The 

mutation rates for this class are 100% (i.e. exactly one gene mutated every iteration), 90% and 

80%.  By way of a simple performance metric for a single objective optimization, Figure 4-30 

shows the median values obtained over 100 runs of the optimization with each mutation rate.  

As can be seen from the graph, the best performing mutation regime for this problem is that 

of the 100% in which exactly one gene is mutated, per chromosome, in each iteration.   

 
Figure 4-30: Algorithmic performance (median) for small GAP problem (20 Agent/100 Job) with variable 

mutation rates 

Figure 4-31 graphs the effect of the different caching strategies on the algorithm runtimes 

with respect to the different mutation regimes.  The most striking result is that of the tiered 

cache which can be seen to be performing worse than the completely un-cached algorithm.  

However, it should be remarked that here the algorithm is not having to accommodate any 

“ballast” to simulate a more complex objective function.  Accordingly, for a more 

computationally intensive hydroinformatic optimization, the cache hits afforded by the tiered 

representation will likely improve the overall runtime performance.  The other two caching 

strategies, the Judy Cache and the Huge Red-Black Binary Tree appear well matched for all 

mutation rates on this problem with the “Huge” representation slightly outperforming the 

Judy Tree (see Table 4-8). 
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Figure 4-31: Comparative Runtimes for small GAP problem (20 Agent/100 Job) with variable mutation rates 

and four caching strategies 

Mutation 
rate 

Judy Tier Huge None 
Runtime 
(seconds) 

% of 
uncached 

Runtime 
(seconds) 

% of 
uncached 

Runtime 
(seconds) 

% of 
uncached 

Runtime 
(seconds) 

0% 120.08 94.32% 131.52 103.31% 117.14 92.01% 127.31 

0.2% 123.00 95.97% 135.81 105.96% 119.88 93.53% 128.17 

0.5% 123.19 94.81% 132.39 101.89% 120.58 92.80% 129.93 

0.75% 123.91 96.60% 131.00 102.13% 120.91 94.26% 128.28 

1.0% 124.46 96.24% 129.90 100.45% 121.30 93.80% 129.32 

1.5% 122.80 95.15% 128.17 99.31% 122.45 94.88% 129.07 

2.0% 121.98 94.68% 127.02 98.59% 122.00 94.70% 128.83 

1 gene 120.90 94.99% 125.55 98.64% 120.50 94.68% 127.28 

0.90 1 
gene 122.04 95.13% 123.08 95.94% 122.12 95.19% 128.29 

0.80 1 
gene 122.91 95.26% 122.12 94.65% 123.08 95.40% 129.02 

Table 4-8: Runtime results for caching of small GAP 20 Agent/100 Job problem with variable mutation 
rates 

Large GAP problem (20 Agents, 200 Jobs) 

As with the smaller GAP problem, two types of mutation were employed in this analysis.  As 

before one mutator is expressed as a probability that exactly one gene will be mutated.  The 

mutation rates for this type of mutator remain at 100% (i.e. exactly one gene mutated every 

iteration), 90% and 80%.  The other mutator class has modified probabilities as this larger 



Chapter 4: Extending the GA methodology 

102   A Framework for Evolutionary Optimization Applications in Water Distribution Systems 

problem has a chromosome comprising 200 genes – twice the size of the other.  As a result, 

the probabilities of this mutator acting on each gene need to be diminished so as to retain the 

same approximate overall mutation rate for the algorithm.  The mutation rates employed for 

this class of mutator are: 0%, 0.1%, 0.25%, 0.375%, 0.5%, 0.75% and 1%. 

Once more the median performance of the varying mutation rates was assessed over 

100 runs of each algorithm.  The results are presented in  

 
Figure 4-32: Algorithmic performance (median) for large GAP problem (20 Agent/200 Job) with variable 

mutation rates 

In Figure 4-32, it can be seen that the mutator that changes exactly one gene in each iteration 

performs the best, once more, closely followed by the two other mutators of this type.  In 

contrast to the smaller problem, however, the performance metrics for the large problem 

with respect to the caching are more varied.  The results (Figure 4-33 and Table 4-9) 

demonstrate that the Red-Black Binary Trees do not perform as well on the larger problem 

size – indeed in a number of cases both the Huge and Tiered strategies which use this 

representation are slower than the uncached algorithm.  The Judy cache continues to 

perform well, however, allowing for runtime savings of between 1.6 and 8.3% depending on 

the mutation operator employed.  
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Figure 4-33: Comparative Runtimes for large GAP problem (20 Agent/200 Job) with variable mutation rates 

and four caching strategies 

Mutation 
rate 

Judy Tier Huge None 
Runtime 
(seconds) 

% of 
uncached 

Runtime 
(seconds) 

% of 
uncached 

Runtime 
(seconds) 

% of 
uncached 

Runtime 
(seconds) 

0% 247.82 95.65% 244.87 94.51% 258.44 99.75% 259.10 

0.1% 252.83 97.02% 256.87 98.57% 268.45 103.01% 260.60 

0.25% 253.23 97.22% 257.65 98.91% 255.47 98.08% 260.48 

0.375% 251.79 97.54% 256.75 99.46% 254.65 98.65% 258.14 

0.5% 251.49 97.55% 253.78 98.44% 253.13 98.18% 257.81 

0.75% 249.72 97.02% 253.41 98.46% 249.40 96.90% 257.38 

1.0% 250.66 97.31% 254.11 98.64% 249.26 96.76% 257.60 

1 gene 250.91 97.17% 253.51 98.18% 249.46 96.61% 258.22 

90% 1 
gene 241.22 91.75% 271.10 103.12% 268.63 102.18% 262.9 

0.80% 1 
gene 258.93 98.37% 269.85 102.52% 269.36 102.34% 263.22 

Table 4-9: Runtime results for caching of large GAP 20 Agent/200 Job problem with variable mutation 
rates 

4.4.4. Conclusions 

Solution caching is shown to be an effective technique for reducing the runtimes of GA 

applications, becoming more effective, with respective to the potential performance 

improvement, with the increasing complexity of the objective function and with the duration 

of the optimization undertaken.  Because cache performance will vary from machine to 
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machine with respect to that of the objective function, the caching routines should, through 

its own internal timing, determine the complexity of the objective function and determine 

whether caching is an efficient strategy to employ – without interaction from the end-user.  A 

comparison between the efficiency of the two caching regimes with respect to benchmark 

hydroinformatic problems is undertaken in Chapter 6.2.6  Given the relative simplicity of the 

objective functions employed herein, even for the larger-scale GAP problem, performance 

savings on more computationally intensive optimizations can be expected to be considerably 

greater than those demonstrated in this experimentation.  Experiments demonstrate that the 

tiered cache is shown to be inefficient relative to a larger Red-Black binary tree arrangement 

whilst the Judy Tree outperforms the other representations, both in terms of performance 

and memory requirements, when considering the indexing of more complex chromosomes. 

4.5. Non-Repeating GA (NRGA) 

The caching techniques introduced above have also been used to improve the 

algorithmic performance of the stochastic evolutionary optimization technique, rNSGA-II 

introduced by Kapelan et al. (2005).  Here, uncertain variables within the optimization are 

accommodated through sampling techniques and statistical aggregation of the fitness results.  

For example, in the model by Kapelan et al. (2005), each organism is evaluated a number of 

times for a sample of stochastic inputs and then the aggregated fitness is obtained by 

applying statistical analysis (e.g. mean, standard deviation, etc.).  In this technique, due to the 

sampling procedure employed, a given set of decision variables will produce a different result 

every time the objective function is evaluated.  Consequently, the form of caching employed 

above is of little utility.  However, it has been observed that for a variety of problems 

employing the rNSGA-II, up to 4% of new solutions (dependent on population size) 

generated by the algorithm have already been encountered by the algorithm in a prior 

iteration.  Moreover, it is common in runs of the rNSGA-II to find that the population 

contains many duplicates of a particular solution – each with its own statistical record.  

Reducing or preventing these duplicates would both improve the quality of the stochastic 

modelling by improving the accuracy of the statistical record (and therefore fitness values) as 

well as better maintaining the genetic diversity of the population.  Figure 4-34 illustrates the 

operation of the “non-repeating cache” in the context of a single-objective GA.  The 

operation of the GA, be it a single or multiple objective, continues largely as normal with the 

exception that, in the event of an organism being removed from the population then the 
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statistical data that it has accrued during its lifetime in the population is stored, along with its 

genetic signature, in the cache. 

The use of the cache allows the algorithm to determine, in the first instance, whether 

one of the newly created individual generated by the algorithm is present in the existing 

population.  If it is then the new individual is rejected and the selection and recombination 

process begun afresh in order to prevent the duplicate individual entering the population.  If 

the new individual is not in the population but is located in the cache then it represents a 

solution that has been identified before but has subsequently been ejected from the 

population.  In this event, the statistics for this organism are recovered from the cache and 

the evaluation process proceeds as normal – the organism having effectively been resurrected 

to the condition in which it was when it was removed from the population. 

 
Figure 4-34: Outline flowchart for non-repeating GA 
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4.6. Adaptive Differential Mutation 

4.6.1. Introduction 

With all real world problems, and especially those with large numbers of decision variables, 

certain decision variables will be more important than others will.  In fact, in many problems, 

the majority of the fitness of the solution depends on a small number of the decision 

variables.  A case in point being the New York Tunnels problem referenced elsewhere in this 

chapter where a very small number of pipes (less than 25%) are critical in the determination 

of a feasible, low-cost solution.  It is hypothesised that knowledge obtained during the 

evolution could be utilised to update the mutation probabilities of individual decision 

variables. 

In this methodology, each decision variable (gene) is associated with an individual, 

independent mutation probability.  If the modification of a set of variables is useful when the 

problem changes, the mutation probabilities of these variables will be increased.  Throughout 

the operation of the genetic algorithm, the sensitivity of the fitness to each of the decision 

variables is determined by noting the change in fitness when the value of that variable 

changes as a result of mutation.  Even though the changes in the chromosome are not made 

in isolation – given that many mutations may occur in a single iteration - over a large number 

of evaluations, the sensitivity of the objective value to each gene can be evaluated. 

In addition, by recording the direction in which a mutation moved a gene value and 

its relationship to the changes in fitness value, it is possible to determine the direction in 

which future mutations should preferentially take place.  Clearly, however, this trend analysis 

will only return sensible results if there is an underlying scalar relationship between the value 

of the gene and the physical property that it represents in the problem solution.  In the case 

of the New York Tunnels example (described fully in Chapter 6.2), the gene value maps into 

a list of pipe sizes which varies from 0 inches (or pipe closed) to 204 inches – thus fulfilling 

this scalar relationship prerequisite. 

In concert, these measurements can be used to indicate which genes have proven to 

represent the more significant variables in the algorithm run thus far and can therefore be 

used to drive the mutation probabilities accordingly.  Consequently, a variable which is 

considered to have more influence on the result will be mutated more often.  Similarly, if it 

appears to positively affect fitness when permuted in a particular direction, then mutation in 

this direction is accorded a higher probability of occurring.  The implementation of this 
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mutation strategy is limited to the steady-state, single objective class of GA.  Whilst there is 

no technical reason why this may not be extended into other forms of GA, such as the 

generational form, this implementation is unable to consider multiple objectives. 

4.6.1.1. Sensitivity and Trend Score Implementation 

Implementing the differential mutation is a two stage process: data on the 

performance of the algorithm has to be collected before the differential mutation can be 

used.  This is achieved by adding routines to the recombination cycle to monitor the 

sensitivity of the fitness of solutions to individual gene changes.  During the “learning cycle” 

– the first n iterations of the algorithm when the default mutation operator is being used – 

this sensitivity data is collected.  Thereafter, that data is used in the differential mutation and 

is also updated with the results of the differential mutation. 

 Analysis to determine some measure of the fitness of the solution to the value of 

each gene was undertaken using a global repository of scores on a per gene basis: 

struct geneticRecord 
{ 
 double positiveScore; 
 double negativeScore; 
 int trendUpCount; 
 int trendDownCount; 
 int resultCount; 
} 

Figure 4-35: C++ structure for recording gene mutation trend score data 

Of these fields, positiveScore represents the number of times that the gene has 

contributed to an improvement of the solution, negativeScore to deterioration in the solution.  

Similarly, trendUpCount and trendDownCount note, respectively, whether an increase or decrease 

in the variable value – relative to the best organism yet found - has been responsible for an 

improvement.  resultCount is simply the number of times this gene has been changed. 

During crossover and mutation, it is necessary to demark which genes have been 

affected by crossover or mutation from one of their parents. 

After evaluating the fitness of children, the global scores for each of their genes are 

updated: 

// baseScore reflects the difference between the newly created 
// children and the best organism yet encountered 
double baseScore= organism->fitness – bestOrganism->fitness; 
for (geneLoop= 0; geneLoop < genomeSize; ++geneLoop) 
{ 
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 switch (organism->trend->gene(loop)) 
 { 
  case down: 
   if (baseScore > 0.0) 
   { 
    geneHistory[geneLoop]->addPositiveScore(baseScore); 
    geneHistory[geneLoop]->trendDown(); 
   } 
   else 
    if (baseScore < 0.0) 
     geneHistory[geneLoop]->addNegativeScore(baseScore); 
   break; 
  case up: 
   if (baseScore > 0.0) 
   { 
    geneHistory[geneLoop]->addPositiveScore(baseScore); 
    geneHistory[geneLoop]->trendUp(); 
   } 
   else 
    if (baseScore < 0.0) 
     geneHistory[geneLoop]->addNegativeScore(baseScore); 
   break; 
 } 
} 

Figure 4-36: C++ code for trend scoring for differential mutation 

4.6.2. Differential Mutation Implementation 

The mutation operator itself is coded thus: 

if (random()<0.5)  // produces a random number where Թ א ሺ0 , 1ሻ 
{ 
 int numMutations= genomeSize * mutationRate; 
 for (int loop=0; loop < numMutations; ++loop) 
 { 
  double spin= random()*totalScore; 
  double runningTotal= 0.0; 
  int currentGene= 0; 
  while (runningTotal < spin) 
  { 
   runningTotal+= geneScore[currentGene]; 
   ++currentGene; 
  } 
  --currentGene; 
  mutateGene(currentGene); 
 } 
} 
else 
 defaultMutator->mutate(); 

Figure 4-37: C++ code for mutation operator 

The above code snippet shows that the differential mutation operator is only applied 

with 50% probability; otherwise the default mutation operator is used.  This is important as it 

allows other genes, which have not been identified in the sensitivity analysis, some 
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opportunity to be mutated.  To facilitate this form of mutation, it was necessary to update the 

gene classes to enable them to “increment” and “decrement” their values accordingly. 

The mutateGene function referenced above is where the trend analysis is applied to the 

mutation, if required: 

void mutateGene(int index) 
{ 
 int trendUpCount= geneHistory[index]->trendUpCount(); 
 int trendDownCount= geneHistory[index]->trendDownCount(); 
 bool test; 
  
 if (trendUpCount > trendDownCount) 
 { 
  if (trendUpCount > 0) 
   test= random() < (trendDownCount/trendUpCount); 
  else 
   test= random() < 0.25; 
  if (test) 
   gene(index)->decrement(); 
  else 
   gene(index)->increment(); 
 } 
 else 
  if (trendDownCount > trendUpCount) 
  { 
   if (trendDownCount > 0) 
    test= random() < (trendUpCount/trendDownCount); 
   else 
    test= random() < 0.25; 
   if (test) 
    gene(index)->increment(); 
   else 
    gene(index)->decrement(); 
  } 
  else 
   gene(index)->mutate(); 
} 

Figure 4-38: C++ code for differential mutation operator 

4.6.3. Cellular Automaton Mutation Implementation 

Cellular Automata (CA) are a long established area of research in computer science (von 

Neumann, 1963) which are characterised by a population of “cells” which are able to 

communicate with their neighbours according to predefined rules as a response to stimulus 

received from their neighbours.  The most famous CA is John Conway’s Game of Life 

(Gardner, 1970), a CA which takes place on a two  dimensional cellular grid.  The grid is 

initialised with cells in an initial state, “alive” or “dead” and the simulation is then allowed to 

proceed through discrete timesteps for each of which the predefined rules are applied to 

every cell in the network.  Conway’s rules are very simple:  
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• A live cell with one or fewer live neighbours dies of loneliness. 

• A live cell with four live neighbours dies of overcrowding. 

• A live cell with two or three neighbours survives unchanged to the next timestep. 

• A dead cell with three live neighbours is reborn. 

Through these rules, intricate patterns are played out as time passes.  Some initial 

configurations produce stable configurations whilst others die out over time.  The “CA” 

Mutation operator is an adjunct to the differential mutation and is almost identical in 

operation to its sibling except it is applied to each gene in a chromosome in turn – rather than 

to a random selection – reflecting the global, simultaneous application of the rules in a true 

CA. 

for (int loop= 0; loop < genomeSize; ++loop) 
  mutateGene(loop); 

This mutation option is activated as an option in the code such that there is a 

probability of 50% normal mutation, 25% differential mutation and 25% “CA” differential 

mutation.  

4.6.4. Conclusions 

Differential mutation with trend analysis support has the potential to improve consistently 

the performance of the GA subject to some relationship being maintained between the 

values of the decision variables and some real-world property that influences the solution.  

Clearly, further analysis into the scalability of this technique, along with a means to identify 

the appropriate point to start differential mutation, would be desirable – particularly to 

determine a trade-off between the overhead of maintaining the history of gene behaviour 

versus the algorithmic performance advantage that might be expected from employing it.  If 

used in a mixed genome where there are many types of data, it would be sensible to highlight 

the genes that could be used most effectively with this type of mutator, rather than to waste 

evaluations modifying variables whose influence is difficult or nonsensical to track trend data 

for.  Experiments in Chapter 6.4.7 investigate the application of this technique to a number 

of hydroinformatic problems. 
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4.7. Conclusions 

The enhanced methodologies presented demonstrate several novel techniques for 

improving the performance of evolution algorithms.  Exploiting caching at various levels 

within the algorithm is shown to have the potential to improve dramatically performance.  

This use of caching includes retaining values for binary strings as well as retaining objective 

function results in a solution cache.  It is shown that the use of such caches has the potential 

to improve GA performance by ensuring that processor effort is not expended on solutions 

that have been encountered previously during the optimization.  Further quantification of 

this with respect to hydroinformatics applications will be presented in Chapter 6.  

Furthermore, novel modifications to the mutation operator are expounded demonstrating 

the potential to improve GA performance by concentrating mutation operations on the 

genes that are determined to have the greatest impact on a solution, i.e. solutions are sensitive 

to changes in particular genes.  To improve upon the computational performance of binary 

string representations, a hybridised-integer gene is presented which offers the 

representational benefits of the archetypal GA binary string representation combined with 

the performance benefits offered by integer and real-encoded genes.
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Chapter 5. Distributed Evaluation for EPANET: deEPANET 

5.1. Introduction 

Optimization applications for hydraulic networks, particularly those involving evolutionary 

algorithms, are characterized by long runtimes owing to the need to evaluate large numbers 

of hydraulic solutions.  Where conditions of uncertainty are to be considered, this issue 

becomes exacerbated as multiple hydraulic simulations must be performed for each solution 

under consideration.  Distributed Evaluation for EPANET (deEPANET) is implemented as 

an extension to the updated release of the popular hydraulic solver toolkit (Rossman, 2000) 

and adds the functionality to distribute hydraulic networks for concurrent evaluation.   

In order to reduce the computational runtime of GAs applied to hydroinformatic 

problems.  Balla and Lingireddy (2000), introduce a distributed computation implementation, 

PCNet.  This approach splits the computational load of the individual objective function 

evaluations across computers coupled over a Microsoft Windows-based local area network.  

A specimen application is described for the calibration of WDS using this approach and the 

performance improvement obtained from the distribution is seen to vary near-linearly with 

the number of computers employed.  The implementation, as presented, does not however 

implement an automated scheme for balancing the load between the client computers 

attached to the network.  Instead, the load balance is calculated a priori using the aggregate 

performance of the individual computers on an optimization problem.  Such an approach 

does not allow for differences in network hardware, nor does it allow for dynamic changes in 

performance caused by network congestion or other loads on the client systems. 

The distributed evaluation methodology presented herein permits the balancing of 

computational load using a simple queuing construct, which can contend with dynamic 

variation in computation performance and ensures that the throughput of all cooperating 

computers is maximized.  The efficacy of this approach – even for relatively simple networks 

– is demonstrated with a case study on the water distribution network of a small Italian town, 

which is analyzed under conditions of uncertain demand.  The results presented demonstrate 

that significant improvement in optimization performance can be realized through harnessing 

multiple computers in parallel in this manner.  In addition, non-trivial improvements in 

performance are demonstrated even for single machines where advanced processor 

architectures with implicit parallelization are available. 
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5.1.1. Parallelization of Optimization 

One of the key design goals for the GA library - introduced in Chapter 3 -since the beginning 

of its development, has been to offer the potential for accelerating optimization through the 

provision of parallelization techniques.  Modern operating systems offer the opportunity for 

an application to control multiple, parallel processes simultaneously.  On a conventional, 

single processor computer, these parallel processes merely have the appearance of running in 

parallel, being time-sliced automatically (i.e. divided and run consecutively) by the operating 

system.  However, on modern Intel processors featuring HyperThreading, dual-core 

processors or genuine multi-processor computers there is an element of genuine 

parallelization involved. 

Operating Systems such as those based on Linux or Microsoft Windows NT 

implement Symmetric Multiprocessing (SMP), which balances processor load across 

multiprocessors whether real or virtual.  In the case of a HyperThreading processor, the 

potential performance gains through multithreading are minimal – relating principally to the 

more efficient operation of the host operating system.  For multiple-core or multiple-

processor systems, however, there is a tangible performance improvement, which could 

theoretically approach a linear improvement in speed as resources are added. 

In early versions of the GA library, each Genetic Algorithm was optimized for 

parallelization, meaning that if one were to run more than one GA at a time then there would 

be some performance benefit (c.f. Thurley et al., 1999).  On single-processor platforms it 

allowed parallel operations to be performed which can be used to initiate several short-

optimization runs (i.e. batch-run mode) for processing overnight. This is referred to as 

algorithmic parallelization.  This implementation can be considered as generally successful 

although there were a number of lingering problems that proved difficult to rectify - 

particularly relating to the stability of inter-thread communication.  Data transfer between 

threads requires careful management to ensure that thread processes are synchronized at the 

time or that threads do not attempt to access the same data structures at the same time. 

Subsequent versions of the CWS library incorporate this same basic algorithmic 

parallelization although information about the progress of the algorithm is published in the 

form of custom Windows messages in order to reduce the need to synchronize threads.  A 

number of memory-management issues were identified within the thread handling code, 

which were resolved. 
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For the most part, this algorithmic parallelization is retained purely for organizational 

purposes although it has the potential to be used in the construction of nested GAs for 

which there is no direct support or management provided by the library at this time. 

The most recent evolution of the library incorporates the single thread per algorithm 

approach and additionally targets the execution of the GA objective function in a more 

piecemeal fashion.   

On each execution of an objective function, a thread is created which handles that 

execution and is automatically terminated on the completion of that function.  This 

behaviour is limited to creating a number of threads up to the number of processors within 

the system.  The number of Objective Threads created is limited in this way as multiple 

threads of this type on a single processor offer no advantages over sequentially processing 

them save for allowing the Operating System to reallocate dynamically the processor 

responsible for the thread.   

In breaking down the evaluation operations to this extent, the library gains the 

advantage of implicitly accelerating, on multi-processor machines, the processing of single-

algorithm applications that are by far the most common. 

The provision of multithreading support for Genetic Algorithms, whilst providing 

substantial performance advantages on multiprocessor platforms, is not without its pitfalls.  

Foremost among these regards the routines detailed to evaluate the objective function.  In 

the above examples, the objective functions are simple mathematical routines that are easily 

coded directly into the organism.  Other optimization applications, including those of water 

distribution system design, use an external solver application to evaluate the hydraulic state of 

the network.  If such a system is to be used with multithreading then there are two 

techniques that can be used to accommodate the external solver: 

A mutex (mutual exclusion) can be applied to the external solver, which allows use by 

a single thread at a given time - thus negating many of the advantages of the multithreaded 

approach, particularly given that the solver is likely to be handling the most computationally 

demanding part of the optimization. 

Multiple instances of the solver application may be created with the same network 

data.  For efficiency, the solvers should only be instantiated once and not with the creation of 

each new thread. 
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Whilst the first option is wholly undesirable, the second in many applications may be 

unobtainable.  Many external applications may refuse to start multiple instances, in other 

cases there may be unforeseen interaction between instances - something that developers 

rarely examine.  Therefore, in this thesis, a tool is presented, deEPANET, which embeds the 

hydraulic solver into a server-side application of which many instances may be instantiated 

on an individual machine or distributed amongst a network of cooperating machines.   

5.2. Implementation 

Underpinning deEPANET is the OpenNet library (Morley et al., 2000- see Appendix A) 

which is employed as a solver-independent hydraulic model within the software environment.  

In this fashion, the mechanisms employed by deEPANET for distributing and solving 

hydraulic networks are made entirely opaque to the developer of an application – 

modifications made to the OpenNet representation are transparently reflected in the 

underlying EPANET model.  A detailed description of OpenNet and its capabilities can be 

found in Appendix A. 

Figure 5-1: Typical PC network configuration for deploying deEPANET 

deEPANET uses a client-server methodology to distribute solutions to remote 

computers or to a local computer using a loopback network address.  The standard Internet 

networking protocols of TCP/IP (Transmission Control Protocol/Internet Protocol) and 

UDP (User Datagram Protocol) are used to implement a client-server protocol for 

distributing EPANET networks, partial networks and solver results across a local area 

network as illustrated in Figure 5-1. 

The deEPANET server application can function either as a standalone, conventional 

Windows application or as a Windows Service.  The Windows application provides an 

interface where the progress of optimizations may be monitored by the user as well as 

providing full control over the configuration of the application.  deEPANET is only available 
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to remote users when the application is running, allowing the owner of the computing 

resource to determine whether and when deEPANET is permitted to run.  By contrast, the 

Windows Service form runs in the absence of a conventional user interface.  The 

deEPANET service is started automatically when Windows is started and, as such, does not 

require a user to have logged into the system.  The deEPANET service can be configured 

through the Windows Control Panel where a simple interface is exposed which allows the 

configuration of all the options that are available in the conventional Windows application.  

In addition an option is available to restrict the times at which the deEPANET service will 

accept solution requests from remote computers. 

Upon initial connection to a deEPANET server, the client software will normally 

upload the base EPANET input file that will be operated upon.  It is necessary to transfer 

this information as an input file as the EPANET Toolkit DLL does not contain the 

necessary functions to configure programmatically a network, i.e. to dynamically modify the 

network topology necessary for running a simulation. 

Having uploaded a base network to the server, a client may request that the network 

be solved, i.e. to perform a hydraulic simulation run.  The solve process is broken down into 

three stages:  Configuring the hydraulic network; performing the hydraulic analysis and 

returning the results. 

The configuration of the hydraulic network is done in a sparse fashion so as to limit 

the amount of network traffic generated.  A list of network element identifiers plus the 

parameters to be changed, and the new settings, are passed from the client to the server – 

rather than sending en masse all of the network specification. 

In a similar manner, a list of the results required from the analysis is also passed from 

the client to the server.  In this fashion, the server need only return the absolute minimum of 

data that the client is interested in.  This is particularly important for large networks where an 

optimization may only be focusing on a few critical nodes for analysis or, as in the case of the 

example case study in 5.4, where there are a large number of returned data values because of 

the resolution of the analysis undertaken. 

One novel feature of deEPANET is that it maintains a queue of solutions waiting to 

be performed.  The solutions in this queue are distributed to servers on a first-come first-

served basis.  This ensures that faster computers are not hamstrung by slower servers on the 

network as they are able to make more frequent requests of the queue in contrast to the 

methodology of Balla and Lingireddy (2000) who determine which computers will be given a 
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higher workload a priori.  This approach does have a limitation in that it requires that an 

ample supply of solutions to be queued for optimal performance.  Conventional steady-state 

Genetic Algorithm (GA) applications are less well suited for this as they generally produce a 

pair of solutions for evaluation at a given time.  However, generational GAs are more 

appropriate for this as they can queue population_size individuals for evaluation at a time.  The 

problem presented in the case study related in Chapter 5.4 involves stochastic sampling 

coupled with a genetic algorithm, which can queue population_size × sample_size individuals for 

evaluation at a time. 

5.2.1. Robust networking 

Any distributed computing application has to accommodate the possibility that the failure of 

a remote computer or network component may interrupt the flow of data.  deEPANET 

accommodates this on the client-side by analyzing the frequency of data returns from the 

connected servers.  If a server fails to return a result within three times the average time that 

it has previously calculated results in then that server is asked to cancel its operation and the 

solution is tasked to another server – whilst the original server is given a virtual “black mark”.  

After exceeding a user-defined number of “black marks”, a server may be disconnected from 

the application.  

For the ease of developing new applications using the deEPANET library, functions 

were added to allow for the automated search of the LAN for available servers.  The search 

facility is limited to a LAN as it will not be able to traverse a switch and so the deEPANET 

client also offers the facility to add manually an IP address to send a message to.  

Accordingly, the deEPANET server implements a UDP listener to allow it to respond to this 

broadcast message; the response taking the form of a reciprocal TCP connection over the 

same port.  The client and server negotiate the port numbers that are used in the event that 

either side is using any ports in the default range.  The combination of the UDP listener and 

TCP connection is used for both the automatic and manual discovery of servers as this 

verifies that any manual server additions are valid and can be reached through any 

intermediate firewalls. 

5.2.2. Advanced processor architectures 

deEPANET seeks to exploit emerging technologies such as HyperThreading™ (a 

mechanism for optimizing instruction pipelining for multiple threads on a single processor 

core) and multiple-core processors to further accelerate performance.  Through its 
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multithreaded structure and its novel ability to manage concurrent instances of the hydraulic 

solver, deEPANET is able to improve the performance of EPANET on standalone (non-

networked) hardware with features such as HyperThreading™ and multiprocessor/multicore 

systems.  Since both of these technologies are becoming increasingly common it makes sense 

to target such systems for use with optimization applications. 

The ability to employ multiple processors in standard PC hardware has existed for 

many years – requiring multithreaded software to maximize its benefit.  Yet the use of 

multiprocessor machines outside of the server environment has been somewhat restricted, 

requiring expensive motherboards and, naturally, two costly processor chips.  The emergence 

of “multi-core” processors in which two or more processor chips are incorporated on the 

same silicon die has seen this situation change.  Not only are these chips considerably 

cheaper than buying equivalent processors separately and there is no requirement for an 

expensive multiple socket motherboard but their presence is relatively transparent to 

software and hardware alike. 

5.2.3. Cross platform characteristics 

To provide deEPANET with cross-platform capability, the library is coded in portable C++ 

(with the exception of the optional user interface) and uses a portable, open source TCP/IP 

library to provide its network connectivity.  The only difficulty with using deEPANET on 

Linux or other operating systems is likely to be the need to recompile the EPANET library 

itself for that platform.  Because of the inherent platform-neutral nature of TCP/IP, using 

deEPANET instances on different platforms in conjunction with each other would not pose 

any problems. 

5.3. Application 

The computers for the test environment were selected to form a representative cross-section 

of the type of computers that might be found in a normal networked environment.  

Represented in the test environment are high-end and mid-range processors from both the 

dominant PC processor manufacturers, Intel and AMD. 
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Computer Processor Memory Network 
A 1.8 GHz AMD Athlon 64 1 GB Gigabit 
B 1.6 GHz Intel Pentium 4† 512 MB Fast 
C 3.0 GHz Intel Pentium 4HT 1 GB Fast 
D 2.2 GHz AMD Athlon 64x2 1 GB Gigabit 

†The processor in computer B  is a 3.0 GHz Intel Pentium 4 that has been de-rated to operate at 1.6 GHz. 

Table 5-1: Hardware specifications of test environment computers. 

The computers are connected via a Gigabit Ethernet switch to allow the two Gigabit 

equipped computers to be connected at the highest speed (1,000 Mb/s).  The switch 

employed can be forced to operate in a “Fast Ethernet only” mode (100 Mb/s) which 

allowed the influence of network speed on deEPANET’s performance to be investigated. 

5.4. Case Study Network 

The case study relates to the water distribution network of the small Italian town of 

Piedemonte San Germano (Tricarico et al., 2005) and comprises 45 pipes serving 33 demand 

nodes, arranged so as to form 12 loops, gravity-fed from a single reservoir.  A full description 

of the network topology and characteristics may be found in Chapter 6.3.4. 

Whilst the scale of this network is relatively trivial, the demand conditions for this 

system are extreme in that the network model contains demand data obtained from the real-

world network for 24 hours at 1-second intervals and resampled to 1 minute intervals.   

Tricarico et al. (2006) analyzed this data using the robust Non-Dominated Sorted Genetic 

Algorithm II (rNSGA-II) developed by Kapelan et al. (2005).   
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Figure 5-2: Topology of Piedemonte San Germano Case Study Network 

A key characteristic of the rNSGA is its use of stochastic sampling techniques to 

obtain a measure of the robustness of a given solution under conditions of uncertainty – in 

this instance the network demands.  This approach requires significantly more simulation 

evaluations than ordinarily required by a conventional, deterministic GA optimization with 

between 5 and 50 additional hydraulic simulations being required for each solution evolved by 

the algorithm, as well as up to 100,000 additional simulations performed on the best 

solutions as a post-processing exercise.  The use of such a sampling technique makes this 

type of algorithm ideal for use with deEPANET given that many solutions may be queued 

for evaluation for each iteration of the algorithm. 
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Figure 5-3: Logical Structure of Stochastic Optimization Software (after Kapelan, 2005) 

To prevent the performance improvement being masked by any additional 

overheads, a simulation exercise was devised that performs no processing other than 

generating a network to be solved and then dispatching that network for solution and the 

interpreting the results returned. 

5.5. Results 

In order to demonstrate the potential performance gains from deploying deEPANET it is 

necessary to evaluate first the baseline performance of the computers in the test 

environment. 

Computer 
Performance 

 (evaluations per second) 
Single thread Two threads Three threads 

A 11.97 11.75 11.24 
B 3.45 3.42 3.32 
C 7.07 9.25 9.09 
D 13.95 25.07 25.18 

Table 5-2: Baseline performance on Piedemonte San Germano simulation exercise. 

Optimization Loop

Sampling Loop

Deterministic
Simulator

Deterministic
Simulator

Decision
Variable
Values

One 
implementation of 
uncertain input 
variables

Some statistics of
the deterministic 
simulator output

One realization 
of all output 

variables

Problem DataOptimal Solution

Stochastic
Simulator
Stochastic
Simulator

OptimizerOptimizer

Optimization Loop

Sampling Loop

Optimization Loop

Sampling Loop

Deterministic
Simulator

Deterministic
Simulator

Decision
Variable
Values

One 
implementation of 
uncertain input 
variables

Some statistics of
the deterministic 
simulator output

One realization 
of all output 

variables

Problem DataOptimal Solution

Stochastic
Simulator
Stochastic
Simulator

OptimizerOptimizer



Chapter 5: Distributed Evaluation for EPANET: deEPANET 

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 123 

Table 5-2 and Figure 5-4 show the results obtained from averaging ten runs of the simulation 

exercise outlined above.  The simulation exercise was repeated using two and three instances 

of deEPANET running on the same machine to determine whether there was any benefit of 

doing so.  

 
Figure 5-4: Baseline performance on Piedemonte San Germano simulation exercise. 

As was expected, the availability of a second thread on the dual core machine D 

allowed it to almost double its throughput of solutions; indeed, the performance of this 

machine continued to improve with up to six instances being used – the reasons for which 

will be discussed below.  What was more surprising, however, was the performance of 

computer C that demonstrated a performance improvement > 30% with the addition of the 

second instance – rather than the degradation which might be expected and which was 

shown by the other single-core processors.   

To determine whether Intel’s HyperThreading technology was likely to be 

responsible for this performance gain, the processor in computer B was returned to its native 

3.0GHz performance and retested – the processors in computers B and C are identical save 
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for the latter’s support for HyperThreading.  Under these conditions, computer B achieved a 

baseline score of 7.09 solutions per second with a single thread and degraded thereafter with 

additional instances, in line with its prior performance confirming that the HyperThreading 

support on the processor was indeed assisting in the running of two instances of the 

deEPANET client. 

The baseline results demonstrate that, even without employing collaborating 

computers across a network, deEPANET can realize significant performance improvements 

on standalone machines with multiple processors – be they physical or virtual. 

To evaluate the performance of the software it was necessary to nominate a single 

computer to act as the client for which the other computers would serve results.  Tests 

demonstrated that it was most effective for the quickest machine to act as the client in order 

to ensure the responsiveness necessary for distributing and collating the network solutions in 

a timely fashion.  To this end, computer D, the dual-core AMD machine was selected for this 

purpose.  In addition to serving the other computers, computer D also continued to act as a 

server in its own right, returning results to its own client. 

Computer Baseline 
score 

Distributed score  
(single threads) 

Distributed score 
(dual threads) 

A 11.97 11.81 11.82 
B 3.45 3.69 3.54 

C 7.07 6.17 
Thrd. #1  4.30 8.65 

(combined) Thrd. #2:  4.35 

D 13.95 11.10 
Thrd. #1  11.52 23.04 

(combined) Thrd. #2:  11.52 

Totals   36.44   32.77  47.05 

Table 5-3: Results obtained from running single threads on each of the computers and  
dual threads on the multiprocessor computers. 

The results in the single thread column of Table 5-3 illustrate a drop in performance of 

around 10% when compared to the baseline score representing the overhead of transmitting 

the data across the network.  Much of the drop in performance is attributable to computer D, 

which is now responsible for distributing solutions to all of the other computers.  It should 

be noted that a direct comparison between the baseline results and the distributed results is 

not entirely valid as the baseline results would represent individual optimization runs 

operating on separate computers whereas the results from the distributed arrangement 

contribute to a single optimization run – potentially a more useful scenario when considering 

multi-objective optimization algorithms. 
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It has been shown that running two threads on the HyperThreading and Dual-Core 

machines greatly improves their performance and the results obtained by adding a second 

thread to these machines is shown in the dual threads column of Table 5-3.  As can be seen, 

the addition of the second threads on the multiprocessor machine demonstrates much the 

same performance improvement that it did in the standalone case. 

An analysis of processor utilization at this point revealed that each of the computers 

was failing to reach 100% by some margin.  This is due to the inherent latency in sending and 

receiving network messages that causes a thread to wait whilst this information is processed.  

Accordingly, an additional thread was added to each of the machines in order to allow this 

“wasted” time to be directed to undertaking the network analysis.  The results from this 

addition are shown in Table 5-4.  A further test was made by restricting the network switch 

that connects the computers to a maximum operating speed of 100 Mb/s – the effect of this 

change is also related in the following table. 

Computer Baseline 
score 

Distributed Score 
(Gigabit Ethernet) 

Distributed Score 
(Fast Ethernet) 

A 11.97 
Thrd. #1:  6.24 12.46 

(combined) 
Thrd. #1:  4.57 9.08 

(combined) Thrd. #2:  6.22 Thrd. #2:  4.51 

B 3.45 
Thrd. #1:  1.91 3.83 

(combined) 
Thrd. #1:  1.65 3.29 

(combined) Thrd. #2:  1.92 Thrd. #2:  1.64 

C 7.07 
Thrd. #1:  2.79 

9.33 
(combined) 

Thrd. #1:  2.83 
9.23 

(combined) Thrd. #2:  3.81 Thrd. #2:  2.82 
Thrd. #3:  2.73 Thrd. #3:  3.58 

D 13.95 
Thrd. #1:  6.39 

22.51 
(combined) 

Thrd. #1:   6.66 
22.95 

(combined) Thrd. #2:  9.85 Thrd. #2:  6.34 
Thrd. #3:  6.27 Thrd. #3:  9.95 

Totals   36.44  48.13  44.55 

Table 5-4: Results utilizing one thread per processor (virtual or physical) plus one supplementary thread. 

Further tests have shown that further increasing the number of threads on each machine 

does not yield further improvements in performance.  Preliminary results suggest that this 

technique remains scalable and a network comprised of four computers with a similar 

configuration to computer A in collaboration with the server D have achieved in excess of 75 

solutions per second on the example problem.  Identifying, the extent of this scalability is 

difficult – being dependent both on the configuration of the problem, the network topology 

and the performance of the individual computers involved. 
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Figure 5-5: Results utilizing one thread per processor (virtual or physical) plus one supplementary thread. 

5.6. Distributing Stochastic Computation 

In attempting to determine the level of scalability that the application of deEPANET enjoys, 

the system was applied to the network topology shown in Figure 5-6.  In addition to the 

computers used for the case study above, four additional computers have been introduced to 

the network.  Two of these, F and G are machines similar in specification to A and are 

connected to the server D via a Gigabit Ethernet connection.   

E is a laptop connected by an IEEE 802.11b wireless connection that has a peak 

speed of 11mbps (just over 1% of the bandwidth available to the Gigabit connection).  The 

last addition is H which is to be found attached to the Internet via a residential ADSL 

(Asymmetric Digital Subscriber Line) connection around 200 metres from the campus of the 

University of Exeter.  Despite its apparent proximity, however, the gateway between the 

ADSL provider and the University’s SuperJANET network is in London. 

Preliminary results from running deEPANET on this network were encouraging in 

that the additional computers attached to the Gigabit network continued the scaling trends 

seen previously.  However, what was unexpected was the relatively poor performance of the 
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wireless connection and that of the WAN (Wide Area Network) connection off campus.  

Whilst both connections are acceptably fast for data transfer, the latency associated with both 

wireless networks and WAN connections meant that the transport times for small packets of 

data were compromised. 

In an effort to reduce the implications of this – and to improve the practicability of 

deEPANET – a decision was made to offload the computation of the stochastic variables to 

the remote servers.  In the original configuration of deEPANET, the client computer would 

generate a queue of networks to be solved by varying the stochastic variables according to a 

Probability Distribution Function (PDF) specific to each input variable.   

A typical configuration would mean that for each solution generated by the genetic 

algorithm, the stochastic loop (see Figure 5-3) would run 20-50 times, producing that number 

of individual, slightly-differing networks to be solved hydraulically – in a distributed fashion 

through deEPANET.  Devolving the stochastic computation to the servers entails passing 

the description of each PDF for each stochastic variable, in this instance the nodal demands, 

rather than the generated values obtained from the PDF.  The server computers are then in a 

position to generate the stochastic variables directly from the PDF themselves.  This has a 

twin-effect on the performance of the algorithm, as can be seen from Table 5-5: 
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Figure 5-6: Extended test network for deEPANET simulations 

The amount of data transferred across the network is thus greatly reduced.  Each 

network solution only requires the transfer of the pipe configuration and the PDF 
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specification – rather than one set of pipe configurations and nodal demands for each 

sample.  A saving proportionate to the number of samples can be achieved in terms of a 

reduction in network traffic.  In terms of the results returned there are two techniques that 

can be applied.  The server can either collect all of the results from the individual hydraulic 

evaluations and return them to the client, as before, or aggregate the statistics for a given 

solution – significantly reducing the amount of data transferred and the load on the client. 

The data transfers are also consolidated into two transfers that occur at the beginning of 

the evaluation of a solution and when all of the samples have been hydraulically evaluated.  

This has the effect of reducing the effect of the latency on the algorithm as most of time that 

is wasted in deEPANET is involved in facilitating a network connection rather than actually 

transferring the data. 

 Data Transfer 
(bytes per network solution) 

Number of 
Data 

Transfers  
(per network 

solution) 

Performance  
(sample solutions per second) 

 Outbound Inbound Total using four LAN 
computers 

using one 
WAN 

computer 

Standard1 15,200 6,200 21,400 100 48.13 0.18 

Devolved2 550 6,200 6,750 2 48.58 7.02 

Devolved with 
Aggregated 

Results3 
550 32 582 2 49.54 7.75 

1 sending  45 pipe diameters and 31 nodal demands and receiving 31 nodal pressures – for each of 50 samples. 
2 sending 45 pipe diameters and 31 PDF descriptions for each network solution and receiving 31 nodal pressures for each of 50 
samples. 
3 sending 45 pipe diameters and 31 PDF descriptions and receiving 8 statistics for each network solution. 

Table 5-5: Comparison of data transfer and performance for standard and devolved stochastic 
configurations (for the Piedemonte San Germano case study as before – assuming 50 stochastic samples) 

Table 5-5 clearly illustrates the type of performance improvement that can be 

achieved when devolving the stochastic sample generation to the server machines – with the 

attendant benefits of reducing and consolidating the network traffic necessary.  From the 

table it can be noted that there is a small improvement in the performance of the four, LAN 

connected computers.  Given that this network is not badly affected by latency in the first 

instance, it can be assumed that this improvement can be principally be attributed to the 

reduction in the amount of data processing that has to take place on both sides of the 

network connection.  The result for the WAN connected computer is more significant, 

however.  Under the original implementation, 100 packets (not IP packets) of data are sent 

across the network, averaging 214 bytes in size.  Under the devolved and 

devolved/aggregated implementations this reduces to 2 packets (550 bytes sent and 6,200 
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bytes received) and 2 packets (550 bytes sent and 32 bytes received), respectively.  Clearly, 

reducing the number of packets sent has a dramatic effect on the network overheads as can 

be seen from the marked performance improvement witnessed for the WAN connected 

computer – some 43 times quicker.  It should also be noted that reducing the throughput 

required of the network is likely to result in improved scalability of the entire solution. 

One issue that arises with reducing the granularity of the elements distributed across 

the network is that it is less straightforward to balance the performance of servers.  Before, a 

server that outperformed its peers undertook a larger share of the workload – which has the 

net effect of all of the servers returning their final contribution to an individual network 

solution at approximately the same time.  This effect may be mitigated by selecting smaller 

numbers of stochastic samples where appropriate.  For this reason, deEPANET is 

configurable as to which technique is to be applied depending on the topology of the 

network that is available for use. 

5.7. Conclusions 

The results presented demonstrate that deEPANET can significantly shorten runtimes for 

optimization algorithms by distributing evaluations to computers across a network and by 

exploiting multi-threading techniques on standalone computers equipped with virtual or 

physical multiprocessors.  
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Chapter 6. Single Objective Optimization Problems 

6.1. Introduction 

In order to demonstrate the applicability of the techniques outlined in Chapter 4 and 5, a 

number of case studies have been undertaken.  This chapter introduces three problems 

formulated as single-objective optimization problems, which are then revisited as multiple 

objective optimizations in Chapter 7.  For each problem, the effect of the novel 

methodologies, i.e. genetic representation, caching and updated mutation operators, are 

identified. 

These single objective optimizations are formulated thus: 

:݁ݖ݅݉݅݊݅ܯ ݐݏ݋ܥ ൌ ௜௡௙ܥ ൅  ௣௘௡ܥ

iii) 

௜௡௙ܥ ൌ ݂൫ܦଵ, . . , ே೗൯ܦ ൌ෍ܥ൫ܦ௝, ௝൯ܮ
ே೗

௝ୀଵ

 

iv) 

௣௘௡ܥ ൌ ݂൫ܪଵ, . . , ே೙൯ܪ ൌ ܭ ·෍max൫0;ܪ௜,௠௜௡ െ ௜൯ܪ
ே೙

௜ୀଵ

 

v) 

௝ܦ א ሺ݆ ܦ ൌ 1, . . , ௗܰሻ 

vi) 

where: Cost is the total cost, to be minimized, Cinf is the total infrastructure cost, Cpen is the 

penalty cost term, Nl is the number of links in the network for which reinforcement or 

installation is an option, C(Dj,Lj) is the cost of the jth pipe with diameter Dj (chosen from a 

discrete set of available diameters D) and length Lj.  K is the penalty multiplier constant, Hi is 

the pressure head at node i (as computed by the hydraulic solver), Hi,min is the minimum 

pressure head requirement sufficient to fully satisfy the demand at node i and Nn is the 

number of nodes in the network.  Nd is the number of decision variables in the optimization. 
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6.1.1. Genetic Representation 

In Chapter 4.2, an introductory examination is made of the effect of varying the genetic 

representation used for the candidate GA solutions.  This section contrasts this variation and 

the use of heterozygous chromosomes for each of the three applications introduced above. 

Each of the networks under consideration was subject to 100 optimization runs on the above 

basis using the different genotype representations.  The results of this experimentation are 

presented in the form of charts which can be considered as a two dimensional form of “box-

plot” (Chambers et al., 1983), an example of which is shown in Figure 6-1.   

 
Figure 6-1: Example result graph 

The results presented show the maximum and minimum fitness values of the best individual 

in the population throughout the lifetime of the optimization, along with the upper and lower 

quartiles and the median fitness.  Combined as a graphical presentation, they provide an 

effective illustration of the algorithmic performance for a single-objective algorithm.  It 

should be noted that in order to reduce the amount of data produced by the optimizations to 

a manageable level, the state of the population was sampled every 20 generations – thus the 

resolution of the graphs presented is limited in this respect. 

6.1.2. Heterozygous Chromosomes 

The New York Tunnels and Piedemonte San Germano problems examined were 

reformulated as heterozygous problems in which the chromosome of the solution contains 

not only the pipe diameter to be applied, but also the identity of the pipe to apply it to.  In 

this fashion, it is possible to constrain the optimization by limiting the number of changes 

Maximum value Upper Quartile 

Median Value 

Lower Quartile 

Minimum Value 
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made to the network.  In this analysis, ten pipes were permitted to be changed for both 

problems.  It should be noted that from the optimizations performed previously it had been 

seen that the optimal solutions for both problems were achieved with the modification of up 

to just six pipes in the network. 

Owing to the fact that the Hanoi network is a design problem, in which each pipe 

needs to have a diameter value set, this network has not been tested with a heterozygous 

formulation.   

6.1.3. Caching 

For each of the three networks, an experiment has been performed to quantify the 

performance improvement that might be achieved by adopting the two caching strategies 

outlined in Chapter 4.4.  As the integer-based representations have been shown to 

outperform those of the true binary strings, the caching analysis will concentrate on that 

representation.  Caching is purely an exercise in reducing the runtime performance of the 

algorithm and, for deterministic algorithms at least, should have no effect on the final results 

of the optimization.  As the binary strings have a longer and more complex structure to 

search for in the cache they will intuitively produce significantly poorer performance than the 

integer or hybrid representations.  The search times for the different caches have been 

determined experimentally with the evaluation function of the GA disabled.  This allows a 

good measure of the average search time of the cache.  This, coupled with the cache hit 

statistics generated over repeated runs of the algorithm allows the computation of any 

performance saving afforded by using the cache.  Owing to the variable chromosome 

representations employed by the heterozygous algorithms, the caching has not been 

evaluated against these models. 
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6.1.4. Adaptive Differential Mutation 

To determine the efficacy of the differential mutation it was initially applied to a 

simple General Assignment Problem in which trend information is largely irrelevant.  The 

General Assignment Problem has no scalar relationships between the decision variable values 

and any real-world property of the agents they represent – which means that the trend 

information collected will be unusable.  The differential mutation was allowed to operate 

once the algorithm had proceeded beyond 100,000 iterations. 

 

Figure 6-2: Mutation performance comparison - Generalized Assignment Problem 

The results shown in Figure 6-2 are the average performances of at least 40 runs for 

each mutation type.  A steady state GA was employed, as the analysis requires statistics 

collected by the Replacer component of the GA in order to determine the relative fitness of 

new solutions.  This component is not used in generational algorithms because all new 

solutions are accepted unconditionally into the population for the next generation. 

The effectiveness of the differential mutation is somewhat questionable on this 

problem: beyond the 100,000 iteration point where the revised algorithm starts operating, a 

marginal improvement in performance can be discerned – although this is not immediately 

apparent in the graph above.  Overall, the differential mutation appears to offer minimal 

advantages over the standard GA for this problem. 
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6.1.5. Distributed Performance 

Computer Processor Memory Network 
X 2.4 GHz Intel Core 2 Quad 4 GB Fast 
Y 2.4 GHz AMD Athlon64x2 2 GB Fast 
Z 1.8 GHz Intel Core 2 Duo 2 GB Fast 

Table 6-1: Hardware specifications of distributed test environment computers 

Each of the three networks under consideration were employed to assess the effectiveness of 

the Distributed Evaluation for EPANET.  Table 6-1 relates the computers employed for this 

task.  Computer X is equipped with a quad-core processor, whilst Computers X and Y both 

have dual core processors.  Computer X, as the most powerful, was nominated as the server 

for the group.  Computer X, as the most powerful, was nominated as the server for the 

group.  None of the computers is equipped with a HyperThreading processor – which has 

been shown to improve performance under initial testing – and accordingly the two dual core 

machines were configured to run three instances of the deEPANET server each and four 

instances for Computer X – which would also be responsible for running the client on which 

the optimization would actually proceed. 

To minimize the effects of external network traffic impacting on the performance 

metrics, the machines were connected on a private, gigabit Ethernet network via a switch.  

Before each distributed test was run, the same optimization was performed on each 

individual machine in order to obtain a baseline figure for its performance. 

Because of the hardware differences between these evaluations and those presented 

for the initial testing in Chapter 5, the performance figures are not directly comparable and 

should not be taken as a measure of the relative complexity of the problems. 

6.2. New York Tunnels 

6.2.1. Problem Formulation 

The problem that has come to be known as “New York Tunnels” was introduced by 

Schaake and Lai (1969) as an illustration of a large-scale optimization problem for the 

reinforcement of the water supply for New York City.  The “Tunnels” name stems from the 

fact that the pipes are of inordinately large diameter, ranging from 60 inches (1.5 metres) to 

204 inches (5.2 metres).  In this problem, each of the 21 pipes in the network may be 

duplicated with one of 15 commercially available pipe sizes or left unduplicated.  This gives a 

solution space of 1621 = 1.93×1025 solutions. 
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This network has become a favourite benchmark for optimization applications and 

has been employed widely in the literature.  From Schaake and Lai’s original solution of 

$78.1m  the best known solution for the problem has been advanced by, among others, 

Morgan & Goulter (1985 – $39.229m) and  Murphy et al. (1993 - $38.814m).  Savić and 

Walters (1997) used the problem to illustrate the sensitivity of such optimization problems to 

small changes in the coefficients used in calculating the frictional losses observed in the 

system, demonstrating solutions ranging from $37.140m to $40.452m representing the best 

solutions found for the gamut of coefficients used for this problem by other workers in the 

field.  At the time of writing, the best-known feasible solution to the problem of $38.644m 

was first published by Meier et al. (2003) using an Ant Colony Simulation (ACS) approach.   

6.2.2. Network Configuration 

 
Figure 6-3: New York Tunnels Topology 

The network topology consists of two loops and two branches supplied under gravity by a 

single, fixed-head reservoir.  In the original, pressure deficient configuration, nodes 16, 18, 

19, 20 and 21 at the periphery of the network fall below the required minimum pressures (see 

Table 6-2).  This problem was originally formulated in Imperial units – metric equivalents are 

given. 
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Node 
ID 

Elevation 
(feet) 

Demand Minimum Pressure 
(cubic feet  
per second) 

(litres per 
second) 

(pounds per  
square inch) (metres H2O) 

2 0 92.4 2,616.47 255.0 179.28 

3 0 92.4 2,616.47 255.0 179.28 

4 0 88.2 2,497.55 255.0 179.28 

5 0 88.2 2,497.55 255.0 179.28 

6 0 88.2 2,497.55 255.0 179.28 

7 0 88.2 2,497.55 255.0 179.28 

8 0 88.2 2,497.55 255.0 179.28 

9 0 170.0 4,813.86 255.0 179.28 

10 0 1.0 28.31 255.0 179.28 

11 0 170.0 4,813.86 255.0 179.28 

12 0 117.1 3,315.90 255.0 179.28 

13 0 117.1 3,315.90 255.0 179.28 

14 0 92.4 2,616.47 255.0 179.28 

15 0 92.4 2,616.47 255.0 179.28 

16 0 170.0 4,813.86 260.0 182.80 

17 0 57.5 1,682.22 272.8 191.24 

18 0 117.1 3,315.90 255.0 179.28 

19 0 117.1 3,315.90 255.0 179.28 

20 0 170.0 4,813.86 255.0 179.28 

Table 6-2: New York Tunnels Node Characteristics 

Reservoir ID 
Elevation 

(feet) 

Total Head 
(feet H2O) (metres H2O) 

1 0 300  91.44 

Table 6-3: New York Tunnels Reservoir Characteristics 

Pipe From  
Node 

To  
Node 

Diameter Length H-W 
Friction 
Factor (inches) (mm) (feet) (m) 

1 1 2 180 4,572 11,600 3,535.68 100 

2 2 3 180 4,572 19,800 6,035.04 100 

3 3 4 180 4,572 7,300 2,225.04 100 

4 4 5 180 4,572 8,300 2,529.84 100 

5 5 6 180 4,572 8,600 2,621.28 100 

6 6 7 180 4,572 1,9100 5,821.68 100 

7 7 8 132 3,352.8 9,600 2,926.08 100 

8 8 9 132 3,352.8 12,500 3,810.00 100 

9 9 10 180 4,572 9,600 2,926.08 100 

10 11 9 204 5,156.2 11,200 3,413.76 100 

11 12 11 204 5,156.2 14,500 4,419.6 100 

12 13 12 204 5,156.2 12,200 3,718.56 100 
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Pipe From  
Node 

To  
Node 

Diameter Length H-W 
Friction 
Factor (inches) (mm) (feet) (m) 

13 14 13 204 5,156.2 24,100 7,345.68 100 

14 15 14 204 5,156.2 21,100 6,431.28 100 

15 1 15 204 5,156.2 15,500 4,724.4 100 

16 10 17 72 1,828.8 26,400 8,046.72 100 

17 12 18 72 1,828.8 31,200 9,509.76 100 

18 18 19 60 1,524.0 24,000 7,315.2 100 

19 11 20 60 1,524.0 14,400 4,389.12 100 

20 20 16 60 1,524.0 38,400 11,704.32 100 

21 9 16 72 1,828.8 26,400 8,046.72 100 

Table 6-4: New York Tunnels Pipe Characteristics 

Pipe 
option 

Diameter Cost  Pipe 
option 

Diameter Cost 
(inches) (mm) ($/foot) ($/metre)  (inches) (mm) ($/foot) ($/metre) 

0 No Duplication 0.00  8 120 3,048.0 416.46 1,366.34 

1 36 914.4 93.59 307.05  9 132 3,352.8 468.71 1,537.76 

2 48 1,219.2 133.70 438.65  10 144 3,657.6 522.11 1,712.96 

3 60 1524.0 176.32 578.48  11 156 3,962.4 576.59 1,891.70 

4 72 1828.8 221.05 725.23  12 168 4,267.2 632.09 2,073.79 

5 84 2,133.6 267.61 877.99  13 180  4,572.0 688.54 2,258.99 

6 96 2,438.4 315.80 1,036.09  14 192 4,876.8 745.91 2,447.21 

7 108 2,743.2 365.46 1,199.02  15 204 5,181.6 804.14 2,638.25 

Table 6-5: New York Tunnels Pipe Duplication Options 

The pipe costs per unit length seen in Table 6-5 are shown to two decimal places.  Within the 

optimization software itself, however, the cost versus diameter function defined by Schaake 

& Lai (1969) is used thus: 

ݐݏ݋ܥ ൌ 1.1 · ଵ.ଶସݎ݁ݐ݁݉ܽ݅ܦ ·  ݄ݐ݃݊݁ܮ

vii) 

Where Diameter is in inches and Length in feet and Cost is in US Dollars. 

6.2.3. GA Configuration 

An Elitist Generational GA was employed for the Gene Expression and Heterozygous 

comparisons, preserving the two best solutions in each population.  Single-point crossover 

was used with a probability of 95% occurrence.  The “standard” mutation operator was used 

which gave a 70% probability of a single gene being mutated.  A penalty term was introduced 

into the optimization to penalize infeasible solutions, which produce insufficient pressure at 

the demand nodes equating to $100,000,000 per psi of head deficit.  
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6.2.4. Genetic Representation 

6.2.4.1. Binary String 

For the standard binary string representation 23% of the runs converged to the best-known 

optimal solution and the variation in the range of solutions obtained visible in  

Figure 6-4.   

 
Figure 6-4: Algorithmic Performance: New York Tunnels - Binary String 

 

6.2.4.2. Gray Binary String 

As can be seen from Figure 6-5 the Gray-coded Binary String clearly outperforms its 

conventionally coded relative, with 43% of the solutions converged to the optimal solution as 

well as a clearly superior algorithmic performance overall. 
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Figure 6-5: Algorithmic Performance: New York Tunnels - Gray Binary String 

 

6.2.4.3. Integer 

The use of the Integer encoding for the genes leads to 41% of the runs identifying the best-

known solution of $38.644m.  Again, the integer representation is clearly shown (Figure 6-6) 

to be superior to that of the conventional binary string. 

 
Figure 6-6: Algorithmic Performance: New York Tunnels – Integer 

 

6.2.4.4. Hybrid Integer 

The results obtained for the hybrid integer gene, shown in Figure 6-7, demonstrate a tightly 

confined set of results.  The median value reaches the known global optimum after around 

5,750 generations (563,600 evaluations) – indeed, 53% of the runs converged to the optimal 

solution for this representation.  This is the only representation for which the median 

performance for the runs was seen to reach the optimal solution.  The Gray-coded version of 

the standard binary string representation can expected to perform identically, in terms of 

algorithmic performance, as this hybrid integer gene given that they both use the same 

underlying genetic representation and are acted upon by the recombination routines in the 

same fashion and the results shown in Figure 6-5 and Figure 6-7 confirm this assertion. 
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Figure 6-7: Algorithmic Performance: New York Tunnels - Hybrid Binary String 

  The best run located this minimum after 260 generations (or 25,482 evaluations).  This 

compares favourably with some of the best performances reported in the literature: 

Paper Technique Solution Cost Least Evaluations 
Required 

Dandy et al. (1996) 
GA 

$38.81m 96,750 
Wu et al. (2001) $37.13† 37,186 

Lippai et al. (1999) $38.13m† 46,016 
Eusuff & Lansey (2003a) Shuffled Frog 

Leaping 
Algorithm 

$35.27m‡ 28,200 

Eusuff & Lansey (2003b) 
$38.13m† 31,267 
$38.81m 21,569 

Maier et al. (2003) Ant Colony $38.64m 13,928 

Table 6-6: New York Tunnels: Comparison with Literature Results 

† Solution feasible when using “relaxed” Hazen-Williams headloss coefficient, c.f. Savić & Walters (1997). 
‡ Infeasible solution. 

6.2.4.5. Comparative Analysis 

Figure 6-8 illustrates the best values obtained from each of the genotype representations.  It 

is clear from the figure that the best Hybrid run identifies the minimum after around 260 

generations, similar to the conventional binary string.  The Gray-coded binary string, 

however, outperforms both identifying the minimum around 200 generations.  In terms of 

numbers of evaluations, these figures relate to evaluations of 25,482 and 19,602 respectively.   
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Figure 6-8: Algorithmic Performance: New York Tunnels - Combined Best 

The above results are combined in Figure 6-9 which, for clarity, has the maximum and 

minimum range for each result removed – leaving the upper and lower quartiles and the 

median value for each genotype representation.  The weak performance of the classically 

coded binary string is highlighted in this composite.  The improvement in performance 

achieved by the Hybrid Integer gene over its conventional integer counterpart is also clear.  

This can be attributed to the crossover and mutation characteristics the hybrid gene takes 

from the Gray-coded binary string.  The broad equivalence of the Gray-coded binary string 

and the Hybrid Integer gene is demonstrated by their overlap in the above figure – 

consequently, the Gray-coded binary string representation will be omitted from further 

analysis. 

 
Figure 6-9: Algorithmic Performance: New York Tunnels - Combined Upper/Lower Quartiles 
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6.2.4.6. Runtime Performance 

Each of the optimization runs was timed and averaged to give a realistic performance rate for 

the optimization.  In order to minimize the influence of external factors on the timing, runs 

were undertaken on a computer equipped with a quad-core processor with no other 

processes running other than standard operating system services. 

Chromosome Representation Average Performance 
(evaluations per second) % of best performance 

Binary String 8,893.63 86.9% 

Integer 10,234.89 100% 

Gray Binary String 8,111.29 79.3% 

Hybrid Integer 8,880.60 86.8% 

Table 6-7: New York Tunnels Runtime Performance 

As can be seen from Table 6-7, the performance of the integer gene outstrips that of the 

other representations, although its algorithmic performance was weaker than the two Gray-

coded alternatives.  The hybrid integer continues to outperform the Gray coded binary string 

and, for this length of chromosome, performs almost identically to the conventional binary 

string (c.f. Table 4-4).  Thus it can be seen that, for this problem, a trade-off exists between 

run-time performance and the algorithmic performance. 

6.2.5. Heterozygous Chromosomes 

The heterozygous form of the New York Tunnels has been encoded to allow 10 pipes to be 

modified at once.  The chromosome comprises 10 pairs of genes, the first being allowed to 

vary between 1and 21 represents the pipe to be modified.  The second gene of the pair 

encodes the pipe diameter as previously.  Thus for the New York Tunnels problem, the total 

chromosome length is reduced by one gene. 

6.2.5.1. Binary String 

The results from the runs of the heterozygous form of the binary string can be seen in Figure 

6-10.   
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Figure 6-10: Algorithmic Performance: New York Tunnels - Heterozygous Binary String 

Overlain with the original results from Chapter 6.2.4 in Figure 6-11 the heterozygous results 

can be seen to be superior to the original configuration– improving more rapidly and 

converging to the optimal solution on more occasions (47% vs 23%). 

 
Figure 6-11:  Algorithmic Performance: New York Tunnels - Heterozygous Binary String results overlain with 

conventional results 

6.2.5.2. Integer 

Figure 6-12 illustrates the results obtained for the heterozygous runs with the integer 

representation for the genes. 
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Figure 6-12: Algorithmic Performance: New York Tunnels - Heterozygous Integer 

Once more, the heterozygous version of the algorithm can be seen, in Figure 6-13, to be 

outperforming the conventionally encoded version when the results are overlain.  Here 56% 

of the runs identified the best-known solution compared to just 41% of the conventionally 

encoded runs. 

 
Figure 6-13: Algorithmic Performance: New York Tunnels - Heterozygous Integer results overlain with 

conventional results 

6.2.5.3. Hybrid Integer 

The results of the hybrid integer representation employing the heterozygous implementation 

of the New York Tunnels problem are illustrated in Figure 6-14. 
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Figure 6-14: Algorithmic Performance: New York Tunnels - Heterozygous Hybrid Binary String 

As can be seen from Figure 6-15, the differential in performance between the two versions of 

the Hybrid Integer is much reduced in comparison to the other representations.  Indeed in 

terms of success in finding the optimal solution, the performance of the Hybrid Integer 

dipped below that of the pure Integer representation – managing 47% of runs versus 53% of 

the equivalent, conventionally encoded runs. 

 
Figure 6-15: Algorithmic Performance: New York Tunnels - Heterozygous Hybrid Integer results overlain 

with conventional results 

6.2.5.4. Comparative Analysis 

In general, the best performing runs of the heterozygous configurations, for all 

representations, converged quicker to the best known solution than their conventionally 

configured equivalents – as can be seen in Figure 6-16 (c.f. Figure 6-8).  Here it can be seen 
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that the best binary string run identified the optimum solution after just 160 generations 

(15,682) evaluations with that of the hybrid integer and integer representations after 220 

generations (21,660 evaluations) and 420 generations (41,260 evaluations) respectively. 

 
Figure 6-16: Algorithmic Performance: New York Tunnels – Combined Heterozygous Best 

Figure 6-17 combines the algorithmic performance for the three genetic representations for 

the heterozygous problem implementation.  For clarity, the maximum/minimum curves are 

omitted. 

 
Figure 6-17: Algorithmic Performance: New York Tunnels - Combined Heterozygous Upper/Lower 

Quartiles 

6.2.5.5. Runtime Performance 

The principal advantage of adopting a heterozygous encoding for the GA is that it can reduce 

runtimes of the algorithm by shortening the chromosome length.  In this instance, however, 
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the chromosome length is only one element shorter than the standard representation since 

each chromosome encodes 10 pipes IDs to modifiy and 10 diameters vs. 21 diameters for the 

standard representation.  Thus with the additional overhead of decoding the genes for 

identifying the pipes to apply the diameters to, the heterozygous representations are all 

marginally slower than their conventional counterparts, as shown in Table 6-8.  This result 

would not be expected to be seen with more complex chromosomes, for instance those of 

the Piedemonte San Germano problem below. 

Chromosome 
Representation 

Conventional Heterozygous 
 (evaluations 
 per second) % of best  (evaluations 

per second) % of best  

Binary String 8,893.63 86.9% 7,474.96 73.0% 

Integer 10,234.89 100% 8,433.48 82.4% 

Hybrid Integer 8,880.60 86.8% 7,590.13 74.2% 

Table 6-8: New York Tunnels Heterozygous vs. Conventional Runtime Performance 

6.2.6. Caching 

Table 6-9 shows that the caching performance for the New York Tunnels problem is 

relatively poor compared to that experienced with the GAP problems in the initial trials in 

which up to ~8% of solutions were cached.  Here only 1.1% (binary tree) and 2.9% (Judy 

tree) of solutions were cached despite the solution space for the New York Tunnel problem 

being considerably smaller. 

Cache Size 
Runtime 

performance Cache Performance Relative 
Runtime 

Performance (solutions/second) (no. hits) (% of evaluations) 

None 8,880.60 n/a n/a 100% 

40,000 8,207.58 21,713 1.1% 108.2% 

Judy (unlimited) 8,506.32 57,391 2.9% 104.4% 

Table 6-9: Cache results: New York Tunnels 

The degradation of performance when using the cache with this problem is clear with both 

cached runtimes exceeding those of the uncached algorithm.  This occurs because the 

objective function is too simple to justify the application of the cache in this instance.  

However, the performance of the Judy cache, in both runtime performance and the number 

of cache hits is encouraging. 

6.2.7. Adaptive Differential Mutation 

The New York Tunnels problem has a significantly smaller solution space than the GAP 

problem and, accordingly, the differential mutation was introduced much earlier in the 
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optimization after just 2,000 iterations (4,000 evaluations) had been performed.  Figure 6-44 

shows that until the 2,000th iteration, the algorithms with and without the differential 

mutator perform broadly similarly – as would be expected as they are indeed the same 

algorithm.  Beyond that point, though, the effect of switching on the differential mutation – 

in which trend is considered - is significant.  At this point, the differential mutator begins to 

concentrate on the four or five genes that are critical to this optimization.  At first it was 

suspected that this was a manifestation of an effective increase in the mutation rate (although 

the probability of mutation occurring does not, itself, change.  However, beyond the 2,000 

iteration mark the effective mutation rate for an individual gene actually decreases – 

illustrating how effective it is to steer the mutation to certain genes preferentially. 

 
Figure 6-18: Mutation performance comparison - New York Tunnels problem 

6.2.8. Distributed Performance 

The single objective New York Tunnels problem (normal representation using the hybrid 

integer gene) was evaluated with the deEPANET distributed hydraulic solver.  The baseline 

performance figures, for the machines employed, suggest that the maximum performance for 

this problem is as shown in Table 6-10.  Two important caveats should be stated about these 

figures.  Firstly, the baseline performance figures do not include any overhead imposed by 

the operating system which would have a deleterious effect on the throughput when all of 

the processing capacity of the computer is committed to deEPANET.  Secondly, the figures 

for the computers Y and Z which will be improved marginally because, when employed as 

servers in the deEPANET network, they no longer have the overhead of running the 
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optimization part of the algorithm.  Instead, they are tasked solely with undertaking the 

hydraulic simulations. 

Computer 
Baseline 

Performance 
(evaluations/second) 

Number of 
Processor Cores 

Theoretical Maximum 
Throughput 

(evaluations/second) 
X 8,881 4 35,524 
Y 6,227 2 12,454 
Z 5,952 2 11,904 

Total 21,060 8 59,882 

Table 6-10: Theoretical maximum performance for distributed New York Tunnels problem 

The results for the distributed optimization are presented in Table 6-11.  As can be seen from 

the baseline performance figures, the computational load of the New York Tunnels hydraulic 

simulation is trivial for a modern computer with a single processor of Computer X managing 

to perform almost 9,000 evaluations per second as well as managing the optimization 

algorithm itself.   

Computer 
Baseline 

Performance 
(evaluations/second) 

Distributed Performance 
(evaluations/second) 

X 8,881 

5,826 

23,490 
5,929 
5,898 
5,837 

Y 6,227 
3,112 

11,082 3,628 
4,342 

Z 5,952 
3,046 

8,182 2,492 
2,644 

Totals 21,060  42,754 

Table 6-11: New York Tunnels distributed performance results 

The distributed performance is, however, somewhat disappointing with the total solution 

throughput approximately doubling – reaching 71% of the theoretical maximum - despite an 

additional five processor cores being employed in the optimization.  The results for the two 

dual-core computers are somewhat better – given that, individually, they are no longer 

bearing the load of managing the optimization.  The performance of Computer X is 

negatively impacted by having to serve large volumes of solutions across the network for 

Computers Y and Z to handle. 
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6.3. Hanoi 

6.3.1. Problem Formulation 

The Hanoi problem is introduced by Fujiwara & Kang (1990).  It is a network design 

problem in which 34 pipes may take one of six pipe diameters giving a search space size of 

634 = 2.87 × 1026 – an order of magnitude larger than the New York Tunnels problem above.  

A global minimum pressure constraint of 30 metres applies to the optimization. 

This is also a familiar benchmark network from the literature and many results have 

been obtained with different optimization techniques.  As with the New York Tunnels 

problem, Savić & Walters (1997) observed that differences in the coefficients applied to the 

Hazen-Williams headloss formula make it difficult to make direct comparisons between these 

results and adopted upper and lower bounds for their analyses of ω = 10.9031 and ω = 

10.5088 – being the limits identified as being used in other research.  For the ω = 10.5088 

constraint, the best know result is that of Cunha and Sousa (1999) who identified it with 

simulated annealing, costing $6.056m.  This same result has subsequently also been 

confirmed by Geem et al. (2002) using Harmony Search and by Kadu et al. (2008).  The more 

restrictive ω = 10.9031 has seen optimal solutions of $6.195m (Savić & Walters, 1997) and 

more recently $6.190m (Kadu et al., 2008).  Eusuff & Lansey (2003) identify the former result 

as being, at the time, the best known result obtained using EPANET’s default ω value of 

10.6744 which is what will be used in this analysis.  They further propose a solution of 

$6.073m which is marginally infeasible (by 0.41m at node 13) which was obtained in 26,987 

evaluations.  Zecchin et al. (2007) review the application of a number of classes of algorithm 

to this subject and conclude that the best-published result for the Hanoi problem using 

EPANET is that of Zecchin et al. (2006) of $6.134m which was obtained using the Max-Min 

Ant System of Stützle & Hoos (2000). 

6.3.2. Network Configuration 

The network comprises three loops and two short branches fed by a single fixed-head 

reservoir as shown in Figure 6-19.  Table 6-12 to Table 6-15 describe the characteristics of 

the network components. 
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Figure 6-19: Hanoi Network Topology 

Node ID 
Elevation 

(metres) 

Demand 
(cubic metres 

per hour) 

Minimum Pressure 
(metres H2O) 

2 0 890 30.0 

3 0 850 30.0 

4 0 130 30.0 

5 0 725 30.0 

6 0 1,005 30.0 

7 0 1,350 30.0 

8 0 550 30.0 

9 0 525 30.0 

10 0 525 30.0 

11 0 500 30.0 

12 0 560 30.0 

13 0 940 30.0 

14 0 615 30.0 

15 0 280 30.0 

16 0 310 30.0 

17 0 865 30.0 

18 0 1,345 30.0 

19 0 60 30.0 

20 0 1,275 30.0 

21 0 930 30.0 

22 0 485 30.0 
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Node ID 
Elevation 

(metres) 

Demand 
(cubic metres 

per hour) 

Minimum Pressure 
(metres H2O) 

23 0 1,045 30.0 

24 0 820 30.0 

25 0 170 30.0 

26 0 900 30.0 

27 0 370 30.0 

28 0 290 30.0 

29 0 36 30.0 

30 0 360 30.0 

31 0 105 30.0 

32 0 805 30.0 

Table 6-12: Hanoi Node Characteristics 

Reservoir ID 
Elevation 

(metres) 

Total Head 
(metres) 

1 0 100 

Table 6-13: Hanoi Reservoir Characteristics 

Pipe From Node To Node 
Length 
(metres) 

H-W Friction 
Factor 

1 1 2 100 130 

2 2 3 1,350 130 

3 3 4 900 130 

4 4 5 1,150 130 

5 5 6 1,450 130 

6 6 7 450 130 

7 7 8 850 130 

8 8 9 850 130 

9 9 10 800 130 

10 10 11 950 130 

11 11 12 1,200 130 

12 12 13 3,500 130 

13 10 14 800 130 

14 14 15 500 130 

15 15 16 550 130 

16 17 16 2,730 130 

17 18 17 1,750 130 

18 19 18 800 130 

19 3 19 400 130 

20 3 20 2,200 130 

21 20 21 1,500 130 

22 21 22 500 130 
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Pipe From Node To Node 
Length 
(metres) 

H-W Friction 
Factor 

23 20 23 2,650 130 

24 23 24 1,230 130 

25 24 25 1,300 130 

26 26 25 850 130 

27 27 26 300 130 

28 16 27 750 130 

29 23 28 1,500 130 

30 28 29 2,000 130 

31 29 30 1,600 130 

32 30 31 150 130 

33 32 31 860 130 

34 25 32 950 130 

Table 6-14: Hanoi Pipe Characteristics 

The Hanoi problem is defined in mixed, metric/imperial units, the available pipe diameters 

being specified in inches. 

 

Pipe option 
Diameter Cost 

($ per metre) (inches) (mm) 

0 12 304.8 45.73 

1 16 406.4 70.40 

2 20 508.0 98.39 

3 24 609.6 129.33 

4 30 762.0 180.75 

5 40 1,016.0 278.28 

Table 6-15: Hanoi Pipe Options 

The cost function is non-linear and is expressed in Equation viii) with the results summarized 

in Table 6-15. 

ݐݏ݋ܥ ൌ 1.1 · ଵ.ହݎ݁ݐ݁݉ܽ݅ܦ ·  ݄ݐ݃݊݁ܮ

viii) 

Where Diameter is in inches and Length in metres and Cost is in US Dollars 

6.3.3. GA Configuration 

The GA configuration employed was identical to that of the New York Tunnels problem 

above except the penalty cost was modified to be $250,000 per metre of head deficit 
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6.3.4. Genetic Representation 

6.3.4.1. Binary String 

The results from the runs of the Hanoi problem with the binary string representation are 

shown in Figure 6-20.  As with the New York Tunnels problem before (Figure 6-4), the 

results show a wide variation between runs. 

 
Figure 6-20: Algorithmic Performance: Hanoi - Binary String 

These results for the Hanoi are immediately of interest as some of the algorithm runs identify 

a solution of $6.081m – considerably cheaper than the next best known solution of $6.190m 

(Kadu, 2008).  Altogether just 5% of runs identify this solution with the median remaining 

high at $6.279m over the 10,000 generations of the optimization. 

6.3.4.2. Integer 

In contrast to the New York Tunnels, which has a solution space an order of maginitude 

smaller, the Integer representation can be seen in Figure 6-21 to be outperforming that of the 

standard binary string.  A slight improvement over the binary string representation, the 

integer runs identified the (newly found) optimal solution on 7% of its runs. 
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Figure 6-21: Algorithmic Performance: Hanoi – Integer 

6.3.4.3. Hybrid Integer 

The hybrid integer run results, shown in Figure 6-22, represent a further improvement on the 

other representations with 28% of runs identifying the best known solution of $6.081m. 

 
Figure 6-22: Algorithmic Performance: Hanoi - Hybrid Integer 

6.3.4.4. Comparative Analysis 

The plot of the best results, seen in Figure 6-23, demonstrates that, at its most rapid, the best 

known solution was identified after 160 generations (15,682 evaluations).  This contrasts 

favourably with the most rapid solutions generated in 53,000 evaluations for the simulated 

annealing approach of Cunha & Sousa (1999) and 18,000 of Kadu et al. (2008) using their 

modified GA approach. 
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Figure 6-23: Algorithmic Performance: Hanoi - Combined Best 

The superiority of the hybrid integer representation is less clear-cut in this example in terms 

of algorithmic performance.  Figure 6-24 shows the aggregated results for all three 

representations analysed.  For clarity, the maximum and minimum curves have been omitted 

from this figure.  It can be seen that the performance of the hybrid integer is generally better 

than that of the other representations – although the median performance of the integer 

form is better over the lifetime of the optimization. 

 
Figure 6-24: Algorithmic Performance: Hanoi - Combined Upper/Lower Quartiles 

6.3.4.5. Runtime Performance 

However, it can be seen that on this longer chromosome the Hybrid Integer now 

outperforms the Binary string whilst the Integer representation maintains its lead in 

performance (Table 6-16). 
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Chromosome Representation Average Performance 
(evaluations per second) % of best performance 

Binary String 6,934.57 87.5% 

Integer 7,921.42 100% 

Hybrid Integer 7,107.57 89.7% 

Table 6-16: Hanoi Runtime Performance 

6.3.5. Caching  

Despite the larger solution space of the Hanoi problem with respect to New York Tunnels, 

the number of cache hits has improved dramatically.  However, from the graphs of the 

algorithmic performance (Figure 6-22) it can be seen that there is little improvement in the 

population in the latter stages of the optimization, which would improve the likelihood of the 

optimization generating previously encountered individuals. 

Cache Size 
Runtime 

performance Cache Performance Relative 
Runtime 

Performance (solutions/second) (no. hits) (% of evaluations) 

None 7,107.57 n/a n/a 100% 

40,000 7,237.85 28,411 1.4% 98.2% 

Judy (unlimited) 7,553.21 83,682 4.2% 94.1% 

Table 6-17: Cache results: Hanoi 

6.3.6. Adaptive Differential Mutation 

A similar pattern to the performance of the New York Tunnels problem can be seen when 

the differential mutator is applied to the Hanoi problem (Figure 6-25) although the rate of 

improvement appears to be less significant – possibly due to a larger number of pipes 

proving critical to the system performance. 

 
Figure 6-25: Mutation performance comparison - Hanoi 
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6.3.7. Distributed Performance 

As can be seen from the baseline performance figures for the Hanoi problem (Table 6-18), 

the hydraulic simulation for this 34 pipe problem is seen to produce a greater computational 

load than that of the 21 pipe, 2 loop New York Tunnels problem (Table 6-7): the baseline 

evaluation figures being around 20% lower than for the smaller problem when using the 

Hybrid Integer representation. 

Computer 
Baseline 

Performance 
(evaluations/second) 

Number of 
Processor Cores 

Theoretical Maximum 
Throughput 

(evaluations/second) 
X 7,108 4 28,432 
Y 5,024 2 10,048 
Z 4,702 2 9,404 

Total 16,834 8 47,884 

Table 6-18: Theoretical maximum performance for distributed Hanoi problem 

Despite the baseline performance being inferior to that of the New York Tunnels runs, it is 

immediately apparent with reference to Table 6-19 that the throughput for Computer X has 

increased, in terms of the number of evaluations perform.  It is suggested that this is a result 

of the two other server computers, Y and Z, taking longer to perform the jobs allocated to 

them and thus reducing the number of solutions that were distributed across the network 

(17,436 vs 19,264).   

Computer 
Baseline 

Performance 
(Evaluations/Second) 

Distributed Performance 
(Evaluations/Second) 

X 7,108 

6,022 

24,000 
5,988 
6,103 
5,887 

Y 5,024 
4,422 

9,779 4,283 
1,074 

Z 4,702 
3,401 

7,657 3,332 
924 

Totals 16,834  41,436 

Table 6-19: Hanoi distributed performance results 

This reduction allows the Client computer X to allocate more time to its four server threads, 

allowing for an increased throughput from those.  This leads to the distributed system 

achieving 86.6% of the the theoretical maximum reported in Table 6-18.  If this is the case 



Chapter 6: Single Objective Optimization Problems 

160   A Framework for Evolutionary Optimization Applications in Water Distribution Systems 

then this trend should be continued with the computationally more demanding Piedemonte 

San Germano network. 

6.3.8. Optimal Solution Details 

The optimal solution for the Hanoi problem identified by the GA throughout this 

experimentation does not appear to have been published before.  In Table 6-20 the details of 

this solution are reported and contrasted with that of Cunha & Sousa (1999) which is the 

lowest cost solution published – albeit with a relaxed Hazen-Williams coefficient where ω = 

10.5088 – and the lowest cost solution published that is feasible with EPANET of Zecchin et 

al. (2006) which has a cost of $6,134m.  An unmodified version of the standalone EPANET2 

software of Rossman (2000) has been used to populate the results in the table. 

Pipe 

Diameter  

Node 

Pressure 

Thesis Cunha & Sousa  
(1999) 

Zecchin 
et al. 

(2006) 
 Thesis 

Cunha 
& Sousa 
(1999) 

Zecchin 
et al. 

(2006) 

(inches) (mm) (inches) (mm) (inches) (mm)  (metres H2O) 

1 40 1,016 40 1,016 40 1,016  1 100.00 100.00 100.00 

2 40 1,016 40 1,016 40 1,016  2 97.14 97.17 97.14 

3 40 1,016 40 1,016 40 1,016  3 61.67 62.00 61.67 

4 40 1,016 40 1,016 40 1,016  4 56.92 57.23 57.08 

5 40 1,016 40 1,016 40 1,016  5 51.02 51.32 51.38 

6 40 1,016 40 1,016 40 1,016  6 44.81 45.07 45.40 

7 40 1,016 40 1,016 40 1,016  7 43.35 43.61 44.01 

8 40 1,016 40 1,016 40 1,016  8 41.61 41.85 42.36 

9 40 1,016 40 1,016 40 1,016  9 40.23 40.44 41.06 

10 30 762 30 762 30 762  10 39.20 39.40 40.11 

11 24 609.6 24 609.6 24 609.6  11 37.64 37.85 38.55 

12 24 609.6 24 609.6 24 609.6  12 34.21 34.43 35.12 

13 20 508 20 508 16 406.4  13 30.01 30.24 30.91 

14 16 406.4 16 406.4 12 304.8  14 35.52 35.49 37.21 

15 12 304.8 12 304.8 12 304.8  15 33.72 33.44 32.89 

16 12 304.8 12 304.8 12 304.8  16 31.30 30.36 32.16 

17 16 406.4 16 406.4 20 508  17 33.41 30.51 41.36 

18 24 609.6 20 508 24 609.6  18 49.93 44.29 48.55 

19 20 508 20 508 24 609.6  19 55.09 55.90 54.33 

20 40 1,016 40 1,016 40 1016  20 50.61 50.89 50.61 

21 20 508 20 508 20 508  21 41.26 41.58 41.26 

22 12 304.8 12 304.8 12 304.8  22 36.10 36.42 36.10 

23 40 1,016 40 1,016 40 1,016  23 44.52 44.73 44.53 

24 30 762 30 762 30 762  24 38.93 39.03 39.39 

25 30 762 30 762 30 762  25 35.34 35.34 36.18 
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Pipe 

Diameter  

Node 

Pressure 

Thesis Cunha & Sousa  
(1999) 

Zecchin 
et al. 

(2006) 
 Thesis 

Cunha 
& Sousa 
(1999) 

Zecchin 
et al. 

(2006) 

(inches) (mm) (inches) (mm) (inches) (mm)  (metres H2O) 

26 20 508 20 508 24 609.6  26 31.70 31.44 32.55 

27 12 304.8 12 304.8 12 304.8  27 30.76 30.15 31.61 

28 12 304.8 12 304.8 12 304.8  28 38.94 39.12 35.90 

29 16 406.4 16 406.4 16 406.4  29 30.13 30.21 31.23 

30 12 304.8 12 304.8 16 406.4  30 30.42 30.47 30.29 

31 12 304.8 12 304.8 12 304.8  31 30.70 30.75 30.77 

32 16 406.4 16 406.4 16 406.4  32 33.18 33.20 32.04 

33 16 406.4 16 406.4 16 406.4      

34 24 609.6 24 609.6 20 508  Pipe: smaller diameter than optimal solution 

Cost $6,081,127.54 $6,056,370.68 $6,134,015.72  Pipe: larger diameter than optimal solution 

Table 6-20: Comparison of optimal solutions to Hanoi problem 

 

6.4. Piedemonte San Germano 

6.4.1. Problem Formulation 

The Piedemonte San Germano network model (hereafter PSG) is a real-world network 

model from a small Italian village in southern Lazio.  The network is in a highly looped 

configuration and is characterised by extremely low flows in some of the loops even at peak 

demand.  The network was introduced by Tricarico et al. (2006) in which extensive statistical 

analysis of the demand characteristics of the network were undertaken and predictions of 

future demand were made in line with the projected population expansion of the village. 

Each of the 45 pipes may be duplicated with one of 14 commercially available diameters, or 

left unduplicated, leading to a search space for this problem of 1545 = 8.4 × 1052.  A 

minimum head constraint of 20m is applied across the network.  The future demand 

scenarios from Tricarico et al. (2006) has been considered for the single-objective problem: a 

more onerous demand condition than the present day state derived in order to represent 

predicted future demand.  For this future demand scenario, the best-published solution is 

€31,002 (Tricarico et al., 2006).  It should be noted that the costs used in this model relate 

only to the cost of purchasing the additional pipes required and other factors, such as the 

cost of installation, are not considered. 



Chapter 6: Single Objective Optimization Problems 

162   A Framework for Evolutionary Optimization Applications in Water Distribution Systems 

6.4.2. Network Configuration 

 
Figure 6-26: Piedemonte San Germano Network Topology 

Node ID Elevation 
(metres) 

Demand 
(litres per second) 

Minimum Pressure  
(metres H2O) 

1 120.6 2.158 140.6 

2 118.0 1.385 138.0 

3 115.4 1.080 135.4 

4 113.7 1.190 133.7 

5 111.0 1.217 131.0 

6 110.0 1.080 130.0 

7 108.0 1.080 128.0 

8 107.9 1.080 127.9 

9 106.9 1.080 126.9 

10 108.8 1.096 128.8 

11 108.0 1.190 128.0 

12 105.9 1.190 125.9 

13 104.6 1.134 124.6 

14 104.4 3.082 124.4 
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Node ID Elevation 
(metres) 

Demand 
(litres per second) 

Minimum Pressure  
(metres H2O) 

15 107.4 1.583 127.4 

16 107.7 1.080 127.7 

17 107.7 1.072 127.7 

18 108.0 1.163 128.0 

19 109.5 1.147 129.5 

20 109.4 1.080 129.4 

21 109.2 1.249 129.2 

22 111.4 1.292 131.4 

23 112.0 1.163 132.0 

24 112.4 1.107 132.4 

25 109.6 1.080 129.6 

26 115.6 1.080 135.6 

27 109.0 1.436 129.0 

28 111.0 1.249 131.0 

29 111.0 1.027 131.0 

30 118.2 1.427 138.2 

31 122.6 3.501 142.6 

32 114.5 3.360 134.5 

33 106.9 3.845 126.9 

Table 6-21: Piedemonte San Germano Node Characteristics 

Reservoir ID Total Head 
(metres) 

34 151.0 

Table 6-22: Piedemonte San Germano Reservoir Characteristics 

Pipe From Node To Node Diameter 
(mm) 

Length 
(metres) 

C-M Friction 
Factor 

1 34 1 80 121.0 0.02 

2 1 2 80 52.0 0.02 

3 2 3 80 70.0 0.02 

4 3 4 80 38.0 0.02 

5 4 5 80 50.0 0.02 

6 5 6 80 45.0 0.02 

7 6 7 80 71.0 0.02 

8 7 8 80 65.0 0.02 

9 8 9 80 52.0 0.02 

10 9 10 60 59.0 0.02 

11 10 11 60 60.0 0.02 

12 11 12 60 94.0 0.02 

13 12 9 80 97.0 0.02 
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Pipe From Node To Node Diameter 
(mm) 

Length 
(metres) 

C-M Friction 
Factor 

14 12 13 80 46.0 0.02 

15 13 14 80 66.0 0.02 

16 13 16 60 124.0 0.02 

17 14 15 80 152.0 0.02 

18 15 16 60 63.0 0.02 

19 16 17 60 3.0 0.02 

20 17 18 60 94.0 0.02 

21 18 11 60 28.0 0.02 

22 18 19 60 61.0 0.02 

23 17 20 60 60.0 0.02 

24 19 20 60 115.0 0.02 

25 20 21 60 80.0 0.02 

26 19 23 60 57.0 0.02 

27 21 22 80 54.0 0.02 

28 22 23 60 113.0 0.02 

29 22 1 80 232.0 0.02 

30 23 24 60 44.0 0.02 

31 24 4 60 56.0 0.02 

32 24 25 50 44.0 0.02 

33 25 5 60 76.0 0.02 

34 3 26 60 64.0 0.02 

35 26 28 80 98.0 0.02 

36 28 29 80 10.0 0.02 

37 29 27 80 97.0 0.02 

38 27 8 80 68.0 0.02 

39 7 10 60 51.0 0.02 

40 15 21 80 60.0 0.02 

41 6 29 60 64.0 0.02 

42 1 30 80 179.0 0.02 

43 30 31 63 130.0 0.02 

44 8 33 80 43.0 0.02 

45 27 32 63 224.0 0.02 

Table 6-23: Piedemonte San Germano Pipe Characteristics 
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Pipe option Diameter 
(mm) 

Cost 
(€ per 
metre) 

 Pipe option Diameter 
(mm) 

Cost 
(€ per 
metre) 

0 None 0.00  8 250.0 82.35 

1 90.0 33.73  9 280.0 95.39 

2 110.0 40.60  10 315.0 106.29 

3 125.0 41.92  11 355.0 131.89 

4 140.0 46.88  12 400.0 159.12 

5 160.0 55.54  13 450.0 187.66 

6 180.0 58.53  14 500.0 219.16 

7 200.0 65.32     

Table 6-24: Piedemonte San Germano Pipe Duplication Options 

6.4.3. GA Configuration 

Again, the same GA configuration was applied for this model as to the other two networks.  

The penalty cost was set to €250,000 per metre of head deficit. 

6.4.4. Genetic Representation 

6.4.4.1. Binary String 

As can be seen from 

 

Figure 6-27, some of the runs (37%) converge to a deterministic optimal solution of €30,082.  

This value is a significant improvement on the previous best result achieved of €31,002  

(Tricarico et al,. 2005)– somewhat surprising given that the same basic algorithm had been 

employed.   
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Figure 6-27: Algorithmic Performance: PSG - Binary String 

Further investigation into this result revealed that the optimization algorithm employed by 

Tricarico et al. (2005) was compromised in the way that the selection routine was employed.  

Instead of exerting a positive selection pressure on the algorithm it, effectively, selected 

organisms at random from the population.  However, the algorithm appears to work 

effectively, albeit extremely slowly, because the NSGA-II algorithm employed has an implicit 

selection pressure applied through its ranking procedure during each generation.  However, 

this was seen to, in no way, promote the selection of fitter individuals for recombination in 

the first instance.  

6.4.4.2. Integer 

As with the Hanoi problem, the integer representation appears to produce inferior results 

(Figure 6-28) to the binary string representation with 24% of the solutions converging to the 

newly identified best-known solution. 
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Figure 6-28: Algorithmic Performance: PSG – Integer 

6.4.4.3. Hybrid Integer 

Once again, the performance of the Hybrid Integer is clearly superior to that of the other 

representations with 94% of the solutions converging to the best-known solution.  The 

results illustrated in Figure 6-29 demonstrate excellent performance with the median (i.e. 

50% of the runs) reaching the optimal solution after just 2,240 generations. 

 
Figure 6-29: Algorithmic Performance: PSG - Hybrid Integer 

6.4.4.4. Comparative Analysis 

At their best, the hybrid integer and binary string representations identified the best known 

solution of €30,082 after 380 generations (37,340 evaluations) versus the 1,340 generations 

(131,420 evaluations) achieved by the integer representation.  Tricarico et al. (2005) do not 

identify the performance of their algorithm and so a direct comparison is not possible. 
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Figure 6-30: Algorithmic Performance: PSG - Combined Best 

The aggregated results for the three representations, seen in Figure 6-31, demonstrate clearly 

the superior average performance of the hybrid integer representation over the other two 

formats.  For clarity, the maximum and minimum curves for each distribution have been 

omitted in this figure. 

 
Figure 6-31: Algorithmic Performance: PSG - Combined Upper/Lower Quartiles 

6.4.4.5. Runtime Performance 

The Integer representation is, once more, the fastest representation with the Binary String 

and Hybrid Integer returning very similar performances as shown in Table 6-25. 

 

 



Chapter 6: Single Objective Optimization Problems 

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 169 

Chromosome Representation 
Average Performance 
(evaluations per second) 

% of best performance 

Binary String 4,129.84 90.0% 

Integer 4,589.79 100% 

Hybrid Integer 4,056.80 88.4% 

Table 6-25: PSG Runtime Performance 

6.4.5. Heterozygous Chromosomes 

As with the New York Tunnels problem, Piedemonte San Germano has been reconfigured 

as a heterozygous problem in which the chromosome is encoded to allow 10 pipes to be 

modified at once.  This selection of 10 pipes is an arbitrary decision made to limit the scope 

of the optimization and any number of pipes may have been chosen in this fashion.  Thus 

the chromosome, in this example, comprises 10 pairs of genes.  The first gene being allowed 

to vary between 1and 45 to represent the pipe to be modified.  The second gene of the pair 

encodes the pipe diameter, as previously.  Thus for the Piedemonte San Germano problem, 

the total chromosome length is reduced from 45 genes to 20. 

6.4.5.1. Binary String 

Figure 6-32 shows the results obtained for the heterozygous, binary string runs.  This same 

data is overlain with that obtained with the conventionally-coded binary string in Figure 6-33.  

A mere 7% of the heterozygous solutions found the best-known optimal solution for the 

problem, compared to 37% of the conventionally coded solution.  88% of the runs 

converged to a solution of €32,061.60.  It is not clear why there is such a preference for this 

result with the heterozygous configuration. 

 
Figure 6-32: Algorithmic Performance: PSG – Heterozygous Binary String 
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Figure 6-33: Algorithmic Performance: PSG- Heterozygous Binary String results overlain with conventional 

results 

6.4.5.2. Integer 

Nineteen percent of the runs of the heterozygous Integer algorithm identified the optimal 

solution, compared to 24% for the conventional-coded equivalent.  Of the remainder, 80% 

converged to the solution of €32,061.60 as can be seen from Figure 6-34.  These results can 

be compared with those of the conventional encoding in Figure 6-35 in which the 

conventional results are overlain. 

 

 
Figure 6-34: Algorithmic Performance: PSG – Heterozygous Integer 
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Figure 6-35: Algorithmic Performance: PSG- Heterozygous Integer results overlain with conventional results 

6.4.5.3. Hybrid Integer 

In contrast to the conventional algorithm where 94% of the hybrid integer-based solutions 

converged to the best-known optimum, the heterozygous algorithm could manage this in 

only 19% of cases (Figure 6-36).  The remainder of the runs all converged to the same 

solution of €32,061.60 as has been seen in the optimizations of the other heterozygous 

representations.  Figure 6-37 shows the heterozygous hybrid integer results overlain with 

those of the conventional encoding. 

 
Figure 6-36: Algorithmic Performance: PSG – Heterozygous Hybrid Integer 



Chapter 6: Single Objective Optimization Problems 

172   A Framework for Evolutionary Optimization Applications in Water Distribution Systems 

 
Figure 6-37: Algorithmic Performance: PSG- Heterozygous Hybrid Integer results overlain with conventional 

results 

6.4.5.4. Comparative Analysis 

Figure 6-38 illustrates the best performance for the runs of each of the three representations 

employed in the heterozygous configuration.  It can be seen clearly that the heterozygous 

representations identify the optimal solution quicker for each of the representations:  

• hybrid integer: 160 generations (15,682 evaluations) vs. 380 generations (37,340 

evaluations). 

• binary string: 200 generations (19,602 evaluations) vs. 380 generations (37,340 

evaluations). 

• integer: 220 generations (21,562 evaluations) vs. 1,340 generations (131,322 

evaluations). 
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Figure 6-38: Algorithmic Performance: PSG – Heterozygous Combined Best 

The combined performance for the three heterozygous representations is portrayed 

in Figure 6-39.  For clarity, the minimum and maximum curves have been omitted from this 

graph which shows the upper/lower quartiles and the median for the performance of the 

combined runs.  This graph shows that there is little substantial difference between the three 

representations, although the hybrid integer can be seen to marginally outperform the other 

two representations.  In addition, the convergence of the algorithms, in most cases, to the 

solution of €32,061.60 is further highlighted. 

 
Figure 6-39: Algorithmic Performance: PSG - Combined Upper/Lower Quartiles 

With reference to the equivalent New York Tunnels result (Figure 6-17) it would appear that 

the relative algorithmic performance advantage of the hybrid gene diminishes as 
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chromosome length decreases.  In addition, the algorithmic performance of the heterozygous 

representation of the problem improves, relative to the full representation, as the number of 

decision variables grows, as might be expected. 

6.4.5.5. Runtime Performance 

As anticipated, the longer chromosomes of the conventional representation cause it to show 

significantly reduced performance with respect to the heterozygous approach – as seen in 

Table 6-26.  Once more, as with the other analyses, the integer runtime proves to be the 

quickest representation with the hybrid integer and binary string having roughly equal 

runtime performance. 

Chromosome 
Representation 

Conventional Heterozygous 
 (evaluations 
 per second) % of best  (evaluations 

per second) % of best  

Binary String 4,129.84 71.2% 5,471.21 94.8% 

Integer 4,589.79 79.6% 5,770.00 100% 

Hybrid Integer 4,056.80 70.3% 5,543.54 96.1% 

Table 6-26: PSG Heterozygous Runtime Performance vs. Conventional Performance 

6.4.6. Caching 

Although the Piedemonte San Germano network optimization has by far the largest solution 

space of the three steady state algorithms investigated, it also produces the best caching 

results as seen in Table 6-27.  However, as with the Hanoi problem part of this success 

would appear to be because the optimization converges quickly – at least when using the 

hybrid integer representation – to the optimal solutions.  As a consequence, an increasing 

proportion of the population is likely to be encountering repeatedly as the algorithm 

proceeds. 

Cache Size 
Runtime 

performance Cache Performance Relative 
Runtime 

Performance (solutions/second) (no. hits) (% of evaluations) 

None 4,056.80 n/a n/a 100% 

40,000 4,221.44 44,122 2.2% 96.1% 

Judy (unlimited) 4,371.55 155,782 7.8% 92.8% 

Table 6-27: Cache results: Piedemonte San Germano 

6.4.7. Adaptive Differential Mutation 

Running the Piedemonte San Germano model with the Adaptive Mutation caused some 

difficulty.  Firstly, the model did not optimize well with the steady-state genetic algorithm – 

the prior runs of this problem have been performed using a generational GA whilst the 
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Adaptive Mutation is coded to work only with a steady-state optimization.  As can be seen in 

Figure 6-40, the runs converged to solutions around €60,000 – almost double the best-

known solution of around €30,082.  Because of the considerably larger search space for this 

problem, the introduction of the differential mutator was delayed until 10,000 iterations or 

20,000 evaluations.  The above figure clearly shows that the mutator continues to play a 

positive part in promoting the convergence of the population although, with the increased 

search space, the effect appears to be much diminished compared to the other problems.  

This phenomenon is likely to result from the Piedemonte San Germano being less sensitive 

to be the value of a few “critical genes” – i.e. pipe reinforcement selections – than the other, 

smaller models. 

 
Figure 6-40: Mutation performance comparison - Piedemonte San Germano 

6.4.8. Distributed Performance 

The Piedemonte San Germano problem is the most complex of the three networks analysed 

in this chapter and shows a baseline performance approximately half that of the New York 

Tunnels network (Table 6-7).   

Computer 
Baseline 

Performance 
(evaluations/second) 

Number of 
Processor Cores 

Theoretical Maximum 
Throughput 

(evaluations/second) 
X 4,057 4 16,228 
Y 3,043 2 6,086 
Z 2,515 2 5,030 

Total 9,615 8 27,344 

Table 6-28: Theoretical maximum performance for distributed Piedemonte San Germano problem 



Chapter 6: Single Objective Optimization Problems 

176   A Framework for Evolutionary Optimization Applications in Water Distribution Systems 

The results presented in Table 6-29 appear to confirm the trend that continuing reduction in 

network load results in an increase in throughput for the distributed system.  Here it can be 

seen that, relative to the theoretical maximum determined in Table 6-28, the system as a 

whole achieves 91% performance – continuing the increases seen in comparison to the other, 

smaller network simulation problems. 
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Computer 
Baseline 

Performance 
(Evaluations/Second) 

Distributed Performance 
(Evaluations/Second) 

X 4,057 

3,755 

14,004 
3,424 
3,320 
3,505 

Y 3,043 
2,620 

5,973 2,581 
772 

Z 2,515 
2,152 

4,923 2,073 
698 

Totals 9,615  24,900 

Table 6-29: Piedemonte San Germano distributed performance results 

 

6.5. Conclusions 

The hybridized integer gene introduced in Chapter 4.2.3 is demonstrated to be the most 

efficient representation for the single-objective hydroinformatics applications analysed in 

terms of algorithmic performance – clearly beating the conventional binary string and integer 

representations.  However, it is shown to be slower than both the conventional binary string 

the integer representation for the simpler problems.  However, for the Piedemonte San 

Germano example, which has a chromosome length of 45 genes, the computational 

performance advantage of the conventional binary string is reversed, implying that, as might 

be expected, the overhead of managing binary strings increases with the string length.  In 

Chapter 7, these representations will be evaluated on a fourth problem with a much longer 

chromosome.  It should be noted also that the version of the hybridized integer gene 

employed is Gray-coded and this is an additional overhead on the computational 

performance – making the performance of this novel representation more impressive.  In 

addition, it is believed that these optimizations have identified new, best known solutions for 

both the Hanoi ($6.081m) and Piedemonte San Germano (€30,082) network problems whilst 

matching the best known solution for the New York Tunnels problem ($38.644m - Meier et 

al., 2003). 

The application of caching to these problems is shown to be mostly ineffectual in 

terms of runtime savings because of the relatively trivial nature of the hydraulic computation.  

It is encouraging though that the efficiency of the Judy cache routines is evident even for 
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relatively short chromosome lengths – demonstrating improvements in performance even as 

the chromosome length improves – though this is likely due to the nature of the individual 

problems and their convergence behaviour. 

Employing a mutator that can “learn” from the improvements occasioned by other 

mutations is shown to have a beneficial effect on the performance of the algorithm.  

However, the effect of the Adaptive Differential Mutator is constrained significantly by the 

number of “critical genes” within a specific problem.  However, given that the computational 

cost of maintaining the statistics associated with the mutations is relatively trivial, it is 

possible that it will assist larger optimizations as well as providing valuable, additional 

information on the search space by identifying genes that have a particular influence on the 

solution. 
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Chapter 7. Multiple Objective Optimization Problems 

7.1. Introduction 

The network optimization problems presented in Chapter 6 have been reformulated as 

multiple-objective optimization problems.  The single objective problems illustrated 

previously accommodated a second objective through the use of a “penalty cost” function 

which penalises the violation of one or more additional constraints.  An alternative approach 

is to model each constraint as an objective in its own right.  Multiple-objective algorithms do 

not converge towards a single solution rather towards a Pareto-optimal front that represents 

the trade-off between the objectives as illustrated in Figure 7-1. 

 
Figure 7-1: Multiple Objective Pareto-Optimal Front 

In the example illustrated in Figure 7-1, a two objective problem, both objectives are to be 

minimized thus the optimization algorithm seeks to drive the Pareto front into the bottom-

left corner of the figure. 
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The multi-objective algorithm employed in this analysis is the Non-Dominated, 

Sorted GA-II (NSGA-II) of Deb et al. (2001).  This algorithm is a refinement of Srinivas & 

Deb’s (1994) NSGA algorithm and is noteworthy for being one of the earliest multiple-

objective algorithms that is self-tuning.  Diversity in the population is managed through the 

use of a Crowding Sort which preferentially preserves members of the population who are 

well spaced from their neighbours along the Pareto fronts as they are generated. 

Given that multiple objective algorithms produce Pareto-fronts containing multiple, 

non-dominated solutions each, in its own right, an optimal solution it is more difficult to 

compare the quality of results obtained through different techniques.  To this end, two 

multiple objective performance metrics introduced by Zitzler & Thiele (1999) have been 

applied to the obtained Pareto-fronts to gauge their relative strengths: space and coverage 

metrics.  

Space Metric 

The “size of space covered” metric S evaluates the hypervolume enclosed by the 

points on the Pareto-optimal front.  For a problem in which both objectives (cost and 

aggregate head deficit) are to be minimised – as is the case here – the S metric represents a 

smaller volume as the quality of the front improves (i.e., the lower the value, the better the 

front is).  This is a relatively simplistic measure performance and, of itself, is not a good 

measure of how good a front is relative to another. 

Coverage Metric  

To achieve this comparison between fronts, a coverage metric, C, is employed.  This 

metric expresses the proportion of points from one front that dominate those from another.  

Thus, a C value of 1.0 indicates that all of the points in Pareto front A are equal to or 

dominate those in Pareto front B.  This gives an acceptable measure of the relative strength 

of the Pareto-fronts but does nothing to inform about how good a front is in absolute terms. 

,ܣሺܥ ሻܤ ൌ  
ห൛ܾ א ܽ׌หܤ א ܣ ׷ ܽ  ط ܾൟห

|ܤ|  

ix) 

The analyses presented in this chapter are performed on 100 runs of each algorithm.  As well 

as a graphical analysis, the C and S metrics are applied to each of the Pareto fronts developed 
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from these runs after 20, 100 and 1,000 generations in order to gauge the progress of the 

algorithms throughout the optimization. 

Each of the problems is formulated with the two objectives in equations x)and xi) 

thus: 

:݁ݖ݅݉݅݊݅ܯ ௜௡௙ܥ ൌ ݂൫ܦଵ, . . , ே೗൯ܦ ൌ෍ܥ൫ܦ௝, ௝൯ܮ
ே೗

௝ୀଵ

 

x) 

:݁ݖ݅݉݅݊݅ܯ ܶ ൌ ݂൫ܪଵ, . . , ே೙൯ܪ ൌ෍max൫0;ܪ௜,௠௜௡ െ ௜൯ܪ
ே೙

௜ୀଵ

 

xi) 

௝ܦ א ሺ݆ ܦ ൌ 1, . . , ௗܰሻ 

xii) 

where: Cinf is the total infrastructure cost, Nl is the number of links in the network for which 

reinforcement is an option, C(Dj,Lj) is the cost of the jth pipe with diameter Dj (chosen from a 

discrete set of available diameters D) and length Lj.  T is the total head deficit (negative if a 

pressure surplus exists), Hi is the pressure head at node i (as computed by the hydraulic 

solver), Hi,min is the minimum pressure head requirement sufficient to fully satisfy the demand 

at node i and Nn is the number of nodes in the network.  Nd is the number of decision 

variables in the optimization. 

Distributed performance is not analysed in this chapter, as the sole differential in 

performance will be the runtime of the genetic algorithm itself.  As far as the server 

computers involved in deEPANET are concerned, there is no difference to producing 

solutions for a multiple-objective algorithm rather than a single objective. 

7.2. New York Tunnels 

7.2.1. Genetic Representation 

7.2.1.1. Binary String 

A scatter plot illustrating the results for the binary string representation can be seen in Figure 

7-2.  This figure shows the distribution of solutions for the 100 runs after 20, 100 and 1,000 

generations.  After 20 generations (2,000 evaluations), none of the runs had identified the 
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best-known feasible single objective solution of $38,643,500 (Meier et al., 2003), whilst 100% 

had identified the solution at the other extreme which, for an investment of $0 results in an 

aggregate head deficit of 353.13m.  Following 100 generations, the success rate for the 

optimal solution has improved to 3% of runs and ultimately at the end of the runs, after 

1,000 generations, 18% of runs. 

 
Figure 7-2: New York Tunnels – Multiple Objective Binary String Results 

7.2.1.2. Integer 

The results from the integer representation are shown in Figure 7-3.  After 20 generations 

none of the runs had identified the single objective optimal solution, however all had 

identified the other extreme of the distribution.  By the completion of 1,000 generations, 

14% of the runs had continued to identify the optimal solution – fewer than for the binary 

string representation. 
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Figure 7-3: New York Tunnels – Multiple Objective Integer Results 

7.2.1.3. Hybrid Integer 

The results for the Hybrid Integer representation are shown in Figure 7-4.  After 1,000 

generations, merely 3% of the runs had identified the single-objective optimal solution of 

$38.644m: a considerably inferior result to the other two representations.  In fact, by 100 

generations (10,000 evaluations), none of the runs had encountered this solution. 
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Figure 7-4: New York Tunnels – Multiple Objective Hybrid Integer Results 

7.2.1.4. Comparative Analysis 

Space Metrics 

Examination of the S space metrics (Figure 7-5) for these runs suggests that the binary string 

representation outperforms both the integer and hybrid integer versions.   

 
Figure 7-5:  Box plots of S metric for Multiple Objective New York Tunnels after 20, 100 & 1,000 

generations 
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From the figure, it can be seen that the binary string (green) Box plots indicates that these 

runs were more consistent and generally produced lower S values – which is preferable for a 

minimization problem such as this.  After 1,000 generations, all of the representations are 

seen to be occupying a similar proportion of the solution space. 

Coverage Metrics 

The coverage metrics for the runs were calculated for the Pareto-optimal fronts obtained 

after 20, 100 and 1,000 generations of each of the 100 runs undertaken for each 

representation.  The aggregate values obtained for the metric C(A,B) are listed in Table 7-1 to 

Table 7-3 for 20, 100 and 10,000 generations respectively.  The Binary String representation 

can be seen in Table 7-1to be outperforming that of the integer and hybrid integer – covering 

65.3% and 59.3% respectively. 

 Front B 
Binary String Integer Hybrid Integer 

Fr
on

t 
A

 

B
in

ar
y 

St
rin

g 

Min 0.138 0.388 0.311 

Mean 0.387 0.653 0.593 

Max 0.652 0.980 0.943 

In
te

ge
r Min 0.000 0.041 0.000 

Mean 0.234 0.453 0.328 

Max 0.550 0.900 0.736 

H
yb

rid
 

In
te

ge
r Min 0.000 0.171 0.022 

Mean 0.263 0.551 0.438 

Max 0.485 0.940 0.792 

Table 7-1: C metrics for Multiple Objective New York Tunnels after 20 generations 

The results shown in Table 7-2 demonstrate that after 100 generations, the variation in 

coverage between the representations is diminished and the gap between the binary string 

and the hybrid integer is reduced – though the integer representation can be seen to continue 

to be the weakest performing of the representations. 
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 Front B 
Binary String Integer Hybrid Integer 

Fr
on

t 
A

 

B
in

ar
y 

St
rin

g 

Min 0.073 0.120 0.020 

Mean 0.215 0.258 0.167 

Max 0.375 0.343 0.289 

In
te

ge
r Min 0.096 0.163 0.020 

Mean 0.215 0.260 0.159 

Max 0.354 0.364 0.330 

H
yb

rid
 

In
te

ge
r Min 0.110 0.163 0.060 

Mean 0.249 0.282 0.187 

Max 0.385 0.414 0.320 

Table 7-2: C metrics for Multiple Objective New York Tunnels after 100 generations 

The low values seen in Table 7-3, for all combinations of representation, suggest that 

after 1,000 generations, that all of the populations have converged to very similar Pareto-

fronts – which can be assessed visually with reference to the distribution of green dots in 

Figure 7-2 to Figure 7-4 - and that there is no advantage to having started with one 

representation or the other. 

 Front B 
Binary String Integer Hybrid Integer 

Fr
on

t 
A

 

B
in

ar
y 

St
rin

g 

Min 0.000 0.000 0.000 

Mean 0.018 0.016 0.022 

Max 0.070 0.050 0.050 

In
te

ge
r Min 0.010 0.000 0.020 

Mean 0.056 0.031 0.054 

Max 0.110 0.090 0.100 

H
yb

rid
 

In
te

ge
r Min 0.000 0.000 0.000 

Mean 0.031 0.024 0.036 

Max 0.110 0.080 0.090 

Table 7-3: C metrics for Multiple Objective New York Tunnels after 1,000 generations 

7.2.1.5. Runtime Performance 

The figures presented in Table 7-4 demonstrate that the runtime performance of the multiple 

objective GA is significantly diminished over that of the single objective optimization results 

(Table 6-7).  This difference is accounted for by the additional complexity of the NSGA-II 

algorithm that requires a number of sorting routines to be applied to the population, 

according to the number of objectives being considered. 

 

 



Chapter 7: Multiple Objective Optimization Problems 

188   A Framework for Evolutionary Optimization Applications in Water Distribution Systems 

Chromosome Representation 
Average Performance 
(evaluations per second) 

% of best performance 

Binary String 1,868.98 86.3% 

Integer 2,164.93 100% 

Hybrid Integer 1,886.79 87.2% 

Table 7-4: New York Tunnels Multiple Objective Runtime Performance 

7.2.2. Heterozygous Chromosomes 

7.2.2.1. Binary String 

The heterozygous binary string results, presented in Figure 7-6, are broadly comparable with 

those of the normal representation with the exception that, visually, they exhibit a wider 

distribution of results for the 20 and 100 generation points.  By the end of the optimizations, 

11% of the runs had identified the single-objective optimal solution compared to 18% of 

runs employing the normal encoding of the problem. 

 
Figure 7-6: New York Tunnels – Multiple Objective Heterozygous Binary String Results 

7.2.2.2. Integer 

Figure 7-7 illustrates the heterozygous integer results which appear to be very similar to those 

obtained with the standard representation, albeit with a less tightly confined distribution for 

the solutions found after 100 generations.  Over the lifetime of the optimization, 20% of the 
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runs identified the single-objective optimal solution compared with 14% for the normal 

encoding. 

 
Figure 7-7: New York Tunnels – Multiple Objective Heterozygous Integer Results 

7.2.2.3. Hybrid Integer 

The performance of the hybrid integer representation is much improved in heterozygous 

form (Figure 7-8) with 17% of solutions identifying the single-objective optimal solution 

compared to 3% of the normally encoded runs.   
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Figure 7-8: New York Tunnels – Multiple Objective Heterozygous Hybrid Integer Results 

7.2.2.4. Comparative Analysis 

Graphical 

Figure 7-9 allows a side-by-side graphical comparison of the algorithm performance for the 

three representations and two encodings.  The less confined distributions, after 20 

generations, exhibited by the heterozygous binary string and heterozygous hybrid integer 

representations are apparent in this figure. 
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Binary String Binary String Heterozygous 

Integer Integer Heterozygous 

Hybrid Integer Hybrid Integer Heterozygous 

Figure 7-9: Graphical Comparison of Multiple Objective New York Tunnels results 

 

Space Metrics 

The S metric results for the heterozygous results are considered in Figure 7-10.  These results 

show better performance for the hybrid integer representation compared to the other two – 

with the integer representation again performing the worst of all three. 
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Figure 7-10:  Box plots of S metric for Multiple Objective Heterozygous New York Tunnels after 20, 100 & 

1,000 generations 

This analysis is extended in Figure 7-11 where the performance of the normal and 

heterozygous encodings of the problem can be compared.  As can be seen, the heterozygous 

versions generally outperform their normally encoded counterparts, with the exception of the 

standard binary string representation, which performs best of all – a possible indication that 

the multiple-objective algorithm favours the greater stochasticity introduced by this format. 

 
Figure 7-11:  Box plots of S metric for Multiple Objective New York Tunnels for Normal and Heterozygous 

New York Tunnels after 20, 100 & 1,000 generations  

Coverage Metrics 

The coverage metrics for the above runs are reported in Table 7-5 - Table 7-7 which relate to 

the coverage performance of the algorithm after 20, 100 and 1,000 generations respectively.  

These tables allow a direct comparison to be made between the performance of the normally 
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and heterozygous-encoded algorithms for each of the three representations.  Table 7-5 clearly 

shows the strong performance of the normal binary string representation followed by that of 

the normal hybrid integer representation.   

 Front B 

Conventional Heterozygous 

Binary 
String Integer Hybrid 

Integer 
Binary 
String Integer Hybrid 

Integer 

Fr
on

t 
A

 

N
or

m
al

 

B
in

ar
y 

St
rin

g 

Min 0.138 0.388 0.311 0.453 0.543 0.395 

Mean 0.387 0.653 0.593 0.642 0.740 0.680 

Max 0.652 0.980 0.943 0.852 0.933 0.892 

In
te

ge
r Min 0.000 0.041 0.000 0.141 0.130 0.047 

Mean 0.234 0.453 0.328 0.400 0.482 0.398 

Max 0.550 0.900 0.736 0.679 0.911 0.730 

H
yb

rid
 

In
te

ge
r Min 0.000 0.171 0.022 0.156 0.217 0.140 

Mean 0.263 0.551 0.438 0.505 0.599 0.521 

Max 0.485 0.940 0.792 0.736 0.911 0.784 

H
et

er
oz

yg
ou

s 

B
in

ar
y 

St
rin

g 

Min 0.030 0.171 0.022 0.172 0.217 0.140 

Mean 0.186 0.538 0.419 0.419 0.574 0.499 

Max 0.348 0.940 0.792 0.642 0.911 0.784 

In
te

ge
r Min 0.000 0.049 0.022 0.047 0.109 0.047 

Mean 0.123 0.366 0.247 0.297 0.399 0.342 

Max 0.283 0.840 0.736 0.698 0.867 0.768 

H
yb

rid
 

In
te

ge
r Min 0.000 0.131 0.065 0.094 0.130 0.116 

Mean 0.168 0.420 0.307 0.387 0.487 0.423 

Max 0.417 0.780 0.736 0.679 0.867 0.784 

Table 7-5: C metrics for Multiple Objective Heterozygous New York Tunnels after 20 generations 

The results presented in Table 7-6 after 100 generations demonstrate the continued (relative) 

dominance of the normally encoded binary string and hybrid integer over the other 

representations – albeit to a lesser degree than that apparent after 20 generations.  The 

heterozygous representations show poor performance relative to their normally encoded 

counterparts – as evidenced by the low values presented in the lower-left quadrant of Table 

7-6. 
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 Front B 

Conventional Heterozygous 

Binary 
String Integer Hybrid 

Integer 
Binary 
String Integer Hybrid 

Integer 

Fr
on

t 
A

 

N
or

m
al

 

B
in

ar
y 

St
rin

g 

Min 0.073 0.120 0.020 0.144 0.151 0.099 

Mean 0.215 0.258 0.167 0.338 0.311 0.298 

Max 0.375 0.343 0.289 0.453 0.489 0.424 

In
te

ge
r Min 0.096 0.163 0.020 0.222 0.154 0.176 

Mean 0.215 0.260 0.159 0.328 0.303 0.302 

Max 0.354 0.364 0.330 0.453 0.468 0.414 

H
yb

rid
 

In
te

ge
r Min 0.110 0.163 0.060 0.247 0.154 0.198 

Mean 0.249 0.282 0.187 0.352 0.334 0.319 

Max 0.385 0.414 0.320 0.453 0.500 0.414 

H
et

er
oz

yg
ou

s 

B
in

ar
y 

St
rin

g 

Min 0.031 0.074 0.020 0.041 0.080 0.077 

Mean 0.106 0.260 0.168 0.222 0.309 0.293 

Max 0.260 0.414 0.320 0.421 0.500 0.414 

In
te

ge
r Min 0.010 0.050 0.000 0.093 0.011 0.022 

Mean 0.120 0.153 0.068 0.256 0.214 0.196 

Max 0.271 0.237 0.186 0.442 0.405 0.354 

H
yb

rid
 

In
te

ge
r Min 0.010 0.110 0.010 0.072 0.090 0.033 

Mean 0.114 0.170 0.076 0.271 0.234 0.194 

Max 0.229 0.242 0.247 0.442 0.457 0.343 

Table 7-6: C metrics for Multiple Objective Heterozygous New York Tunnels after 100 generations 

Once more, the very small coverage ratios related in Table 7-7 indicate that all of the six 

combinations of representation analysed converge to almost identical Pareto fronts with few 

significant differences between them. 
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 Front B 

Conventional Heterozygous 

Binary 
String Integer Hybrid 

Integer 
Binary 
String Integer Hybrid 

Integer 

Fr
on

t 
A

 

N
or

m
al

 

B
in

ar
y 

St
rin

g 

Min 0.000 0.000 0.000 0.000 0.000 0.000 

Mean 0.018 0.016 0.022 0.031 0.053 0.030 

Max 0.070 0.050 0.050 0.070 0.100 0.070 
In

te
ge

r Min 0.010 0.000 0.020 0.010 0.030 0.020 

Mean 0.056 0.031 0.054 0.063 0.075 0.056 

Max 0.110 0.090 0.100 0.110 0.110 0.090 

H
yb

rid
 

In
te

ge
r Min 0.000 0.000 0.000 0.000 0.000 0.000 

Mean 0.031 0.024 0.036 0.043 0.062 0.039 

Max 0.110 0.080 0.090 0.090 0.120 0.080 

H
et

er
oz

yg
ou

s 

B
in

ar
y 

St
rin

g 

Min 0.000 0.000 0.000 0.000 0.000 0.000 

Mean 0.024 0.029 0.045 0.036 0.068 0.045 

Max 0.120 0.090 0.100 0.100 0.120 0.090 

In
te

ge
r Min 0.000 0.000 0.000 0.000 0.000 0.000 

Mean 0.022 0.014 0.026 0.030 0.047 0.030 

Max 0.080 0.060 0.070 0.070 0.100 0.070 

H
yb

rid
 

In
te

ge
r Min 0.000 0.000 0.000 0.000 0.010 0.000 

Mean 0.033 0.027 0.035 0.042 0.066 0.039 

Max 0.080 0.070 0.070 0.080 0.110 0.070 

Table 7-7: C metrics for Multiple Objective Heterozygous New York Tunnels after 1,000 generations 

7.2.2.5. Runtime Performance 

As can be seen from Table 7-8, for the New York Tunnels problem in which the 

chromosome length is very similar between the conventional and heterozygous encodings, 

the additional overhead of interpreting the heterozygous chromosomes leads to a deleterious 

effect on performance for this representation. 

Chromosome 
Representation 

Conventional Heterozygous 
 (evaluations 
 per second) % of best  (evaluations 

per second) % of best  

Binary String 1,868.98 86.3% 1,574.30 72.7% 

Integer 2,164.93 100% 1,801.72 83.2% 

Hybrid Integer 1,886.79 87.2% 1,630.70 75.3% 

Table 7-8: New York Tunnels Multiple Objective Heterozygous Runtime Performance vs. Conventional 
Performance 

7.2.3. Caching 

The caching results for the multiple objective New York Tunnels problem are presented in 

Table 7-9.  As with the single objective formulation of the problem, despite the cache being 



Chapter 7: Multiple Objective Optimization Problems 

196   A Framework for Evolutionary Optimization Applications in Water Distribution Systems 

used, the runtimes are increased when the caching is enabled – for either type of cache.  This 

is the result of the search performance of the caches taking, on average, a longer interval than 

the hydraulic simulation of the network.  The ten-fold increase in the proportion of cache 

hits compared to the maximum of 3% for the single objective problem supports the concept 

of the caching methodology. 

Cache Size 
Runtime 

performance Cache Performance Relative 
Runtime 

Performance (solutions/second) (no. hits) (% of evaluations) 

None 1,886.79 n/a n/a 100% 

40,000 1,355.01 28,290.3 28.3% 139.2% 

Judy (unlimited) 1,292.55 34,538.9 34.5% 146.0% 

Table 7-9: Cache results: Multiple Objective New York Tunnels 

7.3. Hanoi 

7.3.1. Genetic Representation 

7.3.1.1. Binary String 

A considerable overlap can be seen in Figure 7-12, which shows the binary string results, 

between the 100 generation and 1,000 generation distributions suggesting that this 

representation converges rapidly toward the Pareto-optimal front.  None of the 100 runs of 

this optimization configuration resulted in the best know solution of $6.081m being 

identified. 
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Figure 7-12: Hanoi – Multiple Objective Binary String Results 

7.3.1.2. Integer 

The results for the integer representation, presented in Figure 7-13, show a greater diversity 

of results than those seen with the binary string representation.  The overlap between the 100 

generation and 1,000 generation distributions, whilst present, is diminished.  In common with 

the binary string representation, none of the runs identified the best-known solution for this 

problem. 



Chapter 7: Multiple Objective Optimization Problems 

198   A Framework for Evolutionary Optimization Applications in Water Distribution Systems 

 
Figure 7-13: Hanoi – Multiple Objective Integer Results 

7.3.1.3. Hybrid Integer 

Figure 7-14 illustrates the results of the hybrid integer representation – which appear very 

similar to those of the integer.  Again, no runs of this optimization identified the optimum. 

 
Figure 7-14: Hanoi – Multiple Objective Hybrid Integer Results 
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7.3.1.4. Comparative Analysis 

Graphical 

Figure 7-15 allows a direct graphical comparison of the results presented above: 

Binary String 

Integer 

Hybrid Integer 

Figure 7-15: Graphical Comparison of Multiple Objective Hanoi results 
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The less well-defined results of the integer and hybrid integer representations, particularly 

after 20 generations, are visible in this figure. 

Space Metrics 

The S metric for the Hanoi optimization is related in the box plots in Figure 7-16.  These 

show the superior convergence of the binary string in the earlier stages of the optimization 

but suggest that the integer, and particularly the hybrid integer, runs converge better. 

 
Figure 7-16: Box plots of S metric for Multiple Objective Hanoi after 20, 100 and 1,000 generations  

Coverage Metrics 

The coverage metrics for the Hanoi optimization are reported in Table 7-10 - Table 7-12 for 

20, 100 and 1,000 generations respectively.  Table 7-10 shows that the binary string 

representation again dominates that of the other two representations – whilst the integer 

representation outperforms the hybrid integer at this stage. 

 Front B 
Binary String Integer Hybrid Integer 

Fr
on

t 
A

 

B
in

ar
y 

St
rin

g 

Min 0.062 0.197 0.232 

Mean 0.421 0.438 0.494 

Max 0.899 0.740 0.831 

In
te

ge
r Min 0.050 0.110 0.250 

Mean 0.323 0.415 0.514 

Max 0.617 0.720 0.854 

H
yb

rid
 

In
te

ge
r Min 0.040 0.062 0.105 

Mean 0.244 0.343 0.432 

Max 0.535 0.582 0.740 

Table 7-10: C metrics for Multiple Objective Hanoi after 20 generations 
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After 100 generations very little, relative, difference can be discerned in the 

performance of the representations – as seen in Table 7-11 – where the mean figures for the 

variation in coverage are almost equal for each combination. 

 Front B 
Binary String Integer Hybrid Integer 

Fr
on

t 
A

 

B
in

ar
y 

St
rin

g 
Min 0.080 0.140 0.100 

Mean 0.328 0.316 0.323 

Max 0.620 0.530 0.590 

In
te

ge
r Min 0.090 0.160 0.100 

Mean 0.347 0.359 0.349 

Max 0.600 0.600 0.590 

H
yb

rid
 

In
te

ge
r Min 0.100 0.120 0.080 

Mean 0.352 0.368 0.355 

Max 0.630 0.660 0.660 

Table 7-11: C metrics for Multiple Objective Hanoi after 100 generations 

The relative coverage of the fronts at the conclusion of the optimizations is shown in 

Table 7-12.  This shows that at this stage, the integer and hybrid integer representations are 

performing better than the binary string and that the hybrid integer is marginally 

outperforming the integer – a fact reflected in the box plots in Figure 7-16. 

 Front B 
Binary String Integer Hybrid Integer 

Fr
on

t 
A

 

B
in

ar
y 

St
rin

g 

Min 0.090 0.050 0.040 

Mean 0.297 0.154 0.154 

Max 0.540 0.360 0.400 

In
te

ge
r Min 0.210 0.150 0.120 

Mean 0.444 0.264 0.261 

Max 0.610 0.420 0.490 

H
yb

rid
 

In
te

ge
r Min 0.130 0.120 0.080 

Mean 0.444 0.271 0.264 

Max 0.610 0.430 0.490 

Table 7-12: C metrics for Multiple Objective Hanoi after 1,000 generations 

7.3.1.5. Runtime performance 

The runtime result presented in Table 7-13 demonstrates that, relative to the binary string 

representation, the hybrid integer is considerably better performing on the length of 

chromosome employed by this problem.  The pure integer representation remains the 

quickest of all. 
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Chromosome Representation 
Average Performance 
(evaluations per second) 

% of best performance 

Binary String 1,579.28 84.8% 

Integer 1,862.80 100% 

Hybrid Integer 1,747.57 93.8% 

Table 7-13: Hanoi Multiple Objective Runtime Performance 

7.3.2. Caching 

With the caching enabled, the throughput of the algorithm using the hybrid integer 

representation exceeds that of the uncached integer (Table 7-13).  As with the New York 

Tunnels problem, these results represent a marked improvement over those of the single 

objective version of the problem.  However, given the greater computational demand of the 

Hanoi problem for the hydraulic solver, the advantages of the cache utilisation are clearly 

demonstrated with savings in runtime of between 6.5 and 12%. 

Cache Size 
Runtime 

performance Cache Performance Relative 
Runtime 

Performance (solutions/second) (no. hits) (% of evaluations) 

None 1,747.57 n/a n/a 100% 

40,000 1,868.46 5,916.3 5.9% 93.5% 

Judy (unlimited) 1,980.47 7,972.1 8.0% 88.2% 

Table 7-14: Cache results: Multiple Objective Hanoi 

 

7.4. Piedemonte San Germano 

7.4.1. Genetic Representation 

7.4.1.1. Binary String 

A scatter plot illustrating the results for the binary string representation after 20, 100 and 

1,000 generations can be seen in Figure 7-17.  For this representation, no solutions for any of 

the runs identified the optimal solution determined in the single-objective analysis of 

€30,082.10.  A large discontinuity is visible in the aggregate head deficit objective.  This 

discontinuity is apparent owing to the fact that the feed from the reservoir (pipe 101 in 

Figure 6-26) is critical to system performance.  In the absence of this reinforcement, the head 

deficits throughout the system are high c.30,000m and higher; whilst reinforcement, even of 

the smallest diameter option, results in head deficits of c.12,000m and lower.   
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Figure 7-17: Piedemonte San Germano– Multiple Objective Binary String Results 

7.4.1.2. Integer 

Figure 7-18 relates the results for the integer representation when applied to the multiple 

objective PSG problem.  These results can be seen to cover a wider distribution than those of 

the binary string.  As with the latter representation, none of the runs identified the best-

known solution.  It can be seen from these results that a large number of results are identified 

with near-zero head deficits and cost varying between c.€60,000 and €30,000.  This wide 

variation occurs as the PSG model has a number of very short pipes that are included in the 

optimization and yet have an insignificant effect on the performance of the hydraulic model, 

which is characterised by extremely low flows in some locations.  Thus, from the point of 

view of the optimization, the reinforcement of these pipes contributes significantly to the 

capital cost objective but has little bearing on that of the head deficit.  Ideally, these pipes 

should be identified a priori and omitted from the optimization process. 
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Figure 7-18: Piedemonte San Germano– Multiple Objective Integer Results 

7.4.1.3. Hybrid Integer 

The results for the Hybrid Integer representation are shown in Figure 7-19.  Again, after 

1,000 generations, none of the runs had identified the optimal solution of €30,082.10. 

 
Figure 7-19: Piedemonte San Germano– Multiple Objective Hybrid Integer Results 
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7.4.1.4. Comparative Analysis 

Space Metrics 

Examination of the S space metrics (Figure 7-20) for these runs demonstrate that, in 

common with the New York Tunnels and Hanoi problems, the binary string representation 

outperforms both the integer and hybrid integer versions in terms of convergence towards an 

optimal solution.  The performance of the hybrid integer representation appears superior to 

that of the integer representation throughout the lifetime of the optimization.  However, the 

box plots suggest that, ultimately, the hybrid integer and integer representations have 

generally converged to superior Pareto-optimal fronts – although analysis of the C coverage 

metric is necessary to confirm this.   

 
Figure 7-20: Box plots of S metric for Multiple Objective Piedemonte San Germano after 20, 100 and 1,000 

generations  

Coverage Metrics 

The coverage metrics for the runs were calculated for the Pareto-optimal fronts obtained 

after 20, 100 and 1,000 generations of each of the 100 runs undertaken for each 

representation.  The aggregate values obtained for the metric C(A,B) are listed in Table 7-15 

to Table 7-17 for 20, 100 and 10,000 generations respectively.  The Binary String 

representation can again be seen in Table 7-15 to be outperforming that of the integer and 

hybrid integer – covering 58.1% and 51.6% of the points of fronts respectively. 
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 Front B 
Binary String Integer Hybrid Integer 

Fr
on

t 
A

 

B
in

ar
y 

St
rin

g 

Min 0.222 0.241 0.193 

Mean 0.415 0.581 0.516 

Max 0.672 0.974 0.868 

In
te

ge
r Min 0.000 0.000 0.000 

Mean 0.300 0.439 0.371 

Max 0.567 0.949 0.755 

H
yb

rid
 

In
te

ge
r Min 0.014 0.130 0.053 

Mean 0.331 0.483 0.424 

Max 0.697 0.949 0.906 

Table 7-15: C metrics for Piedemonte San Germano after 20 generations 

The same C metric after 100 generations (Table 7-16) shows that the binary string 

representation continues to perform well, although the hybrid integer, on average, can now 

be seen to cover a greater proportion of points than those of the other two representations. 

 

 Front B 
Binary String Integer Hybrid Integer 

Fr
on

t 
A

 

B
in

ar
y 

St
rin

g 

Min 0.200 0.320 0.160 

Mean 0.363 0.484 0.336 

Max 0.500 0.707 0.590 

In
te

ge
r Min 0.110 0.090 0.050 

Mean 0.260 0.388 0.254 

Max 0.460 0.636 0.470 

H
yb

rid
 

In
te

ge
r Min 0.140 0.190 0.090 

Mean 0.410 0.513 0.365 

Max 0.630 0.747 0.630 

Table 7-16: C metrics for Piedemonte San Germano after 100 generations 

At the completion of the optimizations, the C metrics (Table 7-17) show very similar levels 

of average coverage although the hybrid integer representation can be seen to outperform the 

other representations, covering a greater proportion of their Pareto-optimal solutions. 
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 Front B 
Binary String Integer Hybrid Integer 

Fr
on

t 
A

 

B
in

ar
y 

St
rin

g 

Min 0.090 0.090 0.100 

Mean 0.204 0.256 0.197 

Max 0.300 0.410 0.310 
In

te
ge

r Min 0.070 0.080 0.070 

Mean 0.191 0.230 0.180 

Max 0.330 0.420 0.320 

H
yb

rid
 

In
te

ge
r Min 0.100 0.090 0.090 

Mean 0.247 0.292 0.214 

Max 0.350 0.450 0.360 

Table 7-17: C metrics for Piedemonte San Germano after 1000 generations 

7.4.1.5. Runtime Performance 

The runtime performance comparison for these representations is presented in Table 7-18.  

In common with the other network problems analysed, the integer representation performs 

best with a marginal difference apparent between the binary string and hybrid integer results. 

Chromosome Representation Average Performance 
(evaluations per second) % of best performance 

Binary String 3,837.22 90.8% 

Integer 4,223.89 100% 

Hybrid Integer 3,766.36 89.0% 

Table 7-18: Piedemonte San Germano Multiple Objective Runtime Performance 

7.4.2. Heterozygous Chromosomes 

7.4.2.1. Binary String 

The heterozygous binary string results, presented in Figure 7-21, are broadly comparable with 

those of the normal representation with the exception that, visually, they exhibit a narrower 

distribution of results for the 20 and 100 generation points – the opposite of the equivalent 

results obtained for the smaller New York Tunnels problem, suggesting that the 

heterozygous arrangement performs better for convergence for the larger problem.  As with 

the normally-encoded version of this problem, none of the binary string runs was able to 

identify the optimal solution determined in the single-objective optimization. 
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Figure 7-21: Piedemonte San Germano– Multiple Objective Heterozygous Binary String Results 

7.4.2.2. Integer 

Figure 7-22 illustrates the heterozygous integer results, which appear to be very similar to 

those obtained with the standard representation.  In common with the binary string results, 

above, the heterozygous version of the integer appears to show better convergence 

behaviour.  Again, none of the runs for this representation managed to identify the best 

known-solution for the single objective problem formulation. 
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Figure 7-22: Piedemonte San Germano– Multiple Objective Heterozygous Integer Results 

7.4.2.3. Hybrid Integer 

Figure 7-23 shows the results for the heterozygous hybrid integer representation of the 

problem showing, once more, more rapid convergence than the prior encoding. 

 
Figure 7-23: Piedemonte San Germano– Multiple Objective Heterozygous Hybrid Integer Results 
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7.4.2.4. Comparative Analysis 

Graphical 

Figure 7-24 permits a direct graphical comparison of the algorithm performance for the three 

representations and two encodings.  The more constrained distributions, after 20 and 100 

generations, exhibited by the heterozygous binary string and heterozygous hybrid integer 

(and to a lesser extent the heterozygous integer) representations are apparent in this figure – 

particularly with reference to the solutions to the right of the head deficit discontinuity. 

Binary String Binary String Heterozygous 

Integer Integer Heterozygous 

Hybrid Integer Hybrid Integer Heterozygous 

Figure 7-24: Graphical Comparison of Multiple Objective Piedemonte San Germano results 
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Space Metrics 

The S metric results for the heterozygous results are presented in Figure 7-25.  These results 

illustrate the better convergence of the binary string representation compared to the other 

two – with the integer representation again performing the worst of all three.  However, as 

with the normally encoded representation, the superior performance of the hybrid integer 

representation towards the end of the optimization is demonstrated. 

 
Figure 7-25: Box plots of S metric for Multiple Objective Heterozygous Piedemonte San Germano after 20, 

100 & 1,000 generations  

A comparison between the S metrics of both the normally and heterozygous encoded 

representations is shown in Figure 7-26.  In contrast to the results obtained for the simpler 

New York Tunnels problem (Figure 7-11) the improved performance of the heterozygous 

encoding relative to the normal encoding, in terms of rapidity of convergence, is clearly seen. 
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Figure 7-26: Box plots of S metric for Multiple Objective Normal and Heterozygous Piedemonte San 

Germano after 20, 100 & 1,000 generations 

Coverage Metrics 

In the early stages of the optimization (20 generations) the C coverage metrics (Table 7-19) 

for the normally-encoded binary string show that it is the most effective of the combinations 

in terms of relative quality of the Pareto fronts obtained.  This is at variance with what might 

be expected from the S space metric above (Figure 7-26) in which all of the heterozygous 

representations appear to outperform the normally encoded binary string. 

 Front B 

Conventional Heterozygous 

Binary 
String Integer Hybrid 

Integer 
Binary 
String Integer Hybrid 

Integer 

Fr
on

t 
A

 

N
or

m
al

 

B
in

ar
y 

St
rin

g 

Min 0.222 0.241 0.193 0.102 0.192 0.109 

Mean 0.415 0.581 0.516 0.360 0.386 0.381 

Max 0.672 0.974 0.868 0.607 0.542 0.732 

In
te

ge
r Min 0.000 0.000 0.000 0.082 0.071 0.065 

Mean 0.300 0.439 0.371 0.317 0.315 0.341 

Max 0.567 0.949 0.755 0.589 0.521 0.756 

H
yb

rid
 

In
te

ge
r Min 0.014 0.130 0.053 0.102 0.212 0.077 

Mean 0.331 0.483 0.424 0.317 0.372 0.389 

Max 0.697 0.949 0.906 0.625 0.576 0.732 

H
et

er
oz

yg
ou

s 

B
in

ar
y 

St
rin

g 

Min 0.106 0.111 0.053 0.041 0.130 0.026 

Mean 0.276 0.453 0.397 0.307 0.348 0.369 

Max 0.508 0.949 0.906 0.625 0.576 0.732 

In
te

ge
r Min 0.152 0.130 0.175 0.041 0.093 0.026 

Mean 0.284 0.272 0.296 0.346 0.285 0.355 

Max 0.460 0.462 0.434 0.564 0.484 0.780 
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 Front B 

Conventional Heterozygous 

Binary 
String Integer Hybrid 

Integer 
Binary 
String Integer Hybrid 

Integer 

H
yb

rid
 

In
te

ge
r Min 0.074 0.093 0.158 0.020 0.042 0.026 

Mean 0.314 0.297 0.306 0.336 0.312 0.355 

Max 0.537 0.667 0.566 0.714 0.593 0.780 

Table 7-19: C metrics for Multiple Objective Heterozygous Piedemonte San Germano after 20 generations 

The superior performance trend for the conventionally encoded representations is continued 

later in the optimization as evidenced by the results presented in Table 7-20.  Here their 

average coverage ratios are improved over Table 7-19 above.  The hybrid integer is the 

strongest performer followed by the binary string representation. 

 Front B 

Conventional Heterozygous 

Binary 
String Integer Hybrid 

Integer 
Binary 
String Integer Hybrid 

Integer 

Fr
on

t 
A

 

N
or

m
al

 

B
in

ar
y 

St
rin

g 

Min 0.200 0.320 0.160 0.330 0.350 0.310 

Mean 0.363 0.484 0.336 0.516 0.479 0.416 

Max 0.500 0.707 0.590 0.710 0.610 0.520 

In
te

ge
r Min 0.110 0.090 0.050 0.310 0.360 0.310 

Mean 0.260 0.388 0.254 0.499 0.463 0.408 

Max 0.460 0.636 0.470 0.660 0.590 0.530 

H
yb

rid
 

In
te

ge
r Min 0.140 0.190 0.090 0.290 0.390 0.330 

Mean 0.410 0.513 0.365 0.533 0.496 0.419 

Max 0.630 0.747 0.630 0.720 0.590 0.520 

H
et

er
oz

yg
ou

s 

B
in

ar
y 

St
rin

g 

Min 0.090 0.160 0.090 0.090 0.110 0.110 

Mean 0.234 0.459 0.316 0.301 0.456 0.381 

Max 0.420 0.747 0.630 0.610 0.590 0.520 

In
te

ge
r Min 0.110 0.130 0.060 0.080 0.040 0.080 

Mean 0.223 0.257 0.209 0.307 0.278 0.193 

Max 0.310 0.390 0.340 0.520 0.480 0.310 

H
yb

rid
 

In
te

ge
r Min 0.100 0.170 0.100 0.110 0.150 0.130 

Mean 0.263 0.303 0.258 0.349 0.344 0.248 

Max 0.370 0.420 0.390 0.600 0.600 0.470 

Table 7-20: C metrics for Multiple Objective Heterozygous Piedemonte San Germano after 100 generations 

At the completion of the optimization runs, the C coverage metrics (Table 7-21) it can be 

seen that the Pareto fronts obtained with the conventional encoding tend to dominate those 

obtained with the heterozygous encoding, with over 50% coverage for all of the genotype 

representations. 
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 Front B 

Conventional Heterozygous 

Binary 
String Integer Hybrid 

Integer 
Binary 
String Integer Hybrid 

Integer 

Fr
on

t 
A

 

N
or

m
al

 

B
in

ar
y 

St
rin

g 

Min 0.090 0.090 0.100 0.390 0.490 0.250 

Mean 0.204 0.256 0.197 0.539 0.565 0.518 

Max 0.300 0.410 0.310 0.740 0.660 0.680 

In
te

ge
r Min 0.070 0.080 0.070 0.340 0.490 0.250 

Mean 0.191 0.230 0.180 0.524 0.547 0.501 

Max 0.330 0.420 0.320 0.740 0.620 0.660 

H
yb

rid
 

In
te

ge
r Min 0.100 0.090 0.090 0.370 0.490 0.240 

Mean 0.247 0.292 0.214 0.534 0.553 0.505 

Max 0.350 0.450 0.360 0.760 0.630 0.680 

H
et

er
oz

yg
ou

s 

B
in

ar
y 

St
rin

g 

Min 0.030 0.080 0.040 0.010 0.080 0.050 

Mean 0.089 0.265 0.193 0.298 0.499 0.469 

Max 0.180 0.450 0.360 0.750 0.630 0.680 

In
te

ge
r Min 0.030 0.020 0.000 0.020 0.070 0.030 

Mean 0.064 0.088 0.060 0.263 0.238 0.266 

Max 0.110 0.150 0.130 0.690 0.330 0.630 

H
yb

rid
 

In
te

ge
r Min 0.020 0.020 0.010 0.000 0.010 0.010 

Mean 0.092 0.115 0.088 0.240 0.254 0.264 

Max 0.230 0.280 0.270 0.720 0.450 0.680 

Table 7-21: C metrics for Multiple Objective Heterozygous Piedemonte San Germano after 1,000 generations 

7.4.2.5. Runtime Performance 

The more complex genetic structure of the conventional representation cause it to show 

significantly reduced performance with respect to the heterozygous approach – as seen in 

Table 7-22.  Once more, as with the other analyses, the integer runtime proves to be the 

quickest representation with the hybrid integer and binary string having roughly equal 

runtime performance although the hybrid integer representation proves to be marginally 

quicker for the heterozygous encoding and marginally slower for the conventional encoding. 

Chromosome 
Representation 

Conventional Heterozygous 
 (evaluations 
 per second) % of best  (evaluations 

per second) % of best  

Binary String 1,040.43 71.5% 1,380.77 94.9% 

Integer 1,145.28 78.7% 1,455.56 100% 

Hybrid Integer 1,021.22 70.2% 1,397.16 96.0% 

Table 7-22: PSG Multiple Objective Heterozygous Runtime Performance vs. Conventional Performance 
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7.4.3. Caching 

As with the other two networks employed, the caching performance of this multiple 

objective algorithm is much improved with respect to the single objective formulation of the 

same problem.  Table 7-23 illustrates these results: demonstrating a significant improvement 

in runtime for the Judy cache.  The search effectiveness of the Red-Black binary tree cache is 

compromised by the length of the chromosome for this problem and is seen to have nearly 

the same performance as the uncached algorithm – despite the cache being “hit” for 15% of 

the evaluations. 

Cache Size 
Runtime 

performance Cache Performance Relative 
Runtime 

Performance (solutions/second) (no. hits) (% of evaluations) 

None 1,021.22 n/a n/a 100% 

40,000 1,028.60 15,145.2 15.1% 99.3% 

Judy (unlimited) 1,098.90 14,605.2 14.6% 92.9% 

Table 7-23: Cache results: Multiple Objective Piedemonte San Germano 

7.5. Conclusions 

Identifying the benefits accrued by the individual representations is more difficult to quantify 

for a multiple objective optimization because of the nature of the multiple results returned 

and how best to compare them.  The Space-Covered metric, S and Coverage metric, C, of 

Zitzler and Thiele (1999) are employed to undertake the comparisons of the Pareto-optimal 

fronts obtained from repeated optimizations using the different combinations of 

representation. 

The most instructive result seen relates to the performance of the binary string 

representation during the initial stages of the optimization.  For all three networks analysed, 

this representation can be seen to perform best in terms of the convergence of the algorithm 

– in direct contrast to the results observed for this representation in the single-objective 

optimizations.  To verify the results observed for the binary string representation, each of the 

experiments were repeated with a version of the hybrid integer, which does not incorporate 

the Gray coding and, instead, behaves as a conventional binary string.  The results obtained 

for this representation were almost identical to those obtained for the standard binary string 

– as would be expected.  The only variation apparent was owing to the selection of different 

random seeds for the initialization of each optimization.  Despite the more rapid 

convergence characteristics of the binary string representation, the hybrid integer 
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representation ultimately produced the best optimization results for all of the problems 

investigated.  

That the hybrid arrangement ultimately outperforms the conventional binary string is 

not surprising - owing to its superior mutation performance identified in Chapter 4.2.4.  The 

binary string behaviour at the beginning of the optimization should be explored, however.  It 

might be speculated that the addition stochasticity afforded by the non-Gray code binary 

string representation is beneficial in driving the algorithm to explore the Pareto front in the 

early stages of the optimization.  In this case, a more aggressive crossover regime, such as 

Uniform Random (Syswerda, 1989) may exert more evolutionary pressure on the other 

representations and permit them to converge more rapidly.  To test this hypothesis, the 

hybrid integer runs for the multiple objective Piedemonte San Germano network were 

repeated with such a crossover and the results were seen to be far worse than both the binary 

string implementation and the original performance of the hybrid integer.  A similar test in 

which the effective mutation rate was increased yielded a slight improvement in the 

performance of the hybrid integer representation but this remained considerably short of that 

seen for the binary string.  It is recommended that this behaviour be examined in more detail 

and an opportunity for exploiting the nature of the hybrid integer representation to take 

account of these results is detailed for further research in Chapter 9.1 

The performance of the caching methodology is significantly improved relative to 

that of the single-objective formulations of the optimization problems.  In the reruns of the 

hybrid integer algorithms outlined above, the proportion of hits of the cache dropped from 

around 15% to around 3% - more in line with the initial experimentation results seen in 

Chapter 4.4.3.   
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Chapter 8. Large Scale Optimization Problems 

8.1. Introduction 

In order to establish whether the conclusions drawn in Chapter 7 are more widely applicable, 

some of the techniques introduced are applied to two further optimization problems, which 

are characterized by an increase in scale and an increase in the computational complexity 

associated with its hydraulic-related calculations.  The first network is analysed in a similar 

fashion to those in the previous chapter to determine its sensitivity to the different genetic 

representations under consideration.  Moreover, its performance with the caching and the 

distributed evaluation methodologies is examined.  The second network is derived from 

Piedemonte San Germano model seen previously; in this instance, the problem is 

reformulated as a hydraulic model with uncertain demands that are required to be simulated 

over a 24-hour period.  This uncertainty is accommodated using sampling techniques that, 

when coupled to the optimization process, significantly increase the runtimes of the 

algorithm through repeated, addition hydraulic simulations.  This problem is used to evaluate 

the efficacy of the Non-Repeating Genetic Algorithm introduced in Chapter 4.5 and the 

distributed evaluation methodology.  Owing to the stochasticity introduced as a means of 

accommodating the uncertainty in the hydraulic model, this problem is not suitable for 

analysis with respect to its caching performance.  This is because, in such problems, there is 

no longer a one-to-one mapping between a given set of decision variables and the values of 

the objectives. 

8.2. “Real World” Network 

8.2.1. Problem Formulation 

The “Real World” network was introduced by Savić et al. (2000) and is an anonymized 

network from a UK water company.  This model is gravity fed by a single reservoir via 632 

pipes to 535 demand nodes – the topology is illustrated in Figure 8-1.  Each of these pipes 

may be implemented as one of 20 potential pipe diameters, which results in a very large 

search space of 20632 = 1.78×10822.  Because of the extended runtimes associated with this 

problem, a restricted set of four runs was performed with the best Pareto front obtained 

from each representation used in the following analysis. 
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Figure 8-1: "Real World" network topology 

In common with the previous multiple objective optimizations, the problem formulation is 

for the minimization of infrastructure cost and aggregate nodal head deficit and can be 

represented, thus: 

:݁ݖ݅݉݅݊݅ܯ ௜௡௙ܥ ൌ ݂൫ܦଵ, . . , ே೗൯ܦ ൌ෍ܥ൫ܦ௝, ௝൯ܮ
ே೗

௝ୀଵ

 

xiii) 

:݁ݖ݅݉݅݊݅ܯ ܶ ൌ ݂൫ܪଵ, . . , ே೙൯ܪ ൌ෍൫ܪ௜,௠௜௡ െ ௜൯ܪ
ே೙

௜ୀଵ

 

xiv) 

௝ܦ א ሺ݆ ܦ ൌ 1, . . , ௗܰሻ 

xv) 

where: Cinf is the total infrastructure cost, Nl is the number of links in the network for which 

reinforcement is an option, C(Dj,Lj) is the cost of the jth pipe with diameter Dj (chosen from a 
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discrete set of available diameters D) and length Lj.  T is the total head deficit (negative if a 

pressure surplus exists), Hi is the pressure head at node i (as computed by the hydraulic 

solver), Hi,min is the minimum pressure head requirement sufficient to fully satisfy the demand 

at node i and Nn is the number of nodes in the network.  Nd is the number of decision 

variables in the optimization. 

8.2.2. Genetic Representation 

8.2.2.1. Comparative Analysis 

Graphical 

The results from the best front produce by runs of each representation are illustrated in 

Figure 8-2 for the state after 100 generations.  As can be seen, the binary string 

representation performs well, although the integer and hybrid integer arrangements perform 

appear to perform better at the extremes of the Pareto-optimal front.  Outside the range 

illustrated in Figure 8-2, the standard binary string performs poorly relative to the other 

representations demonstrated by the results seen in the coverage metrics for this stage of the 

optimization (Table 8-2). 

 
Figure 8-2: Best Pareto fronts for "Real World" problem after 100 generations 
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After 1,000 generations, the performance of the three representations is much closer, as can 

be seen from Figure 8-3.  In contrast with the earlier stage of the algorithm, however, the 

hybrid integer variant is performing well, achieving a better spread of solutions. 

 
Figure 8-3:  Best Pareto fronts for "Real World" problem after 1,000 generations 

As for the previous problems explored in Chapter 7, by the end of the optimization the 

different representations have largely converged to similar Pareto fronts as can be seen in 

Figure 8-4, below. 
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Figure 8-4: Best Pareto fronts for "Real World" problem after 10,000 generations 

Space Metric 

Table 8-1 shows the space-covered, S, metrics for the best runs of each genetic 

representation after 100, 1,000 and 10,000 generations.  These figures show that, as for the 

prior multiple-objective runs in Chapter 7, the binary string representation converges more 

quickly – though ultimately the other representations produce similar results. 

Generation Binary String Integer Hybrid Integer 
100 8.52589×1010 9.28513×1010 8.76128×1010 

1,000 4.30702×1010 4.87071×1010 4.20156×1010 

10,000 3.38164×1010 3.56136×1010 3.61863×1010 

Table 8-1: S metrics for Real World network after 100, 1,000 and 10,000 generations 

Coverage Metric 

The C coverage metrics for the obtained fronts are compared for the state of the population 

after 100, 1,000 and 10,000 generations.  In contrast to the S metric above, it can be seen 

from Table 8-2 that, after 100 generations the integer representation can be seen to be the 

best performing of all, in terms of coverage, followed by the hybrid integer.  These results are 

due to the large number of points identified at the extreme of the Pareto fronts in which the 

two integer representations dominate the binary string. 
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 Front B 
Binary String Integer Hybrid Integer 

Fr
on

t 
A

 Binary String  0.31 0.34 

Integer 0.68  0.59 

Hybrid Integer 0.63 0.36  

Table 8-2: C metrics for Real World network after 100 generations 

Table 8-3 represents the state after 1,000 generations in which it can be seen that the 

hybrid integer clearly dominates the fronts obtained by the other representations – though 

the integer representation is now the least well performing in terms of coverage. 

 Front B 
Binary String Integer Hybrid Integer 

Fr
on

t 
A

 Binary String  0.47 0.26 

Integer 0.20  0.09 

Hybrid Integer 0.39 0.70  

Table 8-3: C metrics for Real World network after 1,000 generations 

At the conclusion of the optimization, it is seen, once more, that the optimization has 

converged to similar Pareto fronts – evidenced by the graphical overlap, the similar S metrics 

and the very similar C metrics presented in Table 8-4 

 Front B 
Binary String Integer Hybrid Integer 

Fr
on

t 
A

 Binary String  0.29 0.32 

Integer 0.23  0.39 

Hybrid Integer 0.26 0.34  

Table 8-4: C metrics for Real World network after 10,000 generations 

8.2.2.2. Runtime Performance 

The influence of the scale of the network problem is clear from the runtime performance 

related in Table 8-5.  It can be seen that the algorithm manages ~34 solutions per second for 

this 632 pipe problem versus the next slowest network, Piedemonte San Germano, for which 

in excess of a thousand solutions per second were obtained. 
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Chromosome Representation 
Average Performance 
(evaluations per second) 

% of best performance 

Binary String 33.53 96.3% 

Integer 34.81 100% 

Hybrid Integer 33.88 97.3% 

Table 8-5: Real World network Multiple Objective Runtime Performance 

The similarity of these performance results reveal that with such an intensive evaluation 

function, the performance advantages of any particular representation are negated as they 

become dominated by the runtime of the evaluation function, reinforcing the need to 

intelligently steer the optimization process. 

8.2.3. Caching 

The results of the caching for this large-scale problem are presented in Table 8-6.  

Application of a genetic algorithm to this problem results in a long chromosome of 632 

genes being employed.  The effect of this on the two caching strategies investigated is 

profound.  The Red-Black binary tree suffers poor search performance owing to the length 

of the chromosome being used as the search key into the cache.  The Judy cache on the other 

hand can be seen to improve the overall performance of the optimization.  A runtime saving 

of 3.8% may not seem particularly significant but it represents a saving of around 20 minutes 

on an optimization that took approximately eight hours to complete. 

Cache Size 
Runtime 

performance Cache Performance Relative 
Runtime 

Performance (solutions/second) (no. hits) (% of evaluations) 

None 33.88 n/a n/a 100% 

40,000 25.09 12,613.8 1.26% 135.0% 

Judy (unlimited) 35.22 18,191.6 1.82% 96.2% 

Table 8-6: Cache results: Multiple Objective Real World problem 

8.2.4. Distributed Performance 

The Real World problem is by far the most complex problem analysed in this thesis and 

shows a baseline performance (Table 8-7) comparable to that of the extreme version of the 

Piedemonte San Germano network employed in Chapter 5.4, which simulates that network 

for 24 hours at 1-minute intervals.   
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Computer 
Baseline 

Performance 
(evaluations/second) 

Number of 
Processor Cores 

Theoretical Maximum 
Throughput 

(evaluations/second) 
X 33.9 4 135.6 
Y 18.2 2 36.4 
Z 12.2 2 24.4 

Total 64.3 8 196.4 

Table 8-7: Theoretical maximum performance for distributed “Real World” problem 

For this large, complex network, it can be seen in Table 8-8 that the performance of 

deEPANET is improved such that the system as a whole has a higher throughput relative to 

the baseline performance than for all the other models employed previously.  The 

performance reaches some 97.8% of the theoretical maximum derived from the baseline 

performance.  The most complex of the other models, the Piedemonte San Germano 

problem, achieved 91% of the maximum throughput when evaluated with deEPANET.  

This can be seen as a direct consequence of the reduced quantity of network traffic allowing 

the Client X to commit more processor time to its Server threads.  However, for this model, 

this will be offset to some extent by the fact that for such a large model, the volume of data 

transferred for each evaluation (i.e. the pipe diameter settings and the nodal pressures 

returned) is significantly greater than for the smaller models.  Irrespective of this, given that 

much of the overhead in network communication, for small amounts of data, is incurred in 

establishing connections between computers rather than the actual data transfer, this negative 

impact should be minimized. 

Computer 
Baseline 

Performance 
(Evaluations/Second) 

Distributed Performance 
(Evaluations/Second) 

X 33.5 

31.7 

130.7 
33.7 
34.1 
31.2 

Y 18.2 
17.1 

38.9 19.0 
2.8 

Z 12.2 
10.7 

22.4 9.8 
1.9 

Totals 63.9  192 

Table 8-8: “Real World” distributed performance results 
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8.3. Stochastic Piedemonte San Germano 

8.3.1. Problem Formulation 

Tricarico et al. (2005) investigated the demand characteristics of the Piedemonte San 

Germano network through long-term instrumentation and recording of network flow data 

and water meter readings.  A probabilistic model was then developed to account for the 

uncertainty associated with the demand at the daily peak hour.  A probability density function 

(PDF) was derived for each node in the network, according to the nature of its consumers 

and the number of consumers associated with the node.  This work was later extended by de 

Marinis et al. (2007b) in which the extended period simulation (EPS) of the network was 

considered and it was noted that different PDF models, Poisson, Normal and Log Normal, 

were found to be appropriate for modelling different demand levels during the day.  This 

latter model is used here as a test for the Non-Repeating Genetic Algorithm formulation and 

to demonstrate the effectiveness of the deEPANET distributed evaluation software 

introduced in this thesis. 

In terms of the complexity of the genetic algorithm, the genetic representation of this 

problem is identical to the multiple-objective problem presented previously in Chapter 7.4.  

However, the formulation of the objectives is entirely different.  Instead of the twin 

objectives of infrastructure cost and aggregate head deficit seen in equations xiii) and xiv), the 

stochastic optimization considers infrastructure cost (equation xvi) and reliability – measured 

as the probability of demands being met whilst meeting minimum pressure requirements at 

all nodes (equation xvii), thus:   

:݁ݖ݅݉݅݊݅ܯ ௜௡௙ܥ ൌ ݂൫ܦଵ, . . , ே೗൯ܦ ൌ෍ܥ൫ܦ௝, ௝൯ܮ
ே೗

௝ୀଵ

 

xvi) 

:݁ݖ݅݉݅ݔܽܯ ܴ ൌ ௜ܪൣܲ ൒ ݅ ׊   ௜,௠௜௡൧ܪ א ሼ1, . . , ௡ܰሽ 

xvii) 

௝ܦ א ሺ݆ ܦ ൌ 1, . . , ௗܰሻ 

xviii) 

where: Cinf is the total infrastructure cost, Nl is the number of links in the network for which 

reinforcement is an option, C(Dj,Lj) is the cost of the jth pipe with diameter Dj (chosen from a 
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discrete set of available diameters D) and length Lj.  R is the reliability, Hi is the pressure head 

at node i (as computed by the hydraulic solver), Hi,min is the minimum pressure head 

requirement sufficient to fully satisfy the demand at node i and Nn is the number of nodes in 

the network.  P[Hi≥Hi,min] is the probability that Hi is equal to or exceeds Hi,min for all of the 

nodes in the network simultaneously and is assessed as the ratio of stochastic demand 

samples (see below) for which this condition is true.  Nd is the number of decision variables 

in the optimization. 

The computation complexity of the objective function is significantly greater than 

that of the steady state, deterministic problem, requiring the hydraulic solver to run 96 times 

(providing results for 24 hours at 15-minute intervals).  Furthermore, in order to 

accommodate uncertainty in the level of demand at each node, this extended hydraulic 

solution is performed for each of 20 stochastic samples of demand (applied individually at 

each node) for each candidate solution developed by the genetic algorithm.  The results of 

this stochastic sampling are aggregated as a number of statistical measures of performance 

and stored as part of the individual in the population. 

8.3.2. Non-Repeating Genetic Algorithm 

The Non-Repeating GA (NRGA) introduced in Chapter 4.5 is an amalgam of a conventional 

GA and the caching technology developed in this thesis, which permits a GA to avoid 

unnecessary duplication of solutions within a population and, in the case of a robust 

stochastic GA, Kapelan et al. (2003a), to maintain the statistics for solutions that are removed 

from the population but which are later reintroduced.  The methodology operates as an 

extension to the recombination operations.  Following the selection and recombination that 

results in two new children, the existing population is searched to determine whether an 

existing chromosome matches that of either child.  If a match is identified in the current 

population then the selection and recombination process is repeated, until two unique 

children have been identified – thus preventing duplicate solutions from entering the 

population in the first instance.  Having identified these children, an archive is then searched 

to determine whether the chromosomes of the children have been encountered before.  The 

archive is populated with the individuals that are removed from the population during the 

optimization process – the archive being implemented with the same Judy technique 

employed by the caching methodology of Chapter 4.4.  If a child is identified in the archive 

then instead of it starting in the population with null statistics, the statistics from its former 
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incarnation are used.  The net effect of this arrangement is that an individual chromosome 

may pass in and out of the population as the optimization proceeds without this affecting its 

aggregated statistics. 

In order to evaluate the performance of the NRGA on the stochastic Piedemonte 

San Germano problem, the stochastic algorithm outlined above has been run using three 

conditions: 

1. The baseline scenario adopts the GA parameterization of Tricarico et al. 

(2005) used for solving the steady state (i.e. non-EPS) rehabilitation problem 

for the hour of peak water demand.  The principal differences between this 

parameterization and that subsequently employed are the use of integer genes 

and the adoption of the Uniform Random (Syswerda, 1989) crossover 

operator.  A direct comparison between the results of Tricarico et al. (2005) 

and those presented in this thesis is not possible owing to the significant 

underperformance of the former resulting from significant shortcomings in 

the implementation of the basic NSGA-II algorithm. 

2. The second parameterization is that employed by de Marinis et al. (2007b) for 

solving the EPS version of the Piedemonte San Germano problem.  This 

form uses the standard one-point crossover and adopts the hybrid integer 

genes introduced in this thesis in Chapter 4.2.3. 

3. The third scenario is identical to that of de Marinis et al. (2007b) with the 

addition of the NRGA operation, which determines whether proposed new 

solutions are extant in the current population or have been encountered 

previously, before the evaluation process is undertaken. 

In each of these cases, the robust NSGA-II of Kapelan et al. (2003a) is employed with a 

minimum chromosome age of 20 generations.  That is to say, that the solutions are only 

reported as being part of the Pareto-optimal front if they have survived for 20 generations or 

more.  Figure 8-5 illustrates the results (i.e., Pareto solutions) obtained for the above three 

scenarios after the optimization has run for 100 generations (or 10,000 evaluations – given a 

population size of 100 individuals).  A fourth curve in this figure shows the further progress 

of the first scenario after an additional 300 generations (i.e., 40,000 evaluations in total) have 

been undertaken. 
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Figure 8-5: Non-Repeating GA performance comparison 

The outstanding performance of the NRGA relative to the other scenarios is clearly shown 

by the red line in Figure 8-5.  In this experiment, the NRGA identified 483 individuals (4.8% 

of the evaluations undertaken) that were either already extant in the population or that had 

been previously encountered and which were resurrected with their previously obtained 

statistical data intact.  The effect of this is quite dramatic with the NRGA returning 52 

solutions along the Pareto-optimal front after 100 generations compared with just 13 and 8 

for scenarios (1 - blue) and (2 - green) above.  It should be reiterated that the only difference 

in the algorithm applied by de Marinis (2007b) and that of scenario (3 - red) is the addition of 

the NRGA analysis.  The fourth (orange) curve in Figure 8-5 is that of the first scenario after 

a further 300 generations (30,000 evaluations) have been undertaken.  As can be seen, this 

result, though significantly improved over the 100-generation result with 22 solutions on the 

Pareto-optimal front, continues to be wholly dominated by the NRGA result obtained with 

one quarter of the evaluations. 

This result appears to be driven, principally by the resurrection of individuals that 

have previously been encountered in the population but have been removed. In the normal 

algorithm, as applied in the first two scenarios, when an individual is removed from the 

population no memory of it is retained – thus if it is later reintroduced by the GA then its age 

will revert to zero.  With the NRGA operative, the age is reset to the age the individual had 
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when it was removed from the population making it much easier for that solution to, 

cumulatively, reach the minimum age threshold specified by the optimization.  This is 

evidenced by the five-fold increase in the number of solutions identified on the Pareto-

optimal front by the NRGA-enabled algorithm after 100 generations, compared to the other 

approaches and the clear improvement in solution quality evidenced by the NRGA Pareto 

front in Figure 8-5. 

8.3.3. Distributed Performance  

The deEPANET distributed evaluation methodology introduced in this thesis in Chapter 5 

was designed specifically to reduce the extensive runtimes associated with the stochastic 

optimization techniques presented by Kapelan et al. (2003a).  Accordingly, deEPANET was 

designed with the capability to offload the generation of the statistical samples to the server 

computers.  For each solution generated by the GA, a PDF describing the demand for each 

node is transferred to the server computer, which then generates the appropriate number of 

samples according to the PDF and simulates the hydraulic network for each set of samples.   

deEPANET was utilised by de Marinis et al. (2007b) to reduce the runtime of this 

EPS version of the Piedemonte San Germano problem and a reduction in runtime was 

reported from 17 hours on a single computer to 2 hours using the distributed system. 

Computer 
Baseline 

Performance 
(evaluations/second) 

Number of 
Processor Cores 

Theoretical Maximum 
Throughput 

(evaluations/second) 
X 78.8 4 315.2 
Y 45.7 2 91.4 
Z 32.0 2 64.0 

Total 156.5 8 470.6 

Table 8-9: Theoretical maximum performance for distributed, stochastic Piedemonte San Germano 
problem 

Table 8-10 shows the aggregated performance values obtained while optimizing the 

stochastic formulation of the Piedemonte San Germano problem.  Once more, these results 

demonstrate good scalability with the total throughput of the algorithm approaching that of 

the theoretical maximum.  In this instance, this is achieved partly by the devolution of the 

PDF generation to the individual servers and partly by the consequent reduction of the 

amount and, more importantly, the frequency of the network traffic involved in the 

optimization. 

 



Chapter 8: Large Scale Optimization Problems 

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 231 

Computer 
Baseline 

Performance 
(Evaluations/Second) 

Distributed Performance 
(Evaluations/Second) 

X 78.8 

75.2 

305.5 
76.1 
76.5 
73.8 

Y 45.7 
40.9 

85.8 39.7 
5.2 

Z 32.0 
26.2 

54.4 24.5 
3.7 

Totals 156.5  445.7 

Table 8-10: Stochastic Piedemonte San Germano distributed performance results 

8.4. Conclusions 

The introduction of the large scale, “Real World” network demonstrates that a fixation with 

the runtime performance of individual gene representations is inappropriate when 

considering the optimization of large-scale hydraulic networks as any advantage thus accrued 

is dominated by the runtime of the evaluation function.  In such situations, however, the 

caching methodologies proposed might be expected to have a significant impact on runtime 

– and this is indeed the case with the Judy cache demonstrating improved runtimes for this 

problem of the order of 4%.  Nevertheless, this improvement on its own reinforces the case 

for streamlining the optimization process as much as possible, reducing unnecessary function 

evaluations. 

The application of the deEPANET distributed evaluation methodology to these two, 

computationally intensive problems, establishes that the relative performance of the method 

improves as the complexity of the objective function increases.  In the examples given, the 

performance of the distributed evaluation approaches the theoretical maximum that could be 

obtained by applying the computers employed separately.  These cooperating computers are 

contributing, however, to a single optimization.  This raises the prospect of using genetic 

algorithm techniques on ever more complex problems, which would previously have been 

beyond the capabilities of hydroinformatic optimization applications or to apply these 

techniques to problems in near-real time.  This research contributes significantly to realising 

this application of many processors distributed across many computers to a single 

optimization at a level of performance approaching the theoretical maximum. 
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The Non-Repeating Genetic Algorithm introduced in Chapter 4.5, which draws upon 

the Judy caching technique explored previously, is shown to be highly effective at reducing 

the number of evaluations required to perform stochastic optimization.  Moreover, the 

application of this method results in significantly better solutions (i.e. Pareto-optimal fronts)  

This has been achieved by preserving a statistical memory of individuals that are removed 

from the population and later resurrected and by preventing the GA from considering 

solutions, which are already extant in the population and thus avoiding unnecessary 

duplication.  Such an improvement in performance may have considerable implications for 

other optimization applications in hydroinformatics in which stochastic sampling, is 

performed.   
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Chapter 9. Conclusions 
 

An extensible, open architecture for the implementation of Genetic Algorithms applied to 

Water Distribution Systems is presented.  Several novel, problem-independent techniques are 

presented for improving the performance of evolution algorithms within the context of 

hydroinformatic applications. 

The objectives as originally formulated were to: 

• Evaluate the effectiveness and relative performance of alternative genetic 

representations for chromosomes in evolution algorithms with respect to runtime 

and solution quality considerations. 

• Assess the potential for advanced caching and archiving techniques to reduce the 

runtime of evolution algorithms. 

• Determine the value of distributed evaluation of hydraulic network simulation to 

facilitate the massive parallelization and acceleration of evolution algorithms for the 

optimization of water distribution networks. 

In the fulfilment of these objectives, a number of significant outcomes have been achieved in 

the following areas: 

• Genetic Representation – the development of a hybrid integer gene which combines 

the algorithmic advantages of the classical binary string representation with the 

performance advantages afforded by integer gene implementations. 

• Solution Caching – Caching techniques have been examined and have been found to 

accelerate evolution algorithms with computationally intensive objective functions. 

• Non-Repeating GA – an extension of the caching methodology is found to radically 

improve the performance of multiple objective algorithms that employ stochastic 

sampling to accommodate conditions of uncertainty. 

• Adaptive Mutation – the improvement of single objective algorithm convergence 

performance is demonstrated through the use of a “learning” mutator which 

identifies, statistically, individual genes which have greater significance to the fitness 

of an individual. 
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• Distributed Evaluation – a technique for the parallel evaluation of hydraulic networks 

is presented and demonstrated to offer effective and scalable acceleration for 

evolution algorithms. 

These contributions are further elaborated in the following sections. 

Genetic Representation 

A hybridized integer gene representation that offers improved computational performance 

over the conventional “binary string” representation commonly used in GA applications.  

Whilst this hybrid seems to perform less efficiently in terms of raw performance (i.e. the 

proportion of runtime associated directly with the manipulation of genetic material) than the 

adoption of an integer or floating-point representation, the nature of its binary string-like 

representation is shown to allow it superior algorithmic performance during recombination 

whilst outperforming the conventional binary string representation.  The case studies 

performed demonstrated the clear superiority of the algorithmic performance of this 

representation when applied to the single-objective optimization problems: the progress of 

the optimization runs was seen to converge more rapidly than the alternative representations 

and, further, to reach better solutions more consistently.  The results from the multiple 

objective optimizations are less clear-cut, however.  In these optimizations, the conventional 

binary string representation was seen to outperform the other representations in terms of 

convergence during the initial stages of the optimization.  By the conclusion of the 

optimizations, however, the hybrid integer representation demonstrated, on average, superior 

results. 

The investigation into the algorithmic performance of these representations led to 

the identification of two results for the case study networks that are believed to be the best-

published solutions to those problems.  The prior best published solution to the Hanoi 

network, that is deemed feasible when solved with an unmodified version of the EPANET 

hydraulic solver (Rossman) is seen to have a capital infrastructure cost of $6,134,015.72 

(Zecchin et al., 2006) with a minimum surplus head of 0.29m.  The solution found during this 

analysis has a cost of $6,081,127.54 and a minimum surplus head of 0.01m.  Whilst lower-

cost solutions have been published, these are achieved by relaxing the values of Hazen-

Williams coefficients determining the head-loss in the pipes of the system.  This results in 

higher system pressures and, consequently, makes it easier for the optimization process to 

identify lower-cost solutions that meet the minimum-head requirement.  A new optimal 
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solution was also identified for the deterministic form of the Piedemonte San Germano 

problem, €30,082 versus the previous best-published result of €31,002 (Tricarico et al,. 2005). 

Caching 

Exploiting caching techniques is demonstrated to have a significant improvement in 

performance on large and complex optimization problems.  This caching takes place at many 

scales throughout the implementation of the algorithm, for example retaining values for 

binary strings instead of recalculating them on every access as well as retaining objective 

function results in a solution cache.  It is shown that the use of such caches has the potential 

to improve GA performance by ensuring that processor effort is not expended on solutions 

that have been encountered previously during the optimization.  The development of a 

solution caching methodology for Genetic Algorithms in this thesis represents a novel 

technique for enhancing their performance and an approach that is under-explored in the 

literature.  Whilst the applicability of the caching has been clearly demonstrated on smaller 

problems in reducing optimization runtime, it is noted that the effectiveness of the caching, 

in terms of runtime performance, is highly dependent both on the parameterization of the 

optimization itself and on the nature of the solution space being explored – related to the 

propensity of the algorithm to identify the same solution in the solution space.  Thus, it is 

considered that the case for widespread solution caching is yet to be proven.  A highly 

specialised data structure, the Judy Tree is introduced as a repository for population-based 

data and is seen to outperform alternative representations for maintaining a solution cache. 

Non-Repeating GA 

The Non-Repeating GA (NRGA) is presented in Chapter 4.5 as a twin approach to 

improving the performance of the multiple-objective optimization.  Firstly, a small-scale 

cache is used to identify the current members of the population.  On the creation of new 

candidate solutions, this cache is searched to ensure that the candidate solution does not 

already exist in the population – preserving genetic diversity and, in the case of the stochastic 

optimization, avoiding the maintenance of separate statistics for identical individuals.  The 

second improvement is achieved through the deployment of a further Judy tree structure, as 

used in the solution caching methodology, in order to maintain an archive of previously 

encountered solutions.  In doing so, it permits individual solutions to be removed from the 

general population whilst retaining their accumulated statistics.  This is undertaken in order 

that, should the individual be encountered again, the statistical aggregation may continue 
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from the point at which the individual was removed rather than restarting the statistical 

analysis from scratch.  A consequence of this is that it is far easier for individuals to meet the 

minimum-age criterion used in the robust NSGA-II optimization of Kapelan et al. (2003a) as 

they no longer have to survive for a certain number of contiguous generations.  Instead, they 

need only meet the minimum-age criterion by existing in the population for that total number 

of generations. 

When applied, in Chapter 8.3, to the stochastic Extended Period Simulation (EPS) 

extension to the Piedemonte San Germano problem (de Marinis et al., 2007b), the NRGA 

methodology was shown to accelerate the convergence of the algorithm significantly and 

demonstrated a five-fold increase in the number of solutions identified along the Pareto-

optimal front which met the minimum-age criterion. 

These results have demonstrated that better solutions (Pareto fronts) are identified 

due to better utilisation of the collective system memory introduced through the archiving of 

the statistical data associated with the individual solutions encountered during the progress of 

the optimization. This improvement in performance could have considerable implications for 

other optimization applications where stochastic sampling is employed, for example, 

groundwater remediation, water resources management, etc. 

Adaptive Mutation 

Novel modifications to the mutation operator are demonstrated.  By determining the genes 

whose values dominate the results of the objective function, the ability to improve GA 

performance is demonstrated by concentrating mutation operations on these genes.  The 

operator presented is, however, thought to be constrained significantly by the number of 

“critical genes” within the decision space and its level of performance is, thus, likely to be 

highly problem specific. 

Distributed Evaluation 

The Distributed Evaluation for EPANET (deEPANET) - (Morley et al., 2006) implements a 

specialized application which offers significant performance improvements to optimization 

applications by allowing parallelized processing of hydraulic simulations either on a single 

machine or through cooperating computers connected by a local area network.  In contrast 

to the caching methodology, the Distributed Evaluation arrangement for hydraulic networks 

is shown to be highly effective, and scalable (in that the performance improvements scale 

according to the number of computer s committed to the problem), for improving the 
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performance of applications that require repeated hydraulic solutions.  The case studies 

undertaken demonstrate that as the computational complexity of the optimization 

undertaken increases, the proportion of the theoretical maximum throughput attained, for 

the computers utilised, increases.  In practice, for the larger problems, upwards of 90% of the 

theoretical maximum performance was consistently obtained demonstrating the scalability of 

this technique for reducing runtimes for the most complex of optimization problems – those 

that will most benefit from the application of this technique. 

Commercial Exploitation 

The methodologies and software developed in this thesis have been employed in a number 

of commercial software applications:  GAnet (Morley et al., 2000), GAcal (Walters et al., 1998) 

and the WiLCO software (Engelhardt & Skipworth, 2005).  These applications have all used 

one or more of the components for undertaking the optimization of optimal design and 

rehabilitation, calibration and whole-life-costs in water distribution and sewer networks, 

respectively.  In addition components of the system have been deployed in other research 

projects, e.g. Fullerton et al. (2002) (storm water flow modelling and optimization), Savić et al. 

(1999) (optimal design of expansion to a large-scale hydraulic network), Engelhardt et al. 

(2002) (whole-life-costing for water distribution network management) and de Marinis et al. 

(2007a,b) (estimation of the economic level of reliability for the rehabilitation of water 

distribution systems).   

9.1. Further Research 

A number of avenues for further research are proposed to extend the efficiency and 

effectiveness of the optimization methodologies and software components introduced and 

their application to the wider domain of hydroinformatics.  In particular, the coupling of the 

caching technology to the stochastic optimization technique in the Non-Repeating GA 

methodology deserves careful consideration in its application to other optimization 

applications where uncertainty is considered.  The results of the case studies employed 

demonstrate that the technique delivers considerably improved Pareto-optimal solutions over 

existing techniques.  As such, the effectiveness of this methodology should be assessed on 

other hydroinformatics applications that employ stochastic sampling. 

Genetic Representation 
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The performance of the binary string representation in the multiple objective experiments 

demonstrate that it possesses superior performance in convergence whilst the Gray-coded 

hybrid integer representation behaves better in the local search towards the end of the 

optimization.  It is proposed, therefore, to investigate a new type of hybrid integer gene, 

which can behave as a conventionally coded and Gray-coded value simultaneously and 

evaluate its performance relative to the original implementations.  Thus for recombination, 

which dominates the early phase of the optimization, the genes could behave as conventional 

binary strings as they have shown good performance in these tests.  For mutation, which 

dominates the local search phase towards the end of the optimization, the genes could 

behave as Gray-coded binary strings.  This modification could be accomplished with minimal 

overhead in performance over and above that of the normal Gray-coded hybrid integer gene.  

This variation in representation would be a unique attribute of the new genotype and one 

that would not be possible – or would be computationally undesirable – when using 

conventional binary string representations. 

Caching techniques 

Whilst the case for the use of caching as an integral part of evolution algorithms is not 

conclusive, the methodologies developed to facilitate it may have other application in the 

field.  Given the apparent sensitivity of cache performance to the parameters of the GA – 

particularly to mutation – it may be possible to apply the cache as an aid to dynamically tune 

the performance of the algorithm to ensure that it continues to investigate solutions that have 

not previously been encountered.  For example, a methodology could be envisaged where the 

rate of cache “hits” is continuously monitored and, should that rate vary outside of 

predefined bounds, the mutation rate – or other operator parameter – could be dynamically 

changed in an attempt to return the level of cache hits to the accepted bounds. 

At present, the caching methodology cannot, reliably, be applied to heterozygous 

chromosomes.  This restriction results from the nature of these chromosomes which are 

used for the search terms in the cache.  Given that two sets of decision variables that 

implement the same decisions may be defined in the chromosome in different orders, the 

caching techniques as they stand would be unable to identify this circumstance.  Accordingly, 

it is proposed to investigate mechanisms that will arrange the elements of a heterozygous 

chromosome in a predetermined order that will allow the caching methodology to correctly 

identify identical sets of decision variables. 
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Non-Repeating GA 

The NRGA assists in preventing the re-evaluation of previously encountered 

solutions for stochastic optimization in both single and multiple objective scenarios and is 

shown to improve dramatically the performance of such optimization.  However, the likely 

members of the solution space that will exhibit the behaviour of moving in and out of the 

population in the multi-objective circumstance are those that will lie along the periphery of 

the Pareto front.  As such, they may be better accommodated by an archiving multi-objective 

optimization technique such as emerging optimization techniques, which include some form 

of archiving of a more restricted set of solutions, such as the ε-NSGA-II algorithm of Reed et 

al. (2005) or the archiving trees of Fieldsend et al. (2003).  A comparison of such techniques – 

and their applicability to stochastic optimization, in particular, should be undertaken with a 

view to identifying the approach that delivers the best algorithmic and runtime performance. 

Further Applications 

Distributed Evaluation 

At present, for evolutionary optimization purposes, deEPANET, transfers data across the 

network in phenotypic terms – that is in terms of the network element attributes that are to 

be changed, rather than in genotypic terms – the native genetic representation of the network 

element attributes being optimized.  It would be instructive to examine the effect of 

offloading further processing onto the server computers by passing the genotypic 

information from the optimization algorithm directly to the servers in a similar fashion to 

that, which has been undertaken with the devolving of the stochastic sample generation to 

the servers.  That said, one of the attractions of deEPANET is that the server-side logic is 

very simple and can be used for many applications without the need for specialization. 

Distributed Evaluation for Wastewater Networks 

The distributed evaluation methodology presented herein has concentrated on the provision 

of tools for the modelling of water distribution systems – using the EPANET pressurized 

hydraulic solver (Rossman, 2000) allied to the OpenNet network modelling architecture 

described in the Appendices.  The range of applications for which this methodology could be 

brought to bear would be greatly enhanced by the addition of a solver for mixed open-

channel/pressurized flow such as SWMM (Rossman, 2005) developed by the United States 

Environment Protection Agency.  Like EPANET, this software is in the public domain and 
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the source-code can be freely obtained.  However, in addition to obvious differences in the 

modelling approach employed in the two models, the SWMM software differs from 

EPANET in that it does not expose a coherent Application Programming Interface (API) 

for controlling the model in the fashion that would be required to integrate it with the 

existing methodology.  Although an API is available, it does not include, for example, the 

necessary functions for interactively interrogating or condition of the network or for 

modifying its constituent attributes.  This falls far short of the level of control that would be 

required to marry it to an optimization algorithm in the fashion that EPANET has been used 

hitherto. 

It is proposed develop a suite of “hooks” within the SWMM library to enable the 

layering of an additional API onto the model to provide the functionality to facilitate the 

interactive control and interrogation of the network condition.  With this in place, the 

SWMM components can be mapped directly onto their analogues in the OpenNet modelling 

library – the sewer representations already being extant – and a similar level of optimization 

functionality as has been achieved with EPANET will be available. 

Owing to the extended runtimes associated with sewer modelling, and associated 

components, it is anticipated that the application of similar distributed evaluation techniques 

as those applied with deEPANET in Chapter 5 will result in significant shortening of 

optimization algorithm runtimes.  The additional complexity of the model solution would 

benefit the distributed evaluation technology because of the reduced time overhead 

associated with network latency relative to the time taken to perform a solution – as has been 

seen by devolving the stochastic sampling in deEPANET to the server computers. 

OpenMI Connectivity 

OpenMI is an effort to harmonize the interfacing of related models – particularly those from 

the hydrologic domain (Blind & Gregersen, 2004).  The OpenMI interface specification 

imposes a number of requirements on the implementation of “models” that conform to it.  

These constraints arise, principally, as a result of the decision to forego any centralized 

control module for OpenMI – instead “models” freely interact, synchronously, on a peer-to-

peer basis.  Thus to proceed to integrate these models without any formal direction from a 

controller, it is necessary to tightly prescribe the operations of the individual components to 

ensure their correct interoperation.   
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One of the key concepts in understanding the operation of the OpenMI is that the 

system operates entirely synchronously – i.e. in a single thread.  This is a sensible approach as 

it avoids having to accommodate thread-contention issues.  However, there is a measure of 

inflexibility that is the price to pay for this approach – though there appears to be no 

impediment in adopting an asynchronous approach, provided that it is wholly-contained 

within components.  Whether this would offer sufficient flexibility is a matter for debate and, 

indeed, depends largely on the granularity of the components to be used in “models” in the 

first instance. 

The potential for adding OpenMI compliant extensions to the optimization software 

developed in this thesis should be investigated, in order that the optimization techniques 

herein may applied, without additional programming, to OpenMI-based models. 
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Appendix A Network Infrastructure Modelling: OpenNet 

A.1 Introduction 

A recurring necessity in developing the optimization methodologies for this thesis has been 

for an abstracted network model representation to assist in interfacing between the 

optimization software developed using the methodologies, e.g. GAnet (Morley et al., 2001) 

and the hydraulic solvers and other data sources that contribute to the optimization, e.g. 

StruMap GIS and network modeller (Structural Technologies Ltd., 1996), EPANET 

(Rossman, 2000) and MapInfo (MapInfo Corporation, 1998).  Such an abstracted model is 

necessary to decouple the optimization from the other elements of the software, in order that 

dependencies are minimized and flexibility is maintained to integrate additional components 

as required. 

A further fundamental issue with the optimization of water networks has been 

accommodating the plethora of different hydraulic simulation software packages that might 

be used as a data source.  This has highlighted the absence of an agreed standard for 

representing water network infrastructure and operating conditions in software.  Commonly, 

in order to optimize commercial networks it has been necessary to translate the network 

infrastructure from the clients’ network-modelling software into a form that can be 

understood by the used by the optimization software – particularly the hydraulic solver.  This 

process is hampered by differing conventions for representing different hydraulic elements 

such as valves, pumps etc.   

To address these problems, an object-oriented class-library developed in C++ 

(Stroustrup, 1997), called OpenNet (Morley et al., 2000), has been developed as an abstraction 

to hide the inner workings of the network solver from the optimization software.  This class 

library is allied to an XML (W3C, 2000) metafile representation of the network, which is 

designed to facilitate easier dissemination of network infrastructure data – the definitions for 

which can be found in Appendix B.  XML is employed to provide an extensible and 

transparent means to create network definitions in a file format that is independent of any 

particular hydraulic solver and which can be adopted as a “halfway-house” between specific 

modelling representations.  OpenNet is equipped with a suite of translators which can read 

and write not only its own XML format but also the import/export formats of many popular 

hydraulic modelling packages including SynerGEE (née Stoner Workstation - Advantica Inc., 
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2003), InfoWorks WS (Wallingford Software, 2005), Aquis (7-Technologies, 2002) and 

EPANET (Rossman, 2000). 

 
Figure A-1: New York Tunnels-specific version of GAnet with OpenNet visualization component 

The class library and XML document structure integrate directly with visualisation 

routines that can be used to interact with the network model – as seen in Figure A-1.  These 

routines allow the structure and behaviour of the network to be viewed without recourse to 

an external GIS module or that of a specific modelling package - although data exchange is 

supported with common desktop GIS applications, including MapInfo (MapInfo Corp., 

1998). 
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A.2 Implementation 

The OpenNet abstract network-model class-hierarchy is implemented as a collection of 

nodes and links and has similarities to other hierarchies, such as that proposed by Solomatine 

(1996) and subsequently implemented in OOTEN (van Zyl et al., 2003), in that it has an 

implicit geographic framework as shown in Figure A-2.  This allows the network model, 

which is not limited to hydraulic applications, to link seamlessly with a GIS application, 

which represents data in a similar fashion.  Whereas Solomatine (1996) uses a single 

registration structure for all hydraulic elements, the OpenNet library implicitly divides all 

hydraulic elements into node (point), link (line) and area (polygon) elements.  Each element 

type is stored in an independent ONElementStore object.  This simplifies the maintenance of 

the referential integrity of the network, facilitates implicit links to objects stored in external 

GIS applications and exposes a straightforward user interface to third-party developers.  To 

ensure equivalent functionality to Solomatine's single registration store, iterator functions are 

provided to facilitate easy access to all hydraulic elements. 

 
Figure A-2: Constituents of a network representation 

As with the Population-based Optimization library before it, OpenNet was initially 

conceived as a ObjectPascal-based library in Delphi (Borland International, 1997).  However, 

in order to overcome severe performance constraints when handling large networks, the 
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library was ported to C++ to leverage the more efficient data structures incorporated in its 

Standard Template Library.  The resulting class hierarchy can be seen in Figure A-3. 

 

 
Figure A-3: OpenNet class hierarchy (partial) 
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A.3 Network Constituents 

Each network is comprised of a number of collections of elements that represent the physical 

infrastructure of the network.  These basic elements are wholly abstract and can be extended 

to implement any form of network desired - indeed, classes derived from this base have been 

used to represent fracture patterns in impermeable rock masses and for use in the simulation 

of Air Traffic Control patterns.  In this form, they are generalised and need to be derived 

from before any useful functionality is achieved. 

A.3.1 Elements 

Elements are the fundamental units of the object hierarchy that implements the network 

representation.  The ONElement concept is abstract - though it is possible to instantiate 

objects of this class.  Each of the hydraulic components of the network ultimately derives 

from this class.  However, this and the other basic classes are not specialised in any fashion 

and can consequently be used for any network representation that has a node/link/area 

configuration.   

The basic characteristics of an ONElement include: 

• Unique identifier – a common prerequisite for efficient data handling is the 

provision of a unique key to reference an individual. 

• Description 

• Element status – whether an element is available (open) or not (closed). 

• Assignment  

• XML and stream handling 

 Foremost amongst these is the ability to assign ONElement derivatives to each other.  This is 

analogous to overriding the assignment (=) operator in C++ (which, in the C++ version of 

the library is also used).  The assign method copies the contents of a specified ONElement 

object into the object, which calls the method.  For example, the statement: 

anElement.assign(anotherElement); 

copies the contents of anotherElement into anElement. The assign method implemented by 

ONElement merely calls the method assignTo on the specified object thus: 

anotherElement.assignTo(anElement); 
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The assignTo method propagates up through the class hierarchy copying across each 

data member that can be copied by checking the class type of the object to receive the data 

members.  

In this way, it is possible to ensure that the objects copy only the data members that 

they have in common. Ordinarily it is only necessary for a derived class to supply a new 

overridden assignTo method when a derived class introduces a new data member.  The assign 

method may be overridden if special processing is required after the data members are 

copied.  However, the widespread use of properties within the library (or correctly defined 

“getter” and “setter” methods in the C++ version) makes this facility largely obsolete since 

properties can be used to centralise 'intelligent' processing of this sort. 

Closely associated with the object assignment facilities are those of object stream 

handling.  Streams are a concept familiar to C++ programmers, though there is no implicit 

analogue present in the ObjectPascal language.  Streams are used to store sequences of 

objects - be it in memory, or more commonly to disk or other storage medium.  A disk 

stream is implemented as a conventional binary file.  An object is written to a stream, using 

the write method, by first committing a unique identifier to the stream - in this case the 

object class name - followed by the data members that make up the class. 

Resurrecting an object from the stream is performed by the read method, although 

this is made more difficult without specific language support.  Fortunately, ObjectPascal 

provides the ability to construct programmatically an object from a class name.  

Conventionally you would create an object thus: 

anObject= new aClass(); 

The alternative representation allows the construction from a String variable using 

the class function GetClassType inherited from TObject, the ultimate ancestor of all objects in 

C++Builder and Delphi: 

aString= "aClass"; 
anObject= new (GetClassType(aString))(); 

Both read and write methods are to be overridden in descendent classes wherever a 

new data member is introduced.  It is vital, during development, however to ensure that the 

order of reading and writing the objects to the stream is not compromised.   Both methods 

operate recursively across ONElement derivatives, thus it is possible to save an entire 

OpenNet network configuration simply by executing the write method on an ONNetwork 
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object.  The same basic mechanism is used to implement the writing and reading of objects 

to XML metafiles.   

The implementation of the C++ version differs slightly in that it is not possible in 

standard C++ to create an object by supplying its name as a string.  Instead, a generic Create 

method is provided in the C++ version and must be overridden by any descendents to 

return a new instance of that class type.  Since OpenNet classes are centrally registered in 

C++ applications they can be associated with an identifier which can be written to streams 

and examined when recreating objects. 

A.3.2 Element Lists and Stores 

Element lists and stores are specialised container classes for storing instances of elements.  

They differ in that ONElementList stores only references to the objects whilst ONElementStore 

contains the objects themselves and is responsible for their safe destruction. 

Both classes are implemented using C++ Standard Template Library (STL) underpinnings 

and there are two variants of each – optimized for small-scale and large-scale networks 

respectively: 

• The first representation uses the STL vector class.  The vector class is the 

functional equivalent of an array – allowing rapid, random access to the 

contents both by iteration and through the index number of a given element.  

This representation is better suited to smaller networks – minimizing the 

scale of the vector resizing necessary as well as the scope of any sorting 

operations that take place over the lifetime of the vector. 

• Based on the STL map class, the second, and preferred, representation is 

implemented as red/black binary tree structure in a similar fashion to the 

caching data structure discussed in Chapter 4.  The map implementation 

facilitates uncomplicated access to the contents through the use of iterators.  

Access through indices is, however, computationally intensive as the map 

obliges the use of an iterator to traverse the tree to the required index.  For 

this reason, the algorithms that use this representation need a little more 

forethought as to their design. 

A.3.2.1 Addition 

In the case of the vector representation of a list or store the addition operation pushes the 

new element to the end of the vector – necessitating the extension of the contiguous memory 
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required by the array.  This expansion is potentially time-consuming and is to be avoided if 

possible.  To this end, the length of the vector can be set manually at the beginning of a 

series of addition operations to prevent a sequence of expansion operations.  Following the 

addition, the contents of the vector must be sorted to ensure that the vector remains in 

element ID order. 

The advantages of the map representation for large-scale networks are clear when it 

comes to implementing the addition operation.  When adding an element to the map, the 

map is traversed and the element inserted at the appropriate point, without the requirement 

of an additional sorting procedure.  Because the data structure is implemented as a number 

of discrete data items, rather than an array, there is none of the overhead of the array 

management as seen with the vector representation other than those related to allocating 

memory for the pointer to the new element, which is common to both representations. 

A.3.2.2 Deletion 

Removing elements from either data structure is straightforward.  Again, however, the 

efficiency of the map representation over that of the vector is apparent when considering 

large networks.  Deleting the element from the vector involves remapping the remainder of 

the vector to begin at the point of the deleted element – or, alternatively, by maintaining a list 

of the “deleted” elements so that they may be ignored when iterating over the structure.  If 

the underlying implementation of a vector were that of a linked list, this remapping can be 

made with minimal disruption.  However, as the implementation is as an array, the 

remapping requires the copying of the remainder of the vector in memory. 

A.3.2.3 Searching 

The ONElementList and ONElementStore classes introduce support for retrieving their 

contents in various fashions.  The index method returns the array index of a given object or 

element ID.  This function works with both representations – despite index access being 

prohibitively time-consuming under the map representation.  This allows the use of source 

code using either representation to run unchanged if the underlying representation is 

changed.  Similarly, the find method returns an object with a given element ID or array index. 

An array property, Element, allows random access to any element in the list.  This property is 

supported by both map and vector implementations although for the map implementation 

this function is expensive in performance terms. 
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For optimal performance when searching, the map based ONElementList class 

implements tree balancing, triggered manually, which traverses the map and attempts to 

construct tree branches to approximately the same depth – minimizing the average search 

time for elements in the map.   

The time complexity for searching for a given element among n items in the vector 

representation is O(n) whilst for the map representation it is O(log n). 

A.3.2.4 Other functionality 

The assignment functions of the ONElement class are also represented in the OnElementList 

and ONElementStore classes, as would be expected as they are derived from the basic 

ONElement class. 

Assignment for classes that contain other objects is, however, more complicated, as 

there are two possible interpretations of the assignment: 

• A shallow copied object – equivalent to a binary copy of the original object. 

• “Deep” copying, by contrast, ensures that the resulting object is fully 

independent of the original object.  It achieves this by creating new, 

equivalent objects of those within the container. 

By default, the List class implements shallow copying whilst the Store class, since it is 

intended to maintain ownership of any contained objects, implements deep level copying. 

A.3.3 Network 

In order to maintain the referential integrity of the connectivity information in the network, 

the ONNetwork object is responsible for managing all additions and deletions to/from the 

network.  To achieve this, the ONNetwork class uses three ONElementStore objects to  contain 

all of the objects that fall into the categories of Nodes, Links and Areas.  Further 

specialization is possible by using ONElementList objects to maintain lists of specific types 

of Node, Link or Area – as seen in the hydraulic specialization of OpenNet. 

A.3.4 Node Elements 

ONNodeElement objects are the points on a network – representing demand points on a water 

network, junctions, substations or other such elements.  Each node maintains a list of all the 

links that are connected to it as well as a list of other elements that refer to it.  This is useful 

for determining relationships between nodes and other objects, which are not strictly defined 

by connectivity – such as a valve pressure-setting point. 
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Creating a node element entails specifying the geographic location of that node as 

either a two or three-dimensional Cartesian coordinate.  If a node is removed from the 

system then all its associated links and references, such as valve controls, are also removed 

from the system or disabled automatically. 

A.3.5 Link Elements 

ONLinkElement link elements represent the linear constituents of the network.  They may 

represent water pipes, telephone lines, electricity transmission wires or other elements that 

connect nodes.  These elements have a “from” node and a “to” node along with, an optional, 

series of points which represent waypoints along the link.  Waypoints can be expressed as 

either two or three-dimensional coordinates.  Any two-dimensional waypoints in the link are 

resolved to their three dimensional equivalents by interpolating between points with known 

elevations (if any). 

In order for a link (ONLinkElement) to be added to the network, it must supply the 

identities of two node objects (ONNodeElement) that it links.  When a link is added to the 

network, it requests that these “from” and “to” nodes add it to the connection lists they 

themselves maintain.  Adding a link to a network ordinarily requires the specification of the 

“from” and “to” nodes that the link is to connect – thus requiring that node elements be 

created before link elements.  However, in some circumstances, this is inappropriate and this 

linking can be deferred by supplying the unique IDs of the “from” and “to” nodes instead.  

The linking process can then take place following the construction of the rest of the network.  

This deferment is particularly important when dealing with translation from other network 

representations – particularly those stored in text files where it would be highly inefficient to 

retrieve data from different locations within the source file.  Deleting a link element from a 

network removes the references from its “from” and “to” nodes. 

A.3.6 Element Type Registration 

Each element class is registered with the OpenNet system so that related libraries can 

determine attributes of the element.  The registration process can also optionally nominate a 

user-interface component, derived from a specialised dialog box class - to be used to edit the 

properties of the element.  Figure A-4 illustrates the edit for a pipe object.  Discrete panels on 

the editor are accessible by using the tabs at the top of the dialog.  Derived classes can 

introduce further tabs to add custom extensions to the dialog if necessary. 
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Figure A-4: OpenNet pipe properties dialog box  
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Figure A-5: High level class hierarchy of OpenNet implementation 
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A.4 Hydraulic specialisation 

From the outset, the hydraulic network-model has been designed to interface with GIS 

implementations and relational databases as well as specific hydraulic solver implementations.  

Independence from the hydraulic solver is achieved through an abstract ONNetworkSolver 

object from which all solver implementations are derived.   

The various commercially available hydraulic modelling packages elect to use quite 

distinct strategies to model specialist hydraulic components of the network such as valves, 

pumping stations etc.  OpenNet was originally conceived as an abstraction layer for an 

EPANET solver and accordingly, it adopts many of the representations and conventions 

used by that hydraulic solver. 

Generic nodes 

The simplest node class, from which all of the hydraulic nodes are derived, is the generic 

node.  This adds to the basic properties of an ONNodeElement object the ability to store nodal 

hydraulic results, for example, pressure, total demand etc. for a number of time intervals.  

Demand nodes 

Demand nodes are elements of the network where water is extracted.  The concept of 

demand nodes is somewhat contrived: demand nodes are a geographic aggregation of the real 

demands made of the system by domestic and industrial users.  The demand on the network 

at a given node can be specified either in absolute terms or as a factor to be applied to a 

demand curve – of which many may be applied to a single node.  OpenNet can 

accommodate an unlimited number of demand types per node. 

Demand curves are used to describe the pattern of water usage for a particular 

demand type, such as domestic or industrial usage.  The example in Figure A-6 illustrates a 

typical demand curve for domestic consumption – note the peaks around the morning and 

early evening. 
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Figure A-6: Typical 24 hour domestic demand curve 

Transfer nodes 

Transfer nodes are a specialised case of demand node that are used to model outflow and 

inflow into a network from an adjoining network.  OpenNet models inflows by assigning a 

negative demand to a conventional demand node.  This type of nodes is useful for modelling 

distinct District Metered Areas (DMAs) which might make up a larger water supply area. 

Reservoirs 

OpenNet models two forms of reservoir object in addition to negative demand nodes. 

A fixed-head reservoir provides a constant head irrespective of the amount of water drawn 

down from it.  The head can be varied through the lifetime of the hydraulic simulation by 

applying a total-head setting curve to an object of this class.  This type of reservoir is often 

used for modelling purposes as an alternative to transfer nodes to represent fixed pressure 

inflows or outflows from adjacent networks. 

A variable-head reservoir behaves differently in that the shape and dimensions of a 
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Level/Volume curve which defines the reservoir level (and hence outlet pressure) associated 

with a given volume of water in the reservoir. 

Generic Water Links 

The base class for links in the water specialisation of OpenNet is the ONWaterLinkElement.  

This class adds the properties that are common to all link elements in water networks, such 

as the concepts of diameter and hydraulic parameters.  This class also introduces data 

structures for storing the link-related results of a hydraulic simulation, such as flow and 

headloss, for a number of time-steps.  

Pipes 

The basic pipe class introduces properties for recording the material, lining and age of a pipe. 

Derivatives of this pipe class are used in optimization applications.  These descendants 

include specialized attributes for storing penalty and costing information. 

Valves 

OpenNet implements a number of valve types.  The basic ONWaterValve object describes 

the basic geometry and the hydraulics of the valve. 

Other valve types implemented are: 

• Float valves (FLV) – used for regulating reservoir levels. 

• Throttle Valves (THV) 

• Motorised Throttle Valves (MTV) 

• Non-Return Valves (NRV) 

• Sluice Valves – simple valves that can either be open or closed. 

• Control valves – control valves belong to a derived class, which include a reference 

to a node that is used in some fashion to control the valve setting. 

• Pressure Reducing Valve (PRV) – closes to reduce pressure downstream. 

• Pressure Sustaining Valve (PSV) – opens to maintain pressure downstream 

• Pressure Break Valve (PBV)  

• Remote Control Valve (RCV) 
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Pumps 

Pumps are elements that introduce hydraulic pressure into the network.  The pumping 

station class can be used to aggregate pump objects.  This is implemented as a link element 

and all pumps belonging to the station share the same connectivity.  Such an abstraction is 

useful in optimization applications, which can size pumping stations to match minimum-

pressure requirements. 

Curves 

In order to perform a hydraulic simulation it is normally required to introduce some element 

of time-dependent data to the network, be it nodal demands or reservoir levels etc.  Other 

data used by the hydraulic model is also commonly represented as curves such as level vs. 

volume curves for variable head reservoirs. 

The ONCurve class offers facilities for: 

• interpolating missing values.  

• aggregating curves – including those with different timebases. 

• applying multipliers and offsets to timebase (or x value) and y values. 

Water Network 

The water network class, ONWaterNetwork, implements water specific behaviour over and 

above that of the ONNetwork.  Nine additional referential lists and their associated 

management functions are introduced to maintain collections of pipes, generic nodes, 

demand nodes, valves, pumps, pumping stations, meters, reservoirs and curve data. 

A.5 Network analysis 

A.5.1 Connectivity 

Conventional relational database management systems (RDBMS) do not allow for the easy 

implementation of databases representing connective structures like networks.  Ironically, the 

outmoded hierarchical database architecture was much better suited to such applications.  

Riggs (1994) relates the variety of information that needs to be stored in a conventional 

RDBMS and GIS to model networks on a basic level.  By considering the application of 

some object-oriented techniques, it is possible, however, to implement rules and constraints 

that are used to define network connectivity in a much more natural fashion. 
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Meaningful analyses of the network may be achieved with very limited GIS analysis 

tools.  As found previously most commercially available GIS applications have little or no 

connectivity functionality, let alone network analysis capabilities. Tsakiris & Salahoris (1993) 

describe a possible vector based representation of a water distribution network.  The 

implementation they suggest is quite simple and does not address connectivity issues - 

although the authors do note that this is an important concern in any GIS that aspires to be 

anything other than a straightforward inventory of the infrastructure components. 

The venerable Arc/INFO GIS (ESRI, 1999) stands apart from other PC based GIS 

implementations by offering a connectivity analysis module, which can be used to good 

effect to develop the data provided by RDBMS to implement rudimentary network analysis 

functionality.  Examples of these are the ‘ROUTE’ and ‘TRACE’ procedures from the 

standard ‘NETWORK’ module, used by Taher & Labadie (1996) to determine least-cost 

routing and resource allocation.  The background to these networking implementations is 

covered in Lupien et al. (1987) and Djokic & Maidment (1993).  The former, working for the 

Environmental Systems Research Institute - Arc/INFO’s publishers - perhaps 

unsurprisingly, espouse the inclusion of these facilities in GIS systems.  They do not enter 

into a detailed description of the techniques than can be used although a common 

implemented facility is Dijkstra’s algorithm (1959), which is concerned with shortest-path 

routes with respect to some concept of ‘cost’.  The NETWORK implementation of 

Arc/INFO is based on this work and it has been implemented in the abstract network model 

allowing the use of GIS applications without inherent connectivity functionality such as the 

low-end MapInfo package.  

A.5.2 Network Traversal 

The concordant connectivity information maintained within OpenNet’s node and link 

structure allows for the development of powerful algorithms for analysing the network. 

A.5.2.1 Basic functions 

The OpenNet Network class implements a number of core routines to facilitate traversing 

the network.  Most of the routines are of a recursive nature – such routines operate by calling 

themselves with new parameters until an end condition is satisfied.  The most common 

illustration of a recursive routine is used to calculate factorials.  The non-recursive form of 

the function is: 
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int factorial(int x) 
{ 
 int Result= 1; 
 for (i=2; i<=x; i++) 
  Result= Result * i; 
 return Result; 
} 
 
int factorial(int x) 
{ 
 if (x= 0) 
  return 1; 
 else 
  return x * factorial(x-1); 
} 

One of the considerations of implementing recursive functions is that of stack usage.  

Every time a procedure, function or object method is called its return address and any 

parameters are pushed onto the application’s memory stack.  With large-scale recursion, the 

depth of these stack calls can become critical as a limited amount of memory is given over to 

the application stack.  Under modern 32 and 64-bit operating systems this limitation is largely 

irrelevant but remains important under more dated operating systems where a 64 kilobyte 

limitation on stack memory size was common. 

The most important of the basic tree tracing functions is recurseSubtree.  The operation 

of this function is illustrated in Figure A-7 and Figure A-8.  Given a starting node, startNode, 

and an initial link to traverse, startLink, the function performs the following algorithm: 

procedure recurseSubtree(startNode,startLink) 
begin 
 if startLink is not Selected then 
 begin 
  set startLink Selected to true 
  set endNode to Node at other end of startLink from startNode 
  for each link connected to endNode 
   recurseSubtree(endNode,link) 
 end 
end 

Two further base functions, isSubtreeBranch and isSubtreeLoop determine whether a part 

of a network is purely dendritic (tree-like) or whether it contains loops.  This determination is 

made by starting a recursion from a given point on the network down a specific link – if the 

sub-tree is purely dendritic then the recursion will never encounter a link that it has visited 

before – otherwise the sub-tree contains one or more loops. 
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Figure A-7: Recursive network traversal 
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Figure A-8: Recursive network traversal (continued) 

A.5.2.2 Network Simplification 

To assist in the automated construction of efficient genomes for evolution algorithms a 

number of network simplification routines have also been developed.  These are particularly 

relevant to network calibration applications.  These routines include the grouping of pipes to 

user-specified criteria.  These groupings can be used to reduce the length of the genome and 

thus increase algorithm performance.   

 
Figure A-9: Network schematic simplification with OpenNet 
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The automated pruning of selected loops or dendritic structures that play no part in a 

calibrated solution realises a similar objective.  It should be noted that these routines do not 

modify the components used in the hydraulic solution, merely the information on which the 

evolution algorithm operates.  Figure A-9 illustrates one of these applications in which 

unnecessary intermediate nodes have been removed from the hydraulic network model after 

translating it from a GIS-sourced representation. 

A.6 Hydraulic Evaluation 

Foremost amongst the aims of modelling the infrastructure of a hydraulic network is the 

evaluation of its hydraulic performance.  This involves determining the pressure at each node 

of the network and the flows in the intermediate pipes – often for multiple time steps 

(Extended Period Simulation – EPS).  The specialised OpenNet hydraulic classes establish a 

connection to the EPANET2 hydraulic solver (Rossman, 2000) for the purposes of 

providing hydraulic solutions.  The interface to the solver is abstracted so that alternative 

solvers may be substituted if available.  Direct control over the hydraulic solver is offered 

through the abstraction, including the ability to pause after intermediate time-steps to retrieve 

results from the network – crucial when undertaking an optimization that operates in EPS 

mode. 

A.6.1 Pressure Driven Demand 

Predominantly, Demand-Driven hydraulic simulators such as EPANET used in optimization 

processes are configured to deliver water even when there is insufficient pressure to do so – 

Demand-Driven network solver (as in EPANET – Rossman, 2000). In the analysis of 

structurally inadequate systems, however, studies (Germanopoulos, 1985; Fujiwara & Li, 

1998; Ang & Jowitt, 2006), have highlighted limitations related to the use of such demand-

driven solvers. 

A PDD extension for EPANET has been developed (Morley & Tricarico, 2008) in 

order to be able to determine more accurately the non-revenue water unsupplied in a 

pressure-deficient network in order to better estimate a network’s Economic Level of 

Reliability (Tricarico et al., 2006).  A logical extension of that work required that the PDD 

simulator should also be able to operate in an EPS mode.  The EPANETpdd extension has 

been derived from two existing modifications to the core EPANET library:  OOTEN 

(Object Oriented Toolkit for EPANET) (van Zyl et al., 2003), provided by the University of 

Johannesburg and a revised PDD version of EPANET obtained from its author, Lewis 
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Rossman.  The functionality of the EPANETpdd code has been further extended to 

incorporate Extended Period Simulation – something that neither the OOTEN nor revised 

EPANET algorithms facilitated.  This is accommodated through the dynamic computation 

of demand ahead of each timestep in OpenNet.  The nodal demand is then converted into an 

appropriate emitter coefficient and applied to the node in EPANET accordingly and 

transparently. 

A.7 Extensions 

A.7.1 Tracing 

A simple hydraulic-flow tracing algorithm is integrated into OpenNet.  This module allows 

an individual node to determine the proportion of source waters that it receives via other 

points on the network.  This functionality has been used to determine the probability of 

upstream contaminants reaching distal nodes. 

A.7.2 Generalized Attributes 

OpenNet implements a scheme of generalized attributes that can be used for representing 

user-defined data within the network. 

 
Figure A-10: UML Class Hierarchy for generalized attributes 
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sources, such as GIS tables directly with the network elements that they refer to.  For 

example, pipe-burst data obtained in a spatial form from a GIS dataset may be directly 

attached to the pipes in the hydraulic model that they relate to – allowing the development of 

analysis techniques that operate on the hydraulic model that are then able to consider this 

data.  Figure A-10 illustrates the hierarchy of customized attributes that may be attached to 

any network element.  

A.8 Network model translation 

Hydraulic modelling software used within the water industry is dominated by the products of 

a small number of commercial vendors.  Writing software to directly interface with these 

applications is often either difficult - for example no publicly available interface specification 

– or impossible – where there is no interface at all.  Without the intervention of the 

commercial entities developing the software, it is therefore necessary to operate on the raw 

data that can be exported from these applications.  Most if not all of the software in this 

market allows the topology and operating characteristics of the network to be exported in 

some form, often an ASCII text file.  A number of the packages, SynerGee (Advantica, 2003) 

and InfoWorks (Wallingford Software, 2005) natively store their data in the form of an 

Access database that can be operated upon by third-party applications using a standard 

ODBC driver.  

A.8.1 Translation suite 

 To promote the ease of using disparate hydraulic modelling systems with third party 

applications developed with the optimization methodologies presented in this thesis, a suite 

of translator utilities has been developed which permit the exchange of network-model 

information between a variety of third-party hydraulic modelling software using OpenNet as 

an intermediate, representation-independent format for describing the network.  In addition 

to the translation suite, OpenNet also has the ability to store and load models that it has 

imported in its own native XML representation – thus once an imported model has been 

validated satisfactorily, the resulting model can be stored in the native XML format for reuse.  

Figure A-11 illustrates the import and export translators that are available to OpenNet at the 

time of writing: 
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Figure A-11: Translation options available through OpenNet 

EPANET (Rossman, 2000) has emerged as a de-facto standard amongst the research 

community – partly because of its public domain licensing but also because the source-code 

is freely available and can be easily modified to extend the functionality of the software.  It is 

perhaps unsurprising, then, that many of the conventions used within EPANET are reflected 

in the underlying structure of OpenNet.  The widespread use of EPANET in research is also 

the reason for this being one of the few packages supported with both input and output 

translators. 

A.8.2 Translator structure 

OpenNet provides and abstracted translator class ONTranslator which provides a basic 

framework for implementing translators – including robust file-handling for ASCII files.  

Two subsidiary classes ONTranslatorImport and ONTranslatorExport are provided which 

handle, respectively, loading a network whilst ensuring a concordant OpenNet representation 

and saving a network.  The individual translator implementations then need only provide 

functions to import/export the individual elements from/to the file. 

A.8.3 User interface support 

Owing to the fact that there is a degree of uncertainty involved in the reliability of the 

translation process, the OpenNet library provides interactive feedback on the process of the 

translation for the end-user.  This dialog, an example of which is shown in Figure A-12, alerts 
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translation process for the purposes of manually fixing-up the model at a later stage. 
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Figure A-12: Translator progress window showing a SynerGEE model being imported into OpenNet. 

A.8.4 Difficulties 

Table A-1 illustrates one of the major issues that has to be accommodated in handling 

translations from one hydraulic modelling package to another: the varying representations of 

basic infrastructure elements. 

Element OpenNet SynerGee WesNet StruMap EPANET Aquis 
Valve Link Link Node Node Link Link 
Pump Link Link Link Node Link Link 

Reservoir Node Link Node Node Node Node 
Pumping Sta. Link n/a Link n/a n/a n/a 

Meter Link Link Node Node Link n/a 

Table A-1: Differences in network element representation between common hydraulic modelling packages 

Not only do the different modelling packages have different representations of 

common elements (for example representing a valve as a link element rather than a node) but 

also in the specification of the more complex network devices.  For example, SynerGee (née 

Stoner) offers an unrivalled number of ways to specify the performance of a pump.  The 

majority of these specifications are unavailable in any of the other packages – making such a 
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translation dependent on the end-user applying expert judgement to the translated model to 

obtain an appropriate translation. 

Accounting for differing node/link representations is rather more straightforward 

with the base ONTranslator class providing functions to generate automatically dummy nodes 

and links, as appropriate, to maintain the correct representation and to ensure that a 

consistent hydraulic performance is retained.  Information regarding these dummy nodes is 

nominally stored in any exported models so that, if encountered again by the OpenNet 

importer, the dummy elements can be safely removed from the model.  Otherwise, repeated 

use of the OpenNet translator system moving from one modelling scheme to another would 

lead to ever increasingly complex models. 

Other problematic elements include “remote controlled valves” where the valve 

setting is controlled by the pressure state at a node elsewhere in the network.  Whilst all 

modelling packages provide PRV (Pressure Reducing Valves) and PSV (Pressure Sustaining 

Valves) which operate on a point immediately downstream of the valve, few of them allow 

this control point to be elsewhere in the network. 

A.9 Linking hydraulic models to GIS applications 

Atkinson et al. (1998) illustrate some of the advantages of a close-coupled integration 

between a GIS and a genetic algorithm solver - including the speed of processing and a 

common user interface.  The GAnet user interface of Morley et al. (2001) takes this 

integration a step further and integrates the interface of the GIS application into its own.  

Initially, this was designed to integrate the StruMap GIS application but in addition, the 

interface can also act as an OLE container, or client, for OLE automation servers.  One such 

server is the GIS application, MapInfo (MapInfo Corporation, 1998) which can also be 

instantiated as a COM object.  The modular nature of the design allows it to be 

comprehensively extended without the need for recompilation – making it ideal for 

distributing as an end-user product.  Functionality can be extended using “plug-ins”, as can 

the definitions of the genetic algorithms themselves.  

The algorithm control window is extensible and can be modified by any organism to 

show application specific information – again without recompilation.  The simplest 

mechanism for linking GIS information into a GA application is by reading the data in 

through some common file format.  It is often desirable, however, for the geographic 

information to remain in the GIS in order to make geographic queries against it.  Both of the 
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approaches taken by OpenNet and GAnet allow this, the latter effectively acting as a plug-in 

to the StruMap GIS.  Integrating the GIS as a COM object provides a unique framework 

with easy and complete manipulation of the data in the GIS coupled with the complete 

integration and customization of the user interface.  Through the use of Microsoft’s COM 

technology it is possible to embed application objects within other applications.  Both 

MapInfo and Arc/INFO have COM or OLE2 variants that can be used by third-party 

developers.  The use of both these technologies affords a hitherto unavailable level of 

integration for applications.  Future development of Distributed COM objects or CORBA 

communications raises the potential for offloading the GIS querying functionality to a 

dedicated server to improve performance, along with the possibility of using more powerful 

workstations to perform the hydraulic network solutions. 

Water companies often have two sources of data with respect to their pipeline 

networks.  As well as hydraulic models of their networks, they will commonly use a GIS-

based system for asset management purposes.   

The hydraulic model is often an idealized, simplified version of the all-mains model 

contained within the asset management system.  Simplification of the network model can 

improve the performance of hydraulic evaluation through having fewer pipes and nodes to 

evaluate.  For example, one simplification commonly performed is the aggregation of 

contiguous pipe assets with identical characteristics such as diameter and age and the sharing 

of intermediate nodal demands between the end nodes of the aggregated pipe. 

Given that hydraulic models rarely contain data other than that directly associated 

with the hydraulic performance of the network it is often necessary in optimization 

applications to have access to other data elements such as pipe age, material, burst history etc.  

This information will usually be contained within the asset management system.  Relating 

these two sources of data is often time-consuming and difficult – not least because individual 

water companies maintain their own policies with regard to the form that the data is stored 

and, indeed, what data is retained.  

Owing to the fact that the development of hydraulic models is often a completely 

segregated process from the maintenance of the asset management system, it is common for 

there to be no direct means for associating records from the asset management system with 

their counterparts in the hydraulic model.  Asset management records should have a unique 

identifier for the individual pipes across an entire Water Supply Zone.  Elements in a 

hydraulic model are much less likely to maintain unique identifiers even if the model has been 
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derived directly from the asset management data owing to the simplification processes 

employed in generating the hydraulic model. 

As part of a research contract with a UK Water Company, the candidate devised a 

system for attempting to produce a concordant data set, which could be used by analytical 

processes including optimization applications.  Identifying co-located geographic features in 

the two datasets was the principal technique used in this analysis – allowing for the direct 

matching of pipes from one model to another.  Pipes that remain unmatched after a 

geographic analysis are then permuted in aggregations with their neighbours, pipe grouping, 

and then resubmitted to the matching process. 

A.9.1 Pipe matching 

In performing the pipe matching, it is assumed that both networks contain some form of 

geographic referencing for the data elements.  The matching process operates as follows: 

A.9.1.1 Import Hydraulic Network 

As a preliminary step, the hydraulic model is loaded into the OpenNet generic network 

modelling through one of a number of translators described earlier in this appendix.  The 

translated network is output to a MapInfo-compatible dataset. 

Early test networks imported using this procedure highlighted a number of issues 

with the geographic information associated with the source data.  In some cases, the 

coordinate system applied to the model appeared to be entirely arbitrary: geographic 

information is not necessary for the successful operation of a hydraulic model where only the 

elevations of network nodes and lengths of pipes need to be accurately described.  Other 

networks illustrated significant displacements or scaling issues, which necessitated 

modifications to the OpenNet import translators to apply user-defined offsets and scaling 

factors.  Other hydraulic models required rotational corrections as they had been recorded in 

either magnetic north or true north orientations whereas the Asset Management System used 

OSGB (Ordnance Survey Great Britain) grid north.  One network, which had been 

composited from two separate District Metered Areas (DMAs) managed to contain both 

orientation errors in the different sections of the network. 

A.9.1.2 Import Asset Management Database 

The asset management GIS can be translated from an ArcInfo-compatible dataset or opened 

natively from a MapInfo compatible or SpatialWare-wrapped dataset.  Owing to the size of 
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such databases, opening the dataset natively is much preferred as the dataset can remain on a 

remote server and utilise the remote querying functionality of the server to accelerate 

performance.  However, due to the remote location of the Water Company involved in this 

research and the security concerns regarding access to their asset management system, a full 

copy of the database was provided to the candidate on DVD-ROM. 

Once access to the dataset has been established, if a geographic representation of the 

network is not already available then a new geographic dataset is created in a MapInfo 

compatible format. 

A.9.1.3 ID Matching 

Although much of the network model stock held by the Water Company predates their asset 

management system, some more recent models have been generated directly from this data.  

Many of the elements in these models are transferred unchanged – although some are 

aggregated during the transfer process.  The unchanged elements retain their unique identifier 

from the AMS in the hydraulic model and, consequently, as a first step in the matching 

process, the software determines whether any elements in the hydraulic network match the 

unique identifiers in the AMS.  Due to a constraint in the length of identifier that the 

hydraulic modelling software used by the Water Company can handle, the 11-digit numeric 

identifiers used in the AMS were encoded into base 24 in the network model in order to 

allow them to fit the capacity allotted of 8 ASCII characters. 

A.9.1.4 Geographic matching 

The geographic matching technique is initially applied to the link elements of a network as 

they define the unique connectivity and geographic arrangement of the network.   

Each link in the hydraulic network is analyzed to determine how well it fits a number 

of criteria.  Firstly, a short-list of candidate links from the AMS is drawn-up by identifying all 

links in the AMS that fall within a user-defined distance (a “buffer”) of the link in question.  

Then four criteria are analyzed for each of the nodes located within the buffer. 

• End node location.  A geographic “buffer” is erected around each end of the link 

(with a user-defined diameter).  Each link in the shortlist, which falls into one – or 

preferably both – of the buffer areas, is scored according to how closely the end 

points match.  Experiments have determined that an upper tolerance of 20 metres 

for the link endpoints is sufficient to accommodate most hydraulic models that have 

not been derived from the Asset Management System. 
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• Link lengths.  The length of the link is compared against each of those in the 

shortlist.  An upper tolerance limit of 20% has been found to work well.  The end-

user may define a cut-off limit for the pipe length below which this analysis is not 

performed.  This is to prevent very short pipes of circa 15 metres or less being 

penalised excessively.  

• Pipe centroids.  The centroids of the curve described by the link elements are 

compared.  This can be considered to being similar to the concept of “a centre of 

gravity” for a three dimensional form.  An upper tolerance of 30 metres has been 

found to be most appropriate for this option.  This technique appears to be more 

accurate at correctly identifying links that share the same start/end nodes (common 

in loops) than analyzing the locations of intermediate waypoints along the link. 

• Pipe trends.  Compares the angles on the ground of the intermediate elements of a 

link – for those defined with one or more intermediate waypoints.  A upper tolerance 

of 35% is considered a good delimiter for correctly identifying pipes. 

A confidence score is generated for each of the short-listed elements analyzed, 

according to how well it meets each of the geographic matching criteria.  The shortlisted pipe 

with the highest overall score is associated with that in the hydraulic model.  The weightings 

for each criterion can be modified by the end-user to suit the type of network under 

consideration.  For example, for large-scale rural networks, the end node locations were 

found to be a less important discriminator than the overall link length – the reverse of the 

situation seen in the urban environment with a higher density of nodes. 

A.9.1.5 Pipe grouping 

Following the geographic matching process outlined above, the algorithm then seeks to 

improve the solution obtained by aggregating adjacent pipes in the AMS shortlist with similar 

characteristics and repeating the geographic matching procedure.  Aggregates that score 

higher than previous results will be matched instead.  An example of an aggregated, matched 

pipe-group can be seen highlighted in Figure A-13. 

A.9.1.6 Interactive matching 

The final stage of the pipe matching process is an optional, interactive matching arrangement 

where the end-user is presented with the two models in side-by-side windows and can fine-

tune the matches that the automated processes have determined as well as associating any 

remaining unmatched links. 
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Figure A-13: Pipe matching application 

Figure A-13 illustrates the interactive matching mode available to the algorithm.  The 

right hand map pane represents the data extracted from the Asset Management System.  That 

on the left is from the imported hydraulic model.  As can be seen, there is a good 

concordance between the topological arrangement of the pipes in this model as this is an 

example where the hydraulic model was originally derived directly from the AMS dataset.  

However, there are, unusually, a number of additional nodes in the hydraulic model that have 

been inserted for the purposes of attaching demands.  Often, the simplification is the reverse 

with more nodes being present in the AMS dataset that are then removed as part of a 

simplification process.  Highlighted is a single pipe from the AMS data, which corresponds to 

four separate pipe elements in the hydraulic model.  The modeless dialog seen at the bottom 

of Figure A-13 allows the user to locate any unmatched pipes and to select interactively their 

analogues from the AMS dataset.  This interface display can also be configured to show a 

thematic map that colours each pipe in accordance with the confidence level ascribed to the 

match by the automated matching process.  This allows the end user to identify quickly any 

pipes that may have been incorrectly matched by the process. 
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When the operator is confident in the quality of the matched models, the results can 

be exported back to the Asset Management System to preserve the link between the two 

datasets.   

A.9.1.7 Results 

The accuracy of the pipe-matching software is generally very good and nominally exceeds 

95% for GIS derived datasets.  The principal problems with this algorithm arise in the 

attachment of service reservoirs to the network under consideration.  Network modellers use 

non-existent pipes to connect reservoirs to the network as each DMA is usually fed from 

another DMA or through a large number of pipes.  This simplification means that the 

algorithm cannot match these pipes (since they have no basis in reality) and these anomalies 

constitute most of the 5% of pipes in a network that cannot be automatically matched. 

Once the pipe matching has been completed, it is then possible to use the association 

found with the AMS to extract pertinent data that can be used in an application as well as 

providing an accurate geo-referencing which can be used for, amongst other things, for 

associating leakage complaints etc. directly with the hydraulic model. 

For a network comprising around 2,000 pipes, this process is completed in around 

15-20 seconds – although this can vary significantly depending on the complexity of the 

network and the number of potential aggregates encountered by the pipe-grouping algorithm.
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A.10 Representing networks using XML 

The eXtensible Markup Language (XML) is a subset of the Standard Generalized Markup 

Language (SGML - ISO, 1986) and has been designed primarily for data description and 

dissemination over the Internet.  Unlike its close relative, HTML, XML allows the use of 

custom tags to extend its feature-set. 

The structure of XML documents is defined through the use of a schema which may 

reside either in the document itself or in an external file – commonly referenced over the 

Internet.  This Document Type Definition (DTD) is the key to the extensibility of XML.  

XML documents are normally manipulated using a suite of parser routines, which combine 

the information present in the DTD and the XML document itself.  Consequently, an 

application that uses an XML document is abstracted from the actual contents and instead 

communicates with the parser as a broker, which performs such functions as filling in default 

values where they are not specified in the document. 

XML definitions have three main components:  

• Notations, which are used to describe application-specific, non-XML data (not used 

in OpenNet). 

• Elements which represent individual data elements in the document. 

• Entities which can be used as shorthand for XML markup in any part of a 

document.  The following sections describe the basic structure of an XML document 

and its related DTD in relation to a network representation. 

A.10.1 Elements 

A simple example of an XML element is the basic co-ordinate class.  A co-ordinate in 

OpenNet is defined as having an X and Y value along with an optional Z value representing 

the elevation of the point.  The DTD definition of the co-ordinate element is as follows: 

<!ELEMENT coordinate EMPTY> 
 <!ATTLIST coordinate  
  x CDATA #REQUIRED 
  y CDATA #REQUIRED 
  z CDATA “undefined” 
 > 

The first line defines the co-ordinate element as having no children using the 

EMPTY directive.  This is followed by a list of attributes that this element can have.  The 

most basic type of attribute is Character Data, CDATA, which is a textual data member.  
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The XML schema makes no attempt to enforce data type conventions so CDATA is used 

for both numeric and textual data, leaving the application developer to ensure that the correct 

type of data is present in the attribute.  The first two attributes, x and y, are declared using the 

#REQUIRED directive that indicates that these attributes must be specified with any co-

ordinate element that is created.  The z attribute is not mandatory and the parser will return 

the text “undefined” if an alternative value is not specified in the XML document. 

Some examples of valid declarations of co-ordinate elements in an XML document 

are as follows: 

<coordinate x=”5” y=”7” z=”22.5”/> 
<coordinate x=”5” y=”7”/> 
<coordinate x=”5” y=”7”></coordinate> 

Elements without children can be terminated with the “/>” tag closure without 

necessitating the use of a formal closing tag as seen in the third example. 

The flexibility of the Element specification scheme becomes clear when children are 

considered.  Every element can contain child elements for which it is possible to specify 

whether “zero or one”, “one”, “one or more” or “zero, one or more” element definitions are 

allowed.  In addition, mutually exclusive children can be defined The following example 

shows how a line element might be formed in the DTD: 

<!ELEMENT line (coordinate,coordinate*,coordinate)> 

This definition requires the presence of a co-ordinate for the start and end-points of 

the line along with “zero, one or more” interior co-ordinates – identified by the “*” suffix.  

Valid examples of lines in an XML document may look like: 

<line> 
 <coordinate x="744" y="1384" z="11"/> 
 <coordinate x="756" y="1322" z="0"/> 
</line> 
 
<line> 
 <coordinate x="744" y="1384" z="11"/> 
 <coordinate x="747" y="1360" z="5"/> 
 <coordinate x="756" y="1322" z="0"/> 
</line> 

The construction of such compound elements allows the representation of complex 

data structures complete with a measure of data validation.  An XML document containing a 

line element, as outlined above, with only one co-ordinate will be rejected as invalid by the 

XML parser. 
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Further data-set validation is achieved through the use of ID and IDREF attributes.  

These attributes allow relationships between elements to be defined and again, XML 

documents containing unresolved relationships will be rejected by the parser.  This approach 

is illustrated by the relationship between node and link elements in which each link must 

specify a valid “from node” and “to node.”   The basic structure of a node is thus: 

<!ELEMENT node (coordinate)> 
 <!ATTLIST node 
  id ID #REQUIRED 
 > 

Using an ID attribute and making its presence mandatory requires that every node 

specified in an OpenNet representation has a unique identifier.  In practice, this attribute is 

included in every OpenNet element to allow for connectivity relationships to be defined 

between different types of element.  The associated link element is defined as follows: 

<!ELEMENT link (coordinate*)> 
 <!ATTLIST link  
  from_node IDREF #REQUIRED 
  to_node IDREF #REQUIRED 
 > 

from_node and to_node are defined as IDREF – references to the ID attributes of other 

elements and are mandatory.  The link element also allows any number of co-ordinate 

children to be specified.  These co-ordinates represent the interior points of the line 

associated with the link (if any), since the start and end points of the line may be obtained 

from the co-ordinate attached to the from and to nodes specified. 

A.10.2 Entities 

The object-oriented nature of the underlying OpenNet class library means that large numbers 

of properties are shared, through inheritance, by different object classes.  Fortunately, the use 

of XML entities facilitates the inheritance of attributes and child data-structures between 

elements. 

At their simplest, entities are analogous to expansion macros where the entity 

keyword is replaced by the entity definition wherever it appears in the Document Type 

Definition.  The most straightforward use of entities is where they are simple constructions, 

used in many places, for instance to implement a friction regime attribute: 

<!ENTITY % on_true_false “(0|false|no|1|true|yes)”> 
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<!ENTITY % on_friction "(colebrook-white| 
 hazen-williams|darcy-weisbach)"> 
 
<!ELEMENT pipe (link)> 
 <!ATTLIST pipe 
  friction %on_friction; “hazen-williams” 
  open %on_true_false; 
 > 
 
<!ELEMENT valve (link)> 
 <!ATTLIST valve 
  friction %on_friction; “hazen-williams” 
 > 

In this example, both the simplified pipe and valve elements share a common friction 

attribute, which is expanded inline.  This representation is not particularly efficient and does 

not implement the inherited properties in a meaningful fashion.  Instead, entities can be 

nested.  The following example, from node elements, shows the different attributes that are 

added in each level of the class hierarchy. 

<!ENTITY % on_common_attributes " 
 id ID #REQUIRED 
 name CDATA #IMPLIED 
"> 
 
<!ENTITY % on_node_common_attributes " %on_common_attributes; 
 area_id IDREF &#34;&#34; 
">      
 
<!ENTITY % on_waternode_common_attributes "
 %on_node_common_attributes; 
 calibration %on_true_false; &#34;false&#34; calibration_curve 
IDREF &#34;&#34; 
"> 

Each of the entities illustrated above implicitly includes the attributes from the level 

above. The “&#34;” in the above example is used to represent a double-quote character as 

these cannot be placed directly into entities.  Using this mechanism, it is possible to emulate 

the inheriting characteristics of the object-oriented model.  Each element can subscribe to the 

appropriate inherited attributes in this fashion and add any attributes specific to its 

requirements thus: 

<!ELEMENT node (coordinate)> 
 <!ATTLIST node 
  %on_waternode_common_attributes; 
  highest_elevation CDATA "" 
  dummy %on_true_false; "false" 
 > 
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Consequently, each node element implicitly includes a mandatory ID attribute, along 

with the other common attributes included above.  In practice, element children are also 

inherited in a similar fashion: 

<!ELEMENT node (%on_waternode_common_children;  
 coordinate)> 

It can be seen from the examples that the types of representation offered by XML 

documents map appropriately onto the needs of object-oriented databases and class 

hierarchies.  The same cannot be said for the relationship between XML and conventional 

relational databases which struggle to deal with the feature-rich and variant content that can 

be implemented in XML documents.  The full schema for representing OpenNet networks 

in XML may be found in Appendix B along with an example network file. 
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Appendix B OpenNet XML Representation 

B.1 XML Schema 

<!--#########################################################--> 
<!-- Core entities                                           --> 
<!--#########################################################--> 
 
 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
<!-- Unit declarations                                       --> 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
 
<!ENTITY % on_friction "(colebrook-white|hazen-williams|darcy-
weisbach)"> 
<!ENTITY % on_area_unit "(square-metres|square-feet)"> 
<!ENTITY % on_length_unit "(millimetres|metres|inches|feet)"> 
<!ENTITY % on_true_false "(true|false|0|1)"> 
 
 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
<!-- Default declarations                                    --> 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
 
<!ENTITY % on_default_length_unit "metres"> 
<!ENTITY % on_default_elevation_unit "metres"> 
<!ENTITY % on_default_diameter_unit "millimetres"> 
 
 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
<!-- Common child declarations                               --> 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
 
<!ENTITY % on_common_children  
 "description?" 
> 
 
<!ENTITY % on_node_common_children  
 "%on_common_children;, 
 coordinate" 
> 
 
<!ENTITY % on_waternode_common_children 
 "%on_node_common_children;,  
 calibration_curve?" 
> 
 
<!ENTITY % on_link_common_children  
 "%on_common_children;, 
 link" 
> 
 
<!ENTITY % on_waterlink_common_children 
 "%on_link_common_children;, 
 calibration_curve?" 
> 
 



Appendix B: OpenNet XML Representation 

A Framework for Evolutionary Optimization Applications in Water Distribution Systems 283 

<!ENTITY % on_watervalve_common_children 
 "%on_waterlink_common_children;" 
> 
 
<!ENTITY % on_curve_common_children  
 "%on_common_children;" 
> 
 
<!ENTITY % on_datacurve_common_children  
 "%on_curve_common_children;,datastep+" 
> 
 
<!ENTITY % on_timecurve_common_children  
 "%on_curve_common_children;,timestep+" 
> 
 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
<!-- Common attribute declarations                           --> 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
 
<!ENTITY % on_common_attributes " 
 id ID #REQUIRED 
 name CDATA #IMPLIED 
"> 
 
<!ENTITY % on_node_common_attributes " 
 %on_common_attributes; 
">      
 
<!ENTITY % on_waternode_common_attributes " 
 %on_node_common_attributes; 
 area_id IDREF &#34;&#34; 
 calibration %on_true_false; &#34;false&#34; 
 calibration_curve IDREF &#34;&#34; 
"> 
 
<!ENTITY % on_link_common_attributes " 
 %on_common_attributes; 
 length CDATA &#34;0&#34;  
 length_unit %on_length_unit; &#34;%on_default_length_unit;&#34;  
"> 
 
<!ENTITY % on_waterlink_common_attributes " 
 %on_link_common_attributes; 
 area_id IDREF &#34;&#34;  
 calibration %on_true_false; &#34;false&#34; 
 calibration_curve IDREF &#34;&#34; 
 diameter CDATA #REQUIRED  
 diameter_unit %on_length_unit; 
&#34;%on_default_diameter_unit;&#34; 
 friction %on_friction; &#34;hazen-williams&#34; 
 friction_factor CDATA &#34;0&#34; 
 minor_loss CDATA &#34;0&#34;  
"> 
 
<!ENTITY % on_watervalve_common_attributes " 
 %on_waterlink_common_attributes; 
"> 
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<!ENTITY % on_curve_common_attributes " 
 %on_common_attributes; 
 ybase CDATA &#34;0&#34; 
 ybias CDATA &#34;1&#34; 
"> 
 
<!ENTITY % on_timecurve_common_attributes " 
 %on_curve_common_attributes; 
 timebase CDATA &#34;0&#34; 
 timebias CDATA &#34;1&#34; 
"> 
  
<!ENTITY % on_datacurve_common_attributes " 
 %on_curve_common_attributes; 
 xbase CDATA &#34;0&#34; 
 xbias CDATA &#34;1&#34; 
"> 
 
 
<!--#########################################################--> 
<!-- Core elements                                           --> 
<!--#########################################################--> 
 
<!ELEMENT description (#PCDATA)> 
 
<!ELEMENT coordinate EMPTY> 
 <!ATTLIST coordinate  
  x CDATA #REQUIRED 
  y CDATA #REQUIRED 
  z CDATA #REQUIRED 
  xyunit %on_length_unit; "%on_default_length_unit;" 
  zunit %on_length_unit; "%on_default_elevation_unit;" 
 > 
  
<!ELEMENT line (coordinate,coordinate*,coordinate)> 
 
<!ELEMENT link (coordinate*,line?)> 
 <!ATTLIST link  
  from_node IDREF #REQUIRED 
  to_node IDREF #REQUIRED 
 > 
 
<!--#########################################################--> 
<!-- Node elements                                           --> 
<!--#########################################################--> 
 
<!-- Node group element --> 
<!ELEMENT nodes (node|reservoir|fixed-head)*> 
 
 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
<!-- Calibration                                             --> 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
 
<!ELEMENT calibration_curve (%on_timecurve_common_children;)> 
 <!ATTLIST calibration_curve %on_timecurve_common_attributes;> 
 
 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
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<!-- Generic and demand nodes                                --> 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
 
<!ELEMENT node (%on_waternode_common_children;,demand*)> 
 <!ATTLIST node  
  %on_waternode_common_attributes; 
  highest_elevation CDATA "" 
  dummy %on_true_false; "false" 
 > 
 
<!ELEMENT demand_curve (%on_timecurve_common_children;)> 
 <!ATTLIST demand_curve %on_timecurve_common_attributes;> 
 
<!ELEMENT demand (demand_curve?)> 
 <!ATTLIST demand 
  curve IDREF "" 
  demand CDATA #REQUIRED 
  type CDATA #REQUIRED 
 > 
 
 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
<!-- Reservoirs                                              --> 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
 
<!ELEMENT level_curve (%on_datacurve_common_children;)> 
 <!ATTLIST level_curve %on_datacurve_common_attributes;> 
  
<!ELEMENT head_curve (%on_timecurve_common_children;)> 
 <!ATTLIST head_curve %on_timecurve_common_attributes;> 
  
<!ELEMENT fixed-head (%on_waternode_common_children;,head_curve?)> 
 <!ATTLIST fixed-head  
  %on_waternode_common_attributes; 
  curve IDREF "" 
  head CDATA "0" 
  head_type (total-head|available-head) "available-head" 
 > 
  
<!ELEMENT reservoir (%on_waternode_common_children;,level_curve?)> 
 <!ATTLIST reservoir 
  %on_waternode_common_attributes; 
  curve IDREF "" 
  top_level CDATA #REQUIRED 
  bottom_level CDATA #REQUIRED 
  level CDATA #REQUIRED 
 > 
 
<!--#########################################################--> 
<!-- Link elements                                           --> 
<!--#########################################################--> 
  
<!-- Link group element --> 
<!ELEMENT links (pipe|valve|meter|pump)*> 
 
 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
<!-- Pipes                                                   --> 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
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<!ELEMENT pipe (%on_waterlink_common_children;)> 
 <!ATTLIST pipe %on_waterlink_common_attributes;> 
 <!ATTLIST pipe  
  material CDATA "" 
  pipe_type CDATA "" 
  year_laid CDATA "" 
 > 
 
 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
<!-- Valves                                                  --> 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
 
<!ELEMENT valve (%on_watervalve_common_children;)> 
 <!ATTLIST valve %on_watervalve_common_attributes;> 
  
<!ELEMENT prv (%on_watervalve_common_children;)> 
 <!ATTLIST prv %on_watervalve_common_attributes;> 
 
<!ELEMENT sluice (%on_watervalve_common_children;)> 
 <!ATTLIST sluice %on_watervalve_common_attributes;> 
 
<!ELEMENT psv (%on_watervalve_common_children;)> 
 <!ATTLIST psv %on_watervalve_common_attributes;> 
 
<!ELEMENT mtv (%on_watervalve_common_children;)> 
 <!ATTLIST mtv %on_watervalve_common_attributes;> 
  
<!ELEMENT nrv (%on_watervalve_common_children;)> 
 <!ATTLIST nrv %on_watervalve_common_attributes;> 
 
<!ELEMENT pbv (%on_watervalve_common_children;)> 
 <!ATTLIST pbv %on_watervalve_common_attributes;> 
  
<!ELEMENT thv (%on_watervalve_common_children;)> 
 <!ATTLIST thv %on_watervalve_common_attributes;> 
  
<!ELEMENT flv (%on_watervalve_common_children;)> 
 <!ATTLIST flv %on_watervalve_common_attributes;> 
 
 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
<!-- Meters                                                  --> 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
 
<!ELEMENT meter (%on_waterlink_common_children;)> 
 <!ATTLIST meter %on_waterlink_common_attributes;> 
 
 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
<!-- Pumps                                                   --> 
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--> 
 
<!ELEMENT pump (%on_waterlink_common_children;)> 
 <!ATTLIST pump %on_waterlink_common_attributes;> 
 
 
<!--#########################################################--> 
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<!-- Area elements                                           --> 
<!--#########################################################--> 
 
<!-- Area group element --> 
<!ELEMENT areas EMPTY> 
 
 
<!--#########################################################--> 
<!-- Curve Elements                                          --> 
<!--#########################################################--> 
 
<!ELEMENT timestep EMPTY> 
 <!ATTLIST timestep 
  time CDATA #REQUIRED 
  y CDATA #REQUIRED 
 > 
  
<!ELEMENT datastep EMPTY> 
 <!ATTLIST datastep 
  x CDATA #REQUIRED 
  y CDATA #REQUIRED 
 > 
 
 
<!-- Curve group element --> 
<!ELEMENT curves (head_curve|level_curve)*> 
 
 
<!--#########################################################--> 
<!-- Network element                                         --> 
<!--#########################################################--> 
 
<!-- Network element --> 
<!ELEMENT network (nodes*,links*,areas*,curves*)> 
 <!ATTLIST network 
  friction %on_friction; "hazen-williams" 
 > 
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B.2 Example XML Network File 

<?xml version='1.0' standalone="no" ?> 
 
<!DOCTYPE network PUBLIC "OpenNet v1.0 XML" "OpenNet.dtd"> 
 
<network friction="colebrook-white"> 
 
 <nodes> 
  
  <node id="n27"> 
   <coordinate x="552" y="1245" z="72"/> 
  </node> 
  
  <node id="n13"> 
   <coordinate x="780" y="1781" z="50"/> 
  </node> 
   
  <node id="n19"> 
   <coordinate x="1419" y="1594" z="22"/>   
  </node> 
   
  <node id="n18"> 
   <coordinate x="1110" y="1574" z="43"/> 
  </node> 
   
  <node id="n12"> 
   <coordinate x="748" y="1570" z="71"/>   
  </node> 
 
  <node id="n11"> 
   <coordinate x="732" y="1334" z="10"/> 
  </node> 
   
  <node id="n9"> 
   <coordinate x="642" y="1074" z="-45"/>   
  </node> 
     
  <node id="n20"> 
   <coordinate x="1061" y="1131" z="50"/>   
  </node> 
     
  <node id="n16"> 
   <coordinate x="963" y="716" z="33"/>   
  </node> 
     
  <node id="n17"> 
   <coordinate x="317" y="505" z="22"/>   
  </node> 
     
  <node id="n10"> 
   <coordinate x="553" y="915" z="35"/>   
  </node> 
   
  <node id="n8"> 
   <coordinate x="553" y="1224" z="72"/>   
  </node> 
   
  <node id="n7"> 
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   <coordinate x="455" y="1395" z="45"/>   
  </node> 
     
  <node id="n6"> 
   <coordinate x="443" y="1793" z="29"/>   
  </node> 
     
  <node id="n5"> 
   <coordinate x="427" y="1893" z="42"/>   
  </node> 
 
  <node id="n4"> 
   <coordinate x="431" y="2000" z="38"/>   
  </node> 
       
  <node id="n14"> 
   <coordinate x="695" y="2122" z="17"/>   
  </node> 
    
  <node id="n3"> 
   <coordinate x="496" y="2240" z="61"/>   
  </node> 
     
  <node id="n2"> 
   <coordinate x="528" y="2468" z="88"/>   
  </node> 
 
  <node id="n15"> 
   <coordinate x="687" y="2403" z="52"/>   
  </node> 
   
  <fixed-head id="n1" head_type="total-head"> 
   <coordinate x="610" y="2716" z="100"/> 
   <head_curve id="curve_n1"> 
    <timestep time="0" y="174.2"/> 
    <timestep time="5" y="188.35"/> 
    <timestep time="8" y="151.02"/> 
    <timestep time="15" y="172.1"/> 
   </head_curve> 
  </fixed-head> 
   
  <fixed-head id="fh1" head="15.5" head_type="available-head"> 
   <coordinate x="632" y="2723" z="72.5"/> 
  </fixed-head> 
   
  <fixed-head id="fh2" curve="curve_fh2" head_type="total-head"> 
   <coordinate x="146" y="1547" z="86.2"/> 
  </fixed-head> 
 
  <reservoir id="r1" bottom_level="35" level="52" top_level="71"> 
   <coordinate x="610" y="2716" z="100"/> 
   <level_curve id="curve_r1"> 
    <datastep x="35" y="78.2"/> 
    <datastep x="71" y="192.8"/> 
   </level_curve> 
  </reservoir> 
   
 </nodes> 
  



Appendix B: OpenNet XML Representation 

290   A Framework for Evolutionary Optimization Applications in Water Distribution Systems 

 <links> 
     
  <pipe id="P14" length="0" diameter="0" length_unit="metres"> 
   <link from_node="n15" to_node="n14"/> 
  </pipe> 
   
  <pipe id="P8" diameter="150"> 
   <link from_node="n8" to_node="n9"/> 
  </pipe> 
   
  <pipe id="P7" diameter="150" diameter_unit="inches"> 
   <link from_node="n7" to_node="n8"/> 
  </pipe> 
   
  <pipe id="P6" diameter="150"> 
   <link from_node="n6" to_node="n7"/> 
  </pipe> 
   
  <pipe id="P4" diameter="150"> 
   <link from_node="n4" to_node="n5"/> 
  </pipe> 
   
  <pipe id="P3" diameter="150"> 
   <link from_node="n3" to_node="n4"/> 
  </pipe> 
   
  <pipe id="P21" diameter="150"> 
   <link from_node="n9" to_node="n16"/> 
  </pipe> 
   
  <pipe id="P16" diameter="150"> 
   <link from_node="n10" to_node="n17"/> 
  </pipe> 
   
  <pipe id="P9" diameter="150"> 
   <link from_node="n9" to_node="n10"/> 
  </pipe> 
   
  <pipe id="P10" diameter="150"> 
   <link from_node="n11" to_node="n9"/> 
  </pipe> 
   
  <pipe id="P20" diameter="150"> 
   <link from_node="n20" to_node="n16"/> 
  </pipe> 
   
  <pipe id="P5" diameter="150"> 
   <link from_node="n5" to_node="n6"/> 
  </pipe> 
   
  <pipe id="P2" diameter="150"> 
   <link from_node="n2" to_node="n3"/> 
  </pipe> 
   
  <pipe id="P1" diameter="150"> 
   <link from_node="n1" to_node="n2"/> 
  </pipe> 
   
  <pipe id="P13" diameter="150"> 
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   <link from_node="n14" to_node="n13"/> 
  </pipe> 
   
  <pipe id="P18" diameter="150"> 
   <link from_node="n18" to_node="n19"/> 
  </pipe> 
   
  <pipe id="P15" diameter="150"> 
   <link from_node="n1" to_node="n15"/> 
  </pipe> 
   
  <pipe id="P17" diameter="150"> 
   <link from_node="n12" to_node="n18"/> 
  </pipe> 
   
  <pipe id="P11" diameter="150"> 
   <link from_node="n12" to_node="n11"/> 
  </pipe> 
   
  <pipe id="P12" diameter="150"> 
   <link from_node="n13" to_node="n12"/> 
  </pipe> 
   
  <pipe id="P19" diameter="150"> 
   <link from_node="n11" to_node="n20"/> 
  </pipe> 
   
  <valve id="V1" diameter="150"> 
   <link from_node="n11" to_node="n20"> 
    <coordinate x="744" y="1384" z="11"/> 
    <line> 
     <coordinate x="744" y="1384" z="11"/> 
     <coordinate x="744" y="1384" z="11"/> 
    </line> 
   </link> 
  </valve> 
   
 </links> 
  
 <curves> 
   
  <head_curve id="curve_fh2"> 
   <timestep time="0" y="90.9"/> 
   <timestep time="12" y="114.2"/>    
  </head_curve> 
  
 </curves> 
  
</network>
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