14,581 research outputs found

    Quantum Topological Invariants, Gravitational Instantons and the Topological Embedding

    Get PDF
    Certain topological invariants of the moduli space of gravitational instantons are defined and studied. Several amplitudes of two and four dimensional topological gravity are computed. A notion of puncture in four dimensions, that is particularly meaningful in the class of Weyl instantons, is introduced. The topological embedding, a theoretical framework for constructing physical amplitudes that are well-defined order by order in perturbation theory around instantons, is explicitly applied to the computation of the correlation functions of Dirac fermions in a punctured gravitational background, as well as to the most general QED and QCD amplitude. Various alternatives are worked out, discussed and compared. The quantum background affects the propagation by generating a certain effective ``quantum'' metric. The topological embedding could represent a new chapter of quantum field theory.Comment: LaTeX, 18 pages, no figur

    Anyons in Geometric Models of Matter

    Get PDF
    We show that the "geometric models of matter" approach proposed by the first author can be used to construct models of anyon quasiparticles with fractional quantum numbers, using 4-dimensional edge-cone orbifold geometries with orbifold singularities along embedded 2-dimensional surfaces. The anyon states arise through the braid representation of surface braids wrapped around the orbifold singularities, coming from multisections of the orbifold normal bundle of the embedded surface. We show that the resulting braid representations can give rise to a universal quantum computer.Comment: 22 pages LaTe

    Hamiltonian Analysis of Plebanski Theory

    Full text link
    We study the Hamiltonian formulation of Plebanski theory in both the Euclidean and Lorentzian cases. A careful analysis of the constraints shows that the system is non regular, i.e. the rank of the Dirac matrix is non-constant on the non-reduced phase space. We identify the gravitational and topological sectors which are regular sub-spaces of the non-reduced phase space. The theory can be restricted to the regular subspace which contains the gravitational sector. We explicitly identify first and second class constraints in this case. We compute the determinant of the Dirac matrix and the natural measure for the path integral of the Plebanski theory (restricted to the gravitational sector). This measure is the analogue of the Leutwyler-Fradkin-Vilkovisky measure of quantum gravity.Comment: 25 pages, no figures, references adde

    Towards a Gravitational Analog to S-duality in Non-abelian Gauge Theories

    Get PDF
    For non-abelian non-supersymmetric gauge theories, generic dual theories have been constructed. In these theories the couplings appear inverted. However, they do not possess a Yang-Mills structure but rather are a kind of non-linear sigma model. It is shown that for a topological gravitational model an analog to this duality exists.Comment: LaTeX, 14 pages, no figures, minor correction

    Energy in higher-derivative gravity via topological regularization

    Get PDF
    Indexación: Scopus.We give a novel definition of gravitational energy for an arbitrary theory of gravity including quadratic-curvature corrections to Einstein's equations. We focus on the theory in four dimensions, in the presence of a negative cosmological constant, and with asymptotically anti-de Sitter (AdS) boundary conditions. As a first example, we compute the gravitational energy and angular momentum of Schwarzschild-AdS black holes, for which we obtain results consistent with previous computations performed using different methods. However, our method is qualitatively different due to the fact that it is intrinsically nonlinear. It relies on the idea of adding to the gravity action topological invariant terms which suffice to regularize the Noether charges and render the variational problem well-posed. This is an idea that has been previously considered in the case of second-order theories, such as general relativity and which, as shown here, extends to higher-derivative theories. Besides black holes, we consider other solutions such as gravitational waves in AdS, for which we also find results that are in agreement. This enables us to investigate the consistency of this approach in the non-Einstein sector of the theory. © 2018 authors. Published by the American Physical Society.https://journals.aps.org/prd/abstract/10.1103/PhysRevD.98.04404

    Exact Gravitational Quasinormal Frequencies of Topological Black Holes

    Get PDF
    We compute the exact gravitational quasinormal frequencies for massless topological black holes in d-dimensional anti-de Sitter space. Using the gauge invariant formalism for gravitational perturbations derived by Kodama and Ishibashi, we show that in all cases the scalar, vector, and tensor modes can be reduced to a simple scalar field equation. This equation is exactly solvable in terms of hypergeometric functions, thus allowing an exact analytic determination of the gravitational quasinormal frequencies.Comment: 14 pages, Latex; v2 additional reference

    Quantum Gravity: Has Spacetime Quantum Properties?

    Get PDF
    The incompatibility between GR and QM is generally seen as a sufficient motivation for the development of a theory of Quantum Gravity. If - so a typical argumentation - QM gives a universally valid basis for the description of all natural systems, then the gravitational field should have quantum properties. Together with the arguments against semi-classical theories of gravity, this leads to a strategy which takes a quantization of GR as the natural avenue to Quantum Gravity. And a quantization of the gravitational field would in some sense correspond to a quantization of geometry. Spacetime would have quantum properties. But, this strategy will only be successful, if gravity is a fundamental interaction. - What, if gravity is instead an intrinsically classical phenomenon? Then, if QM is nevertheless fundamentally valid, gravity can not be a fundamental interaction. An intrinsically classical gravity in a quantum world would have to be an emergent, induced or residual, macroscopic effect, caused by other interactions. The gravitational field (as well as spacetime) would not have any quantum properties. A quantization of GR would lead to artifacts without any relation to nature. The serious problems of all approaches to Quantum Gravity that start from a direct quantization of GR or try to capture the quantum properties of gravity in form of a 'graviton' dynamics - together with the, meanwhile, rich spectrum of approaches to an emergent gravity and/or spacetime - make this latter option more and more interesting for the development of a theory of Quantum Gravity. The most advanced emergent gravity (and spacetime) scenarios are of an information-theoretical, quantum-computational type.Comment: 31 page
    • …
    corecore