41,857 research outputs found

    Grasping with Soft Hands

    Get PDF
    Despite some prematurely optimistic claims, the ability of robots to grasp general objects in unstructured environments still remains far behind that of humans. This is not solely caused by differences in the mechanics of hands: indeed, we show that human use of a simple robot hand (the Pisa/IIT SoftHand) can afford capabilities that are comparable to natural grasping. It is through the observation of such human-directed robot hand operations that we realized how fundamental in everyday grasping and manipulation is the role of hand compliance, which is used to adapt to the shape of surrounding objects. Objects and environmental constraints are in turn used to functionally shape the hand, going beyond its nominal kinematic limits by exploiting structural softness. In this paper, we set out to study grasp planning for hands that are simple - in the sense of low number of actuated degrees of freedom (one for the Pisa/IIT SoftHand) - but are soft, i.e. continuously deformable in an infinity of possible shapes through interaction with objects. After general considerations on the change of paradigm in grasp planning that this setting brings about with respect to classical rigid multi-dof grasp planning, we present a procedure to extract grasp affordances for the Pisa/IIT SoftHand through physically accurate numerical simulations. The selected grasps are then successfully tested in an experimental scenario

    Safe Grasping with a Force Controlled Soft Robotic Hand

    Full text link
    Safe yet stable grasping requires a robotic hand to apply sufficient force on the object to immobilize it while keeping it from getting damaged. Soft robotic hands have been proposed for safe grasping due to their passive compliance, but even such a hand can crush objects if the applied force is too high. Thus for safe grasping, regulating the grasping force is of uttermost importance even with soft hands. In this work, we present a force controlled soft hand and use it to achieve safe grasping. To this end, resistive force and bend sensors are integrated in a soft hand, and a data-driven calibration method is proposed to estimate contact interaction forces. Given the force readings, the pneumatic pressures are regulated using a proportional-integral controller to achieve desired force. The controller is experimentally evaluated and benchmarked by grasping easily deformable objects such as plastic and paper cups without neither dropping nor deforming them. Together, the results demonstrate that our force controlled soft hand can grasp deformable objects in a safe yet stable manner.Comment: Accepted to 2020 IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC 2020

    Learning from humans how to grasp: a data-driven architecture for autonomous grasping with anthropomorphic soft hands

    Get PDF
    Soft hands are robotic systems that embed compliant elements in their mechanical design. This enables an effective adaptation with the items and the environment, and ultimately, an increase in their grasping performance. These hands come with clear advantages in terms of ease-to-use and robustness if compared with classic rigid hands, when operated by a human. However, their potential for autonomous grasping is still largely unexplored, due to the lack of suitable control strategies. To address this issue, in this letter, we propose an approach to enable soft hands to autonomously grasp objects, starting from the observations of human strategies. A classifier realized through a deep neural network takes as input the visual information on the object to be grasped, and predicts which action a human would perform to achieve the goal. This information is hence used to select one among a set of human-inspired primitives, which define the evolution of the soft hand posture as a combination of anticipatory action and touch-based reactive grasp. The architecture is completed by the hardware component, which consists of an RGB camera to look at the scene, a 7-DoF manipulator, and a soft hand. The latter is equipped with inertial measurement units at the fingernails for detecting contact with the object. We extensively tested the propose

    On the Use of Magnets to Robustify the Motion Control of Soft Hands

    Get PDF
    In this letter, we propose a physics-based framework to exploit magnets in robotic manipulation. More specifically, we suggest equipping soft and underactuated hands with magnetic elements, which can generate a magnetic actuation able to synergistically interact with tendon-driven and pneumatic actuations, engendering a complementarity that enriches the capabilities of the actuation system. Magnetic elements can act as additional Degrees of Actuation (DoAs), robustifying the motion control of the device and augmenting the hand manipulation capabilities. We investigate the interaction of a soft hand with itself for enriching possible hand shaping, and the interaction of the hand with the environment for enriching possible grasping capabilities. Physics laws and notions reported in the manuscript can be used as a guidance for DoAs augmentation and can provide tools for the design of novel soft hands

    Innovative robot hand designs of reduced complexity for dexterous manipulation

    Get PDF
    This thesis investigates the mechanical design of robot hands to sensibly reduce the system complexity in terms of the number of actuators and sensors, and control needs for performing grasping and in-hand manipulations of unknown objects. Human hands are known to be the most complex, versatile, dexterous manipulators in nature, from being able to operate sophisticated surgery to carry out a wide variety of daily activity tasks (e.g. preparing food, changing cloths, playing instruments, to name some). However, the understanding of why human hands can perform such fascinating tasks still eludes complete comprehension. Since at least the end of the sixteenth century, scientists and engineers have tried to match the sensory and motor functions of the human hand. As a result, many contemporary humanoid and anthropomorphic robot hands have been developed to closely replicate the appearance and dexterity of human hands, in many cases using sophisticated designs that integrate multiple sensors and actuators---which make them prone to error and difficult to operate and control, particularly under uncertainty. In recent years, several simplification approaches and solutions have been proposed to develop more effective and reliable dexterous robot hands. These techniques, which have been based on using underactuated mechanical designs, kinematic synergies, or compliant materials, to name some, have opened up new ways to integrate hardware enhancements to facilitate grasping and dexterous manipulation control and improve reliability and robustness. Following this line of thought, this thesis studies four robot hand hardware aspects for enhancing grasping and manipulation, with a particular focus on dexterous in-hand manipulation. Namely: i) the use of passive soft fingertips; ii) the use of rigid and soft active surfaces in robot fingers; iii) the use of robot hand topologies to create particular in-hand manipulation trajectories; and iv) the decoupling of grasping and in-hand manipulation by introducing a reconfigurable palm. In summary, the findings from this thesis provide important notions for understanding the significance of mechanical and hardware elements in the performance and control of human manipulation. These findings show great potential in developing robust, easily programmable, and economically viable robot hands capable of performing dexterous manipulations under uncertainty, while exhibiting a valuable subset of functions of the human hand.Open Acces

    A novel type of compliant and underactuated robotic hand for dexterous grasping

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The usefulness and versatility of a robotic end-effector depends on the diversity of grasps it can accomplish and also on the complexity of the control methods required to achieve them. We believe that soft hands are able to provide diverse and robust grasping with low control complexity. They possess many mechanical degrees of freedom and are able to implement complex deformations. At the same time, due to the inherent compliance of soft materials, only very few of these mechanical degrees have to be controlled explicitly. Soft hands therefore may combine the best of both worlds. In this paper, we present RBO Hand 2, a highly compliant, underactuated, robust, and dexterous anthropomorphic hand. The hand is inexpensive to manufacture and the morphology can easily be adapted to specific applications. To enable efficient hand design, we derive and evaluate computational models for the mechanical properties of the hand's basic building blocks, called PneuFlex actuators. The versatility of RBO Hand 2 is evaluated by implementing the comprehensive Feix taxonomy of human grasps. The manipulator's capabilities and limits are demonstrated using the Kapandji test and grasping experiments with a variety of objects of varying weight. Furthermore, we demonstrate that the effective dimensionality of grasp postures exceeds the dimensionality of the actuation signals, illustrating that complex grasping behavior can be achieved with relatively simple control

    Adaptive Synergies for the Design and Control of the Pisa/IIT SoftHand

    Get PDF
    In this paper we introduce the Pisa/IIT SoftHand, a novel robot hand prototype designed with the purpose of being robust and easy to control as an industrial gripper, while exhibiting high grasping versatility and an aspect similar to that of the human hand. In the paper we briefly review the main theoretical tools used to enable such simplification, i.e. the neuroscience-based notion of soft synergies. A discussion of several possible actuation schemes shows that a straightforward implementation of the soft synergy idea in an effective design is not trivial. The approach proposed in this paper, called adaptive synergy, rests on ideas coming from underactuated hand design. A synthesis method to realize a desired set of soft synergies through the principled design of adaptive synergy is discussed. This approach leads to the design of hands accommodating in principle an arbitrary number of soft synergies, as demonstrated in grasping and manipulation simulations and experiments with a prototype. As a particular instance of application of the synthesis method of adaptive synergies, the Pisa/IIT SoftHand is described in detail. The hand has 19 joints, but only uses 1 actuator to activate its adaptive synergy. Of particular relevance in its design is the very soft and safe, yet powerful and extremely robust structure, obtained through the use of innovative articulations and ligaments replacing conventional joint design. The design and implementation of the prototype hand are shown and its effectiveness demonstrated through grasping experiments, reported also in multimedia extensio

    On the role of stiffness design for fingertip trajectories of underactuated modular soft hands

    Get PDF
    In this work, we propose a method to compute the stiffness of flexible joints and its realization in order to let the fingers track a certain predefined trajectory. We refer to tendon-driven, underactuated and passively compliant hands composed of deformable joints and rigid links. Specific stiffness and pre-form shapes can be assigned to the finger joints can be given s such that a single-cable actuation can be used. We firstly define a procedure to determine suitable joints stiffness and then we propose a possible realization of soft joints using rapid prototyping techniques. The stiffness computation is obtained leveraging on the the mechanics of tendon-driven hands and on compliant systems, while for its implementation beam theory has been exploited. We validate the proposed framework both in simulation and with experiments using the robotic Soft-SixthFinger, a wearable robot for grasping compensation in patients with a paretic hand, as a case study. The proposed framework can be used to design the stiffness of the passive joints in several model of underactuated tendon-driven soft hands so to improve their grasping capabilities
    corecore