1,913 research outputs found

    Data-Driven Grasp Synthesis - A Survey

    Full text link
    We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.Comment: 20 pages, 30 Figures, submitted to IEEE Transactions on Robotic

    The Teenager's Problem: Efficient Garment Decluttering With Grasp Optimization

    Full text link
    This paper addresses the ''Teenager's Problem'': efficiently removing scattered garments from a planar surface. As grasping and transporting individual garments is highly inefficient, we propose analytical policies to select grasp locations for multiple garments using an overhead camera. Two classes of methods are considered: depth-based, which use overhead depth data to find efficient grasps, and segment-based, which use segmentation on the RGB overhead image (without requiring any depth data); grasp efficiency is measured by Objects per Transport, which denotes the average number of objects removed per trip to the laundry basket. Experiments suggest that both depth- and segment-based methods easily reduce Objects per Transport (OpT) by 20%20\%; furthermore, these approaches complement each other, with combined hybrid methods yielding improvements of 34%34\%. Finally, a method employing consolidation (with segmentation) is considered, which manipulates the garments on the work surface to increase OpT; this yields an improvement of 67%67\% over the baseline, though at a cost of additional physical actions

    Visual Perception of Garments for their Robotic Manipulation

    Get PDF
    Tématem předložené práce je strojové vnímání textilií založené na obrazové informaci a využité pro jejich robotickou manipulaci. Práce studuje několik reprezentativních textilií v běžných kognitivně-manipulačních úlohách, jako je například třídění neznámých oděvů podle typu nebo jejich skládání. Některé z těchto činností by v budoucnu mohly být vykonávány domácími robotickými pomocníky. Strojová manipulace s textiliemi je poptávaná také v průmyslu. Hlavní výzvou řešeného problému je měkkost a s tím související vysoká deformovatelnost textilií, které se tak mohou nacházet v bezpočtu vizuálně velmi odlišných stavů.The presented work addresses the visual perception of garments applied for their robotic manipulation. Various types of garments are considered in the typical perception and manipulation tasks, including their classification, folding or unfolding. Our work is motivated by the possibility of having humanoid household robots performing these tasks for us in the future, as well as by the industrial applications. The main challenge is the high deformability of garments, which can be posed in infinitely many configurations with a significantly varying appearance

    Continuous perception for deformable objects understanding

    Get PDF
    We present a robot vision approach to deformable object classification, with direct application to autonomous service robots. Our approach is based on the assumption that continuous perception provides robots with greater visual competence for deformable objects interpretation and classification. Our approach thus classifies the category of clothing items by continuously perceiving the dynamic interactions of the garment’s material and shape as it is being picked up. Our proposed solution consists of extracting continuously visual features of a RGB-D video sequence and fusing features by means of the Locality Constrained Group Sparse Representation (LGSR) algorithm. To evaluate the performance of our approach, we created a fully annotated database featuring 150 garment videos in random configurations. Experiments demonstrate that by continuously observing an object deform, our approach achieves a classification score of 66.7%, outperforming state-of-the-art approaches by a ∼ 27.3% increase

    Exploring the relevancy of written and drawn representations in a digital age

    Get PDF
    INSERT ABSTRAC
    corecore