354,381 research outputs found

    Fractal fractal dimensions of deterministic transport coefficients

    Full text link
    If a point particle moves chaotically through a periodic array of scatterers the associated transport coefficients are typically irregular functions under variation of control parameters. For a piecewise linear two-parameter map we analyze the structure of the associated irregular diffusion coefficient and current by numerically computing dimensions from box-counting and from the autocorrelation function of these graphs. We find that both dimensions are fractal for large parameter intervals and that both quantities are themselves fractal functions if computed locally on a uniform grid of small but finite subintervals. We furthermore show that there is a simple functional relationship between the structure of fractal fractal dimensions and the difference quotient defined on these subintervals.Comment: 16 pages (revtex) with 6 figures (postscript

    Modified iterative versus Laplacian Landau gauge in compact U(1) theory

    Full text link
    Compact U(1) theory in 4 dimensions is used to compare the modified iterative and the Laplacian fixing to lattice Landau gauge in a controlled setting, since in the Coulomb phase the lattice theory must reproduce the perturbative prediction. It turns out that on either side of the phase transition clear differences show up and in the Coulomb phase the ability to remove double Dirac sheets proves vital on a small lattice.Comment: 14 pages, 8 figures containing 23 graphs, v2: 2 figures removed, 2 references adde

    Hierarchical models of rigidity percolation

    Full text link
    We introduce models of generic rigidity percolation in two dimensions on hierarchical networks, and solve them exactly by means of a renormalization transformation. We then study how the possibility for the network to self organize in order to avoid stressed bonds may change the phase diagram. In contrast to what happens on random graphs and in some recent numerical studies at zero temperature, we do not find a true intermediate phase separating the usual rigid and floppy ones.Comment: 20 pages, 8 figures. Figures improved, references added, small modifications. Accepted in Phys. Rev.

    The Minimum Shared Edges Problem on Grid-like Graphs

    Full text link
    We study the NP-hard Minimum Shared Edges (MSE) problem on graphs: decide whether it is possible to route pp paths from a start vertex to a target vertex in a given graph while using at most kk edges more than once. We show that MSE can be decided on bounded (i.e. finite) grids in linear time when both dimensions are either small or large compared to the number pp of paths. On the contrary, we show that MSE remains NP-hard on subgraphs of bounded grids. Finally, we study MSE from a parametrised complexity point of view. It is known that MSE is fixed-parameter tractable with respect to the number pp of paths. We show that, under standard complexity-theoretical assumptions, the problem parametrised by the combined parameter kk, pp, maximum degree, diameter, and treewidth does not admit a polynomial-size problem kernel, even when restricted to planar graphs

    Coupling of hard dimers to dynamical lattices via random tensors

    Full text link
    We study hard dimers on dynamical lattices in arbitrary dimensions using a random tensor model. The set of lattices corresponds to triangulations of the d-sphere and is selected by the large N limit. For small enough dimer activities, the critical behavior of the continuum limit is the one of pure random lattices. We find a negative critical activity where the universality class is changed as dimers become critical, in a very similar way hard dimers exhibit a Yang-Lee singularity on planar dynamical graphs. Critical exponents are calculated exactly. An alternative description as a system of `color-sensitive hard-core dimers' on random branched polymers is provided.Comment: 12 page

    Algorithms, Reductions and Equivalences for Small Weight Variants of All-Pairs Shortest Paths

    Get PDF
    APSP with small integer weights in undirected graphs [Seidel'95, Galil and Margalit'97] has an O~(nω)\tilde{O}(n^\omega) time algorithm, where ω<2.373\omega<2.373 is the matrix multiplication exponent. APSP in directed graphs with small weights however, has a much slower running time that would be Ω(n2.5)\Omega(n^{2.5}) even if ω=2\omega=2 [Zwick'02]. To understand this n2.5n^{2.5} bottleneck, we build a web of reductions around directed unweighted APSP. We show that it is fine-grained equivalent to computing a rectangular Min-Plus product for matrices with integer entries; the dimensions and entry size of the matrices depend on the value of ω\omega. As a consequence, we establish an equivalence between APSP in directed unweighted graphs, APSP in directed graphs with small (O~(1))(\tilde{O}(1)) integer weights, All-Pairs Longest Paths in DAGs with small weights, approximate APSP with additive error cc in directed graphs with small weights, for c≤O~(1)c\le \tilde{O}(1) and several other graph problems. We also provide fine-grained reductions from directed unweighted APSP to All-Pairs Shortest Lightest Paths (APSLP) in undirected graphs with {0,1}\{0,1\} weights and #mod c\#_{\text{mod}\ c}APSP in directed unweighted graphs (computing counts mod cc). We complement our hardness results with new algorithms. We improve the known algorithms for APSLP in directed graphs with small integer weights and for approximate APSP with sublinear additive error in directed unweighted graphs. Our algorithm for approximate APSP with sublinear additive error is optimal, when viewed as a reduction to Min-Plus product. We also give new algorithms for variants of #APSP in unweighted graphs, as well as a near-optimal O~(n3)\tilde{O}(n^3)-time algorithm for the original #APSP problem in unweighted graphs. Our techniques also lead to a simpler alternative for the original APSP problem in undirected graphs with small integer weights.Comment: abstract shortened to fit arXiv requirement

    Small covers and the equivariant bordism classification of 2-torus manifolds

    Full text link
    Associated with the Davis-Januszkiewicz theory of small covers, this paper deals with the theory of 2-torus manifolds from the viewpoint of equivariant bordism. We define a differential operator on the "dual" algebra of the unoriented GnG_n-representation algebra introduced by Conner and Floyd, where Gn=(Z2)nG_n=(\Z_2)^n. With the help of GnG_n-colored graphs (or mod 2 GKM graphs), we may use this differential operator to give a very simple description of tom Dieck-Kosniowski-Stong localization theorem in the setting of 2-torus manifolds. We then apply this to study the GnG_n-equivariant unoriented bordism classification of nn-dimensional 2-torus manifolds. We show that the GnG_n-equivariant unoriented bordism class of each nn-dimensional 2-torus manifold contains an nn-dimensional small cover as its representative, solving the conjecture posed in [19]. In addition, we also obtain that the graded noncommutative ring formed by the equivariant unoriented bordism classes of 2-torus manifolds of all possible dimensions is generated by the classes of all generalized real Bott manifolds (as special small covers over the products of simplices). This gives a strong connection between the computation of GnG_n-equivariant bordism groups or ring and the Davis-Januszkiewicz theory of small covers. As a computational application, with the help of computer, we completely determine the structure of the group formed by equivariant bordism classes of all 4-dimensional 2-torus manifolds. Finally, we give some essential relationships among 2-torus manifolds, coloring polynomials, colored simple convex polytopes, colored graphs.Comment: 32 pages, updated version with the title of paper changed and a large expansio
    • …
    corecore