14,791 research outputs found

    Hausdorff dimension in graph matchbox manifolds

    Full text link
    In this paper, we study the Hausdorff and the box dimensions of closed invariant subsets of the space of pointed trees, equipped with a pseudogroup action. This pseudogroup dynamical system can be regarded as a generalization of a shift space. We show that the Hausdorff dimension of the space of pointed trees is infinite, and the union of closed invariant subsets with dense orbit and non-equal Hausdorff and box dimensions is dense in the space of pointed trees. We apply our results to the problem of embedding laminations into differentiable foliations of smooth manifolds. To admit such an embedding, a lamination must satisfy at least the following two conditions: first, it must admit a metric and a foliated atlas, such that the generators of the holonomy pseudogroup, associated to the atlas, are bi-Lipschitz maps relative to the metric. Second, it must admit an embedding into a manifold, which is a bi-Lipschitz map. A suspension of the pseudogroup action on the space of pointed graphs gives an example of a lamination where the first condition is satisfied, and the second one is not satisfied, with Hausdorff dimension of the space of pointed trees being the obstruction to the existence of a bi-Lipschitz embedding.Comment: Proof of Theorem 1.1 simplified as compared to the previous version; Sections 5 and 6 contain new result

    Finite subset spaces of closed surfaces

    Full text link
    The kth finite subset space of a topological space X is the space exp_k X of non-empty finite subsets of X of size at most k, topologised as a quotient of X^k. The construction is a homotopy functor and may be regarded as a union of configuration spaces of distinct unordered points in X. We show that the finite subset spaces of a connected 2-complex admit "lexicographic cell structures" based on the lexicographic order on I^2 and use these to study the finite subset spaces of closed surfaces. We completely calculate the rational homology of the finite subset spaces of the two-sphere, and determine the top integral homology groups of exp_k Sigma for each k and closed surface Sigma. In addition, we use Mayer-Vietoris arguments and the ring structure of H^*(Sym^k Sigma) to calculate the integer cohomology groups of the third finite subset space of Sigma closed and orientable.Comment: 40 pages, 5 .eps figure
    • …
    corecore