33,633 research outputs found

    Graphical user interfaces in an engineering educational environment

    Full text link
    Graphical user interfaces (GUIs) are being increasingly used in the classroom to provide users of computer simulations with a friendly and visual approach to specifying all input parameters and increased configuration flexibility. In this study, the authors first describe a number of software and language options that are available to build GUIs. Subsequently, a comprehensive comparative assessment of possible alternatives is undertaken in the light of a benchmark educational program used in a course on computational fluid dynamics (CFD) at the University of Michigan. For the GUIs presented, their educational value with respect to flexible data entry and post-processing of results has been demonstrated. In addition, the authors offer recommendations for pros and cons of available options in terms of platform independence, ease of programming, facilitation of interaction with students, and flexibility. © 2005 Wiley Periodicals, Inc. Comput Appl Eng Educ 13: 48–59, 2005; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20029Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35190/1/20029_ftp.pd

    Teaching embedded software development utilising QNX and Qt with an automotive-themed coursework application

    Get PDF

    Engine performance characteristics and evaluation of variation in the length of intake plenum

    Get PDF
    In the engine with multipoint fuel injection system using electronically controlled fuel injectors has an intake manifold in which only the air flows and, the fuel is injected into the intake valve. Since the intake manifolds transport mainly air, the supercharging effects of the variable length intake plenum will be different from carbureted engine. Engine tests have been carried out with the aim of constituting a base study to design a new variable length intake manifold plenum. The objective in this research is to study the engine performance characteristics and to evaluate the effects of the variation in the length of intake plenum. The engine test bed used for experimental work consists of a control panel, a hydraulic dynamometer and measurement instruments to measure the parameters of engine performance characteristics. The control panel is being used to perform administrative and management operating system. Besides that, the hydraulic dynamometer was used to measure the power of an engine by using a cell filled with liquid to increase its load. Thus, measurement instrument is provided in this test to measure the as brake torque, brake power, thermal efficiency and specific fuel consumption. The results showed that the variation in the plenum length causes an improvement on the engine performance characteristics especially on the fuel consumption at high load and low engine speeds which are put forward the system using for urban roads. From this experiment, it will show the behavior of engine performance

    Digital Twins of Building Physics Experimental Laboratory Setups for Effective E-learning

    Get PDF
    Hands-on experiments in laboratories are fundamental educational tools for technical sciences. However, laboratories are expensive and not always accessible to students: lockdown and in-person meeting restrictions due to the ongoing Covid-19 pandemic, distant location of teachers and students, facilities used for higher-priority purposes. Moreover, creating specific experimental setups for teaching only can be costly. In that context, digitalizing laboratory setups provides an attractive teaching alternative for remote e-learning. Digital twins are not meant to replace real-world experiments but should enable flexible teaching and effective learning at a lower cost. They complement physical setups and can be virtual extensions, allowing for larger and more complex study cases. e-learning is now popular and many educational institutions provide open-access videos of entire courses. However, the digitalization of practical exercises for engineering is yet limited. The e-learning effort presented in this paper aims to establish a series of digital twins of experimental setups for teaching building physics, energy in buildings and indoor environment. The development of the two first digital twins is detailed here. They are designed for teaching operation and balancing hydronic heating systems. Their numerical models and graphical user interfaces are created with the LabVIEW programming environment
    • …
    corecore