
Teaching embedded software development utilising QNX and Qt with an automotive-
themed coursework application
Barrie, Peter; Morison, Gordon

Published in:
2014 6th European Embedded Design in Education and Research Conference (EDERC)

DOI:
10.1109/EDERC.2014.6924348

Publication date:
2014

Document Version
Peer reviewed version

Link to publication in ResearchOnline

Citation for published version (Harvard):
Barrie, P & Morison, G 2014, Teaching embedded software development utilising QNX and Qt with an
automotive-themed coursework application. in 2014 6th European Embedded Design in Education and
Research Conference (EDERC). IEEE. https://doi.org/10.1109/EDERC.2014.6924348

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details
of how to contact us.

Download date: 29. Apr. 2020

https://doi.org/10.1109/EDERC.2014.6924348
https://researchonline.gcu.ac.uk/en/publications/0c7870ed-89da-4a04-86f4-97e48364bd78
https://doi.org/10.1109/EDERC.2014.6924348

TEACHING EMBEDDED SOFTWARE DEVELOPMENT UTILISING QNX AND Qt

WITH AN AUTOMOTIVE-THEMED COURSEWORK APPLICATION

Peter Barrie and Gordon Morison

School of Engineering and Built Environment, Glasgow Caledonian University

Cowcaddens Road, G4 0BA, Glasgow, Scotland, UK

phone: + (44)141-331-3025, fax: + (44)141-331-3370, email: peter.barrie@gcu.ac.uk

web: www.gcu.ac.uk

ABSTRACT

Within the later stages of many Electronics or Computer

Science degree programmes it is common to cover the

programming of real-time systems, sometimes with an

embedded orientation, instructing students in the

fundamentals and application of multitasking and

multithreading. Within this paper we detail the approach

taken at Glasgow Caledonian University in the design of

such a module as part of a programme in Computer and

Electronic Systems Engineering. In particular we explain

how we structure laboratory exercises to reflect the typical

industrial design practice of partitioning systems into

application layer and presentation layer - utilising QNX
TM

RTOS for application, integrated with open-source Qt for

presentation and human interaction. The target application

is based on a simple automotive dashboard executing on

the Beagleboard-xM platform. The approach is shown to

raise student interest and understanding of embedded

application-building using highly productive toolsets.

1. INTRODUCTION

A typical undergraduate electronics-based programme will

utilise a range of programming languages but typically

C/C++ might be utilised as a key language family for the

programming of embedded systems. As students apply and

integrate their newly developed programming skills within

project work they naturally discover that the single-

threaded programming paradigm does not always deliver an

ideal model for mapping onto a number of concurrent

system activities, especially where the software has to be

time-sensitive and be able to react to multiple real-world

events. They also discover problems in data sharing

(mutual-exclusion issues) and issues of prioritising code to

match the differing time-constraints of the application. For

a well-rounded programme in the area of computer and

electronic systems we feel it is important to provide

students with experience in advanced programming

practices so that they can learn and apply appropriate

software models for the creation of software to implement

well-structured reactive embedded systems. The move

towards integrating more advanced programming practices

in embedded education is well recognised [1]. Our chosen

route involves the delivery of a taught module that includes

the application of the powerful QNX [2] real-time operating

system (RTOS) and development environment with

consequential educational benefits that are discussed below.

In designing such a module we also feel it is essential to

attempt to maximise student engagement with coursework

by providing an interesting and industry-relevant

application environment, so the major coursework exercise

within the module includes a graphical automotive

dashboard and the creation of associated application

software. In implementing such a system we also wish to

reflect key real-world architectural choices such as the

separation of user-interface from the underlying application

software; in order to facilitate this we have included an

open-source Qt layer for the students to interact with; Qt

delivers the presentation layer to support the building of the

automotive human interface.

The laboratory classes are based on the following

development environment: 1. BeagleBoard-xM Rev C (TI

DM3730, ARM Cortex A8 core). 2. QNX Neutrino RTOS

V6.5.0 SP1. 3.Code development: QNX Momentics V. 4.7.

2. SELECTION OF TEACHING RTOS

2.1 Selection Criteria

The underpinning philosophy is to deliver an academic

module that has the following student learning outcomes:

 To understand the fundamental concepts of

multitasking software within the context of a real-

time operating system: processes and threads,

communication, synchronisation, mutual-exclusion,

timers, implementing ISRs. To understand and

apply the concepts of scheduling tasks on a finite

CPU resource.

 To understand and implement software patterns to

support the design of software in a multitasking

context. Increase knowledge of C programming.

 To understand the importance of standardisation for

portability (using POSIX standard). Be able to

confidently implement applications that utilise

POSIX Thread Programming (pthreads), POSIX

timers, messaging, shared-memory, mutex,

semaphores and condition-variables.

 To be able to utilise appropriate toolsets to

implement, debug, monitor and characterise the

performance of applications under an RTOS at a

deep level.

 To be able to understand and implement a software

structure that separates the human interface from

the main application. To gain experience with a

widely-used and representative API to deliver this

presentation layer – in this case Qt.

In selecting an appropriate operating-system environment

for the module the following criteria were judged as being

important:

 The kernel should be designed principally as real-

time rather than a general-purpose kernel and

should have a POSIX API available.

 There must be a wide range of target platforms with

available board-support-packages. In our case we

specifically wanted current and future support for

the Beagleboard range of boards.

 There must be a standard IDE framework, such as

Eclipse. There should be a built-in debugger that

supports multithreading.

 The OS kernel should be capable of being

instrumented so that detailed multitasking

behaviour can be logged. There must be a tool

integral to the IDE that can provide a graphical-

user-interface to represent all multitasking

behaviour on a timeline. There should also be tools

to show detailed memory behaviour and also

application performance profiling. Other tools such

as code-coverage are useful.

 The environment should be as fully integrated as

possible, not built from multiple installs since this

is time-consuming and the resulting environment

could lack cohesion. The appropriate environment

will supply everything within a single IDE.

Additionally, the documentation for the entire

system being in a single environment will also be

very useful.

 Another (major) issue in selecting a new software

environment within an educational environment is

cost. We wish to have low or zero licence cost.

Many of these criteria can be met from open-source toolsets

and some real-time flavours of Linux could be possible

candidates. However, in creating and maintaining a

teaching laboratory it is important to be able to deliver a

highly reliable environment in a short space of time with

the toolset being as fully integrated as possible. It is

important that the usability of the environment be as high as

possible to minimise the possibility of issues that detract

from the student learning experience. Creating development

environments from multiple open-source packages can

often lead to (time-consuming) complications and this led

the authors to look at more fully integrated commercial

offerings. From previous experience we have found that

environments that fully meet the criteria above are made

available from some major RTOS vendor and their

offerings include free educational licences. Two such

vendors include Wind River and QNX Software Systems.

The principal author has good experience of using RTOS

and toolset offerings from both companies and has used the

QNX Neutrino kernel within industrial projects and

industrial taught courses as well as previous undergraduate

teaching. There is a very active community portal

(Foundry27) made available for QNX with helpful and

active forums and many new operating system ports made

freely available. Additionally, students can access a one-

year QNX development license for personal use. All these

factors have influenced the choice of QNX as the chosen

development route.

2.2 Flexibility of Development

Another key aspect is the requirement for flexible

development. There are time-pressures on most student

laboratory accommodation that can limit student access to

development environments and consequently we wish to

support more flexible practices that allow students to work

(off-site) in their own time with as few technical limitations

as possible. Our choice of development routes supports this

and this is explained in section 3.2

3. THE DEVELOPMENT ENVIRONMENT

3.1 Standard Environment

The development environment includes The QNX

Momentics IDE running on a host Windows 7 PC

connected to one or more target development boards via

two connections: 1. Serial (for a basic TTY interface and

access to the target bootstrap messages) and 2. Once the

target is booted then an Ethernet connection is available

delivering a high-speed connection between host and target.

Figure 1 shows the standard development configuration

The Beagleboard target provides peripheral I/O for

coursework applications. For our automotive application we

make use of a DVI interface for an LCD display and utilise

GPIO to interface to a simulated pulse-based vehicle speed

sensor. USB supports an input from a touch-screen or

mouse. To lower the costs we have utilised a standard LCD

monitor and mouse to represent a touch screen. QNX

provides various graphical options; we are using OpenGL®

ES: a royalty-free, cross-platform API for full-function 2D

and 3D graphics on embedded systems [3] that is fully

configured as part of the Beagleboard Board Support

Package (BSP). This in turn supports the Qt presentation

layer.

3.2 Flexible Working Environment

To support students working outside of the laboratory we

provide a loan scheme for the target development boards.

To make best use of the development environment a student

will need to use the Ethernet port on their home machine to

connect to the target board and have access to a spare LCD

display (the display is required only for user-interactive

applications).

In order to deliver an alternative simplified target

environment and provide a high degree of flexibility we

provide a secondary target where students can work without

a physical board but still undertake a significant proportion

of the development work. This is based on a VMWare

QNX Neutrino target image available (x86 target); with

QNX Momentics IDE running under Windows (XP and

Windows 7 have been tested) and students can connect to

the VMWare-hosted target image running QNX Neutrino

kernel on the same PC. The result is a complete host and

target setup running on one PC or laptop, delivering a very

convenient environment for experimentation. This includes

the graphical user interface (GUI) required for the

automotive application. What is not provided by this setup

is exact real-time since it runs under emulation;

additionally, this setup lacks the physical I/O available on

the Beagleboard. However, this option has proved to be an

extremely useful learning environment, with many of the

coursework exercises (that do not depend on exact temporal

issues) being suitable to run under emulation, with no

difference in the student learning experience. Figure 2

shows the virtualised configuration.

Figure 1 – Standard Development Configuration

Figure 2 – Virtualised Development Configuration

4. LABORATORY SCHEDULE

The laboratory sessions are delivered over a twelve-week

period. There are a number of fundamental concepts that

must be assimilated prior to students being able to attempt

the final automotive-flavoured coursework exercise. Within

each laboratory session the students are led through a new

concept (programming and development tools exercise are

delivered) and provided with some demonstration code for

initial experimentation. Students then have to attempt

design, implementation and test of a set of coursework

exercises that they have to complete and submit for the

following week. In order of presentation, the students

undertake exercise with the following themes:

1. Debugging, command-line parsing, spawning processes

under Neutrino, mounting file system.

2. Shell commands and scripting. Introduction to pthreads.

3. Multiple threads, prioritisation, RTOS event tracing and

displaying behaviour, semaphores.

4. POSIX timers and associated data structures.

5. Code modularisation. Use of Mutex.

6. POSIX messaging for thread communication and

synchronisation, ring buffers implementation.

7. Interrupts, shared memory objects, named semaphores,

use of alarm timer functions, signal handling.

8. In weeks 8 to 12 the students undertake the major

coursework exercise based on the automotive

application.

This automotive coursework exercise and key aspects of

implementation are described below.

5. THE AUTOMOTIVE SYSTEM

5.1 System Specification and Interfaces

This exercise is designed to deliver two learning outcomes:

(a) to ensure that students can integrate their understanding

of all the individual learning experiences to design,

implement and test a complete system that includes user-

interaction, and (b) to ensure that students understand the

concept of separation of the application layer and

presentation layer of a system and can undertake

development that follows this pattern.

With this exercise the student is required to deliver a simple

automotive dashboard that has animated graphic displays

for vehicle speed, engine RPM, fuel level and includes a

range of common warning icons. The dashboard provides

user controls for indicators, hazard warning and system

start/stop. These controls would ideally be activated by a

touch-interface but are presently (for economy)

implemented by a mouse interface. A pulse generator

module is interfaced via a Beagleboard GPIO interrupt

signal to provide a realistic simulation of the pulse train

from a hall-effect sensor typically used to monitor wheel

rotational speed. The engine RPM sensor signal is at

present simulated, but could in future be provided in an

identical manner to the wheel speed signals.

The students are given a specification that describes the

main software components of the system and their

application programming interfaces (APIs). The exercise is

specifically designed to ensure that students must utilise all

key concepts that they have learnt about in the introductory

exercises. The students are free to design the system in any

manner that they think is appropriate, based on the

constraints of the specification. An initial Qt graphical

interface is provided for the students; they are responsible

for driving all aspects of the display and can alter its layout

if they wish to. Figure 3 shows a view of the GUI with the

PC
Windows
Host with
QNX
Momentics
IDE

Beagle
target
with QNX
Neutrino

Serial

Ethernet DVI

USB
Mouse

Speed sensor
pulse-train board

PC Host with Windows 7

QNX Momentics
IDE running
under Windows

QNX Neutrino
x86 target
running on
VMWare Player

Graphical
Interface
Window

Virtual Network Interface

warning icons illuminated. This includes a coloured icon on

the fuel gauge that represents fuel-warning levels (green,

amber, red). A working odometer is also included.

The specification enforces the architecture shown in Figure

4 that will form part of the completed system. The

architecture includes three software interfaces. The first two

interfaces are used to drive the GUI: (1) A message-passing

interface that receives discrete events as POSIX messages

from a client process. These events are used by the GUI

component to drive the discrete display elements, such as

the warning icons and indicator displays. (2) A POSIX

shared-memory interface where a client process can set the

current values of continuous variables such as vehicle

speed, RPM and fuel level.

The third interface yields GUI user-events to be used by a

client process. This is implemented by POSIX message

passing. So a user clicking on an active zone on the GUI

will lead to GUI generation of an appropriate message.

The importance of the message passing and shared-memory

interfaces is that they deliver a well-defined, standardised

and narrow interface between the main application layer

and the GUI. This enforces good design practices and also

provides useful debugging points for the code that students

will write to interface with the GUI.

Figure 3 The Graphical User Interface with Warning Icons

and Indicators Above and User Controls Below

Figure 4 Interfaces between GUI and Application Layer

5.2 The GUI component

The GUI is built from the standard pattern that is used with

Qt to interface with C/C++ code. Qt is a platform

independent software toolkit for building UI’s supports

animation of visual objects and is implemented in C++; Qt

interfaces are designed to be efficient and run well on

embedded processors. As described in [4], with version 4.7,

Qt includes a “declarative” language model. Writing a

declarative UI is similar to describing a webpage with

HTML – except the “markup language” for Qt Declarative

is called “QML”. QML describes the type and layout of

GUI objects and their interaction with C++ applications.

Interaction between the QML component and the C++

components is event-driven and uses a concept called

“signals” and “slots”. C++ application programs are

designed to emit these “signals” (with a method call) to

indicate the occurrence of specific events to a QML object

(e.g. activate/hide/move a GUI object). When a QML

application wishes to react to a user interface event (e.g

clicking on an active zone) then appropriate QML code is

written to directly call C++ interface methods called “slots”

to execute appropriate actions when the user interface event

is triggered. Signals and slots provide a well-defined

interface between C++ and QML.

We have utilised this mechanism to build the automotive

GUI component for the students to use in their application

layer. The component is implemented as a QNX process

(built and executed as one program) with three threads.

Figure 5 shows this architecture; threads are notated in a

dark colour.

Figure 5 Automotive GUI Process Detail

 The first thread runs the Qt interface under the

direction of the QML description (this thread is

actually an automatic part of the a C++ programme

built with Qt libraries). [Note: The QML code is

saved as a file on the target file system and used by

the Qt component of the application at run-time].

This thread is also responsible for invoking

appropriate slot code when user-interface events are

activated (clicking on user-interface objects) ; this

code is used to write to the GUI events message-

buffer. Messages posted here are to be serviced by

the application layer that reads the posted POSIX

messages.

A
u

to
m

o
tiv

e
 G

U
I

P
ro

c
e
s
s

POSIX Shared Memory
object for continuous

display elements

POSIX Message Buffer
with discrete control

messages

POSIX Message Buffer
with GUI events for

application

A
p

p
lic

a
tio

n
 L

a
y
e

r w
ith

s
tu

d
e

n
t-w

ritte
n

 p
ro

c
e

s
s
e

s

a
n

d
 th

re
a

d
s

Q
t G

U
I th

re
a

d
 c

o
n

fig
u

re
d

w
ith

 Q
M

L
 d

e
s
c
rip

tio
n

POSIX Shared Memory
object for continuous

display elements

POSIX Message Buffer
with discrete control

messages

POSIX Message Buffer
with GUI events for

application

S
lo

t

T
h

re
a

d

 T
h

re
a
d

S
ig

n
a

ls

S
ig

n
a

ls

 The second thread is used to read from the POSIX

shared-memory (ten times per second) to identify

updates from the application layer requiring display

such as change of vehicle speed, RPM or fuel

level); when there is a significant change in one of

these values then the thread sends an appropriate

signal to be handled by QML, updating the display.

 One final thread wakes up to service POSIX

messages from the application layer with demands

to update discrete elements such as warning

indicators. On receiving a message the thread sends

an appropriate signal to be handled by QML,

updating the discrete elements of the display.

5.3 Application Layer

Students are responsible for designing, implementing and

testing the application layer. The application has to include

at least the following functionality: 1. Servicing a range of

user-interface events and performing the corresponding

control activities. 2. Servicing speed sensor interrupts to

calculate vehicle speed. 3. Simulating fuel consumption

and engine speed in RPM, 4. Sending updates to the GUI to

control continuous and discrete GUI elements, 5.

Maintaining system global-state to coordinate all activities.

The students have full control on whether they structure

their code as one or more processes (a process being a

container for one or more concurrent threads) and within

each process then the number of threads required. They are

encouraged to apply a modular approach to the creation of

individual components and then undertake integration and

final test. They are also encouraged to use the powerful

tools available to analyse and refine the performance of the

system.

6. RESULTS AND DISCUSSION

The module has been delivered to final year undergraduate

students for the first time in the academic session 2013-14.

The learning objectives are tested using formative and

summative assessments. For the first eight weeks the

students participate in the laboratories outlined in section 4

above, comprising set exercises. Students undertake this

work within the laboratory session with support and

individual formative feedback provided by the lab tutor.

The tutor (through class-presentation and group discussion)

remedies/clarifies any issues that manifest during this time

and are common to several students. For each laboratory

there is a summative assessment that is to be submitted for

the start of the laboratory session in the following week.

The lab tutor presents an outline solution for the previous

exercise and then introduces the new laboratory work. The

submitted exercises are assessed and marks and feedback

sheets are returned to students. The sheets include feedback

on technical and stylistic programming issues as well as a

feedback on the quality of program documentation

included.

Following the cycle of eight laboratories there is a four-

week period devoted to the automotive application. Formal

laboratory tutor support is provided during this time and

formative feedback is provided to students as they evolve

their designs. In practice continued support has been both

necessary and valuable since students are assimilating a

number of new concepts and also creating applications that

are executing as multiple processes, each of which could

have several threads. A degree of rigour is required in order

to control the whole development process and tutor support

is of high value at this time.

At the completion of this four-week development the

students are individually assessed by submitted code and

project report plus a demonstration of their system. The

demonstration includes a number of specific tests to ensure

that the completed system meets system functional and

temporal requirements. There is also an oral component to

this assessment so that students have to be able to

demonstrate understanding of any aspect of their code

design.

Success can be gauged in several ways. Firstly, all students

managed to pass the module and the distribution of marks

for the laboratory element of the assessment (50% of the

total module mark is lab work) indicates that the students

have gained a good understanding of the design and

programming practices required for implanting systems

with embedded multitasking software. Secondly, we had

very good feedback from students indicating that they had a

significant new learning experience that also integrated a

number of software and hardware concepts from earlier

taught modules. Students felt that the work extended their

industry-relevant knowledge. Thirdly (and very

significantly) our students are receiving good feedback (at

job interviews) from potential (global) employers who are

using similar techniques and can appreciate the value of

what the students have learned.

5. ACKNOWLEDGMENTS

The authors thank the Computer and Electronic Systems

Engineering students who participated in this class and are

grateful for the support given by Texas Instruments;

particularly the help provided by Djordje Marinkovic (Tl

University Programme Manager).

REFERENCES

[1] “Managing the microprocessor course scope

expansion.”. A Suyyagh, B Nahill, A Courtemanche, E

Kirshin, Z Zilic, Boris Karajica. 2013 IEEE International

Conference onMicroelectronic Systems Education (MSE).

[2] QNX RTOS: http://www.xnx.com

[3]OpenGL® ES https://www.khronos.org/opengles/

[4] “Qt HMI using QML” Tutorial: Creating a QNX UI

with Qt Declarative. Dennis Kelly, QNX Software Systems.

18
th

 May 2011. Available at: http://community.qnx.com

https://www.khronos.org/opengles/

