7,114 research outputs found

    BigraphER: rewriting and analysis engine for bigraphs

    Get PDF
    BigraphER is a suite of open-source tools providing an effi- cient implementation of rewriting, simulation, and visualisation for bigraphs, a universal formalism for modelling interacting systems that evolve in time and space and first introduced by Milner. BigraphER consists of an OCaml library that provides programming interfaces for the manipulation of bigraphs, their constituents and reaction rules, and a command-line tool capable of simulating Bigraphical Reactive Systems (BRSs) and computing their transition systems. Other features are native support for both bigraphs and bigraphs with sharing, stochastic reaction rules, rule priorities, instantiation maps, parameterised controls, predicate checking, graphical output and integration with the probabilistic model checker PRISM

    Modelling Clock Synchronization in the Chess gMAC WSN Protocol

    Get PDF
    We present a detailled timed automata model of the clock synchronization algorithm that is currently being used in a wireless sensor network (WSN) that has been developed by the Dutch company Chess. Using the Uppaal model checker, we establish that in certain cases a static, fully synchronized network may eventually become unsynchronized if the current algorithm is used, even in a setting with infinitesimal clock drifts

    Model checking medium access control for sensor networks

    Get PDF
    We describe verification of S-MAC, a medium access control protocol designed for wireless sensor networks, by means of the PRISM model checker. The S-MAC protocol is built on top of the IEEE 802.11 standard for wireless ad hoc networks and, as such, it uses the same randomised backoff procedure as a means to avoid collision. In order to minimise energy consumption, in S-MAC, nodes are periodically put into a sleep state. Synchronisation of the sleeping schedules is necessary for the nodes to be able to communicate. Intuitively, energy saving obtained through a periodic sleep mechanism will be at the expense of performance. In previous work on S-MAC verification, a combination of analytical techniques and simulation has been used to confirm the correctness of this intuition for a simplified (abstract) version of the protocol in which the initial schedules coordination phase is assumed correct. We show how we have used the PRISM model checker to verify the behaviour of S-MAC and compare it to that of IEEE 802.11

    Hybrid performance modelling of opportunistic networks

    Get PDF
    We demonstrate the modelling of opportunistic networks using the process algebra stochastic HYPE. Network traffic is modelled as continuous flows, contact between nodes in the network is modelled stochastically, and instantaneous decisions are modelled as discrete events. Our model describes a network of stationary video sensors with a mobile ferry which collects data from the sensors and delivers it to the base station. We consider different mobility models and different buffer sizes for the ferries. This case study illustrates the flexibility and expressive power of stochastic HYPE. We also discuss the software that enables us to describe stochastic HYPE models and simulate them.Comment: In Proceedings QAPL 2012, arXiv:1207.055

    Easing the Transition from Inspiration to Implementation: A Rapid Prototyping Platform for Wireless Medium Access Control Protocols

    Get PDF
    Packet broadcast networks are in widespread use in modern wireless communication systems. Medium access control is a key functionality within such technologies. A substantial research effort has been and continues to be invested into the study of existing protocols and the development of new and specialised ones. Academic researchers are restricted in their studies by an absence of suitable wireless MAC protocol development methods. This thesis describes an environment which allows rapid prototyping and evaluation of wireless medium access control protocols. The proposed design flow allows specification of the protocol using the specification and description language (SDL) formal description technique. A tool is presented to convert the SDL protocol description into a C++ model suitable for integration into both simulation and implementation environments. Simulations at various levels of abstraction are shown to be relevant at different stages of protocol design. Environments based on the Cinderella SDL simulator and the ns-2 network simulator have been developed which allow early functional verification, along with detailed and accurate performance analysis of protocols under development. A hardware platform is presented which allows implementation of protocols with flexibility in the hardware/software trade-off. Measurement facilities are integral to the hardware framework, and provide a means for accurate real-world feedback on protocol performance

    Bigraphs with sharing

    Get PDF
    Bigraphical Reactive Systems (BRS) were designed by Milner as a universal formalism for modelling systems that evolve in time, locality, co-locality and connectivity. But the underlying model of location (the place graph) is a forest, which means there is no straightforward representation of locations that can overlap or intersect. This occurs in many domains, for example in wireless signalling, social interactions and audio communications. Here, we define bigraphs with sharing, which solves this problem by an extension of the basic formalism: we define the place graph as a directed acyclic graph, thus allowing a natural representation of overlapping or intersecting locations. We give a complete presentation of the theory of bigraphs with sharing, including a categorical semantics, algebraic properties, and several essential procedures for computation: bigraph with sharing matching, a SAT encoding of matching, and checking a fragment of the logic BiLog. We show that matching is an instance of the NP-complete sub-graph isomorphism problem and our approach based on a SAT encoding is also efficient for standard bigraphs. We give an overview of BigraphER (Bigraph Evaluator & Rewriting), an efficient implementation of bigraphs with sharing that provides manipulation, simulation and visualisation. The matching engine is based on the SAT encoding of the matching algorithm. Examples from the 802.11 CSMA/CA RTS/CTS protocol and a network management support system illustrate the applicability of the new theory
    corecore