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Abstract

Packet broadcast networks are in widespread use in modern wireless commu-
nication systems. Medium access control is a key functionality within such
technologies. A substantial research effort has been and continues to be in-
vested into the study of existing protocols and the development of new and
specialised ones. Academic researchers are restricted in their studies by an
absence of suitable wireless MAC protocol development methods.

This thesis describes an environment which allows rapid prototyping and eval-
uation of wireless medium access control protocols. The proposed design flow
allows specification of the protocol using the specification and description lan-
guage (SDL) formal description technique. A tool is presented to convert the
SDL protocol description into a C++ model suitable for integration into both
simulation and implementation environments.

Simulations at various levels of abstraction are shown to be relevant at different
stages of protocol design. Environments based on the Cinderella SDL simu-
lator and the ns-2 network simulator have been developed which allow early
functional verification, along with detailed and accurate performance analysis
of protocols under development.

A hardware platform is presented which allows implementation of protocols
with flexibility in the hardware/software trade-off. Measurement facilities are
integral to the hardware framework, and provide a means for accurate real-
world feedback on protocol performance.
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Chapter 1

Introduction

The field of Medium Access Control (MAC) protocol design for wireless com-

puter networks is one which has seen dramatic advances in the state of knowl-

edge in its short history. From their beginnings in the ALOHA system [1],

wireless MAC protocols have progressed from simple access control schemes to

complex entities incorporating encryption, forward error correction, and other

facilities.

Wireless Local Area Network (WLAN) and Wireless Personal Area Network

(WPAN) technologies have been areas of significant development. Examples

of these such as IEEE 802.11 [2] (promoted by the Wi-Fi Alliance [3]) and

Bluetooth [4] are ubiquitous, and continually developed to meet the needs of

changing applications and underlying radio technology.

Another area of ongoing development is the application of wireless technologies

to high-bandwidth infrastructure links. Technologies such as IEEE 802.16 [5]

(including profiles promoted by the WiMAX Forum [6]) and HiperMAN [7]

define MAC protocols optimised for providing broadband ‘last-mile’ connec-

tivity. Such protocols require the ability to guarantee a level of service to a

subscriber to allow, for example, reliable Voice over Internet Protocol (VoIP)

services.

Cellular systems have been the major driving force for MAC protocol devel-

1
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opment in recent years. The ever-increasing bandwidth needs of multimedia

handsets have presented challenges for protocol designers and pushed the de-

velopment of power efficient, high performance MAC protocols. Extensions to

the IEEE 802.16 standard provide for mobile nodes and low power operation,

allowing it to be targeted at the cellular market in the form of Mobile WiMAX

[6] and WiBro [8]. The UMTS standard [9] is specifically targeted at this ap-

plication, and with high-throughput extensions such as HSDPA [10] provides

broadband access to the handset.

Handset design has brought about another significant issue for the current gen-

eration of network protocols – the impending convergence of WLAN, WPAN

and Cellular technologies. As products are developed with higher levels of

integration, interference between collocated wireless technologies which share

the same or similar bands of operation will require MAC protocols which are

able to coexist with others to efficiently share the available spectrum [11, 12].

Advances in wireless physical layer technologies are a major driving force for

MAC protocol development. Variants of the IEEE 802.11 protocol have evolved

from the original one megabit per second (Mbps) raw throughput to the coming

IEEE 802.11n which provides 540Mbps. Such progress appears set to continue

across the field with Ultra-Wide Band (UWB) technologies attracting a large

amount of research effort currently.

With developments at the physical layer, new MAC protocols are required to

make efficient use of the bandwidth available. Newly conceived applications

for these technologies, and the ever-increasing demands that they place on the

MAC protocols, also requires constant effort in this area. These factors ensure

that MAC protocol development is currently relevant and will continue to be

well into the future. As such, it is important that design methodologies for

these systems are well understood.
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1.1 MAC Design Process

MAC protocols have unique requirements due to their position in the network

stack. By definition they must interact closely with the physical layer, meaning

strict observance of often-tight timing requirements. A conflicting demand is

brought by increased pressure for low-level functionality to support facilities

such as Quality of Service (QoS) and security.

Modern MAC protocols are complex distributed real-time algorithms, which

are often implemented in embedded systems. They must be reliable and fault-

tolerant. It is generally accepted that systems of this nature benefit greatly

from use of formal methods in the specification stage [13, 14, 15]. However,

formal specification in the design stages is not sufficient to ensure a successful

protocol. Typically various representations are required at different stages of

the design life-cycle. Manual translation between these representations leaves

the process susceptible to human error. Automatic translation alleviates this

problem, but refinement of different representations can lead to inconsistencies

between the various forms. The ideal design flow will allow refinement of an

initial specification through to prototype implementation.

Wireless protocol research is an active field in academia, however a lack of

suitable development frameworks means that the design process is typically

disjointed. Most studies are based around analytical or simulative techniques,

which provide a useful and accessible means of evaluating protocols, but require

care in their use as the factors which may affect the validity of their results

are generally not well understood [16, 17, 18]. Prototype implementation can

enable more thorough evaluation, however a lack of suitable implementation

platforms has kept this approach beyond the reach of the majority of academic

researchers. The development of a consistent design flow from initial specifi-

cation through to implementation would encourage continual development in

this area with use of sound design practices.

Figure 1.1 illustrates the idealised design flow for MAC protocols which has

been developed within the context of this thesis. The flow consists of an it-

erative refinement of both the protocol and an evaluation testbench. This
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Design

Refine

Simulate

Initial 

Specification

Synthesise

EvaluateResults

Implementation

Testbench

Figure 1.1: MAC Protocol Design Cycle

refinement is driven by the results of evaluation of the protocol under develop-

ment against the testbench, and the addition of detail in a progression towards

a final implementation.

Evaluation at any given stage may comprise simulation, emulation, or synthe-

sis to and measurement of an implementation. Different aspects of protocol

operation are targets for evaluation at different stages of the design life-cycle.

For this reason the evaluation testbench must evolve along with the protocol

over the design cycle.

A top-down design methodology is key to this design flow. The top-down

paradigm promotes architectural planning and early emphasis on the interac-

tions between logical blocks – important elements in the design of a robust

protocol. A disadvantage of the traditional top-down method is the inability

to test the design at early stages of the process. Automated translation of early

specifications into simulation models and implementations goes some way to

alleviating this limitation.
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1.2 Statement of Problem

Environments which support a consistent design methodology for wireless

Medium Access Control protocols are not readily available to researchers in

this field. An ideal platform would allow seamless progression from an initial

specification through to a prototype implementation, incorporating evaluation

at all stages of the design lifetime using techniques such as simulation with

appropriate models, and measurement of implementation performance. Ready

access to such a platform would foster research and therefore the accelerated

advancement of knowledge in this area.

The objective set at the outset of the work described in this document was

to develop a framework supporting the idealised design flow for wireless MAC

protocols shown in Figure 1.1, and demonstrate the effectiveness of such an

approach.

As such it is the statement of this thesis that: Rapid development of MAC

protocols requires a common and consistent evaluation framework. A rapid

prototyping method for MAC protocols incorporating such a framework is both

useful and feasible.

1.3 Thesis Outline

This work describes the design of the Waikato Protocol Development Environ-

ment (WPDE) – an environment for the specification, development, simula-

tion, implementation and evaluation of wireless media access control protocols.

A seamless design flow allows the use of a common representation which is re-

fined from specification through to a prototype implementation.

The structure of this thesis is as follows:

In Chapter 2 we discuss the various roles and responsibilities of modern wire-

less medium access control protocols in an effort to understand the range of
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functionality which must be captured within representations of such protocols.

Recent work in the area of MAC protocol design and evaluation is summarised,

and several relevant protocols are presented as the state-of-the-art in this field.

Chapter 3 discusses the benefits of formal methods in the development of

MAC protocols. The Lotos, Estelle, and SDL languages are introduced

and compared in terms of their ability to capture the required functionality,

and the ease of their use. The Specification and Description Language (SDL)

is presented as the Formal Description Technique (FDT) of choice for the

framework presented herein.

Chapter 4 builds toward the definition of generic interfaces for MAC protocols

within the development framework. A set of service primitives are defined

which provide for the functionality typically required by modern MAC pro-

tocols. We define a mapping strategy from an SDL representation of a MAC

protocol onto C++ source code to allow compilation into target simulation

and implementation environments. Finally, a tool is described which imple-

ments the SDL-to-C++ mapping, allowing automatic translation from the

initial specification.

Chapter 5 discusses the evaluation of MAC protocols through simulation. The

advantages and disadvantages of simulation at various levels of abstraction are

discussed, and a system allowing simulation of MAC protocols implemented

within the framework described in Chapter 4 is presented. This environment

allows simulation at varying levels of detail, and supports realistic traffic and

channel models.

Chapter 6 describes a platform which allows implementation of developed pro-

tocols. The environment consists of custom hardware, embedded software,

host drivers and tools. A modular design allows rapid and automated im-

plementation of protocols to provide for effective evaluation with real-world

applications.

Chapter 7 discusses the evaluation of protocols through measurement. It

presents a case for the integration of measurement capabilities into the hard-

ware platform, but discusses the implementation challenges that this presents.
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It also discusses the need for achieving a large degree of accuracy in timing

and the hardware support necessary for this to happen. A hardware and soft-

ware framework is described which allows in-system measurement of protocols

operating within the implementation platform specified in Chapter 6.

Finally, Chapter 8 summarises and draws conclusions from this work.





Chapter 2

Background

The field of wireless computer networking has progressed a great deal since

its origins in the ALOHA system [1] developed at the University of Hawaii

in the late 1960s. The ALOHA network used two 24 kilo-baud Ultra-High

Frequency (UHF) radio channels to provide connectivity between a central

node and outlying stations. The shared up-link provided the first example of

a packet broadcast channel for computer communication, and the techniques

applied by Abramson et al. laid the foundation for such successful protocols

as Ethernet (IEEE 802.3) and Wi-Fi (IEEE 802.11).

Packet broadcast systems such as these provide a good solution for networks

carrying bursty traffic – that is traffic which has a high ratio of peak to aver-

age data rates [19]. Such systems take advantage of the law of large numbers,

which infers that the demand for the shared medium at a given instant will

likely be similar to the average demand across all stations participating in the

network. Clearly there are instants when demand will exceed resource avail-

ability, and it is the key role of the Medium Access Control (MAC) to facilitate

fair and efficient use of the medium in this case. This functionality is typi-

cally considered to be encapsulated by the MAC sub-layer within the common

Open Systems Interconnect (OSI) layered reference model for network systems

defined by the International Organization for Standardization (ISO). The re-

lationship between this model and the Transmission Control Protocol (TCP),

9
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Figure 2.1: OSI, TCP/IP, Ethernet and 802.11 Layered Models

Internet Protocol (IP), Ethernet, and IEEE 802.11 systems is illustrated in

Figure 2.1.

The role of the MAC sub-layer in controlling the physical layer brings inter-

actions which break the traditional layered model for network systems. MAC

techniques, such as Carrier Sense Multiple Access (CSMA), Time Division

Multiple Access (TDMA), Code Division Multiple Access (CDMA) and Fre-

quency Division Multiple Access (FDMA), all have distinct requirements in

terms of physical layer parameters which must be controlled on a real-time ba-

sis. Rapid advances in technology at the physical layer drive the development

of new protocols to efficiently make use of the raw bandwidth available.

Concurrently, higher layers of the network stack are forcing more complex-

ity into the MAC sub-layer. Trends toward network applications with higher

bandwidth needs, and specific service parameter requirements, coupled with

the performance mismatch in recent years between state-of-the-art wired and

wireless technologies has led to the application of QoS techniques to wireless

networks in an effort to maximise user experience for interactive applications.

Effective provision of QoS requires support at the data-link layer and specif-

ically within the MAC sub-layer. Similarly, security features such as authen-
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tication and privacy also require mechanisms at this level. Although its key

role is to share the medium between participating stations, the modern MAC

protocol is increasingly taking responsibility for a larger set of diverse and

complex tasks.

Given the complexities of the MAC sub-layer and its integral role in the net-

work stack, it is no surprise that much research effort is spent in this field.

Various approaches to practical protocol research are possible, but all are cen-

tred around the evaluation of some aspect of protocol operation through one or

more of simulation, emulation, or measurement of an implementation. Simula-

tion provides the basis of most studies with its low cost and inherent flexibility,

however an appropriate level of detail in the simulation models is required to

achieve valid results in a timely fashion. Insufficient detail in simulation mod-

els can result in inaccurate or misleading results. Unfortunately, an increase

in detail generally leads to an increase in simulation run-time and resource

utilisation. In particular it is necessary to use appropriate transport layer and

traffic models for the intended application when evaluating lower layers of the

network stack.

A number of simulators have been developed for network research. OMNeT++

[20] has a powerful simulation engine coupled with a good graphical interface

making it appropriate for use in education, academic research and industry.

GloMoSim [21] is an environment designed to enable detailed simulation of

large scale communication networks through use of parallel execution tech-

niques. GTNetS [22] further optimises simulation for very large scale topolo-

gies. The most common simulator used in network research [22, 23], however,

is the ns-2 simulator [24, 25, 26].

The open-source ns-2 simulator uses a combination of Object-oriented Tool

Command Language (OTcl) and C++ to provide ready reconfiguration of

the simulated network, and high performance for processor intensive aspects

respectively. It incorporates models at varying levels of abstraction, allow-

ing both high-performance abstract simulations as well as more detailed but

correspondingly processor intensive ones. Realistic transport protocol models

are provided including numerous variants of TCP, and the User Datagram
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Protocol (UDP). Application models include constant and variable bit-rate

traffic generators, Telnet, File Transfer Protocol (FTP), and Hypertext Trans-

fer Protocol (HTTP) Server, Client and Caches. Various queue management

algorithms are supported, and packets can be marked with QoS information

allowing evaluation of QoS-aware protocols. Broch et al. [27] have extended

ns-2 to include implementations of various multi-hop wireless ad hoc rout-

ing protocols. The same work has provided support for simulation of wireless

nodes including node mobility, and wireless physical layer characteristics like

propagation delay, signal capture, and carrier sense. These features are tightly

coupled with an IEEE 802.11 Distributed Coordination Function (DCF) pro-

tocol model.

Simulation techniques have been widely applied for evaluation both of existing

protocols and proposed extensions. Subramanian et al. [28] use ns-2 to inves-

tigate the effect of 802.11b transmission errors caused by an active interferer

on TCP performance. They propose reconsideration of some aspects of 802.11

rate-adaptation approaches, and modifications to the TCP algorithm to im-

prove performance in such links. Holland et al. [29] modify ns-2 with enhanced

channel models to support their investigation into rate adaptation techniques

which culminates in the proposal of a receiver-based rate adaptation extension

to the 802.11 protocol. Fullmer and Garcia-Luna-Aceves [30] use simulation to

analyse the performance of Floor Acquisition Multiple Access (FAMA) proto-

cols in networks containing hidden nodes. Korakis et al. [31] propose a MAC

protocol for use with steerable directional antenna. They evaluate their system

using a custom simulation environment which provides simplistic channel and

traffic models.

After simulation in the design lifetime of a process, emulation typically pro-

vides the next level of accuracy by allowing the introduction of real network

traffic into a simulated network subsystem. This approach maintains the flexi-

bility of simulation, but may require significant processing resources. The ns-2

simulator supports network emulation through a special simulation scheduler

which tracks real-time, and simulation objects which allow capture and gener-

ation of live network traffic. A Berkeley Software Distribution (BSD) Packet

Filter [32] interface allows selective capture of live network traffic and insertion
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into the simulation. Similarly, traffic can be injected into the live network from

a special simulation entity which makes use of the UNIX raw socket interface.

Emulation only provides an advantage over a corresponding simulation in the

case where the simulation traffic models are lacking in some aspect of detail

which has effect on the investigation. This advantage aside, using emulation

may impose restrictions on the size of the network to be emulated due to the

hardware requirements; any chance of the process completing in less than real-

time is also lost; and the processor overhead associated with emulation may

affect the validity of the model. Though few studies utilising emulation are

evident in the literature, it is still regarded as a useful tool for validation of

simulation traffic models and for use in situations where appropriate traffic

models do not exist.

Understanding of the relevance of detail in simulation and emulation models

comes about through measurement of protocol implementations in real-world

scenarios [18], and by definition this is also the most accurate form of evalua-

tion for a protocol under development. By providing for implementation and

measurement of a protocol under development in a representative environment

the researcher can have a higher degree of confidence in the validity of eval-

uation results. Despite these reasons, and the known limitations of existing

wireless simulation models [33], limited use of measurement is apparent in the

literature.

Several studies have focused on link errors in 802.11 networks. Researchers

in the MIT Roofnet project investigated packet loss rates within their testbed

802.11b network [34]. Their experiment involved transmitting 802.11 broad-

cast packets from one node on an idle network, and recording the received

packets, along with their signal-strength indications as reported by the net-

work card at destination nodes. Packet transmission and reception times were

also recorded, and the data was used to draw conclusions on the character-

istics of the wireless link. A drawback of this approach is that packet loss

and corruption are indistinguishable. Further, no information on the nature

of bit errors within a packet was recorded. A similar methodology is used

in work described by Chebrolu et al. [35], with a modified driver providing
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packet reception parameters, including detail on success or failure of the Cyclic

Redundancy Check (CRC) check. This work provides insight into the error

characteristics of long distance 802.11b links.

Similarly, Gross and Willig [36] performed more detailed measurements of

802.11b link error characteristics using a MAC-less radio module. They used

two nodes – one transmitting a known series of packets, and the other capturing

all received data. Comparison of the original and received packet data provided

an indication of transmission errors, from which conclusions were drawn. The

same technique was applied in a different Radio Frequency (RF) environment

in [37].

The limited use of implementation and measurement based studies in wireless

protocol research can be explained by the scarcity of suitable development plat-

forms. Though much research has focused on MAC protocol development, rel-

atively few attempts have been made to provide environments supporting such

research. Ganz et al. [38] propose a development environment whereby an off-

the-shelf 802.11 Network Interface Card (NIC) is loaded with custom firmware,

and the MAC is implemented on the host at the driver level. The MAC devel-

oper utilises an Application Programming Interface (API) which provides basic

timer functionality and the ability to transmit and receive packets. A similar

approach uses standard 802.11 hardware and implements MAC functionality

in the device driver with each Physical layer Service Data Unit (PSDU) car-

ried in an 802.11 broadcast packet. This approach is common in the literature

[39, 40], and is further enabled by the Multi-band Atheros Driver for Wi-

Fi (MADWIFI) [41]. The MADWIFI project provides an open-source driver

which allows a large degree of control in off-the-shelf Atheros based wireless

NICs. Several projects have used this as a platform for wireless MAC protocol

research [42, 43, 44, 45, 46].

These approaches lead to ease of implementation, but latency across the host

interface restricts the ability to meet the tight timing constraints generally in-

volved in MAC protocols. Firmware implementation is generally not possible

for the academic researcher due to commercial sensitivity around wireless net-

work hardware, and the resultant reluctance of device manufacturers to release
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firmware APIs and embedded development tool-chains. Further, in commer-

cial designs fixed hardware often implements key protocol features – meaning

that these are likely to be inflexible even if the API were to be available.

The TUTWLAN project [47] has developed a wireless network architecture

for use in providing connectivity for multimedia applications between a base

station and multiple portable terminals. A medium access control protocol

known as TUTMAC provides TDMA to the channel. A large focus of this work

has been the development of QoS facilities and mechanisms for the wireless

network, however it is the underlying development platform that has particular

relevance to this thesis.

The design flow used for the TUTMAC protocol consists of protocol specifica-

tion in SDL, and translation – using the commercial Telelogic TAU suite – to

C source code for porting to the implementation platform [48]. The described

performance simulation is primarily targeted at maximising implementation

efficiency, using simple traffic models in the SDL environment.

The implementation platform described [49, 50] consists of an off-the-shelf

IEEE 802.11 compatible MAC-less radio card, interfaced with a custom MAC

module to a Windows NT Personal Computer (PC). The MAC module con-

tains a Digital Signal Processor (DSP) which implements MAC functionality,

along with an Field Programmable Gate Array (FPGA) which provides the

host-MAC and MAC-radio interfaces. Appropriate hardware/software parti-

tioning of the MAC is achieved through implementation of time-critical MAC

functions in VHSIC Hardware Description Language (VHDL), while more com-

plex functionality remains within the DSP.

The TUTWLAN development platform provides an excellent basis for a rapid

prototyping system for wireless MAC protocols. The design flow allows for an

iterative refinement from an initial specification through to a protocol imple-

mentation. However, other research such as that described by Heidemann et

al. [51], illustrates the importance of achieving an appropriate level of detail

in protocol evaluation. Too little detail can potentially give invalid simulation

results, however the trade-off is that increasing detail adds complexity and
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therefore required processing power. Transport protocols in particular are es-

pecially susceptible to MAC characteristics in a wireless environment [16, 52],

so it is vital that care is taken in the evaluation of designed protocols. It is

also obvious that mobility of nodes has impact on dynamic routing protocols

at the network layer [53, 54].

It is not sufficient solely to provide suitable higher-layer models. The wireless

physical layer has unique characteristics which can significantly affect MAC

operation. Hence it is important that this aspect is given due respect in simu-

lation. Ideally a development environment will allow realistic simulation early

in the design lifetime. This allows the significance of design decisions to be

objectively assessed before too much time is invested in what may be a poor

solution to the given problem.

Although the hardware architecture of TUTWLAN is suitable for basic evalu-

ation of wireless protocols, its form-factor restricts its use in real implementa-

tion scenarios. An implementation platform suited to use in mobile nodes and

nodes with potentially restricted accessibility would facilitate a more thorough

evaluation of a developing protocol.

Kotz et al. [17] suggest several ways in which the Mobile Ad-hoc Network re-

search community can improve the quality and therefore productivity of their

wireless protocol research. Among other things they encourage: use of consis-

tent code between simulation and implementation allowing direct comparison

of the results; use of appropriate models for the wireless physical layer in the

target application; and flexible development environments that allow explo-

ration of the effect of model parameters on design performance. The ideal

wireless protocol development platform will provide a design and evaluation

environment which meets these needs from specification through to implemen-

tation.

2.1 Modern Data-Link Protocols

Tanenbaum [55] defines the roles of the data-link layer as to:
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• Provide a well-defined service interface to the network layer.

• Deal with transmission errors.

• Regulate the flow of data so that slow receivers are not swamped by fast

senders.

This definition matches well with reality in a wired context, however the case of

the wireless data-link layer is much more complicated. Regardless of physical

layer, the principle service provided by the data-link layer is, of course, the

transfer of data from the network layer on the source to the network layer on

the destination machine. Error control is particularly applicable in a wireless

network, as is data flow control. However two other roles can be added to the

above list in the wireless case:

• Control of the physical layer to ensure optimum service as visible at the

interface to the network layer.

• Support enhanced features as required by higher layers such as...

– QoS: Bandwidth reservation, Traffic prioritisation

– Security: Authentication, Privacy

– Mobility: Handover between Access Points (APs)

To further clarify the roles of the data-link layer it is useful to consider in more

detail the roles of the adjacent layers in the OSI protocol stack: the physical

and network layers.

The Physical Layer

The key role of the Physical Layer (PHY) is to abstract signalling specific detail

from a technology, and provide a bit delivery service to higher layers. This layer

may also provide some framing to provide a basic packet broadcast service, as

in the case of the IEEE 802.11 Physical Layer Convergence Protocol (PLCP).

It is within the scope of the physical layer to provide some means of tolerance

to channel errors – for example redundancy in symbol encoding. However,
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there is generally no fixed requirement for the maintenance of a certain bit or

packet error rate.

The interface between the physical and data-link layers may be quite complex.

The MAC sub-layer is often designed to take advantage of – and therefore re-

quired to control – specific physical layer behaviours such as frequency hopping,

spreading codes used in CDMA protocols, or any number of other parameters.

This control may be required on a per-packet or even sub-packet scale, meaning

that synchronisation of timing between MAC and PHY is essential.

The Network Layer

The network layer provides end-to-end delivery of packets. It relies on the data-

link layer providing a semi-reliable host-to-host packet transfer service, and

expands on this by providing for routing and fragmentation of packets. The

most common example of a network layer protocol is the ubiquitous Internet

Protocol (IP). There is no requirement that the network layer provide a reliable

service. For example, IP provides what is termed as a ‘best effort’ packet

delivery service, with error detection information applied only to the packet

header. Duplicate or out-of-order packets are possible, as is data corruption.

The typical interface between the network and data link layers is similar to

the physical layer interface previously discussed. The primary function of this

interface is to facilitate the transfer of IP datagrams between peer TCP/IP

stacks. Features such as QoS also require interaction between these layers,

however current implementations of this typically involve operating system

supplicants which manage this functionality.

In order to understand the facilities required of a wireless protocol development

framework it is beneficial to consider existing relevant protocols. Three mod-

ern wireless protocols are considered below, with applications in Local Area

Network (LAN), Personal Area Network (PAN), Metropolitan Area Network

(MAN), and cellular network topologies. These are selected to be representa-

tive of the types of protocol that are of interest to most current researchers in

this field. Each protocol is introduced, and set in the context of its typical ap-

plication domain. The core medium access control method is discussed, along
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with techniques used for error and flow control at the MAC layer. Advanced

features supported by the MAC such as QoS and security are discussed. The

procedures which govern the operation of the protocol are also covered. Fi-

nally, focus is given to aspects which have onerous timing requirements that

may require hardware support.

2.1.1 IEEE 802.11

The IEEE 802.11 standard [2] defines the most common WLAN currently in

use1. This technology applies packet broadcast radio to the licence-exempt

Industrial, Scientific and Medical (ISM) frequency bands, to provide rela-

tively low cost, and increasingly high bandwidth network communication.

The initial physical layers defined were an infrared specification, along with

Frequency Hopping Spread Spectrum (FHSS) and Direct Sequence Spread

Spectrum (DSSS) radios. Only the DSSS physical layer was widely imple-

mented, providing raw bandwidth of up to 2Mbps. Later amendments to the

protocol have provided for bandwidths of 11Mbps [56], and 54Mbps (also sup-

porting the 5GHz ISM band) [57, 58, 59]. The forthcoming 802.11n, expected

in March 2009, will use Multiple Input, Multiple Output (MIMO) techniques

to provide rates up to 540Mbps.

The core 802.11 protocol uses the Carrier Sense Multiple Access with Colli-

sion Avoidance (CSMA/CA) medium access control method. When a station

wishes to transmit, it first senses the channel for a period to determine if any

other transmission is in progress. This carrier sense may be performed using

an in-band Received Signal Strength Indication (RSSI) or carrier acquisition.

If the medium is determined to be idle, then the transmission may begin. If

the medium is busy when sensed, then the station begins its back-off proce-

dure. The 802.11 back-off procedure requires that the station select a random

back-off time up to the size of its contention window, and then wait until the

medium has been (cumulatively) idle for that period of time before attempt-

1IEEE 802.11 technology is often referred to as Wi-Fi, however this term is more correctly

used in reference to 802.11-based equipment which has passed interoperability tests specified

by the Wi-Fi Alliance, and is therefore Wi-Fi Certified.
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ing to transmit again. The contention window is set to a minimum value after

each successful (acknowledged) transmission, and is doubled in size (up to a

maximum) after each unsuccessful attempt. As well as the physical carrier

sense, 802.11 also incorporates a virtual carrier sense mechanism. Frames can

contain a duration field which informs listening stations of the reservation of

the medium for the period of the transaction. Request to Send (RTS)/Clear to

Send (CTS) exchanges attempt to address the hidden node problem [60, 61],

and provide for floor acquisition to reduce the potential impact of collision for

larger frames.

All directed frames that are received successfully must be immediately posi-

tively acknowledged by the receiving station. If the initiating station does not

receive an acknowledgement within a certain period from transmission, then it

will consider the transmission unsuccessful and will retry up to a certain num-

ber of times. Transmissions of certain frames such as Acknowledgement (ACK)

and CTS are not required to follow the normal CSMA rules. Instead contention

is avoided by requiring these frames be transmitted after a fixed duration,

known as the Small Inter-Frame Space (SIFS), from the last received symbol

of the prior packet. Successful reception of a frame is verified using a 32-bit

IEEE CRC which is calculated over, and appended to, each frame transmit-

ted. To meet the SIFS turnaround, hardware support for CRC verification

is generally required. The CRC computation process can generally share this

hardware, significantly reducing the burden on the MAC processor.

A set of communicating 802.11 stations is referred to as a Basic Service Set

(BSS). Two specific network configurations are possible: an Independent Basic

Service Set (IBSS) denotes a set of stations which communicate directly in what

is often called an ad hoc network ; alternatively, an Extended Service Set (ESS)

consists of one or more stations, and an Access Point (AP) which provides a

bridge between the wireless network and the Distribution Service (DS) which is

typically (but not necessarily) a wired network1. Within an ESS configuration,

each station must perform authentication and association procedures with the

access point before communication may begin. Several authentication methods

1The specification is ambiguous regarding the correct use of the terms BSS and ESS. The

convention taken here reflects the typical use of these terms within the 802.11 community
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are specified using multi-stage transactions to reach the authenticated state.

Once authenticated, a station may associate to the access point using a simple

handshake, and begin exchanging data. Low power modes are supported where

stations arrange to be awake only at specific times to exchange data with other

network participants. These periods are marked by frames called beacons

which are sent by the access point in an ESS.

Several other amendments provide features which contribute to the effective-

ness of systems built on 802.11 technology. QoS facilities are defined in 802.11e

[62], with provision for prioritisation of certain classes of traffic, admission con-

trol to QoS data streams, optimised frame exchange sequences, and improved

power management facilities such as Automatic Power-Save Delivery (APSD).

Security features are defined by 802.11i [63], which makes use of the Ad-

vanced Encryption Standard (AES) cipher to provide message confidentiality,

integrity, and source authentication. Both 802.11e and 802.11i involve signifi-

cant changes within the MAC sub-layer, including addition of information ele-

ments within MAC management frames. In particular, 802.11e makes changes

to the collision avoidance back-off algorithm to prioritise certain classes of

traffic. The QoS extensions defined in 802.11e provide differentiated services

through different size Inter-Frame Space (IFS) and contention windows for dif-

ferent classes of traffic. An optional feature allows block acknowledgement of

multiple directed frames. This will typically require modifications to the hard-

ware prescribed above. The security features defined by the original 802.11

standard and the 802.11i amendment provide for encryption of frame payloads

using various encryption techniques. Although software implementations of

these features are possible, performance is likely to be severely affected unless

dedicated hardware support is provided.

2.1.2 Bluetooth

Bluetooth [4] is an example of a WPAN. Its key attributes are an extremely

low power consumption, excellent interoperability between products (enforced

by a robust product qualification process), and low cost per node. The pre-

dominant use of the technology is in cable-replacement, with major applica-
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tions including connectivity between mobile phone and headset, and Personal

Digital Assistant (PDA) synchronisation. Bluetooth utilises the 2.4GHz ISM

frequency band through an FHSS physical layer using Gaussian Frequency-

Shift Keying (GFSK) to provide a nominal serialisation rate of 1Mbps. The

Enhanced Data Rate (EDR) extensions to the protocol add the use of Phase

Shift Keying (PSK) modulations to provide 2 and 3Mbps rates.

Bluetooth uses a TDMA method to share the medium between devices. The

simplest Bluetooth network configuration is called a piconet. A piconet con-

sists of exactly one device which is designated as the master, and one or more

devices which are designated slaves. In a Bluetooth piconet, time is divided

into slots of length 625µs. Piconet timing is maintained by the master, and

all transmissions within the piconet must be aligned to the start of a slot.

Master transmissions must start in an even-numbered slot, while slave trans-

missions must start in an odd-numbered slot. Various packet types are defined,

with maximum durations of one, three and five slots. Slave devices may only

transmit when addressed by the master. An exception to this rule is when a

logical synchronous connection has been established such that certain slots are

reserved for the up-link data transfer. The Bluetooth Synchronous Connection-

Oriented (SCO) logical transport provides for reservation of slots for a given

connection. This is the approach used to provide a level of quality of service to

allow voice connections with fixed bandwidth and low latency. On the physi-

cal layer, transmissions follow a pseudo-random frequency hop sequence that is

specific to the piconet master’s device address, and the slot clock. This method

ensures that multiple piconets may coexist without significant degradation of

performance.

For each packet header an 8-bit Header Error Check (HEC) is provided to

protect its integrity. The error control scheme (if any) applied to the packet

payload depends on the packet type. In the case of SCO traffic, no MAC-

layer error control is provided over the packet payload reflecting the relative

insignificance of minor data-loss caused by random interference – a possibly

audible blip in the speech. In contrast, Extended Synchronous Connection-

Oriented (eSCO) packets use a 16-bit CRC over the packet payload, and an

Automatic Repeat Request (ARQ) scheme for error recovery.
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The Bluetooth Link Manager (LM) is responsible for controlling all aspects of

the connection between two devices. The Link Manager Protocol (LMP) mes-

sages are carried using the Asynchronous Connection-Oriented (ACL) logical

transport. Procedures such as connection establishment, authentication, and

negotiation of low power modes all fall into the domain of the link manager.

Like 802.11 the Bluetooth low power modes are based around an arrangement

to awake at a certain time to exchange data. Data privacy is also provided at

the link manager level, allowing the encryption of packet payloads.

Bluetooth has a much lower performance than the other protocols discussed

here and so can typically be less reliant on dedicated hardware assistance. It

does, however, have strict requirements around the timing of transmissions at

slot boundaries. The specification dictates a clock drift of no more than 20ppm

relative to the 625µs slot. Instantaneous timing may vary no more than 1µs

from average, and at the receiving station a receive window of 10µs either side

of the expected slot boundary is employed to provide tolerance for clock drift.

In the final slot of a Bluetooth packet transmission, only 366µs of the slot is

allowed to be used, leaving 249µs (625µs slot - 366µs activity - 10µs receive

window) to allow transition of the radio between transmit and receive modes,

and channel change to support the Bluetooth frequency hopping.

2.1.3 IEEE 802.16

The IEEE 802.16 [5] protocol is optimised for providing ‘last-mile’ wireless

broadband access to relatively immobile subscriber stations. The Worldwide

Interoperability for Microwave Access (WiMAX) Forum [6] is the primary

promoter of this technology, and defines interoperability certification profiles

much like the Wi-Fi Alliance does for IEEE 802.11. While 802.16 (certified

as WiMAX) is targeted at fixed broadband access, the 802.16e amendment

[64] extends the application of the protocol to mobile terminals. Growing

technologies such as Mobile WiMAX and WiBro are based on the IEEE 802.16e

standard. A range of physical layers are defined by the 802.16 standards for

operation in the 2-11GHz or 10-66GHz using either Frequency Division Duplex

(FDD) or Time Division Duplex (TDD) to support data-rates of up to 70Mbps.
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Current certification profiles for Mobile WiMAX [65] specify the use of TDD

in a range of bands from 2.3GHz to 3.8GHz.

The core MAC protocol uses a TDMA method controlled by the Base Station

(BS) to share the medium between stations. Every fixed-length frame duration

(5 milliseconds in Mobile WiMAX), the base station broadcasts a down-link

sub-frame which includes the schedule of reservations for the remainder of

that frame, and down-link data directed to the subscriber (or mobile) sta-

tions. The up-link phase follows, with stations able to transmit within their

allocated reservations. Reservations are controlled by the base station, and

can be dynamically adapted to suit the requirements of traffic. A CRC is

appended to each MAC Protocol Data Unit (MPDU) to allow integrity verifi-

cation, and an ARQ mechanism provides retransmission. As with Bluetooth,

hardware support is required to enable the timing demands of the 802.16 TDD

MAC protocol to be met. Other timings enforced by the specification are less

onerous than the previously discussed protocols, though hardware assistance

can significantly improve the performance of an implementation.

The 802.16e amendment defines mechanisms to support operations critical for

mobile operations such as hand-off of stations between base stations, and low

power modes. These mechanisms are implemented by state machines which

communicate using messages passed through the MPDU delivery service. A

security sub-layer provides authentication and encryption services for 802.16

stations. Authentication allows control of station access to network resources,

and encryption provides a degree of privacy for packet payloads.

All data exchanged over an 802.16 link is associated with a connection, which

defines a unidirectional flow of data between an 802.16 Base Station (BS) and a

Subscriber Station (SS) (or Mobile Station (MS) in the case of 802.16e or Mo-

bile WiMAX). Each connection may have specific service parameters, and the

BS may alter scheduling to meet QoS requirements. Stations may request more

bandwidth for a connection using either an existing reservation, or one which

is specifically used for contention-based requests. Security features of 802.16

are similar in structure to those of 802.11 - as with that protocol, dedicated

hardware is not necessary, but highly desirable for acceptable performance.
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2.2 Implications for the Design Environment

Though the protocols discussed above seem quite distinct at first glance, it can

be seen that they draw on a similar set of mechanisms to provide services tai-

lored to their respective application areas. These common factors will provide

some guidance in the design of a development framework.

All three protocols provide what can be considered as a packet delivery service

between peer MAC sub-layers. Each makes use of some form of error control

code such as a CRC, which is computed across some portion of the transmitted

packet. Similarly, the encryption facilities require the processing of packet

data. ARQ protocols are employed in all three examples primarily to increase

link reliability.

Each protocol has aspects which require precise timing of activity: IEEE 802.11

must schedule acknowledgement packets for a SIFS duration after reception of

a directed packet; Bluetooth requires synchronisation of transmissions to the

slot boundary; and IEEE 802.16 requires transmission at the instant specified

by the base station. These features require a development framework which

provides the ability to build protocol mechanisms with highly deterministic

timing.

Slow (relative to physical-layer symbol timing) internal state machines provide

the network control associated with each protocol, including procedures for the

forming and breaking of associations or connections, and management of low-

power states. Internal timers provide an important supporting role in these

mechanisms and must be provided for in a development platform.
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Representation

It is necessary to choose a design representation for use in initial specification

of protocols within the development framework. The suitable representation

will not only allow capture of the range of protocol functionalities identified in

Chapter 2, but will also support the idealised design flow discussed in Chapter

1. By providing for a methodical design flow the quality of the design output is

increased [66]. A key factor in this is allowing a top-down design approach [67]

involving successive refinement of the representation. Design modularity will

improve tracking of errors and allow complexity management for large specifi-

cations. The chosen representation will preferably enable rapid exploration of

the various design alternatives which may potentially fit the requirements of a

given initial specification.

The ability to efficiently and effectively describe the functionality that typi-

cally comprises the MAC sub-layer is an essential attribute in the candidate

representations. As identified in Chapter 2, the range of functionalities present

in such subsystems is quite diverse. It is possible, however to generalise typical

MAC operations into the following categories:

• Slow (relative to system clock) internal communicating state machines.

• Timer manipulation.

27
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• Communication with the host and the radio.

• Data transfer (generally trying to minimise copy).

• Short bursts of intense computation – e.g. for error control, or encryp-

tion.

• Activities with strict real-time requirements.

Representation of the different aspects of functionality is best achieved in a

variety of ways. Graphical design techniques are extremely effective for the

description of state machines and relatively simple algorithms. Design repre-

sentations such as flow-charts and state transition diagrams allow design and

visual analysis of these elements in a ‘user-friendly’ form.

wait_cts

idle

mac_unitdata_request/rts
wait_ack

cts/data

ack/mac_unitdata_confirm

void state_machine(int input)

{

  static int state = STATE_IDLE;

  switch(state)

  {

    case STATE_IDLE:

      if (input == SIGNAL_MAC_UNITDATA_REQUEST)

      {

        output(SIGNAL_RTS);

        state = STATE_WAIT_CTS;

        break;

      }

      break;

    case STATE_WAIT_CTS:

      if (input == SIGNAL_CTS)

      {

        output(SIGNAL_DATA);

        state = STATE_WAIT_ACK;

        break;

      }

      break;

    case STATE_WAIT_ACK:

      if (input == SIGNAL_ACK)

      {

        output(SIGNAL_MAC_UNITDATA_CONFIRM);

        state = STATE_IDLE;

        break;

      }

      break;

  }

}

Figure 3.1: Graphical and Textual State Machine Representations

Figure 3.1 shows the Mealy machine state transition diagram [68] for the trans-

mit sequence of a simple RTS/CTS-based protocol, along with an equivalent

description coded in C. It can be seen from this example that the graphical

representation not only conveys all information necessary for understanding of
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the machine, but also presents it in a form which allows the viewer to quickly

grasp the essence of the problem rather than grappling with the syntax and

verbosity of a textual language.

Graphical techniques maintain some relevance when applied to algorithmic op-

erations, though as complexity increases the representation can become quite

cumbersome. Simple algorithmic operations are often best represented in a

textual form, as illustrated by the example checksum computation in Figure

3.2.

index := 0

index = len

sum := sum + 

data[index]

index := index + 1

FALSE

TRUE

sum := 0

checksum(data, len)

sum

uint16 checksum(char *frame, int len)

{

  uint16 sum = 0;

  while (--len)

    sum = sum + frame[len];

  return sum;

}

Figure 3.2: Textual and Graphical Implementations of a Checksum

These different methods of representation also have varying levels of relevance

at different stages of the design process. Initial design of a protocol typically

involves specification of the state machines which define its basic operation. As

the process progresses, focus shifts to adding detail such as Protocol Data Unit

(PDU) format, timing, and specific algorithms for aspects such as error control,

security services, or even optimisation of naively implemented functionality.

A MAC protocol is a real-time distributed algorithm, whose fundamental role

is to control access to the communication channel. Much research has been
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directed into the more general area of distributed algorithm design. It is well

known in this field of research that the use of formal methods in the design

of such systems results in significantly higher quality software [13, 14, 15, 69].

Techniques such as Unified Modelling Language (UML), state-charts and Z,

have been proposed as means of migrating from user requirements specification

towards an implementation. Such techniques often have a formal mathematical

foundation, which allows verification of the correctness and completeness of a

specification.

These methods have significant relevance to the challenges presented by MAC

protocol design. The often-strict timing requirements of MAC protocols mean

they are commonly implemented at a low level – in hardware, firmware, or

embedded software and have a significantly longer design cycle than typical

software applications [70]. For this reason, any process which may reduce

the number of iterations of the cycle is justified. In addition, MAC protocols

can have reliability requirements equalling or exceeding those of life-support

application software. Use of formal description techniques has the potential to

reduce the number of design-cycle iterations required, as well as increase the

reliability of the designed protocol.

Despite the benefits of formal methods in protocol design being well-known in

academia, uptake in industry has been relatively slow [13]. Even in academia,

a minority of research efforts in the field of wireless MAC protocols has made

use of formal methods. This is due in a large part to the lack of proven

tools and design flows that would make productivity increase apparent. For

this reason it is desirable to support a given design flow from an abstract

specification through to an implementation with a large degree of automation.

The ultimate goal for the design flow is to provide the protocol designer with a

progressive modelling process, from the abstract towards implementation. We

discuss several Formal Description Techniques (FDTs) in Section 3.2, but first

introduce a protocol which is used as a common example.
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3.1 The PTPMAC Protocol

To demonstrate the effectiveness of the framework described within this thesis,

we use a case study of an example protocol design process. This protocol

is rather unimaginatively named the Point-To-Point Medium Access Control

protocol – PTPMAC. The PTPMAC protocol is briefly introduced here, and

developed through the remainder of the text.

The intended application of the PTPMAC protocol is to provide a reliable

data transfer service across a broadcast medium shared by only two stations – a

point-to-point link. Such links are often used to provide backbone connectivity.

The design objectives are as follows:

Basic Function: The primary objective is to provide a point-to-point data

transfer service for IEEE 802.3 or similar packets across a wireless medium.

Throughput: The protocol shall attempt to maximise throughput given a

802.11b physical layer. It is believed that the target physical layer in the im-

plementation will cause the throughput to be channel-bandwidth-bound rather

than processor-bound. Hence this objective requires that frame encoding and

exchange sequences are made as efficient as possible.

Reliability: The wireless medium is inherently unreliable. The protocol must

be tolerant of data loss and corruption at the physical layer. It is desirable that

corrupted data is detected within the MAC layer, and not passed to higher

layers of the network stack.

The chosen approach for PTPMAC is based around the idea of token pass-

ing. The two stations which comprise the point-to-point network take turns

transmitting a token to each other. The token may include acknowledgement

of the previous correctly received data, some amount of data, both or nei-

ther. The basic frame exchange sequence of the PTPMAC protocol is shown

in Message Sequence Chart (MSC) form in Figures 3.3(a) and 3.3(b), with uni

and bi-directional data respectively. The MSC provides an effective graphical

representation of communication between entities within the system.
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PTPMAC operation 1 (1)MSC

Node A Node B

Data send request

null

null

null

null

data Indicate received data

ackConfirm data sent

null

null

null

(a) Unidirectional Data

PTPMAC operation with bidirectional data 1 (1)MSC

Node A Node B

null

null

null

null

data Indicate received data

data+ack
Confirm data sent

ack

null

null

Indicate received data
Confirm data sent

Data send request
Data send request

(b) Bidirectional Data

Figure 3.3: PTPMAC Basic Operation
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PTPMAC operation with lost data frame. Node A wins timeout race. 1 (1)MSC

Node A Node B

Data send request
null

data

Indicate data received

Confirm data sent ack

null

data

Set timeout timer

Set timeout timer

Figure 3.4: PTPMAC Recovery from Data Loss

Each vertical line represents an entity – in the case of Figures 3.3(a) and

3.3(b) each is an instance of the MAC. Horizontal arrows show the sequence

of message exchanges with time progressing from the top to the bottom of the

diagram.

In the PTPMAC protocol a timer which is set on transmission provides a

facility for recovery from a lost token. If this timer expires prior to reception

of the token, then the previous transmission is repeated. This is illustrated in

the MSC in Figure 3.4. If a received token does not indicate acknowledgement

of data which was associated with the previously sent token, then that data

is retransmitted within the next sent token. Formalisation of the proposed

mechanism into an MSC exposes a race condition between the response timeout

timers of the two communicating nodes. This requires that some random

variation of the timeout is applied to avoid retry collisions.

3.2 Formal Description Techniques

The choice of a FDT is an important decision in formulating the design flow.

Factors such as availability of tools, suitability for the problem domain, and

likely learning curve must be taken into account [71, 72]. The ability to design
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graphically is a significant advantage in describing distributed communications

systems. Message sequence charts, and state-transition diagrams are good ex-

amples of visual representations that are generally intuitive to network protocol

designers, and techniques that are easily related to these are likely to be good

candidates for use. Three formal description techniques are discussed here as

candidates for use in this work: E-Lotos, Estelle, and SDL.

The PTPMAC protocol introduced in Section 3.1 is used as a common refer-

ence example in the discussion of these techniques. In presenting the protocol,

reference is made to six specific messages or service primitives which define

the API for the MAC and PHY services. These are: mac unitdata request;

mac unitdata confirm; mac unitdata indication; phy data request;

phy data confirm; and phy data indication. Proper definition of these can

be found later in Section 4.1, however for now it suffices to say that they are the

primary messages by which the MAC will communicate with its environment.

We begin coverage of FDTs with an introduction to E-Lotos.

3.2.1 E-LOTOS

Lotos – the Language Of Temporal Ordering Specification – was defined by

the International Organization for Standardization (ISO) as a means for pro-

ducing formal descriptions of the OSI services and protocols. Lotos was

first standardised in 1988 as ISO-8807. In 1993, the ISO proposed that en-

hancements be made to Lotos, in order to maintain its relevance as a formal

specification language. In 1998 E-Lotos – Enhancements to Lotos [73] –

was submitted as an ISO standard. E-Lotos enhances Lotos in a number

of ways while maintaining a similar structure. The most significant of the

enhancements are:

• allowing the concept of quantitative time. Lotos can only model the

temporal ordering of interactions.

• use of a more user-friendly data type language, and addition of pre-



Formal Description Techniques 35

defined types.

• providing for modularity, and parameterised modules to improve code

re-usability.

• the addition of an exception model.

The concepts involved in E-Lotos represent a significantly different approach

to the description of a system to that taken in the two other techniques dis-

cussed in this chapter (Estelle and SDL). Rather than implicitly describing

the behaviour of a system by constructing another system that behaves in

the same way, E-Lotos instead allows the specifier to explicitly describe the

behaviour in terms of correct sequences of interactions with the environment.

E-Lotos does not provide a graphical representation, however derivation of

a MSC is possible from the textual notation [74].

Due to the lack of a graphical representation, and having a design paradigm

significantly different from the commonly employed imperative programming

languages, E-Lotos presents a steep learning curve for the typical protocol

engineer. Its form however, does provide advantages in formal verification of

designs. E-Lotos is considered here for this reason, along with the benefit

of discussing a contrasting approach to formal description using Estelle and

SDL.

Data-types, Variables, and Functions

Though our primary concern is the representation of behaviour, a key com-

ponent of this is manipulation of variables within a specification. E-Lotos

provides functionality for defining new data-types for variables within a specifi-

cation. We briefly introduce these facilities here, before discussion of behaviour

modelling in E-Lotos.

Type declarations within E-Lotos are either type synonym or data-type dec-

larations. The simplest form of type synonym is the renaming of a type as

shown in the example below:
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type seqnum_t is integer endtype

In a similar way, record types can be defined. The example below shows

the definition of an MAC Protocol Data Unit (MPDU) type for use in the

E-Lotos representation of the PTPMAC protocol.

type mpdu_t is

(ack => ack_t,

ackseq => seqnum_t,

data => boolean_t,

dataseq => seqnum_t,

dataref => dataref_t)

endtype

In contrast, data-types define entirely new types. Typically this involves a

union (denoted using the | separator) of the various type constructors. Con-

sider the definition of a simple (effectively boolean) type for representation of

an acknowledgement bit:

type ack_t is ACK | NACK endtype

Behaviour and Communication

The E-Lotos FDT allows systems to be represented in terms of their allowable

interactions with the environment. Allowable sequences of interactions are

described by way of what is known as a behaviour expression. These expressions

can be represented graphically as trees, with each node indicating a state of

the system, and each vertex corresponding to an interaction. Figure 3.5 shows

an example E-Lotos behaviour tree.

Interactions in E-Lotos are synchronous, instantaneous and atomic interac-

tions. They occur between processes, and take place through gates. They are
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Figure 3.5: E-Lotos Behaviour Tree

sequential – two distinct interactions cannot happen simultaneously. As these

events are synchronous – that is, they can only occur with the cooperation of

all processes involved – an interaction is sometimes described as two processes

synchronising on a gate. An interaction may involve the offer or acceptance of

data, and processes may make a decision on whether or not to take part in an

interaction based on the value or type of data that is offered. The behaviour

expression which describes an interaction through the gate phy data request

which offers the variables txparams and txmpdu would be written in E-Lotos

as:

phy data request(!txparams, !txmpdu)

Correspondingly, the expression which would match an interaction through

gate phy data indication with two parameters of the same types as variable

rxparams and rxmpdu is shown below. This expression causes the parameters

of the interaction to be stored into these variables.

phy data indication(?rxparams, ?rxmpdu)

The action prefix operator – ‘;’ – provides a means of ordering events, by as-

serting that a certain event must occur before the following behaviour expres-

sion. Using this operator we can begin to describe the permissible sequences of

events. As an example, consider the combination of the phy data request in-

teraction mentioned above (causing a physical layer transmission to start), and

the phy data confirm interaction (which indicates the completion of transmis-

sion):
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phy data request(!txparams, !txmpdu); phy data confirm

For interactions which do not specify the offer or acceptance of data (as in

the phy data confirm example above), it is not clear whether the message

has been ‘sent’ or ‘received’. This, however, is irrelevant due to the fact that

interactions are synchronous in E-Lotos. Both the ‘sending’ and ‘receiving’

processes are required to synchronise.

In a real system, many behaviours are possible depending on the stimulus

(interactions) provided by the environment. The choice operator – ‘[]’ –

allows for alternate behaviours to be expressed. Visually this is indicated by

multiple children of a node in a behaviour tree. Consider the expression below

where any offer or acceptance of data has been removed for brevity.

(mac_unitdata_request; phy_data_request; phy_data_confirm;

phy_data_indication; mac_unitdata_confirm) []

(phy_data_indication; mac_unitdata_indication)

This expression describes either the transmission or reception of a data unit.

The behaviour will be dictated by whether a mac unitdata request (presum-

ably from the host) or an phy data indication (presumably from the physical

layer) is the first interaction to occur.

As previously mentioned, E-Lotos models systems in terms of their observ-

able behaviour, as seen by the environment. However a system whose be-

haviour is defined purely in terms of its sequences of interactions with the

environment, would be constrained to being deterministic. In real-life sys-

tems, non-deterministic behaviour (as seen by the environment), is a common

occurrence – often due to factors such as timeouts and finite system resource

limits. The internal event (denoted i), allows modelling of such occurrences

in E-Lotos.

mac_unitdata_request; phy_data_request; phy_data_confirm;

((phy_data_indication; mac_unitdata_confirm) []

(i; phy_data_request; phy_data_confirm))
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The above behaviour illustrates a possible use of the internal event. In this

case, i represents a transmission timeout. If the phy data indication event

occurs before the timeout (i), then the transmission will complete as described

in the previous behaviour expression. However, if the internal event occurs

first, then the medium transmit sequence will be attempted again. This models

a simple retransmission mechanism.

The disabling operator – ‘[>’, as used in the expression B1 [> B2 – allows

behaviour B2 to disable behaviour B1 if it has not successfully completed. In our

application domain, this provides a way of explicitly modelling transmission

timeouts.

mac_unitdata_request; phy_data_request; phy_data_confirm;

((phy_data_indication; mac_unitdata_confirm) [>

(TimeoutExpires; phy_data_request; phy_data_confirm))

E-Lotos provides a time data-type which acts as the basis of the support for

modelling of real-time behaviour. The wait operator allows specification of a

delay within a behaviour expression. This operator takes a single parameter

(which may be variable) and delays for that duration. The simple example

below adds detail to the above behaviour expression given presence of a variable

named txtimeout which is of type time:

mac_unitdata_request; phy_data_request; phy_data_confirm;

((phy_data_indication; mac_unitdata_confirm) [>

(wait(txtimeout); phy_data_request; phy_data_confirm))

Concurrency between behaviours can take various forms. Asynchronous con-

currency of two behaviour expressions is modelled using the operator ‘|||’.

The composite behaviour will synchronise only on termination. At the oppo-

site end of the concurrency spectrum is the operator ‘||’, which requires that

the two behaviours synchronise on all communication. The example below

shows the transmit and receive behaviour of the PTPMAC protocol split into
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two expressions. The || operator requires that these two synchronise on all

gates that they have in common, which in this case is solely received. Other

degrees of synchronisation can be achieved in composite behaviours, including

synchronising only on a given subset of the common gates, and synchronisation

between more than two behaviours.

(mac_unitdata_request; phy_data_request; phy_data_confirm;

received; mac_unitdata_confirm) ||

(phy_data_indication; received; mac_unitdata_indication)

Behaviour expressions in E-Lotos are encapsulated within a process to form

an entity with a given behaviour. The process declaration may specify any

number of gates, input and output parameters, and a defining behaviour ex-

pression. An instantiation of a process is a valid behaviour expression in

itself, so recursive instantiation of processes are often used to express repet-

itive behaviour. Consider the process named transmit unit which is shown

below. This process can communicate on five gates: mac unitdata request,

mac unitdata confirm, phy data request, phy unitdata confirm, and

received. The process also takes an input parameter named txtimeout which

is of type time.

process transmit_unit[mac_unitdata_request,

mac_unitdata_confirm,

phy_data_request,

phy_data_confirm,

received]

(in txtimeout:time) is

((mac_unitdata_request) []

(received; mac_unitdata_confirm) []

(wait(txtimeout); phy_data_request; phy_data_confirm));

transmit_unit[...](txtimeout)

endproc
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The behaviour defined within this process builds on the previous examples to

create a model of the PTPMAC transmit functionality. Recursive instantia-

tion of the process means that the behaviour is continuous, unlike the simple

expressions described previously.

Summary

Using the basic constructs discussed here, E-Lotos allows the detailed speci-

fication of complex systems. Features of the language allow for modularisation

and code reuse to improve usability in real-world applications. As discussed

earlier in the section, however, it presents a steep learning curve for new users

which is compounded by the lack of a standardised graphical representation.

Several tools are available for supporting Lotos design. The most significant

of these is the Cadp toolkit [75] which includes facilities for translation of Lo-

tos specification behaviour to a C representation for analysis and verification.

In contrast, very few tools support the E-Lotos language. The TRAIAN com-

piler [76] provides for translation of an E-Lotos subset known as Lotos-NT

into the C language, and the Simulator for E-Lotos Specification (SEEL) [77]

gives a simple graphical simulation environment for E-Lotos specifications.

3.2.2 ESTELLE

The Extended Finite State Machine Language – Estelle was first standard-

ised by the International Organization for Standardization (ISO) as ISO-9074

in 1989. It provides a means for formally specifying distributed, concurrent

information processing systems, and hence is generally suited to protocol de-

scription (In fact, Estelle was initially created as a means for describing

OSI services and protocols). As the name suggests, Estelle is based on the

theory of finite state automata, extended using the Pascal language. Though

the standard defines a textual language, Templemore-Finlayson [78, 79] has

proposed a graphical representation known as Estelle/GR (in contrast to

the textual or phrasal representation referred to as Estelle/PR).
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Estelle/GR improves the usefulness of Estelle, by shortening the learning

curve in some cases. Several language constructs, however, are un-catered for

in Estelle/GR. We discuss the Estelle concepts here using a mixture of

textual and graphical constructs as available in the primary Estelle/GR

design entry tool which is described in [78, 79].

Data-types, Variables, Functions, and Procedures

The basic unit of functionality in Estelle – the module – extends the pure

finite state automaton concept by providing for additional state in the form of

context variables. If system state were required to be modelled solely by the

automaton state (referred to as major state or control state), then the number

of states would quickly become large. Context variables allow the automaton

model to remain manageable when modelling real-world systems. Data-types

and variables in Estelle follow from the Pascal origins of the language. New

data-types are defined using the type keyword, and can be created as synonyms

of existing types, records, or enumerated types. The const and var keywords

allow definition of constants and variables respectively. Consider the example

code below:

type seqnum_t = integer;

ack_t = ( NACK, ACK );

mpdu_t = record

ack : ack_t;

ackseq : seqnum_t;

data : boolean;

dataseq : seqnum_t;

dataref : dataref_t;

end;

const min_timeout = 10000;

const max_timeout = 20000;

var rxmpdu : mpdu_t;
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Functions and procedures can be used within Estelle as per standard Pascal.

Functions accept parameters and return a result of some type. Procedures do

not return a result, but contents of variables passed as parameters may be

modified to achieve the same result.

Behaviour and Communication

The structure of an Estelle specification is represented by a hierarchical

structure of entities known as modules, which are connected by channels. The

Estelle module is based around a finite state automaton, which accepts

inputs, and produces output on state transitions. Inputs and outputs to and

from a module are known as interactions, and take place through interaction

points. State transitions may be activated or fired by an input (in which

case they consume that input), or may be spontaneous – occurring after a

delay has passed, or when a condition becomes true. Modules may also be

non-deterministic, with current state and input dictating a set of allowable

transitions, only one of which will be taken.

ptpmac

ptpmac_body

transmit_unit

tx_unit_body

receive_unit

rx_unit_body

specification ptpmac_spec

Figure 3.6: PTPMAC Module Hierarchy in Estelle/GR
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Figure 3.6 shows the module hierarchy of an Estelle/GR specification of

the PTPMAC protocol. The tree-like structure shows the encapsulation of the

transmit unit and receive unit module headers (and their corresponding

bodies) within the ptpmac body definition. The interaction points of these

modules are not visible within the Estelle/GR representation, but are de-

fined in associated Estelle/PR. It is also necessary to textually define the

external channels and the interactions which they will carry:

channel host_to_mac (host,mac);

by host:

mac_unitdata_request (dest:macaddr_t; data:dataref_t;

pri:priority_t; flags:flags_t);

by mac:

mac_unitdata_confirm (data:dataref_t; txstatus:txstatus_t);

mac_unitdata_indication (source:macaddr_t; dest:macaddr_t;

data:dataref_t; pri:priority_t;

flags:flags_t);

channel mac_to_phy (mac,phy);

by mac:

phy_data_request (txparams:txparams_t; mpdu:mpdu_t);

by phy:

phy_data_confirm ;

phy_data_indication (rxparams:rxparams_t; mpdu:mpdu_t);

The two channels defined here provide for exchange of MAC and physical layer

service access point primitives (detailed later in Chapter 4) between the host

and MAC, and the MAC and physical layer. Each channel defines two roles or

endpoints – for the host to mac channel these are host and mac. A module

which is connected to the channel must nominate one of these roles, and this

dictates the interactions which this module may send over the channel. The

definition of the ptpmac module header with its interaction points is expressed

as:
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module ptpmac systemprocess ;

ip

macsap : host_to_mac (mac) common queue ;

physap : mac_to_phy (mac) common queue ;

end;

Each module header must have one or more module body definitions before

it is useful. The module body definition contains three sections: declarations,

initialisation, and transitions. Allowable declarations within a module body

include a state list, as well as further definitions of modules and channels, and

internal interaction points. The initialisation section allows initial values to

be defined for variables, and an initial state to be specified. Finally, the set of

allowable transitions are defined.

initialise

(* Initialise 
variables *) 

trans11

idle

idle 

physap.phy_data_indicati..

rxmpdu.data = t..

lastdataseq := rxmpdu.dataseq; 
lastdata:= true;  

OUTPUT macsap.mac_unitdata_indicatio..

OUTPUT tsap.received(..)

(* Free dataref *) 

trans12

−

otherwise

OUTPUT tsap.received(..)

(* Free dataref *) 

trans13

−

Figure 3.7: PTPMAC Receive Unit in Estelle/GR

Figure 3.7 illustrates the Estelle/GR description of the behaviour of the

receive unit module from the PTPMAC specification, and Figure 3.8 shows
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waittoken 

min_timeout

max_timeout

OUTPUT physap.phy_data_request(..)

trans15

transmitting

transmitting 

physap.phy_data_confirm

waittoken

Figure 3.8: Partial PTPMAC Transmit Unit in Estelle/GR

part of the corresponding transmit unit. Transitions in an Estelle au-

tomaton are enabled when a set of conditions are satisfied. These conditions

may relate to: the state (control state or context variables); an interaction at

the head of a queue; the state of timers (discussed below) or the transition

priority . If no transitions are enabled, then the system remains static until

this situation changes (due to either an externally initiated interaction, or a

local timer expiry). Although multiple transitions may be enabled at a given

time, only one of these can be taken. The firing of a transition is atomic. This

means that intermediate values assumed by variables during a transaction are

not visible outside the module. Transitions have no time associated with their

execution, but Estelle allows a delay to be specified, which must elapse be-

fore a spontaneous transition may be enabled. This allows the modelling of

real-time behaviour.

As mentioned, channels provide a path connecting two interaction points,

over which a finite set of interactions can take place. Estelle provides

two methods for establishing and breaking channels between modules, con-

nect/disconnect and attach/detach. The process of connection refers to the

creation of a channel which joins two external interaction points of children of

the module. Disconnection is the reverse of this process. An external interac-

tion point of a module may be attached to an external interaction point of one

of its children. The reverse is done via detach.
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The two varieties of channel establishment are said to bind interaction points.

Correspondingly the reverse operations are said to unbind them. It is permis-

sible to output interactions through an interaction point which is not bound

– these interactions are lost. Interactions are received into queues, which are

unbounded. A module can assign queues to each of its interaction points, or

combine input interactions from multiple interaction points into a common

queue. A module is oblivious to all but the interaction at the head of each

queue.

All communication between Estelle modules is performed using either in-

teractions, or shared variables. Interactions may be sent by a module at any

time, and provide non-blocking communication. Parameters may be associ-

ated with a given interaction to allow communication of state. Alternatively,

variables can be shared between a parent and child. To achieve this the child

must declare the variable as exported.

Summary

The Estelle language provides sufficient constructs to support the repre-

sentation of necessary functionality for MAC protocols developed within the

targeted framework. Its primary weakness, however, lies in the Estelle/GR

representation, and supporting tools.

The primary tool supporting Estelle/GR design entry is that described

with the Estelle/GR language in [78, 79]. This editor allows entry of Es-

telle/GR specifications, and export of the associated Estelle/PR, and is

included in the Estelle Development Tool-set (EDT) [80] along with analysis

and compilation tools. This tool has major disadvantages in its reliance on

hyper-linking between diagrams, and hiding of textual information. These fac-

tors mean that Estelle/GR descriptions are not able to be easily interpreted

outside of this tool – for example in hard copy.
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3.2.3 SDL

The Specification and Description Language – SDL was initially standardised

by the International Consultative Committee on Telegraphy and Telephony

(CCITT) as CCITT Recommendation Z.100 in 1976. Since then, the CCITT

has become known as the International Telecommunication Union (ITU), and

SDL specifications have continued to be updated, with the latest published in

2002 [81].

SDL is intended for providing “unambiguous specification and description of

the behaviour of telecommunication systems”. It began its life as an infor-

mal graphical representation, but has evolved into a formal technique with

both graphical (GR - Graphical Representation) and textual (PR - Phrasal

Representation) styles. SDL/GR and SDL/PR are equivalent, and automated

translation between the two is possible.

Data-types, Variables, and Procedures

Like Estelle, SDL descriptions are based on the concept of communicating

extended finite state machines. The basic finite state machines are extended by

way of variables. SDL provides facilities for defining new data-types either from

scratch, or by modifying existing ones. Data-types may be simple re-namings

of existing types using the syntype keyword, or structures or enumerated

types using the more general value type construction. The code below shows

examples of these three methods of defining new data-types.

/* Type for the sequence numbers */

syntype seqnum_t = Integer;

endsyntype;

/* ACK field of the MPDU */

value type ack_t;

literals

NACK, ACK;
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endvalue type;

/* This defines the PTPMAC MPDU */

value type mpdu_t;

struct

ack ack_t;

ackseq seqnum_t;

data boolean_t;

dataseq seqnum_t;

dataref dataref_t;

endvalue type;

Constants can be declared in SDL using the synonym keyword with a speci-

fied data-type and value. Variables are declared using the dcl keyword, and

optionally may have a default value specified.

/* Timeout range */

synonym min_timeout Integer = 10000;

synonym max_timeout Integer = 20000;

/* This variable stores the transmit MPDU */

dcl txmpdu mpdu_t;

A key feature of the SDL/GR representation is the well-defined method for

including blocks of SDL/PR code. The ability to mix SDL/GR and SDL/PR

allows the designer flexibility in choosing the most convenient method of rep-

resenting any particular component.

Structure, Behaviour, and Communication

The basic design unit within an SDL description is the agent. An agent may

contain any combination of variables, procedures, a state machine, and a set

of contained agents. Agents can be further classified into block agents and
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process agents, with the difference lying in execution scheduling of the state

machines of that agent and any encapsulated ones. A block agent may contain

any combination of block or process agents, which are executed concurrently.

In contrast, a process agent may contain only process agents, whose execution

is interleaved. Block and process agents can be defined as types which may

then be instantiated any number of times allowing code reuse.

The signal is the basic unit of communication between SDL agents. Signals

may include a list of parameters, in which case the data-types must be de-

fined for that signal. Signals may be sent between agent instances, or between

the environment and an agent instance. Each process instance has an unlim-

ited buffer (known as the input port) which holds all received signals not yet

consumed by the state machine.

For a signal to be exchanged between two agents, there must exist a path be-

tween those agents. A path may be implicitly defined through the containment

of one agent by another, or may be explicitly defined as a channel. Channels

may be declared to be uni-directional or bi-directional, and may be constrained

to carry only certain signals. They maintain the ordering of signals they carry.

SDL also includes the concept of remote variables which effectively provide a

short-hand notation for a signal exchange to convey a variable value.

Figure 3.9 shows the internal structure of the SDL block agent which defines the

PTPMAC entity. Two internal process agents are depicted (transmit unit

and receive unit), which are connected by channels to the macsap and

physap gates of the ptpmac mac block. It can be seen that the graphical

description of the channels includes definition of the signals which they may

carry. These signals are defined textually in the body of a text symbol within

an SDL specification. Parameters may optionally be included in the signal

definition as a comma-separated list of data-types surrounded by parenthesis

after the signal name. Visible in Figure 3.9 is the definition of the internal

received signal which carries a single parameter of type mdpu t.

These elements of SDL facilitate the top-down design methodology. Specifica-

tion structure and subsystem interfaces may be designed first, before internal
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phy_data_confirm

/* Internal sigs */
signal
  received(mpdu_t);

mac_unitdata_request

mac_unitdata_confirm,
mac_unitdata_indication

phy_data_indication,
phy_data_confirm

phy_data_request

mac_unitdata_indication

phy_data_indication

received receive_unit

phy_data_request

mac_unitdata_request

mac_unitdata_confirm

transmit_unit

1(1)Block Type ptpmac_mac

physap

macsap

Figure 3.9: PTPMAC Internal Structure in SDL

agent functionality is implemented. Functionality is provided in SDL through

finite state machines (FSMs), which may be included in either block or process

agents. Within the state machine of an agent, behaviour is modelled through

states and transitions. A state represents an agent context in which a signal

may be consumed. The consumption of the signal by an input may begin a

transition, causing some of:

• The emission of signals using output.

• Operations on data, or other textual algorithmic code in a task.

• Alternate paths for the transition based on a decision.

• Exchange of remote variables through an export or import expression.

• Manipulation of timers using set or reset.

• A change of state – ending the transition.
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Different input signals may trigger different transitions. If the current state

does not have an input which will consume the first signal in the queue, then

that signal is discarded. In the consumption of a signal at an input, the values

carried in the signal parameters may be assigned to local variables. Figure

3.10 shows the basic symbols which are used to create an SDL state machine.

A range of these symbols can be seen in action in Figure 3.11, which shows the

SDL/GR description of the receive unit process of the PTPMAC protocol

description. Figure 3.12 further illustrates the use of SDL in a part of the

PTPMAC transmit unit implementation.

decisiontasksignal
output

signal
input

stateinitialisation
start

Figure 3.10: Basic SDL Symbols

SDL also includes the notion of timers which may be declared in a similar way

to variables in finite state machines. Timers may be set to expire at a certain

time (typically specified relative to the current time). An active timer may

also be reset or cancelled. Upon expiry of a timer, a signal (with the same

name as that timer) is placed in the input queue for the agent. This allows

the modelling of real-time behaviour. The use of an SDL timer is illustrated

in Figure 3.12 in the case of the lost token timeout timer: tx timeout.

Tool Support

A range of tools is available to support the SDL design process. The SanDriLa

add-on for Microsoft Office Visio [82], provides for graphical design capture,

state analysis, and syntax checking. SDL/PR may be exported to allow inte-

gration with other tools. The Telelogic TAU SDL suite [83] provides a more

thorough design environment (with correspondingly higher cost), including

design capture, analysis, simulation, and automatic code-generation facilities.

Cinderella SDL [84] provides similar features for graphical design capture, anal-

ysis and simulation of SDL specifications. Cinderella primarily supports the

SDL-92 and SDL-96 variants, but also partially supports SDL-2000.
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/* Return to the state we were in
at the start of this transition. */

/* Clear the data reference that
we have. */

/* Free the data associated with
this packet. */

/* Let the transmit unit know that
we have received the token. */

rxmpdu.ack := NACK;
rxmpdu.ackseq := 0;

rxmpdu.data := FALSE;
rxmpdu.dataseq := 0;

rxmpdu.dataref := dataref_null;
lastdata := FALSE;
lastdataseq := 0;

1(1)

/* This process
defines the receive
behaviour of the
PTPMAC */
dcl
  rxmpdu mpdu_t,
  lastdata boolean_t,
  lastdataseq Integer;

dataref_free(rxmpdu.dataref)

idle

phy_data_indication
(,rxmpdu)

lastdataseq := rxmpdu.dataseq;
lastdata := TRUE;

rxmpdu.data
= TRUE

and (lastdata = FALSE or
rxmpdu.dataseq /= lastdataseq)

and (rxmpdu.dataref
/= dataref_null)

received(rxmpdu)

mac_unitdata_indication
(0,0, rxmpdu.dataref, 0, 0)

else

-

rxmpdu.dataref := dataref_null

true

/* Here we initialise
the variables within
this process. */

/* This symbol indicates the
start point of execution */

/* This is the initial (and only) 
state within this state machine. */

/* This is a signal input which
is initiated in this case when
we receive a frame. */

/* We must decide if the frame
we have just received contains
data we haven't yet seen. */

/* Remember this data sequence
number to make sure we don't
get it twice. */

/* Pass the data to the host */

Process receive_unit

Figure 3.11: PTPMAC Receive Unit in SDL
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/* Ensure that the timeout timer
is stopped */

/* This signal starts transmission
*/

/* phy_data_confirm marks the
end of our transmission */

/* If the timer expires then
we simply retransmit. */

transmit

/* Set a timer to recover from lost tokens.
Delay is selected randomly from
the range specified by min_timeout
and max_timeout */

tx_timeout

idle

set(now + usec(limit(any(Integer),
min_timeout, max_timeout)),

tx_timeout)

phy_data_confirm

reset(tx_timeout)

transmitting

phy_data_request
(txparams_default, txmpdu)

transmit

2(2)Process transmit_unit

Figure 3.12: Partial PTPMAC Transmit Unit in SDL

3.3 Summary

The three formal description techniques discussed here have different strengths

and weaknesses, and all have found application in protocol specification. E-

Lotos provides powerful structures for describing behaviour, however – as can

be seen from the brief presentation of the language earlier in this chapter – it

presents a significant learning curve to the uninitiated. Understanding large

specifications can be a daunting task due to the lack of an associated graphical

representation. E-Lotos also suffers from a lack of industry-proven tools for

design entry, verification and translation.
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Being based on finite state machines, Estelle is generally intuitive for pro-

tocol engineers to use. The textual language is simple to grasp for those

with experience of Pascal and similar imperative programming languages. Es-

telle/GR provides a solution to the need for a graphical representation,

though tool support for this is limited due to the fact that it is not standard-

ised.

SDL is a formal description technique which has been widely used in academia

and industry. It has well-defined textual and graphical representations, which

are both standardised and actively developed. Like Estelle, SDL provides a

relatively simple path to formal description for those who have a basic under-

standing of finite state machines.

Given that each FDT presented has the capability for capturing the func-

tionality that typically comprises a MAC protocol, two factors are of primary

importance in assessing these formal description techniques: tool support; and

standardisation. Of the three techniques discussed, SDL is the only one which

rates strongly in these categories [13]. For these reasons, SDL has been cho-

sen as the formal description technique for use in the development platform

described within this thesis.





Chapter 4

Compilation

The target design platform aims to provide for the rapid development of MAC

protocols. In order to do this, it must support: graphical design capture; use

of library components for common functionality; hooks for integration into

simulation environments at various levels of abstraction; automated synthesis

of implementations and insertion of measurement test points. Given the choice

of the Specification and Description Language (SDL) for the capture of design

functionality, we must now begin to consider the remaining aspects of the

framework.

The idealised model presented in Chapter 1 calls for evaluation-driven refine-

ment of the initial specification toward an implementation, with evaluation

methods including simulation, emulation, and measurement of prototype im-

plementations. Simulation provides a means of verifying protocol correctness

and evaluating performance at an early stage of the design cycle. It is ex-

tremely flexible in that model and system parameters can be readily altered

to facilitate full exploration of the proposed design solution. Simulation of the

SDL specification is a first step, with support from the Cinderella SDL tool

introduced in Chapter 3 for design capture enabling evaluation at the earliest

stages of protocol design. Accuracy of simulation traffic and channel models

is vital however [17], and as the design cycle proceeds it is necessary to ensure

that these are representative of the target application and environment.

57
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Specialised network simulators such as ns-2 [24, 85] provide models which allow

accurate representation of network protocols. Such simulators typically pro-

vide a range of parameterisable traffic and channel models which can be tuned

to match the specific characteristics of the system of interest. Such platforms

sometimes also support emulation – the injection of live traffic into a simulated

system. This approach can provide further confirmation of the validity of sim-

ulation results given the target application. To support effective evaluation

of protocols within the Waikato Protocol Development Environment (WPDE)

framework, it is necessary to allow integration into simulation environments

such as that provided by the ns-2 simulator. Beyond simulation, prototype

implementation provides for evaluation in the actual target environment. This

serves to verify the suitability of the protocol for its intended application, and

validate any assumptions made in simulation models. The implementation

platform described later in Chapter 6 is another environment into which we

wish to integrate our MAC protocols.

The integration of protocols into these different environments will preferably

be supported with minimal manual effort, in order to reduce the possibil-

ity of human error. Automated tools can provide support for this, ensuring

consistency between representations at different design stages allowing direct

comparison of evaluation results. Before considering such tools however, it is

necessary to develop a standardised set of outer interfaces for MAC protocols

developed within this framework.

4.1 Defining MAC Sub-Layer Interfaces

In the layered network model, each layer or sub-layer provides a service to

its adjacent higher layer by using the services provided by the adjacent lower

layer and building on them. Services can be defined in terms of the information

exchanged between adjacent layers or sub-layers. This exchange of information

is modelled by discrete, instantaneous events which may have zero or more

parameters. These are known as service primitives [86].
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Figure 4.1: Types of Service Primitive

The convention followed within this work is based on that used by specifications

within the IEEE 802 standards for local and metropolitan area networks. This

approach classifies service primitives into four categories: A request is issued

from a service user to a service provider to request that a service be initiated; a

confirm is issued from a service provider to a service user to convey the results

of a prior service request; an indication is issued from a service provider to a

service user to notify it of an event within the provider which has significance

to the user; and a response is issued from a service user to a service provider

to complete a procedure initiated by the issue of an indication primitive. The

MSC in Figure 4.1 illustrates this relationship.

Three primary classes of interaction occur between the typical MAC sub-layer

and adjacent entities: a higher layer must interact with the MAC in order

to use the fundamental data transfer service that it provides; the MAC must

use the service provided by the physical layer to communicate with a peer

MAC entity; some entity must provide control of MAC functionality in order

to maintain its data transfer service to the higher layer. A further class of

interaction is defined to support simulation and measurement during protocol

development. This interaction allows internal MAC state to be reported to an

external measurement entity. We now discuss these classes of interaction and

define primitives for each.
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4.1.1 MAC Data Service

The MAC sub-layer lies within the data-link layer as defined by the OSI lay-

ered model. The primary service provided by the MAC sub-layer to higher

layers is the transfer of data between peer MAC entities. The Logical Link

Control (LLC) sub-layer defined by the IEEE 802.2 standard [86], lies im-

mediately above the MAC sub-layer within the data-link layer. The LLC

sub-layer provides three types of service to the network layer: unacknowledged

connectionless-mode services; acknowledged connectionless-mode services; and

connection-mode services. These services are provided by building on those of

the underlying MAC sub-layer. Various MAC layers are defined as standards

by the IEEE, including 802.3 (Ethernet), 802.5 (Token Ring), and 802.11 (Wi-

Fi). These seamlessly integrate with 802.2 due to the standardised MAC/LLC

interface. There are clear benefits, in terms of interoperability, to generally

following this interface within a MAC development framework.

In defining our primitives we will initially only provide support for the un-

acknowledged connectionless-mode services specified in the IEEE 802.2 LLC

standard. This is the most common type of service used in practice, and gener-

ally supports the ubiquitous IP. To support this our MAC must allow delivery

of units of data – each an MAC Service Data Unit (MSDU).

MAC-UNITDATA.request

We require a means by which the LLC layer can initiate the transfer of an

MSDU to a peer LLC. In keeping with the IEEE conventions, this functional-

ity is provided by the MAC-UNITDATA.request primitive. The issue of this

primitive will generally cause the appropriate physical layer functions to be

invoked to provide at least a reasonable attempt at successful delivery of the

corresponding data unit.

The obvious parameters that are required for this type of request are the unit

of data, and a destination address. Modern protocols are placing increasing

emphasis on QoS, so a parameter allow specification of the MSDU priority

is also included. Finally, a fourth parameter provides for MAC-specific flags.
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The parameters of this primitive are shown in the table below.

Parameter Description

destination address The address of the destination MAC sub-layer,

or alternatively a group address.

data The MSDU to be transferred.

priority Desired priority for the MSDU.

flags Field to allow protocol specific flags for the

MSDU.

MAC-UNITDATA.confirm

Higher layers of the network stack can often generate data at a higher rate

than the MAC sub-layer can deal with. This may be due to limited band-

width available at the physical layer, or a performance bottleneck within the

MAC sub-layer. To ensure that the MAC sub-layer is not swamped with

data we require a handshake in the MSDU transfer, initiated by a MAC-

UNITDATA.request. This is provided by the MAC-UNITDATA.confirm prim-

itive. The single parameter to this primitive indicates the status of the prior

MAC-UNITDATA.request, allowing the MAC to feedback status information

to the higher layer.

Parameter Description

status The status or result code of given request.

MAC-UNITDATA.indication

When the MAC has an MSDU to pass to higher layer – generally because of a

reception from a peer MAC – it must issue a primitive to the higher layer to

convey this. This functionality is provided by the MAC-UNITDATA.indication

primitive. The parameters associated with this primitive follow those specified

for the MAC-UNITDATA.request, with the addition of the address of the

source MAC entity.
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Parameter Description

source address The source MAC sub-layer entity address.

destination address The destination MAC sub-layer entity address,

or alternatively a group address.

data The MSDU that has been transferred.

priority Desired priority for the MSDU.

flags Protocol-specific flags associated with this

MSDU.

4.1.2 Physical Layer Interface

The MSDU transfer service provided by the MAC protocol builds on the service

available from the Physical Layer (PHY). The PHY interface provides for

these interactions between the MAC layer and the hardware of the transceiver.

The basic primitives support the transfer of data, as well as the exchange of

information on the perceived channel state from the radio to the MAC, allowing

the MAC to make informed decisions on when to transmit.

The PHY services required by the MAC are clearly dependent on the specifics

of its function which is generally closely related to that of the underlying

technology. Many parameters may be available for a given physical technology,

including modulation type and rates, frequency of operation, transmit power.

Physical layers supporting multiple modulation types are typically coupled

with protocols which make use of this to provide features such as back-off to

more robust modulation parameters in the presence of errors. In contrast,

while a protocol such as Bluetooth requires the ability to change the channel

of operation on a per-packet basis, this is typically a more static configuration

parameter in many other MAC protocols. To maximise flexibility it is desirable

to provide an interface which allows as many parameters as possible to be

configured on a per-packet basis.

Similarly various parameters may be available on reception of a data unit, in-

cluding the receive signal strength, and information regarding the modulation

of the frame. This information is logically associated with each packet, and
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so should be included with the notification of received data. Some MAC pro-

tocols require information on channel state, which may be based on detected

in-band signal power, or acquisition of a carrier. This information is used in

CSMA protocols as Clear Channel Assessment (CCA) to determine whether

a transmission may begin or not. If a change in channel state is not commu-

nicated to the MAC in a timely fashion, then transmission collisions are likely

to result.

The primitives described here are chosen to provide a basic but functional in-

terface to the IEEE 802.11b-style physical layer which is used in the prototype

implementation platform described later in Chapter 6. This physical layer

provides a half-duplex (mutually exclusive transmit and receive) transceiver

which encapsulates a MPDU with physical layer framing and broadcasts it on

the medium in the transmit direction, and performs the reverse operation on

receive.

PHY-DATA.request

To initiate transmission of an MPDU, the MAC issues the PHY-DATA.request

primitive to the physical layer. The parameters for this request are the MPDU

to transmit, and a set of transmission parameters which may include data rate

and modulation options, and transmit power level.

Parameter Description

txparams Parameters for the physical layer.

data The MPDU to transmit.

PHY-DATA.confirm

Flow control is required to avoid the MAC swamping the physical layer with

data. This is provided by the PHY-DATA.confirm primitive which marks the

completion of transmission of an MPDU previously requested using the PHY-

DATA.confirm primitive. No parameters are associated with this primitive.
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PHY-DATA.indication

When a frame is received the physical layer must pass it to the MAC layer.

This is achieved using the PHY-DATA.indication primitive. The parameters

of this primitive include the received MPDU, along with the set of reception

parameters which may include receive signal strength, data rate, and times-

tamp.

Parameter Description

rxparams Parameters of the received MPDU.

data The received MPDU.

PHY-STATUS.indication

CSMA protocols such as IEEE 802.11 require the ability to sense the channel

prior to transmitting. To support such MAC protocols, the physical layer must

provide a primitive to indicate a change in the perceived channel state. The

PHY-STATUS.indication primitive provides for this. The sole parameter of

this primitive indicates whether the channel is now considered busy or idle.

Parameter Description

cs state The channel state as detected by the carrier

sense mechanism – either idle or busy.

4.1.3 MAC Sub-Layer Management Entity Interface

Modern wireless MAC protocols do not generally operate in an autonomous

fashion. Control is required for forming and breaking connections as well

as managing the vast number of operational parameters that they have. In

keeping with the terminology used in the IEEE 802.11 specification [2] we use

the term MAC Sublayer Management Entity (MLME) to refer to the entity

within the MAC boundaries which is responsible for the control required to

allow the MAC to provide the data services that are its primary function.
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The interface to the MLME has three main purposes: to allow basic control

of the MAC sub-layer, including forming and breaking connections; to allow

modification of MAC sub-layer parameters (e.g. timings or retry counts); and

to allow management of advanced MAC sub-layer functionality such as QoS

and security.

In practice, the MLME will typically interact – through the device driver – with

a Station Management Entity (SME) such as Windows’ Wireless Zero Config,

or utility such as iwtools or wpa supplicant in Linux. The functionality

defined by the MLME is very much MAC protocol dependent. Procedures

for forming and breaking connections, along with other operations such as

bandwidth reservation, may be quite different for different styles of MAC.

A simple means of providing a generic interface to the MLME is through

primitives allowing access to an undefined set of parameters or attributes. Any

of the MAC-specific parameters may be virtual and have access side effects.

This approach presents a concise, standard interface which is easily extended

to suit a given protocol.

MLME-SET.request

The initiation of an MLME process is achieved in this model through a write to

an MLME attribute. This is performed by the issue of the MLME-SET.request

primitive. The parameters to this primitive are an identifier for the attribute

which is being set, and the new value to be assigned to it.

Parameter Description

attribute id The identifier for the MLME attribute.

value The data element which is to be assigned to the

specified MLME attribute.

MLME-GET.request

Correspondingly, it is necessary for the controlling entity to read back MLME

attributes. This process is initiated by the issue of the MLME-GET.request
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primitive, with the sole parameter specifying the identifier for the attribute of

interest. The read value is returned in a following MLME-GET.confirm.

Parameter Description

attribute id The identifier for the MLME attribute which is

requested.

MLME-GET.confirm

This primitive returns the read value of an MLME attribute that was previ-

ously requested using an MLME-GET.request. The sole parameter specifies

the attribute value.

Parameter Description

value A data element holding the value of the re-

quested MLME attribute.

4.1.4 Measurement Interface

Our target simulation and implementation environments will allow tracking

of MAC and PHY interactions, however, the internal state of the protocol

under test will not necessarily be clear. By providing an interface which allows

measurement points to be built into the protocol description, a clearer picture

can be derived from simulation and implementation measurement results.

MEASUREMENT.indication

The MEASUREMENT.indication provides a portable means of tracking inter-

nal protocol operation in simulation and implementation. A protocol may emit

this signal at key points to allow analysis of internal operation with reference

to other visible interactions. This primitive has two parameters which allow

unique identification of measurement points.
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Parameter Description

measurement id The identifier for this measurement point.

arg The argument for the measurement point.

4.2 SDL Translation

The primitives described in Section 4.1 define the primary external interfaces

of our MAC sub-layer. Within our framework, these primitives will corre-

spond to SDL signals which are exchanged between the specification and its

environment. To support the seamless design flow discussed in Chapter 1 it is

necessary to provide a framework for integration of an SDL protocol specifica-

tion into our target simulation and implementation environments.

There are several possible ways of providing for execution of the SDL specifi-

cation within these environments. One approach is to provide a ‘virtual ma-

chine’ within each target framework which interprets the SDL model directly.

A drawback of SDL interpretation is the inflated resource requirement placed

on the target environment. This means that for complex specifications, per-

formance may be severely restricted. Just-in-time compilation is one method

of addressing the performance issues of the interpretation approach. This

method, however, shifts a large amount of complexity into the environment.

The preferred approach is translation of the SDL specification into a language

which can be compiled to produce a native code for the target platform. With

a suitable framework, the translated specification can be integrated into the

target environment, providing an implementation which is as efficient as the

translation process allows.

The obvious candidates for the translation target are the C and C++ languages

due to the widespread availability of compilers for various architectures, and

their use in one of our target platforms – ns-2 (discussed in Chapter 5). The

C++ language provides a translation target which is able to be efficiently

compiled and mixed with existing C source in target frameworks. The object-

oriented and hierarchical nature of SDL descriptions also maps well onto a

C++ implementation. In a simulation context multiple instances of the pro-
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tocol model will typically be operating concurrently, and therefore must be

encapsulated appropriately to allow easy replication and independent execu-

tion. The C++ class provides a concise means of achieving this.

Several commercial tools are available for use in conversion of SDL to C and

C++. The Telelogic TAU SDL suite [83] provides a rich design environment

with code generation targeting both of these languages. Cinderella SDL [84]

provides a low-cost SDL graphical design entry and simulation platform, and

C and C++ code generator add-ons can be purchased. MAC protocols are typ-

ically implemented using a combination of hardware and embedded software.

Resource availability means that the embedded software component must be

relatively light-weight and efficient. Both Telelogic TAU and Cinderella pro-

vide code generation engines targeted at such systems.

Though these commercial packages provide many of the features necessary for

code generation in the environments we are targeting, they also have a signifi-

cant attached cost which can put them out of reach of many researchers. Being

general purpose, these tools are often limited in terms of the optimisations they

can make without knowledge of the design context [87]. The efficiency of the

generated code both in terms of execution speed and memory footprint size

can be increased if the nature of the target environment is taken into account.

For these reasons the sdl2cpp tool has been designed and implemented as a

part of the work described in this thesis. This tool converts an SDL/PR rep-

resentation of a protocol into C++ code suitable for use in simulation and

implementation. It is described in the remainder of this chapter, and is the

first element of the WPDE.

4.2.1 Data-types

The mapping of basic SDL data-types onto our C++ target is relatively

straight forward. Figure 4.2 shows mappings of structures, enumerated types,

synonyms and syntypes onto C++. Syntactically, translation of these can

be readily accomplished using relatively simple regular expressions; semanti-

cally, however, more consideration is required. As with the majority of abstract
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value type mystruct;

 struct

  x, y, z Integer;

  b Boolean;

endvalue type;

value type myenum;

literals

 one, two, three;

endvalue type;

synonym pi Real = 3.141592654;

syntype address = Integer

endsyntype;

struct mystruct {

  Integer x;

  Integer y;

  Integer z;

  Boolean b;

};

enum myenum {

  one,

  two,

  three,

};

const Real pi = 3.141592654;

typedef address Integer;

sdl2cpp

Figure 4.2: Translation of SDL Data-types

modelling techniques, SDL assumes a world where processing is instantaneous,

communication is error-free, and input signal queues have infinite length. Care

must be taken to ensure consistent semantics between the formal specification

and an implementation where only finite resources are available [88].

Data-types provide a similar complication for the mapping of formal descrip-

tions onto concrete implementations. Data-types in languages such as SDL are

abstract and infinite. Integers in SDL, for example, may take on any value. In

an implementation, variables are bound to lie within the range permitted by

the number of bits in their machine representation. A 32-bit integer is common

on many C/C++ based systems, giving a maximum range of −2, 147, 483, 648

to +2, 147, 483, 647. While this range is sufficiently large for a majority of

purposes, the semantic difference between the data-type in specification and

implementation can counter some of the benefits of using formal techniques at

the initial stages of design.

In the given example of the integer data-types it is not possible to match the

semantics of the SDL version in the implementation. Though virtual data-

types can be implemented with larger ranges, the implementation platform

has finite resources and these will eventually be reached. An alternative is

to match the semantics of the C/C++ data-types in the SDL model. The

syntype in SDL allows this to be achieved:
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syntype uint8_t = integer constants 0:255; endsyntype;

It is also important to consider the relationship between the more complex SDL

data-types that may be used and their C/C++ implementations. A primary

function of any MAC protocol is the transfer of data between the physical and

host interfaces. This has the potential to be a processor intensive aspect of

operation in an implementation if care is not taken to reduce the amount of

data copy that is required. Copy avoidance is therefore a key optimisation for

network protocol implementations [89].

The predefined SDL Octetstring data-type is commonly used as a representa-

tion for a block of data. This type is defined as an unbounded list of bit-strings

of size 8. Concatenation and extraction operators are defined to allow creation

and manipulation of these data-types. Though similar data-types could be em-

ulated in an implementation, the semantics of SDL require that the transfer of

an Octetstring as the parameter of an exchanged signal involve a replication

of the data. As discussed above, this is undesirable in most MAC implemen-

tations.

An implementation in a general-purpose programming language such as C or

C++ would avoid copy by communicating a pointer to the data structure

concerned. Though the SDL language has no notion of pointers or references

to data, it is possible to define an abstract type which encapsulates the typical

functionality required to manipulate data. Operations on objects of this data-

type within an SDL description can be translated to their implementation-

specific versions to ensure efficiency.

The data reference is the abstraction defined within the various sections of

the WPDE framework to allow manipulation of data units with minimal copy.

Though the form and implementation of a data reference is unique to each

platform, a common interface is provided by several operators to allow ma-

nipulation of these and the data they encapsulate. The data reference type

(dataref t) is central to the MAC development framework described - it is

the method by which data will be exchanged with the host, and also the unit

which should be passed as the PDU to the physical layer in an implementation.
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By defining an API which allows for manipulation of data references, specific

implementation or simulation platforms can provide an optimised version of

the necessary functionality. The API must support creation and destruction

of data references, along with insertion, manipulation, and extraction of the

data within.

The data reference API is designed to be simple to use, and sufficiently ab-

stract to allow implementation within the SDL and C++ environments in

which it is required. Creation of data references is performed through the

dataref alloc and dataref alloc size operators, with the former creat-

ing and returning a data reference of maximum size, and the latter allowing

the size to be constrained to optimise resource usage. Correspondingly, the

dataref free routine is called when a data reference is no longer required to

free the resources associated with it.

A common requirement in MAC protocols is the encapsulation of an MSDU

inside a MPDU, and the corresponding decapsulation at the receiving end.

These can be achieved using the dataref cat and dataref extract calls.

The first routine concatenates the contents of a source data reference onto a

destination. The second will create a new data reference by extracting data

from a specified source data reference, along with the offset and length specified

in octets.

4.2.2 Communication and Scheduling

The SDL communication model is based on the asynchronous exchange of

signals. A signal which is destined for an agent is placed in an infinite-length

input queue from which it can be drawn at some later time. Clearly a real-

world implementation can not have infinite resources so some approach must

be taken to modelling the intended SDL behaviour.

One method is to make use of finite length signal buffers with overflow avoided

through back-pressure implemented using a semaphore or other means. Send-

ing processes will add signals to a buffer until that buffer becomes full at which
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point the sending process will be temporarily suspended. This approach is

known as the server model [87], and an example is described by Dietterle et al.

[90] in their proposed mapping of an SDL description onto a TinyOS platform.

Their described process maps SDL agents onto TinyOS components, with com-

munication achieved using either command or event handlers at the designer’s

discretion. The server model has the advantage of maintaining a separation

between process activation and communication. A significant drawback is the

overhead both in terms of runtime environment complexity, and memory foot-

print that is required to implement this method.

An alternative approach is the modelling of SDL communication as an activity

thread [87, 90]. Using the activity thread model, execution follows the transi-

tions caused by a single external stimulus. This stimulus may be the injection

of a signal from the environment into the system, or the expiry of a timer

set within the system. Each signal exchange is modelled by the invocation by

the sending agent of a subroutine associated with the receiving agent. This

method of modelling an SDL system removes the need for a process scheduler,

context switches, and signal queues, and therefore simplifies and optimises the

generated code.

idle

wait_ack
phy_ack/mac_unitdata_confirm

mac_unitdata_request/phy_data

idle

phy_data/

phy_ack, mac_unitdata_indication

Node 1 Node 2

Figure 4.3: Communicating Finite-State Machines

Consider the two simple communicating state machines illustrated in Figure

4.3. Figures 4.4(a) and 4.4(b) illustrate the execution of a simple signal ex-

change in this system using the server and activity thread models respectively.

The signal exchange is initiated by the receipt from the environment of an

mac unitdata request signal. The path of execution is shown within the
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Node 1 Node 2

mac_unitdata_request
phy_data

mac_unitdata_indication
phy_ack

mac_unitdata_confirm

(a) Server Model

Node 1 Node 2

mac_unitdata_request
phy_data

mac_unitdata_indication

phy_ack

mac_unitdata_confirm

(b) Activity Thread Model

Figure 4.4: SDL Execution in the Server and Activity Thread Models

message sequence charts by the solid line running down the vertical axes. In

the server model depicted by Figure 4.4(a), execution of the two nodes is sched-

uled alternately, whereas in Figure 4.4(b) execution follows signal exchange.

Two key conditions must be satisfied in order for the activity thread approach

to be valid: the communication sequence must take the form of a procedure

call tree [88]; and signals must not arrive from the environment faster than the

execution of a call tree allows. The latter of these conditions can be enforced

through careful design of the runtime environment, but the former requires care

to be taken in construction of the SDL model. Though this restricts the domain

of SDL descriptions which can be correctly translated, it does not restrict

the ability to model any functionality. Use of the activity thread approach

provides significant complexity and efficiency benefits for implementations,

and is sufficient to demonstrate the merits of the framework proposed in this

thesis.
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In order to implement the activity thread model in our C++ environments,

SDL signals are represented as C structures and references to these are passed

to ensure efficient memory usage. The signal t structure defines a common

header to allow identification of signals. This structure consists of a single sig-

nal identifier which is a platform-specific scalar type. Specific signal definitions

contain the signal identifier as a first member before the parameters are spec-

ified in order. Parameters are named using the sequence paramn . The code

below shows the generic signal t structure definition along with a specific

signal implementation:

typedef struct signal_t {

signalid_t id;

} signal_t;

typedef struct mlme_get_request_t {

signalid_t id;

Integer param0;

} mlme_get_request_t;

4.2.3 Agents

As discussed in Chapter 3, an SDL description is made up of a structure

of communicating agents. Each agent may contain variables, procedures, a

state machine, and may encapsulate other agents. Clear parallels can be seen

between the SDL agent, and the C++ class. By mapping each agent type to

a C++ class we can readily provide these features in a tidy manner. Shown

below is the abstract base class – wpdeagent – which provides the basis for

specific agents.

class wpdeagent {

public:

wpdeagent(wpdeagent *p, wpdeagent *top);

virtual void reset() = 0;
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virtual void input(wpdeagent *from, signal_t *sig) = 0;

protected:

wpdeagent *parent;

wpdeagent *toplevel;

};

To implement the activity thread model of SDL communication the wpdeagent

class includes a pure virtual method – input() – which is called to deliver each

SDL signal. An invocation of this method must include parameters specifying

the source agent and the signal being conveyed. The details of the signal t

type are discussed later. A class derived from wpdeagent for a particular agent

or agent type will provide an implementation of the input() method with an

invocation causing update to the encapsulated state machine, or relay of the

signal to a child, or the parent agent. The parent agent is tracked through a

protected member variable, and is set by the constructor on creation.

A similar virtual method – reset() – provides a means of reverting the agent

and any children to their initial states. The agent-specific implementation of

this method will perform the operations specified in the start transition of that

agent (including the implicit initialisation of any variables), and then invoke

the reset() method of any children.

Variables and child agents are defined by instantiation of the appropriate C++

class or data-type within the class of the encapsulating agent. The top-level

agent class maintains copies of any exported SDL variables from agents within

the system. Each agent holds a pointer to the top-level agent, and uses this to

access these exported values. The SDL export operation involves a copy from

the local variable instance to the exported instance in the top-level agent.

Similarly, an import de-references the top-level pointer to access the global

copy. The class definition of an example agent is shown in the code below.

This agent encapsulates two child agents, a simple state machine, and a single

integer variable:

class my_agent : public wpdeagent {

public:
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my_agent(wpdeagent *p, wpdeagent *t);

void reset();

void input(wpdeagent *from, signal_t *sig);

protected:

// Child agents

my_child_t my_child;

my_other_child_t my_other_child;

// States

enum { state_1, state_2 } state;

// Variables

int my_count;

};

Shown below is the translation of the input() method for the example agent

introduced above. Two sections are apparent in the method body: the signal

routing section, and the state machine implementation. The signal routing

section matches input signals based on their source and signal identifier, and

forwards them to the appropriate destination. This is derived from the chan-

nel structure defined in the SDL description. The state machine section is

similar, but matches include the current state, and leads to execution of the

corresponding transition body:

void my_agent::input(wpdeagent *from, signal_t *sig)

{

// Routing

if (from == &my_child && sig->id == sig_to_env_id) {

parent->input(this, sig);

return;

}

if (from == parent && sig->id == sig_to_child_id) {

my_child.input(this, sig);

return;
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}

if (from == &my_child && sig->id == sig_to_other_child_id) {

my_other_child.input(this, sig);

return;

}

// State machine

if (state == state_1) {

if (sig->id == prod_id) {

my_count = my_count + 1;

state = state_2;

return;

}

}

if (state == state_2) {

if (sig->id == prod_id) {

my_count = my_count + 1;

state = state_1;

return;

}

}

}

4.2.4 Transitions

As discussed in Chapter 3, transitions in SDL contain the predominant func-

tionality of the specification. Transition bodies may comprise numerous types

of operation, including manipulation of data, output of signals, and state

changes. The mapping of these into our activity thread C++ model is the

only aspect of the translation process left to discuss. Figure 4.5 illustrates a

selection of SDL constructs and their C++ translations.

Expressions have similar forms in both languages, though some operators have

slightly different forms requiring simple conversion as in the case of the assign-
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task var := expr1 + expr2;

task set(now + timeout, timer);

task reset(timer);

output signame(actual1);

call procedurename(params…);

labelname:

join labelname;

decision variable;

  ( option1 ):

alternative1;

  ( option2 ):

alternative2;

  else:

otherwise;

enddecision;

var = expr1 + expr2;

timer.settimer(wpdetimer::now + timeout);

timer.stoptimer();

signame.param0 = actual1;

parent->input(this, (signal_t *)&signame);

procedurename(params…);

labelname:

goto labelname;

if (variable == option1) {

alternative1;

}

else if (variable == option2) {

alternative2;

}

else {

otherwise;

}

sdl2cpp

Figure 4.5: Translation of SDL Transitions

ment operator conversion from ‘:=’ to ‘=’. Tasks involving timer manipulation

map to invocation of routines of the timer API defined earlier. Signal exchange

is modelled by the passing of references to our signal structures. Each agent

class holds an instance of every possible signal that it may output. The output

of a signal translates into the assignment of the actual expressions to each of the

signal structure parameter members, along with the invocation of the input()

method of the parent agent. The signal identifiers within each structure are set

within the class constructor. Procedure calls, labels and join statements are

trivially converted to their C++ equivalents, as is the conditional execution

provided by the SDL decision.

4.2.5 Compiler Structure

The operation of the SDL-to-C++ compiler is illustrated in Figure 4.6. An

SDL-2000 parser written by Michael Schmitt [91] is used for the initial stages

of lexical analysis and token parsing. This open-source parser uses the ANTLR

compiler construction tool for generation of the lexer and parser, and provides

a framework for implementation of an Abstract Syntax Tree (AST) parser.
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Figure 4.6: SDL to C++ Translation Process

The AST parse and code generation phases are implemented as C++ inte-

grated with the ANTLR front-end. The AST parse phase involves walking

over the AST and generating data structures more in-line with the target

code. At this stage, sub-blocks of code are generated for transitions, and vari-

able and agent instantiations are collated ready for the final stage. The final

phase is the code generation from the data structures created in the previous

step. For each SDL agent three files are created – a types header, the agent

class header, and the class implementation file. The types header contains

definitions for any SDL types which were defined within the agent. It also

provides the unique signal identifiers and layouts for any declared signals.

The class header declares the agent object which has a base class of wpdeagent.

Within this class are defined any variables and timers local to that agent, any

contained agents, and an instance of each signal type that can be output by

that agent. For the top-level agent, member variables include shadow copies

for all exported variables in the system. Prototypes for PDU encapsulation

and decapsulation routines are also included in the top-level agent class.

The class implementation file contains the body of the three primary agent

routines: the class constructor, the reset() method, and the input() method.
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The constructor initialises any contained agents and also sets up the unique

signal identifiers for signals within the output signal set. The reset() method

contains the code generated for the start transition, along with invocation

of the corresponding methods of any contained agents. Within the input()

method the signal routing and state machine code is generated.

4.3 Summary

The service definitions and translation strategy described in this chapter pro-

vide the framework required to automatically convert an SDL specification of

a MAC protocol into a C++ model suitable for integration into network simu-

lators like ns-2, and implementation environments such as that later described

in Chapter 6. Key advantages of the strategy proposed here are the lightweight

nature of the code generated. Despite the relative simplicity of the approach,

sufficiently complex specifications can be translated.



Chapter 5

Simulation

The target design flow discussed in Chapters 1 and 2 involves a iterative process

of refinement from initial specification through to a prototype implementation.

Refinements are driven by repeated evaluation of the protocol in terms of

correctness and performance. Simulation provides an evaluation tool which

can be used at a stage in the development cycle before sufficient detail has

been introduced into the design to support an implementation. This is not to

say that simulation only has a use in the initial stages of protocol development.

Quite to the contrary, simulation allows careful control of environment and

stimulus and ready access to the internals of the system under test. These

characteristics make it a valuable evaluation tool at all stages of the protocol

design lifetime if appropriate rigour is applied [23].

Kotz et al. [17] provide several recommendations for the wireless network

research community in terms of improving the usefulness of simulation tech-

niques. A central theme in these is the importance of using appropriate models

within a simulation environment. This applies not only to simulation traffic

models, but also to the representation of the underlying physical layer. A sec-

ond recommendation which has significance here is the need to allow the use

of the same code within simulation and implementation environments. This

allows direct comparison of the results of simulation and implementation eval-

uation, and provides a means of verifying or refining the simulation models.

81
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Finding the appropriate level of model detail for use in performance simulation

is an important but challenging task [17, 51]. Increased levels of detail can sig-

nificantly increase the run-time of simulations, particularly in scenarios such as

those associated with large-scale sensor networks, which may comprise thou-

sands of nodes [92]. The trade-off associated with model abstraction, however,

is potential for incorrect or irrelevant simulation results. This is particularly

applicable to the lower layers of the network stack. Differing characteristics of

such layers can impact severely on network and transport layer performance.

Correspondingly, the simulation performance hit of excessive model detail is

magnified in these layers due to the tendency for their functions to be invoked

multiple times for a single higher layer operation.

The allowable level of abstraction within simulation models varies throughout

the design lifetime. For the purpose of verifying correct protocol operation,

manual stimulus will generally suffice for a traffic model to allow inspection of

the basic frame exchange sequences. Similarly, a model of a reliable channel is

often all that is required to approximate the physical layer. At later stages of

evaluation, more detailed traffic and channel models must be used to provide

representative indications of protocol performance.

Identifying the relevant performance metrics for a given protocol or study

is a key step toward selecting acceptable simulation model abstractions [18].

Performance requirements are generally set with reference to the application

layer, and may include specifications for power efficiency, throughput, latency

introduced by the MAC sub-layer, ability to provide QoS differentiation, or

any number of other possibilities. Acceptable model abstractions are generally

determined experimentally through comparison of the relevant metrics given

by corresponding simulation and implementation studies. In the development

of a new MAC protocol this approach is not possible until well into the design

process, and so it is necessary to start with a high level of detail within the

MAC simulation model. Similarly, it is important to ensure that physical layer

and traffic models are as representative as possible of the target application

environment [17]. Given the idealised design flow in Chapter 1, the use of a

common design representation through the development lifetime ensures that

all available detail is present within the MAC simulation model. Suitable
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physical layer and traffic models must be provided for by the performance

simulation environment.

Two distinct environments cater for simulation in the framework described.

Direct simulation of the protocol specification within the Cinderella SDL [84]

tool provides for early analysis of protocol operation and verification of the

correctness of frame exchanges and state machine interactions. Performance

simulation is catered for through integration into the ns-2 network simula-

tor which provides good models for application traffic generation, transport

and network layer protocols, and the wireless channel. In this chapter we

discuss how these simulators are integrated into the presented design flow.

Though careful simulation using appropriate models can provide useful and

early evaluation of a protocol under development, the risk of model inaccu-

racies affecting results can be removed through actual implementation of the

protocol. A platform for prototype implementation of protocols within the

described framework is presented later in Chapter 6.

5.1 SDL Simulation

The use of simulation at early stages of the development process accelerates

the initial design cycle and allows the design space to be thoroughly evaluated

before the developer becomes immersed in low-level design detail. Given the

choice of SDL as an initial representation, there is an opportunity for simu-

lation of the specification in its raw form. Various SDL simulators exist, and

these are often coupled with graphical SDL design environments – the Cin-

derella SDL tool introduced in Chapter 3 is an example. At this simulation

level we have three goals: to determine whether the protocol we have specified

works; to detect any differences between the description we have produced and

any prior informal specification or vision of how the protocol should operate;

and to identify any inefficiencies which are apparent at this level of simulation

detail.

The boundary of our simulation is defined by what is known as a testbench –
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Figure 5.1: SDL Simulation Elements

the virtual environment which allows evaluation of the device (or in this case,

protocol) under test. Generally the testbench should be self-contained, thus

requiring little or no external stimulus in operation. Figure 5.1 illustrates the

elements of a testbench for use within the SDL simulation environment. This

testbench allows modelling of the lower layers of the network stack. Stimulus

is provided directly to the MAC sub-layer by traffic models or manually by the

user. Each MAC sub-layer has an associated physical layer model which rep-

resents the corresponding wireless transceiver, and these are coupled through

the closely related channel model. Given the goals of this simulation level, traf-

fic models may be simplistic involving independent traffic sources and sinks.

More detailed models may incorporate both aspects to allow dynamic reaction

to received traffic.

Though specialised network simulation platforms such as will be used for per-

formance simulation later in the design cycle incorporate traffic and channel

models, SDL simulation environments are typically general purpose and lack

these specific components. The SDL simulation environment in Cinderella pro-

vides execution of the specification, and generates a trace of signal exchange

which can be viewed within the Graphical User Interface (GUI) as a MSC.

Signals can be manually inserted into the input queue of any process instance

within the system, and features similar to those found in most debuggers allow

viewing and manipulation of process state including local variables, and the

tracing of execution with breakpoints and stepping facilities. To support the

simulations desired within our framework it is necessary to implement traffic

and physical layer simulation models in SDL. We consider first the modelling

of the physical layer of our simulated wireless network.
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5.1.1 Modelling the Physical Layer

Figure 5.2 illustrates a primitive model of a shared medium. The channel can

be considered to be in any one of three states: idle, busy, or collision. The

channel is considered to be idle when no transmitter is currently active. If a

transmission begins, then the channel is considered busy, and if the completion

of that transmission is the next event, then the data is successfully transferred,

and the channel becomes idle again. In this simple model, the busy state

represents the period when data is being transferred to any listening stations. If

another transmission begins while the channel is busy, then the model dictates

that the channel move to the collision state, indicating the corruption of data.

The channel remains in the collision state until such time as no transmitters

are active, at which point it becomes idle, with no transfer of data.

busy collision
transmission starts

another

transmission starts

transmission ends/packet received

last active transmission ends

idle

Figure 5.2: Modelling a Shared Medium

Typical wireless receivers are able to track and potentially receive without

error the stronger of two signals, if the relative difference in power is greater

than a factor known as the capture ratio [93]. This behaviour is known as the

capture effect. The model of Figure 5.2 provides a good approximation for use

in channels such as Ethernet. In a wireless environment however, the capture

effect invalidates the assumption that temporally overlapping transmissions

will both be lost. By adding the concept of received signal strength we can

incorporate the capture effect into our wireless channel. This requires that we

take into account the two major contributors to the received signal strength –

transmitter power and the physical distance between transmitter and receiver1.

This added detail reflects the fact that different wireless receivers will have

1Random variation in the received signal power level is also possible due to environmental
conditions, but at this stage we omit this detail from our model
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Figure 5.3: Model of a Channel with the Capture Effect

different views of the channel. For this reason we change our model from an

overall channel state, to a node specific receiver state. Figure 5.3 shows the

improved channel model.

Two receiver states are specified in this model. In the listening state, the

receiver does not have carrier lock on any transmitted signal. This may be

because no transmitter is active, or simply because no signal is sufficiently

strong to capture the receiver. When a signal is sufficiently strong to capture

the receiver, the receiver will begin tracking that signal. If this situation

remains until completion of the transmission which is being tracked, then the

data is considered to be successfully received. If a new signal becomes present,

and is stronger than the original signal by more than the capture ratio, then the

receiver ceases its tracking of the original and begins tracking the new signal.

The model reflects this by remaining in the tracking state. If the new signal is

strong enough to interfere with the original signal and prevent the continued

tracking of that signal, but is not strong enough to capture the receiver, then

a collision occurs and neither signal results in a received frame. In this case

the model returns to the listening state.

In the models discussed so far, delivery of frames has been all-or-nothing. If a

frame is affected by collision, or otherwise corrupted with respect to a partic-

ular node, then that node is deemed not to have received the frame. However,

this does not accurately reflect the behaviour exhibited by real wireless de-

vices. The all-or-nothing approach to modelling error may be sufficient for

some protocols. The 802.11 protocol, for example, makes use of a 32-bit CRC

to cover the entire frame body – thus, any error will cause the frame to be

dropped. In contrast, a Bluetooth SCO frame provides error checking only on
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Feature Required Detail

Reliable and instanta-
neous signal exchange

No extra information required

Collision for temporally
overlapping channels

Frame duration on the physical layer: derived from
physical layout of frame information

Modelling of receiver
sensitivity and the cap-
ture effect

Node locations and transmit power levels

Realistic error models Non-determinism applied to error based on received
signal-to-noise ratio. Recording of error locations
in frame

Power consumption
profiling

Tracking of MAC/radio state, with power con-
sumption models for the target implementation

Table 5.1: Levels of detail in the physical layer

its header, leaving the body of the frame unprotected. While any bit error in

the header will cause the frame to be dropped within the Bluetooth baseband

sub-layer, a frame with corrupted payload is still used. Clearly in simulating

this protocol, it is necessary to include more detail than in our basic error

model.

The detail we require in this case is more information on the nature of the

errors. Depending on the amount of headroom between the tracked signal

strength and the next strongest interferer (which may be ambient noise), the

degree of error introduced to the received frame (if received at all) can vary

from zero to total. If the margin is near the capture ratio, then the previously

mentioned random variations in the received signal strength can cause both the

bursty errors typically known as fading, and random bit errors. If the margin

is smaller than the capture ratio, then bursts of corrupted data corresponding

to the interfering activity can occur.

Another example of an instance in which it is important to match the level

of detail to the simulation goals is in the study of power-aware protocols. For

protocols which need to be power-aware it may be important to distinguish

carefully between the states of the radio. A simple distinction between lis-

tening, and receiving may not be sufficient for the architecture in question,
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as it may involve sub-states of these which have significantly different current

consumption characteristics. Table 5.1 shows a summary of the physical layer

behaviours discussed in this section, and the detail required to model at each

stage.

We have not yet discussed the modelling of transmit behaviour. Fortunately

this is relatively straightforward due to the modelling of competing signals at

the receive end. Figure 5.4 illustrates the addition of transmit to our physical

layer model. An additional transmitting state represents an active transmitter.

The start of transmission invalidates any in-progress receptions. The physical

layer model which we will use in our initial SDL simulations combines aspects

of our initial basic model shown in Figure 5.2, with the transmit elements

shown in Figure 5.4. The SDL/GR description of the physical layer is shown

in Figure 5.5.

tracking
signal capture

new signal

capture

tracking signal completes/

packet received

new signal causes corruption of both

listening

transmitting

transmit

request

transmit

request

transmission

complete

Figure 5.4: Modelling Transmit

Four states are maintained in the physical layer model: idle, busy, collision,

and transmitting. Any temporal overlap on receive is considered to cause

loss of all packets involved. Similarly, a reception which is interrupted by

a local transmission will be considered lost. The network allocation vector

(NAV) consisting of a timer – navtimer and a variable of type time – nav,

tracks any activity on the medium. Expiry of the timer in the busy state

represents the completion of a successful packet reception. In any other state,

expiry of the timer represents the medium becoming idle with the end of the
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transmit_end(data)
sig.length :=

usec(8 * length(data))

true

idle

false

collision idle

active(navtimer)

phy_data_confirm

txtimer

transmitting

dcl
  data mpdu_t,
  sig signalparams_t;

timer txtimer;

transmitting

transmit_start(sig)

set(now + sig.length, txtimer)

phy_data_request
(,data)

idle, busy,
collision

nav := now;
sig.x := 0;
sig.y := 0;
sig.z := 0;

sig.power := 0;

1(3)Process phy

set(nav, navtimer)

nav := now + sig.length

dcl nav Time;
timer navtimer;

busy

idle

receive_start
(sig)

false

true

set(nav, navtimer)

nav := now + sig.length

(now +
sig.length) > nav

transmission

receive_start
(sig)

transmission

collision

receive_start
(sig)

busy, collision

(now +
sig.length) > nav

nav := now + sig.length

set(nav, navtimer)

true

false

2(3)Process phy

error_model
(data, sig)

collision,
transmission

receive_end0
(data)

-

idle

receive_end0
(data)

busy, idle

phy_data_indication
(0,data)

busy,
collision

navtimer

idle

3(3)Process phy0

Figure 5.5: SDL Model of the Physical Layer
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last outstanding remote transmission after a collision.

Packet errors may be modelled within the error model procedure which is

called by the physical layer model prior to a phy data indication signal being

sent. The call to this procedure is visible in the third sheet of the model shown

in Figure 5.5, and takes the MPDU and signal parameters as arguments, with

the MPDU able to be modified to reflect error.

Communication on the simulated medium is by way of the transmit start,

transmit end, receive start and receive end signals, with the former two

issued by the originating node, and translated into the latter two by the

medium model. The transmit start and receive start signals carry a pa-

rameter which defines the signal characteristics. The type of this parameter is

defined as:

value type signalparams_t;

struct

length Duration;

x, y, z Real;

power Real;

endvalue type;

The length parameter indicates the duration of the transmission. The param-

eters x, y, and z indicate the location of the signal transmitter in space. These

are unused in the current model, but provide for future extension, along with

the final parameter – power – which indicates the transmitted signal power,

and when coupled with transmitter and receiver locations, allows for received

signal strength to be modelled. The transmit end and receive end signals

serve to deliver the MPDU, and carry this as their sole parameter.

These signals are defined within the block shown in Figure 5.6, which instan-

tiates two physical layer blocks in order to provide a simulation model for a

point-to-point wireless channel. A single SDL process is necessary to avoid

potential race conditions in the relay of the transmit start, transmit end,

receive start and receive end signals introduced above. This can be seen
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phy_data_request

phy_data_request

phy_data_confirm,
phy_data_indication

phy_data_confirm,
phy_data_indication

transmit_start1, transmit_end1

receive_start1, receive_end1

phy0

1(1)phy_data_confirm,
phy_data_indication

mac0

phy_data_confirm,
phy_data_indication

phy_data_request

phy_data_request

medium

transmit_start0, transmit_end0

receive_start0, receive_end0

value type signalparams_t;
struct
  length Duration;
  x, y, z Real;
  power Real; 
endvalue type;

signal
  transmit_start0(signalparams_t),
  transmit_start1(signalparams_t),
  transmit_end0(mpdu_t),
  transmit_end1(mpdu_t),
  receive_start0(signalparams_t),
  receive_start1(signalparams_t),
  receive_end0(mpdu_t),
  receive_end1(mpdu_t);

phy1

Block Type ptpmedium

mac1

Figure 5.6: Model of a Point-to-point Wireless Medium

within Figure 5.6 as the medium block. When a transmit start signal is is-

sued to this block, it is relayed to the opposing physical layer model in the

form of a receive start signal. Correspondingly, transmit end is converted

to receive end except where overlap of transmissions is detected in which

case the receive end signal is withheld.
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*

mac_unitdata_indication
(,,rxdata,,)

rxcount := rxcount +
dataref_size(rxdata)

-

id := id + 1

txdata.id := id

dataref_setsize
(txdata, txsize)

synonym
/* Transmit packet size */
  txsize Integer = 150,
/* Destination address */
  txaddr macaddr_t = 0;
dcl
  id Integer := 1,
  txdata dataref_t,
  rxdata dataref_t,
  rxcount Integer := 0;

mac_unitdata_request
(txaddr,txdata, 0, 0)

wait

mac_unitdata_confirm

1(1)Process floodsrc

Figure 5.7: Flood Traffic Source

5.1.2 Traffic Models

Traffic models are used at the SDL simulation stage to provide stimulus for

the protocols under development, allowing analysis of the frame exchange se-

quences and internal protocol communications. Given the goals of the SDL

simulation stage set out earlier, a high level of detail is not necessary in these

traffic models. In particular, for the majority of purposes it is unnecessary to

include detailed information about MSDU payload. To this end, the SDL im-

plementation of the data reference abstraction is a structure type. Arbitrary

data can be included in this structure, but as a base it provides for payload

length and unique identifier elements, each of type Integer. SDL operators

and procedures implement the data reference operations.

Two basic traffic models for use in SDL simulation of MAC protocol spec-

ifications are presented here. The constant bit-rate traffic source provides

fixed-size packets at a defined interval. The flood traffic source will provide

fixed-size packets as quickly as the MAC protocol can accept them in order to
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*

mac_unitdata_indication
(,,rxdata,,)

rxcount := rxcount +
dataref_size(rxdata)

-

id := id + 1

txdata.id := id

dataref_setsize
(txdata, txsize)

synonym
  txsize Integer = 150,
  ifs Duration = msec(1);
dcl
  id Integer := 1,
  txdata dataref_t,
  rxdata dataref_t,
  rxcount Integer := 0;
timer
  sendtimer;

idle

set(now + ifs,
sendtimer)

sendtimer

mac_unitdata_request
(0, txdata, 0, 0)

wait

sendtimermac_unitdata_confirm

set(now + ifs,
sendtimer)

set(now + ifs,
sendtimer)

waitidle

1(1)Process cbrproc

Figure 5.8: Constant Bit-Rate Traffic Source

test the protocol under load. The implementation of these models is as SDL

agents with a single gate which is connected in simulation to the MAC ser-

vice access point of the corresponding protocol node. As would be expected,

these models deal in the mac unitdata request, mac unitdata confirm, and

mac unitdata indication primitives.

Shown in Figure 5.7 is the flood source which will saturate its MAC with pack-

ets of a specified size. The source will also act as a sink for data, recording

the total number of bytes received. A monotonically increasing payload identi-
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fier is maintained which allows identification of packets in the frame exchange

MSC. This model allows for automated basic stimulus of a protocol to test

either single or bidirectional data transfer frame exchanges.

Figure 5.8 illustrates the constant bit-rate traffic source. This model is similar

to the flood source, but the rate of issue of mac unitdata request primitives

is limited by the fixed period of the send timer.

5.1.3 Performing Simulations

The Cinderella SDL environment allows for simulation of an SDL system – the

top-level agent. For the protocol simulations that we seek to perform, the sys-

tem consists of: multiple instances of our protocol under test; a physical layer

model to allow communication between the nodes; and traffic sources and sinks

to provide stimulus for the simulation. Figure 5.9 shows an initial testbench

for the PTPMAC protocol. This testbench incorporates a constant bit-rate

traffic source and a reliable point-to-point medium to allow basic testing of

the protocol.

Integration of developed MAC protocols into this testbench is a straight-

forward process, with the developer able to graphically configure the network

topology within the Cinderella environment. Appropriate traffic and error

models can be applied as discussed in Sections 5.1.1 and 5.1.2.

The simulation result can be viewed as a MSC to allow rapid visual analysis

of protocol operation. An excerpt from the MSC generated through SDL

simulation of the PTPMAC protocol is shown in Figure 5.10. Visible within

this MSC are five axes corresponding to the flood traffic source (src1); the

MAC which it is attached to (mac1); the second MAC which is the traffic

target (mac0); the block encapsulating the physical layer and medium models

(air); and the environment (env).

Exchanges between the src1 and mac1 blocks show the interactions through

the MAC service access point required to initiate the transfer of MSDUs. The
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mac_unitdata_confirm,
mac_unitdata_indication

mac_unitdata_request

src1: floodsource

phy_data_indication,
phy_data_confirm

phy_data_indication,
phy_data_confirm

phy_data_request

phy_data_request

air: ptpmedium

mac_unitdata_request
macsap

mac_unitdata_indication,
mac_unitdata_confirm

mac1: ptpmac_mac

mac0: ptpmac_mac

1(1)

use wpdeprimitives;
use wpdephy;
use ptpmac;
use wpdetraffic;

System ptpmac_test

physap

mac0

physap

mac1

macsap

macsap

Figure 5.9: SDL Protocol Testbench

first activity on the mac0 axis shows that it wins the transmit timeout race

which is in effect from the start of simulation. Thus the first occurrence of a

phy data indication primitive is delivered to the mac1 instance and can be

seen to be a pure token with neither acknowledgement nor data.

The MPDU returned by the mac1 instance at this point carries the first

MSDU generated by the traffic source src1, and can be seen to be success-

fully delivered from the mac0 instance to the environment (env). The cor-

responding mac unitdata confirm is not returned to src1, however, until

acknowledgement is received at mac1. It can be seen here that the subsequent

mac unitdata request issued from src1 to mac1 is received after the token

transmission has been initiated. This exposes an inefficiency in the current

PTPMAC protocol operation: the time between transmission of two consec-

utive MSDUs from a particular MAC entity is always at least the duration
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Figure 5.10: Initial Simulation of the PTPMAC Protocol
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Figure 5.11: PTPMAC MSC with Double-Buffering
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required to exchange the token twice.

This behaviour is due to the strict flow control enforced by the issue of the

mac unitdata confirm primitive on receipt of the data acknowledgement. As

receipt of the packet containing the acknowledgement will cause a transmission

to occur immediately, the traffic source will not have had a chance to provide

another MSDU for transmission. This illustrates the need for some degree of

buffering of transmit MSDUs.

The amount of buffering that is required for optimal operation in a real system

will be dependent on a number of factors including the characteristics of the

host interface, driver implementation and host processing power. As a first at-

tempt at improving the efficiency of the protocol, we extend our transmit unit

to support buffering of two packets. Figure 5.11 shows the MSC generated

through simulation of the double-buffered model of the PTPMAC protocol.

While holding an initial packet in case retransmission is required, the MAC

may now buffer the next packet to be sent so that when positive acknowledge-

ment is received the following transmission can carry the next data packet.

This dramatically improves the efficiency of the protocol.

5.2 Network Simulation

Though SDL simulation allows the verification of frame exchange sequences,

the lack of model detail makes it unlikely that simulation results will give

any accurate information on protocol performance in the real world. One way

to allow this would be to improve the accuracy of the SDL models, however

this is not trivial, as the acceptable abstractions are generally unclear [18].

Modern network simulators incorporate much of the knowledge in this area,

and therefore typically provide the most representative network elements short

of an actual implementation. Such simulators are generally highly optimised

for performance, and will allow rapid exploration of a wider range of model

and environment parameters than would be possible within a general purpose

SDL simulation environment. The use of network simulation at this stage of
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Figure 5.12: Network Simulation Elements

the design process can enable problems to be identified and corrected early to

avoid the increased cost of addressing them at later stages of the design cycle.

As with SDL simulation we must consider the network simulation testbench, an

example of which is illustrated in Figure 5.12. The added elements within the

network simulation framework include more detailed models at several higher

layers of the network stack, along with more representative physical layer and

channel models. Several network simulators are available that would be suit-

able for use in this work. The Network Simulator – ns-2 – is a high-performance

discrete event simulator targeted at network simulation. It consists of a com-

piled C++ core, coupled with an OTcl interpreter front-end. The scheduler

and other processor intensive aspects of the simulation are implemented in

C++ for efficiency. This includes core functionality of the simulation models.

The OTcl front-end allows flexible configuration of simulations through scripts

interpreted at runtime.

Although ns-2 was originally designed for use in wired networks, its underly-

ing structure is sufficiently flexible to make it a powerful tool for many aspects

of network simulation, including the analysis of wireless MAC protocols. Re-

search in the CMU Monarch group [85] has produced extensions to ns-2 for

supporting simulation of mobile networking scenarios. This work includes a

simulation model of the IEEE 802.11 protocol, and radio propagation models

based on the Friss free-space and two-ray ground reflection models. A third
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makes use of the more realistic shadowing model which takes into account the

effects of multi-path propagation.

The ns-2 simulator is chosen as the basis for this aspect of the proposed

development framework due to its good range of protocol and wireless channel

simulation models, flexible configuration front-end, and widespread use within

the network research community [23]. Early integration to ns-2 gives access

to other powerful extensions and tools based around that platform such as

iNSpect [94], the Network Simulation Cradle [95] or a range of others [96].

C++ core

functionality
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Figure 5.13: Interfaces of an ns-2 Object

5.2.1 The ns-2 Simulation Model

Simulations in ns-2 are built from a structure of interacting objects forming a

representative model of the system under test. The typical simulation object in

ns-2 is constructed using a C++ class, with an OTcl interface allowing runtime

configuration. Figure 5.13 depicts this structure. The core model within each

object may have any number of interfaces which allow communication with

other objects. The OTcl interface allows dynamic instantiation of objects and

the connection of their interfaces. In this way, a simulation consisting of a

number of communicating objects can be created using a simple script.

Granularity of ns-2 simulation objects is such that generally several are re-

quired to provide the complete functionality of a network node. Figure 5.14

illustrates the structure of the ns-2 mobilenode, which brings together the

simulation objects necessary to model accurately the lower levels of the net-

work stack and their interactions. The Link Layer provides modelling of the

Address Resolution Protocol (ARP) in cooperation with the ARP Table. Once
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Figure 5.14: Architecture of the ns-2 Mobilenode

a destination MAC address has been determined, outgoing data-link packets

are queued to the MAC. The Queue may operate using a range of algorithms,

from a simple First-in, First-out (FIFO) with drop-tail, through to a more so-

phisticated class-based algorithm which provides for simulation of differential

services. The MAC is clearly the sub-layer that we are concerned with and this

will be discussed in more detail later. The Network Interface object models

the physical layer, and applies the Radio Propagation Model. The outgoing

packet is passed to the Network Interface by the MAC, and then is distributed

via the Channel. On the receive path, the procedure is reversed, with the sub-

tle difference being that packets are passed directly from MAC to Link Layer

rather than through a queue object.

The Radio Propagation and Channel objects collectively model propagation

delay between nodes and signal attenuation to the receiver using either the free-
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s 1.358660667 _0_ MAC  --- 0 wpde 1044

r 1.367204833 _1_ MAC  --- 62 tcp 1040

s 1.367204833 _1_ MAC  --- 0 wpde 44

r 1.367749000 _0_ MAC  --- 97 ack 40

s 1.367749000 _0_ MAC  --- 0 wpde 1044

r 1.376293167 _1_ MAC  --- 64 tcp 1040

s 1.376293167 _1_ MAC  --- 0 wpde 44

r 1.376837333 _0_ MAC  --- 99 ack 40

Packet Size (Octets)

Packet Type

Sequence Number

Layer

Node identifier

Simulation time

Event (send/receive)

Figure 5.15: Extract of ns-2 Simulation Trace

space, two-ray ground, or shadowing models, with bit errors, interference and

capture modelled at the receiver in the Network Interface. This architecture

clearly separates the MAC from this physical layer modelling, allowing new or

modified protocols to readily make use of these facilities.

Transport layer protocols are modelled within ns-2 as a special class of ob-

ject known as a transport agent. Numerous agents are provided with the

standard distribution including models of several variants of TCP,UDP, and

Real-time Transport Protocol (RTP). Like other simulation objects, trans-

port agents may be configured at run-time using OTcl. Application objects

sit above transport agents in the simulated stack, and provide modelling of

traffic characteristics. Supplied application objects provide modelling of FTP,

Constant Bit Rate (CBR) traffic such as VoIP, or playback from a captured

or synthesised packet trace file.

Two general methods of drawing results from the simulation are possible: sim-

ulation tracing and collection of statistics within models. Trace simulation

objects are provided which act as a packet sink, and record the timing and

details of these packets to a file. Post-processing of the recorded trace allows

analysis of protocol features. Figure 5.15 shows an excerpt from the MAC

layer simulation trace of the PTPMAC protocol described within the WPDE

framework. Each line within this trace represents an event associated with a
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MAC object within the simulation. This trace shows a TCP session between

two nodes. The true nature of the packets (TCP data and acknowledgements)

is only visible in the trace entries associated with the receiving node, due to

the location of the trace points at the network interface in the downward direc-

tion (send) and at the interface to the link-layer in the upward direction. Sent

packets are traced after encapsulation into their MPDU format, and there-

fore their original type is hidden. Comparing the packet size in octets of each

send/receive pair of trace entries it can be seen that the MPDU (indicated

by a packet type of wpde) is four octets longer than the corresponding TCP

packet – this is the PTPMAC protocol framing overhead.

The alternate means of obtaining results is through collection of statistics

within simulation models. These statistics can be extracted through the OTcl

interface at arbitrary points within the simulation. This approach is commonly

used in simulations involving TCP or UDP agents, with the agent maintaining

a variable which records the count of bytes received, and a simulation script

sampling and then zeroing this variable at fixed intervals through the OTcl

interface, in order to track throughput across simulation.

5.2.2 Integrating WPDE MAC Protocols

Ns-2 provides a powerful environment for performing network simulations with

a rich library of simulation models available to the network researcher. Though

ns-2 provides a fairly moderate learning curve for the development of simula-

tion models, manual implementation of simulation models for a protocol under

development is not desirable. As well as being time-consuming, manual imple-

mentation or translation also presents the chance of human error corrupting

the model and invalidating any results that simulation may produce. Consis-

tency of representation between different stages of the design process [17] is a

key goal of the work described in this thesis, and although different represen-

tation techniques may be required at different stages, automated translation

can remove human error from the process. The tool presented in Chapter 4

for translation of SDL protocol models into C++ makes this approach feasi-

ble given a suitable surrounding framework. In order to provide a framework
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for integration of WPDE MAC protocols into the ns-2 simulator, it is first

necessary to consider how we may map the channels defined in Chapter 4.

Channels

The channels defined in Chapter 4 provide the standard interfaces for inter-

actions between MAC protocols developed within the WPDE framework and

their environments. In integrating protocols with the ns-2 simulator, these

channels must be mapped to those available to native ns-2 MAC models.

WPDE MAC

MAC data service

Measurement

channel

PHY interface

MLME channel

Figure 5.16: Interfaces to the WPDE MAC

Figure 5.16 illustrates the four defined channels. The data service provided

by the MAC clearly must interact with the link-layer and queue elements in

the ns-2 mobilenode. The issue of a packet from a higher layer results in

injection of a mac unitdata request signal to the MAC protocol. Similarly,

data indications generated by the MAC cause a packet to be conveyed to the

link-layer.

Like the MAC data service channel, the physical layer interface defined in

Chapter 4 is on the core data-path through the MAC protocol. Within the

ns-2 model, the physical layer interface ultimately interacts with the network

interface depicted in Figure 5.14, though it is necessary to appropriately model

the transceiver at this interface.

The MLME channel provides for manipulation of MAC parameters and con-

trol of MAC operation. These functions are typically invoked relatively infre-

quently in comparison to the MAC data service primitives, and are not directly

controlled by the upper layers of the network stack. For this reason these are

mapped to the OTcl interface within the ns-2 framework. This approach en-
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hances the control available to the user, allowing scripting to precisely control

MLME access and thus the protocol under test.

The measurement channel is intended to allow precise correlation of internal

MAC events with those that are more readily observed externally. Of particular

interest is the relationship of emitted measurement signals to interactions on

the MAC data service and PHY interface channels; however, measurement sig-

nals should not enter any standard data paths. The standard ns-2 MAC trace

file provides a convenient destination for these measurement signals, where

their relationship to other trace events is apparent. Signals emitted on the

measurement channel generate a trace file entry which includes the current

simulation time, along with the measurement point identifier and argument.
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Figure 5.17: Architecture of the ns-2 WPDE Environment

Figure 5.17 illustrates the integration described above of an SDL protocol

model into the ns-2 environment. The MAC, MLME, Measurement, and PHY

service blocks implement the mappings described above. The MAC API is

used by the protocol model to provide local implementations for features such

as the timer and data reference mechanisms. Two other blocks are apparent

between the physical layer interface of the MAC and the ns-2 network interface:

the MPDU en/decapsulation, and transceiver modelling blocks. These are

discussed in the following sections.
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PDU Encapsulation

The physical layer interface primitives defined in Chapter 4 are designed to

convey MPDUs to and from the PHY. The parameters of these primitives

are specific to the protocol under development, reflecting the various fields of

the specific MPDU format. At early stages of design, no detail is required

or assumed about the actual layout or overhead of MPDUs when serialised

by the transceiver, however at the stage of network simulation this detail may

begin to become relevant. The framework depicted in Figure 5.17 supports the

specification of MPDU encapsulation and decapsulation routines by providing

shell C++ functions within which the data reference API routines can be used

to pack and un-pack MPDUs from and to their constituent individual fields.
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802.11 MAC
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  Error Information
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Figure 5.18: The Structure of an ns-2 Packet

The Packet (illustrated in Figure 5.18) is the basic unit of data exchange be-

tween protocol elements in an ns-2 simulation, and so it is into this form that

MAC protocol transmissions must be converted. The primary components of

interest in a ns-2 packet are the protocol headers and the optional application

data reference. Each packet has allocated space for protocol headers to cater

for all possible protocols within the system. A common header field provides

basic information for the packet including the protocol it contains, payload

size, duration on the air, and also holds flags for marking packets with er-

ror. Payload data is generally ignored within an ns-2 simulation in order to
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maximise speed, however scenarios such as emulation using live data require

that this be tracked and so the application data field of each packet provides

a means for attaching arbitrary data to a packet.

Two approaches are possible to the encapsulation of custom protocol infor-

mation within the ns-2 packet. The first requires the definition of a custom

protocol header containing variables which correspond to the specific fields

of the protocol MPDU. Encapsulation would then consist of the direct copy

of phy data request signal parameters into the corresponding header fields.

Alternatively, an accurate MPDU could be constructed and attached to the

packet using the application data field. This second method has the advantage

that it can be carried over verbatim to an implementation, and for this reason

is the method chosen here.

MAC Service Data Unit (MSDU)

MAC Header Payload CRC

Figure 5.19: MSDU Encapsulation within an MPDU

A common task in the creation of an MPDU is the encapsulation of an MSDU

originated from a higher layer. A typical example is illustrated in Figure

5.19 where the MAC has prefixed the MSDU with a header, and appended a

CRC error check to create an MPDU. Within the simulation environment it

is important to optimise this potentially intensive process in order to improve

performance for large scale simulations. This can be achieved by the insertion

of a reference to the packet being encapsulated as opposed to full encoding of

the payload.

Figure 5.20 illustrates this approach, where a higher layer packet is encapsu-

lated by reference between a header and CRC within an MPDU. This method

provides an extremely efficient solution to encapsulation, as no payload copy

is required. The approach is also suitable for use with arbitrary higher-layer

protocols, as no knowledge of packet internals is required.
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Figure 5.20: Encapsulating Packets within PDUs

Modelling the Transceiver

Modelling of the wireless transceiver in ns-2 is the responsibility of the cor-

responding MAC simulation object, and hence must be provided for in the

framework which will encapsulate our WPDE protocols. The transceiver model

included with the ns-2 802.11 MAC implementation provides a suitable basis

this.

receiving
incoming packet

new transmission interferes/

mark packet with error

reception completes/

phy_data_indication

idle

transmitting

phy_data_request

transmission completes/

phy_data_confirm

phy_data_request

Figure 5.21: The ns-2 Radio Model

Figure 5.21 illustrates the basic radio model used. The radio is considered
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to be in one of three states of operation: idle, transmit, or receive. The

transmission process is initiated by the emission of a phy data request signal

by the MAC following the steps listed in the pseudo-code below:

1. The MAC emits a phy data request signal.

2. On-air duration is computed and inserted into the packet data structure.

3. Packet is passed via the network interface to the channel for distribution.

4. A timer is set for transmission completion.

5. On expiry of the timer a phy data confirm is passed to the MAC.

Modelling of the RF environment is performed by the network interface and

channel objects. Propagation delay is modelled by the channel in its scheduling

of the receive event at the remote nodes. In reception the chosen propagation

model is used to apply errors representative of multi-path effects. The received

packet is marked with its received signal strength indicator which may be used

to model capture. The following sequence shows the MAC receive procedure

at each node.

1. A packet is passed up from the network interface.

2. The channel state is marked as becoming busy.

3. If there is no existing activity then:

(a) A timer is set for completion of the reception.

(b) On timer expiry a phy data indication is passed to the MAC.

4. If there is existing activity then:

(a) If the power level of the new packet is within the capture threshold,

then the packet in reception is marked as having an error.

(b) The new packet is dropped.
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Figure 5.22: Effect of Packet Error Rate on PTPMAC TCP Session

This approach to the modelling of the physical layer provides an extremely effi-

cient implementation that is suitable for most research. Two main limitations

exist – no provision is made for re-capture of the receiver by a second signal,

and no received signal strength information is available for signals that are not

being tracked by the receiver. These limitations do not, however, invalidate

this model for use in the majority of simulation scenarios.

Figure 5.22 shows results collected from ns-2 simulation of the PTPMAC

protocol, indicating the effect of the packet error rate on the throughput of

a TCP session using several different retransmission timeout windows, and a

maximum serialisation rate of 1Mbps. These results show a maximum TCP

throughput of 917Kbps in the absence of packet errors. The results for a

retransmission window of 5-10ms shows throughput significantly lower than

the others. This is indicative of the fact that many timeout values within this

window will be less than the serialisation time of a typical TCP segment at

1Mbps. This shows the need for appropriate selection of the timeout window.
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Though not a robust experiment, this example shows the ease with which devel-

oped protocols can be integrated to simulation using the described framework.

The simulation was conducted using the WPDE model automatically gener-

ated from the SDL description of PTPMAC, with the topology consisting of

two stationary co-planar PTPMAC nodes separated by 50 metres using omni-

directional antenna and the ns-2 two-ray ground propagation model. Results

from one run per packet error rate were recorded to form the graph in Figure

5.22.





Chapter 6

Implementation Platform

Chapter 5 discussed the need for a coherent approach to the evaluation of

protocols and presented simulation testbenches which have been developed to

provide debugging and performance analysis of protocols designed within the

WPDE. Simulation provides a powerful tool for evaluation as long as care is

taken to choose suitable methods of modelling higher layers of the network

stack [18]. Similarly realistic physical layer models are required to ensure

the validity of simulation results [16, 51, 97]. Prototype implementation of

protocols allows evaluation with actual traffic and a real physical layer. This

provides a greater degree of confidence in the evaluation results, and hence

allows validation of both the protocol and simulation models. It is desirable to

provide for prototype implementation and evaluation of protocols developed

within the WPDE.

Several key characteristics are required of an implementation platform: a fun-

damental requirement is that the platform support implementation of realistic

modern protocols such as those discussed in Chapter 2. This requires appropri-

ate physical layer and host interfaces, and sufficient capacity for configuration

to ensure that MAC functionality can be captured in its entirety; though a ma-

jority of MAC functionality can be provided by embedded software, to support

aspects with tight timing constraints the platform should also support mixed

hardware and software implementations; Chapter 5 identified the need to eval-

113
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uate protocols with representative traffic. For the implementation platform

this means deployment of the protocol-under-test into real-world application

scenarios. Wireless technologies are often deployed in mobile or remote lo-

cations so the implementation platform form-factor must allow portability to

ensure its usefulness in such situations; in keeping with the outright aim of

the work described in this thesis, it is desirable to minimise the effort required

to produce a prototype implementation. By keeping this process short, im-

plementation and measurement may be used at an earlier stage of the design

lifetime. The provision of library components for commonly used blocks of

hardware is one means of addressing this goal; finally, the implementation

platform must provide for the measurement and evaluation of protocols which

have been implemented. This is primarily discussed in Chapter 7, but must

also be considered in the design of the implementation platform.

Few wireless protocol implementation platforms are readily available to the

academic community. Ganz et al. [38] describe a system using a commercial

wireless NIC running custom firmware and a Windows device driver which

allows the incorporation of MAC functionality on the host. This approach

provides a good degree of flexibility in design, but restricts performance due

to inter-packet turn-around being constrained by host interface and driver

scheduling latencies. No hardware protocol assistance is possible within this

approach, and support for measurement is not apparent.

Recent work in the open-source community has produced the Multi-band

Atheros Driver for Wi-Fi (MADWIFI) [41], which runs on various Linux op-

erating systems and supports the majority of cards based on Atheros chipsets.

The driver incorporates a binary (closed source Atheros proprietary) Hardware

Abstraction Layer (HAL), which provides an API allowing access to relatively

low level chipset functionality. Several projects [42, 43, 44, 45] have imple-

mented custom protocols using the MADWIFI driver. MADWIFI improves

on the system described in [38] by making use of optimised hardware within

the chipset, and a more flexible API; however, packets are still restricted to

using some 802.11 framing at the MAC level, and host interface latencies still

contribute a significant overhead – particularly at the higher bit-rates which

are supported.
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The TUTWLAN demonstrator [50] incorporates many of the features which

are desirable in an implementation platform. It uses a combination of FPGA

and DSP to provide MAC implementation, allowing for low-latency timing

constraints to be met. A commercial 802.11 MAC-less reference design is used

as the separate radio module. Several improvements must be made to the basic

TUTWLAN architecture to provide an implementation platform which meets

the goals set out above. The form-factor of the TUTWLAN platform with a

full Peripheral Component Interconnect (PCI) interface and multiple circuit

boards precludes its deployment in mobile or low-power nodes. Integration of

the functionality onto a circuit board suitable for use with existing low-power

single-board computers such as those produced by Soekris Engineering [98],

will allow flexibility in choosing an implementation scenario for prototype pro-

tocols. The TUTWLAN system provides for mixed hardware and software

design through the interface between the FPGA and DSP chips. Though this

allows for information exchange between the elements of the partitioned de-

sign, the interface in this case is inflexible. Modern FPGA technology provides

for on-chip integration of microprocessors blocks, allowing extremely close and

flexible coupling of the hardware and software aspects of a MAC protocol. Fi-

nally, the described TUTWLAN platform does not provide integrated support

for debugging and measurement of protocols in operation. As discussed later

in Chapter 7, this is a key part of the development process.

To address these requirements, the hardware, firmware, and software for a

wireless MAC protocol implementation platform has been developed as part

of the work described in this thesis. The remainder of this chapter details the

key elements of this platform and its role in supporting the design process.

6.1 The WAG device

The Wireless Analysis and Generation (WAG) device (shown in Figure 6.1)

was designed as part of the work described in this thesis to allow the imple-

mentation and evaluation of wireless protocols. It combines an 802.11b [2, 56]

radio chipset and an FPGA with integrated processor onto a Mini-PCI inter-
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Figure 6.1: WAG v2.1 Circuit Board

face card. A block diagram depicting the hardware structure can be seen in

Figure 6.2.

FPGA technology provides an ideal basis for a wireless protocol implementa-

tion platform. By designing using hardware description languages such as the

VHSIC1 Hardware Description Language (VHDL) or Verilog, the design cycle

can be minimised, allowing efficient implementation of timing critical MAC

functionality. In contrast, some MAC operations are best described in an im-

perative form and implemented as software running on an embedded processor.

The chosen FPGA provides for this through an integrated PowerPC [99] block

which can be tightly integrated with the other hardware. On-board LEDs

provide a visual indicator of MAC activity, and a processor debug interface

provides a powerful development tool.

The form-factor of the card allows for designs under test to be deployed in

mobile and remote environments. Single-board computers such as the Soekris

[98] running the Linux operating system can be used with the WAG to provide

a low-power portable wireless development system.

1VHSIC: Very High Speed Integrated Circuit
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6.1.1 Radio

The selection of physical layer technology was an important decision in the

design of the WAG devices. Three key factors were involved in the choice

of radio chipset: the described implementation platform would support any

of a range of possible radio technologies. It was important, however, to use

a technology with a suitable degree of performance to allow implementation

of representative modern protocols; in order to support MAC layer design it

was necessary to use a chipset which provided a device boundary between the

MAC and modem functionality. Trends toward increasing levels of chipset

integration meant that this restricted the range of choices available; the final

requirement in selection of radio chipset was that it be readily available in the

small quantities used within this work. For these reasons the RF Micro Devices

[100] chipset consisting of an 802.11b DSSS baseband modem, transceiver,

power amplifier, and RF switch was chosen for the WAG radio. Figure 6.3

provides a simplified illustration of the WAG radio architecture.

The RF5189 power amplifier, RF2436 RF transmit/receive switch, and a 2400-

2500MHz bandpass Surface Acoustic Wave (SAW) filter make up the front end

of the radio architecture. The RF2958 transceiver incorporates both RF and IF

(intermediate frequency of 374MHz) local oscillators, and provides Quadrature

Phase Shift Keying (QPSK) modulation and demodulation between baseband

and IF, up and down conversion between IF and RF signals, low-noise am-
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Figure 6.3: WAG Radio Architecture

plification of the received signal, and both receive and transmit gain control.

The external IF filter is shared between the transmit and receive paths. This

filter provides the channel selectivity in the receive path, and in the transmit

direction acts to reduce spurious emissions in adjacent channels.

The RF3000 baseband modem provides the spread-spectrum modulation of a

digital bit-stream, and the respective demodulation. It includes an equaliser

to ease the effects of multi-path propagation which can impact on the per-

formance at higher data rates. Physical layer framing is applied as per the

IEEE 802.11b PLCP. Within the modem are digital-to-analogue converters to

provide transmit and receive variable gain control, with the latter controlled

automatically to maintain appropriate level at the receive analogue-to-digital

converters. The modem provides a CCA output which may be based on de-

tected channel power, receiver acquisition, or both. The nature of the interface

to the RF3000 device is crucial to the WAG design as it must provide for the

physical layer service primitives set out in Chapter 4.

6.1.2 Digital Framework

The digital sections of the WAG architecture encompass the configurable logic

and embedded processor which allow MAC implementation, along with fixed

and configurable hardware providing for timing, debugging, and general sup-

port around the MAC subsystem. The primary component providing this

functionality is the FPGA.

The FPGA is of the Xilinx Virtex-II Pro [101] family, providing for high-speed
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firmware designs, which may incorporate the on-chip IBM PowerPC processor

block [99]. A firmware framework has been implemented which supports MAC

developers by providing an abstraction of the PCI and Radio interfaces that is

more conducive to protocol development. The hardware description language

VHDL has been used to implement this framework which is illustrated in

Figure 6.4.
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Figure 6.4: WAG Firmware Structure

The host bus interface is provided by purchased Xilinx intellectual property

residing within the FPGA which deals with PCI bus transactions and provides

a simplified interface for user applications. A transport mechanism has been

implemented which provides FIFO streams of data towards the card from the

host and vice-versa. To reduce the burden on host systems, bus mastering and

burst transfer support have been implemented, maximising the efficiency of

the data transfers. Circular buffers are maintained in the host memory, which

the WAG transfers data to and from. An interrupt is signalled to the host on

completion of a transfer.

On the radio side the data serialisation and de-serialisation is handled by the

framework, which again presents two FIFO streams between the MAC and the

transmit and receive units. Common radio control functions such as channel

selection, transmit data-rate, and gain (serial interfaces at the radio chipset),

are implemented by a radio control unit which abstracts the interface to a
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parallel register write.

Non-volatile memory is necessary for operation of the embedded software which

will implement aspects of MAC protocols. Though the FPGA provides some

amount of internal Random Access Memory (RAM) which is available to the

processor, this is likely to be insufficient for complex MAC designs and so

further Static Random Access Memory (SRAM) has been provided externally.

Timing synchronisation is an important feature for supporting measurement

of protocols. The RS422 serial interface allows for internal time synchronisa-

tion through an accurate Global Positioning System (GPS) pulse-per-second

signal. This provides a mechanism for managing clock drift, and synchronising

multiple nodes to allow distributed measurements. This is further discussed

in Chapter 7.
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Figure 6.5: Internal Data Interface

The architecture shown in Figure 6.4 allows custom MAC implementations to

be ‘dropped in’ by providing a clean and efficient interface which hides un-

necessary host interface and radio detail from the system under development.

Four primary data interfaces are visible in this block, providing data transfer

between host and MAC, and MAC and radio. Each of these interfaces provides

the unidirectional transfer of data using the signalling illustrated in Figure 6.5.

Transfers are synchronised by the system clock, which operates at 50MHz. A

valid transfer is indicated when the source de-asserts empty to indicate the

presence of valid data, and the destination asserts rd. Data is latched into

the destination entity at the completion of such a cycle. Asynchronous use of

the empty signal feeding back through combinatorial logic into the rd input

to the source is possible as the interface is only used within the FPGA where

propagation delays are minimal. Though the maximum bandwidth of 1.6Gbps

that this interface provides may seem excessive, this allows the flexibility of
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optionally implementing arbitrary limits on bandwidth or latency to emulate

an intended target host transport technology.

Figure 6.6: WAG Frame Format

Discrete units of data are transferred across these interfaces. These may be

packets to or from the radio, or service primitives issued over the host interface.

A consistent framing for these data units is defined to allow manipulation of

data streams. A conforming unit of transfer over this interface is referred to as a

WAG frame – a 32-bit aligned unit of data with the header format as illustrated

in Figure 6.6. The first word of each frame contains the magic number 0xDAA11,

along with the total frame length in octets. This allows a frame processing

element with limited internal state to readily identify frame boundaries within

a data stream. In case of error, resynchronisation can be achieved by searching

the stream for the magic number. The second header word contains frame type

and loss counter fields. The frame type field implicitly specifies the format of

the remaining frame body. Simple message frames may consist of solely the

two-word frame header. The loss counter allows detection of frame lost due

to insufficient bandwidth. Under normal circumstances this field will be zero,

with a non-zero value indicating the count of frames lost since the previous

frame in the stream.

The interface stages between MAC and host provide frame transport indepen-

dent of the frame type. Any frame which has an appropriate first header word

will be transferred to the host and made available to the driver. The radio

however deals with specific frame types in order to encapsulate physical layer

parameters and PDU data.

1This number corresponds to the author’s University computer system user-name.
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typedef struct frame_phy_data_indication_t {

frame_t hdr; // common frame header

timestamp_t ts; // reception timestamp

uint8_t rssi; // receive signal strength

uint8_t rxstatus; // rx status bits from the modem

uint16_t length; // payload length in bytes

uint8_t signal; // 802.11PLCP signal field

uint8_t service; // 802.11PLCP service field

uint16_t plcp_length; // 802.11PLCP length field (uS)

uint8_t data[0]; // placeholder for payload access

} frame_phy_data_indication_t;

Figure 6.7: PHY-DATA.indication Frame

Figure 6.7 shows a C structure detailing the format of the frames generated by

the radio subsystem on reception of a packet. This frame can be considered

equivalent to the PHY-DATA.indication signal defined in our generic MAC

interface in Chapter 3. As always, the generic frame header as shown in

Figure 6.6 lies at the start of the frame. A timestamp is taken corresponding

to reception of the first symbol of the packet body, and this is made available

within the frame. This timestamp is generated from the system timestamp

counter. The following fields provide various reception parameters, including

receive signal strength, modulation type and rate, and payload length. The

start of packet data is aligned to a 32-bit boundary, and is padded to ensure

the entire frame size aligns to 32 bits.

The frame sent to the radio subsystem for packet transmit is organised in a

similar way. In particular the frame body length and the payload data are in

the same position relative to the start of the frame. This allows the use of

common or similar hardware units for data frame processing operations such

as encryption or error control.

The control interface between the MAC and radio consists of three main sig-

nals. The radio pe signal enables power to the radio circuitry, radio channel

allows specification of the 802.11-style channel of operation and radio txstart

is asserted to initiate transmission of a queued PDU. Similarly, four status in-

puts are provided from the radio subsystem to the MAC: radio receiving
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and radio transmitting indicate the conditions of actively receiving (dis-

tinct from listening) and transmitting data; radio cca provides an indication

of channel state when the radio is listening (power enabled and not transmit-

ting); and radio txready indicates that a frame which has been queued is

ready to be transmitted.

The interface to the on-board static RAM is directly available to the MAC

subsystem, as is control of the two LEDs. The remaining MAC interfaces are

32-bit wide control and status interfaces which map to registers accessible from

the PCI interface. These allow simple control of MAC operation such as on/off

switching and reset, along with simple feedback on MAC and radio state.

6.1.3 MAC Subsystems

The framework described in Section 6.1.2 provides for specific MAC imple-

mentations to be ‘dropped in’ to allow rapid implementation. Full flexibility

is available to the designer in allocating implementation of MAC elements be-

tween configurable hardware and embedded software. To further speed the

development process for users, two base MAC sub-systems have been devel-

oped. These are described in the following sections.

Capture MAC

The capture MAC is named for its origins as a simple full-packet capture

implementation. It has since been extended to provide transmission facilities

as well. Figure 6.8 shows the body of the capture MAC architecture in VHDL.

This serves to illustrate the ease with which a basic system can be implemented

within the WAG framework.

Within the capture MAC, direct connections are made between the radio and

host sides of the receive data stream, and the transmit data stream. The radio

power enable and channel are connected directly to the MAC control register

available from the PCI interface, and transmission of queued frames is per-
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-- Aliases for bits within the MAC control register

alias control_pe : std_logic is control(31);

alias control_channel : std_logic_vector(3 downto 0)

is control(3 downto 0);

signal led_txrx : std_logic;

...

---------------------------------------------------------

-- Radio power control: hold power enable until the end of

-- transmission or reception of a current packet

radio_pe <= control_pe or radio_transmitting or radio_receiving;

-- Start transmit when...

radio_txstart <= control_pe

and radio_txready

and not radio_transmitting

and not radio_receiving

and radio_cca;

-- Channel change mechanism

radio_channel <= control_channel;

---------------------------------------------------------

-- Transmit path.

wag_mac_rd <= mac_radio_rd;

mac_radio_empty <= wag_mac_empty;

mac_radio_data <= wag_mac_data;

-- Receive path.

mac_wag_data <= radio_mac_data;

mac_wag_empty <= radio_mac_empty;

radio_mac_rd <= mac_wag_rd;

---------------------------------------------------------

-- LED 0 indicates the radio is on

led(0) <= control_pe;

-- LED 1 indicates radio activity (with 50ms POV)

led_txrx <= radio_transmitting or radio_receiving;

led1 : entity work.led_pov

generic map (input_type => "activehigh",

clk_freq => auxclk_freq, pov => 50000)

port map (clk => auxclk, reset => reset,

input => led_txrx, output => led(1));

Figure 6.8: Capture MAC Implementation
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formed when the radio is power-enabled, purely listening, and the channel is

deemed clear. Finally, the first LED is connected to the power-enable signal,

and the second is tied to radio activity using a library entity (led pov) to pro-

vide persistence-of-vision for aesthetic purposes. The led pov entity is one of

several VHDL entities available for use in MAC implementation. Others pro-

vide functionality such as signal resynchronisation, edge detection, and timers.

Like the led pov entity, these are parameterisable through the VHDL generic

map mechanism.

The capture MAC provides a useful tool for tracing of wireless activity, and

generation of arbitrary packets. Simple protocols can be implemented in soft-

ware running on the host using the device driver described later in Section 7.2

and, using the capture MAC as a basis, more complex channel access mecha-

nisms can readily be implemented in logic between the radio status and control

signals. As the complexity of the MAC increases, however, a richer environ-

ment for development is necessary. This is provided for by the second of the

example MAC subsystems that has been produced.

The PowerPC MAC Framework

The PowerPC MAC framework provides a subsystem which allows rapid im-

plementation of protocols developed within the WPDE by using the PowerPC

processor embedded within the FPGA for execution of code generated by the

sdl2cpp tool described in Chapter 4.

The PowerPC core block has been incorporated in an architecture with custom

peripherals to provide a system optimised for MAC protocol implementation.

This architecture is illustrated in Figure 6.9. The instruction and data-side on-

chip memory blocks (left-most in the figure) have dedicated connections to the

processor to maximise bandwidth. The Processor Local Bus (PLB) provides

a high bandwidth to crucial peripherals including the FIFO interfaces to and

from the radio and host, and the General Purpose Input/Output (GPIO) ports.

A bridge from the PLB provides access to the slower On-chip Peripheral Bus

(OPB) which accommodates the external SRAM interface, a programmable
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Figure 6.9: PowerPC Subsystem Architecture

timer, and the interrupt controller. The processor module supports caching of

memory regions for increased performance, and this is typically applied to the

external SRAM address range.

The embedded software that provides the API allowing integration of protocols

translated using sdl2cpp is implemented in a combination of C and C++. A

main loop polls the input sources and injects signals into the virtual SDL

environment as appropriate. Data references are implemented as WAG frames

for timing efficiency, though only the common frame header, payload length,

and payload body fields are accessible through the data reference operators. A

simple memory allocator is implemented to provide for management of packets,

and operates in the memory area corresponding to the external SRAM.

Records are kept of all active SDL timers, and the single system timer is

manipulated appropriately to ensure that it aligns with the next event. Use of

a C++ class with static members ensures that this detail is hidden from the

virtual SDL environment.

By default the radio status signals are mapped into the processor subsystem

through the GPIO port, with the radio control signals similarly mapped as

outputs from the processor. This is hidden from the MAC sub-layer in most

circumstances, however this approach provides the flexibility to implement
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advanced channel access mechanisms in either VHDL or C if desired.

6.2 Driver

To facilitate evaluation of protocol implementations in a representative en-

vironment, a Linux network interface driver for the WAG device has been

developed1. This driver implements the interfaces to the Linux network stack

and the PCI WAG device, and provides basic network functionality.

An attempt to transmit a packet is made through invocation of the driver

routine wagnet start xmit by the kernel. A parameter of this call is the Linux

socket buffer representing the data unit which should be sent. The data within

this buffer is formatted within an 802.3-style header beginning with source and

destination MAC addresses. The addresses and data are extracted and formed

into a WAG frame corresponding to the MAC-UNITDATA.request primitive

(introduced in Chapter 4), which is then passed through the host interface to

the MAC. On invocation of the wagnet start xmit routine, the queue from

the host is paused using the netif stop queue system call, and remains in this

state until a MAC-UNITDATA.confirm is returned from the device, at which

point the queue is made active again through a call to netif wake queue.

When a complete frame is available to the host, the wagnet rxinterrupt

driver routine is invoked. If the frame type is MAC-UNITDATA.confirm, then

the transmit queue is un-blocked as described above. Alternatively, if the

received frame is a MAC-UNITDATA.indication, then the payload data is

extracted into a new socket buffer, which is passed to the host stack using the

netif rx call.

Framework is provided for implementation of custom ioctl hooks, allowing

user-space programs on the host to control device or protocol-specific oper-

ation. A utility function allows manipulation of MLME attributes, and is

1A character driver for the WAG card is also provided. Though primarily intended for

measurement purposes, this is often a useful tool for initial protocol testing. The character

driver is discussed in more detail in Chapter 7.
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used to provide support for MAC address configuration through the ifconfig

interface.

6.3 Summary

The implementation platform described in this chapter enables a protocol de-

sign to be taken to implementation with relative ease. Various mixes of hard-

ware and software implementation are supported, from full automatic imple-

mentation in embedded software using the sdl2cpp tool described in Chapter 4,

through to optimised implementation of elements of MAC functionality using

VHDL.

Though the realisation presented in this chapter uses an 802.11b physical layer

designed for a CSMA/CA system, the architecture described could make use

of any other technology desired. However, the choice of 802.11b PHY is not

as restrictive as it may seem: TDMA protocols may be implemented readily

using the configurable hardware to schedule transmissions accurately, and the

timing of FHSS protocols such as Bluetooth can be readily evaluated; CDMA

protocols may be approximated through use of specific 802.11 channels in

the ISM band. Several modulation and coding options are available as part

of the 802.11b PHY, and other coding rates may be achieved through their

implementation in the digital logic of the FPGA.

The WAG device provides a powerful and portable platform which allows

deployment of prototype implementations in their intended application en-

vironment. This hardware also provides support for the evaluation of these

prototype protocols – a process which must now be discussed.
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Measurement

Measurement has a key role to play at multiple stages of the protocol design

process. Evaluation of existing protocols leads to the development of new and

improved ones, which in turn must be evaluated to ensure their suitability

for the task. Simulation provides a flexible method of protocol evaluation in

situations where the environment surrounding the protocol entity – including

traffic and physical layer behaviour – is well understood. In certain cases this

condition may not hold, and measurement provides a means for developing an

understanding of the effect of external factors on protocol performance.

Numerous studies have used forms of measurement for evaluation of exist-

ing protocols [28, 34, 37, 102]. Such studies often identify weaknesses in the

protocol being considered, and many propose modifications to the protocol or

develop a new one to address the problem. As discussed in Chapter 6, however,

few of these developed protocols progress to implementation, and hence few

are thoroughly evaluated through measurement. To fully support the MAC

protocol development process it is necessary to provide for measurement within

the WPDE framework.

Network measurement encompasses many different techniques applied at var-

ious layers of the network stack. At the lowest layers of the network stack,

measurement may involve analysis of the modulated signal to evaluate param-

129
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Figure 7.1: Indirect Wireless Packet Capture

eters such as modulation accuracy in terms of Error Vector Magnitude (EVM),

or the transmission spectral mask. Conversely, higher layer measurements may

involve characterisation of application performance when operating over the

protocol under test. Network layer and above measurements are implicitly

supported for protocols developed within the WPDE framework through the

implementation platform presented in Chapter 6 which includes a network in-

terface driver. Both of these extremes are important aspects of measurement,

however, within the scope of this thesis it is the operation of the MAC sub-

layer and its interactions with its adjacent layers that is of primary concern.

Passive event tracing provides an effective form of measurement at these levels.

At its simplest, the measurement output from passive event tracing is a tem-

porally ordered sequence of event identifiers. If a reference time source is

available, then the trace can be extended to be a sequence of tuples consisting

of an event identifier, and a timestamp. In an implementation, this can remove

the requirement for the sequence to be temporally ordered, as any reordering

can be corrected in post-processing. A further extension is the addition of

event information to the trace entry. This may include information like the

full or partial contents of a received frame, or a snapshot of some device state

at the event time. From an event trace it is trivial to generate a message

sequence chart which provides an excellent visualisation of device operation.

This technique is commonly applied at the network layer through tools such

as tcpdump [103] or WireShark [104], and at the physical layer through tools

such as OmniPeek [105].
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Existing techniques for measurement at the physical layer interface typically

involve capture of packets exchanged over the wireless medium by a third-

party device. Wireless analysis systems such as OmniPeek use compatible

wireless NICs coupled with a custom driver to place the card into a mode

which allows capture of all received packets. This approach is referred to as

indirect capture, and is depicted in Figure 7.1. Unfortunately, indirect capture

does not necessarily lead to accurate measurement results.

Figure 7.2: OmniPeek Capture of an 802.11b Link

Differences between the activity detected by the measurement node and that

detected by the nodes participating in the network can lead to incomplete

or misleading packet traces. In certain circumstances the actual packet ex-

changes may be extrapolated given knowledge of the protocol, however this is

not always possible. Figure 7.2 illustrates the problem. Shown is an 802.11b

capture taken using the OmniPeek tool. Packets 498, 499, and 500 show IEEE

802.11 MAC retransmissions of a data frame carrying HTTP traffic. Despite

all these frames being received correctly by the monitor node, they were either

received in error or not at all by their intended destination, or a returned ac-

knowledgement was not heard either at the monitor or the originating station.

Packet 502 illustrates an example of a frame which is received in error by the

monitor node (indicated by the ‘C’ in the flags column showing a CRC error),

but apparently received correctly by the intended destination (given that an

acknowledgement frame is immediately returned).

The fundamental cause of the problem is that ability to receive a wireless

signal correctly is often very location dependent. The effect of both passive
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and active interferers can cause significant discrepancies between the RF sig-

nal as observed at two locations which may be physically close. Reducing the

physical distance between the measurement receiver and the network node can

improve the relevance of the measurement. This can be taken to the point of

electrically coupling both radios to the same antenna. However, this still does

not completely address the problem. Minor process variations between printed

circuit boards, and the components that make up a receiver can lead to two

supposedly identical devices having different receive characteristics. The effect

of these variations is most noticeable in situations where the signal to noise

ratio is marginal. Signal to noise ratio can be maximised by conducting tests

in an RF shielded box lined with anechoic foam, however this is not neces-

sarily compatible with the desire to measure systems operating in a realistic

environment.

One approach to solving this problem is to integrate the network and measure-

ment nodes. This ensures that the events captured within the measurement

are consistent with the network node activity, though care must be taken to

ensure that measurement activity does not interfere with network operation.

In contrast to the indirect capture shown in Figure 7.1, this approach is herein

referred to as direct capture.

Capture at the network interface is considerably easier than at the physical

layer. Packets crossing this interface can be traced using the tcpdump tool

[103], which provides a view of activity in both directions at the interface be-

tween the network driver and the host stack. Ethereal [106] and WireShark

[104] are tools that provide similar facilities. These present a similar user in-

terface to that of some wireless protocol sniffers, but must not be confused

with physical layer tools as they provide only a view into activity at the lower

boundary of the network layer. Figure 7.3 shows a screen-shot of a WireShark

capture of the initial stages of a TCP Iperf [107] bandwidth test. It is rele-

vant to note that although the test was conducted across an 802.11b wireless

network, the captured trace gives no indication of this.

Network layer capture tools are useful for basic network troubleshooting, and

can provide relative timing of network stack activity to a moderate level of
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Figure 7.3: WireShark Capture of Traffic on a Wireless Network

accuracy. They have, however, two main shortcomings when used in protocol

development. Firstly, they provide no information related to non-data host

interface activity. Only packets that are passed between the device driver and

the network stack will be visible. Although this is the primary information that

is of interest, it is also useful to be able to view the associated flow control

and MLME signalling. Secondly, these systems typically provide no means for

accurately correlating the timing of the observed traffic to traces taken from

other sources. This prevents, for example, accurate comparison between net-

work layer activity and the resulting wireless communication. This information

is vitally important in protocol development, as host interface performance can

have a significant impact on overall network node performance.

Given measurement at the physical and network layer interfaces, a further

aspect of interest is the relationship between observed activity on these, and

changes in elements of internal MAC state. A microprocessor debug interface

can provide a substantial amount of this information in troubleshooting. Typ-

ically however, these interfaces require execution to be paused before allowing
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Figure 7.4: Integrated Measurement Stack

access to any useful processor state. They therefore will almost certainly im-

pact on the operation of the device under test.

A second common method for tracing the state of a high-speed digital device

is through the use of a logic analyser. This approach can provide a non-

intrusive means for observing some internal state with a very high degree of

timing accuracy. Unfortunately the amount of state that can be viewed is

typically limited, either by the generally low number of available debug GPIO

pins, or the number of channels available on the logic analyser. This has

the follow-on effect of making it difficult to correlate observed state changes,

with other measured activity, such as captured radio transmissions. A second

key consideration is that logic analysers are typically expensive, and require

a degree of specialist knowledge that can be outside the scope of a network

protocol engineer’s skills.

Ideally, the WPDE framework will provide for tracing of internal MAC state.

In Chapter 4 a measurement service primitive was defined to allow the MAC to

indicate key state changes for use in the debugging and analysis of the protocol.

This primitive should be integrated within the measurement framework which

the remainder of this chapter defines.
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Figure 7.5: WAG Measurement Architecture

Figure 7.4 gives an overview of the layers in a practical network stack, and the

measurement techniques that we may wish to apply at each level. Within the

WPDE framework it is necessary to support packet or event tracing within the

MAC sub-layer, and at the interfaces around it. In particular the framework

must support non-invasive capture of physical layer activity in an operational

network node. The ability to correlate measurements taken at these various

measurement points is also beneficial, so time-stamping of events should use a

consistent time reference.

7.1 WAG Measurement Architecture

To support measurement within the WPDE, the WAG implementation frame-

work has been extended as shown in Figure 7.5. The additions provide for

passive capture of activity on the interfaces surrounding the MAC entity, in-

cluding the dedicated measurement service access point. The timing and syn-

chronisation unit provides a common time reference to allow correlation of
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measurements taken at the various points, and enables synchronised measure-

ment across physically distributed nodes.

A significant decision made in the design of the architecture of Figure 7.5, was

the decision to multiplex measurement data over the existing PCI network

host interface. Though a dedicated channel for carrying measurement data

off-board would have ensured that measurement traffic did not interfere with

network operation, two key considerations were used to justify this design

choice:

Portability: A design requirement was to support implementation in rela-

tively remote environments (i.e. not in a laboratory). The targeted host plat-

form for such environments was a single-board computer with limited capabil-

ity for expansion. Use of the host interface allows for measurement capability

in this situation.

Bandwidth: The bandwidth requirements of the chosen physical layer for the

WAG device (802.11b at 11Mbps maximum serialisation) were sufficiently less

than the available host interface bandwidth (Mini-PCI: 32 bit at 33MHz =

1056Mbps maximum), meaning that contention for bus resources would likely

be minimal.

The basis of the measurement support in the WAG framework is a number of

custom hardware blocks designed in VHDL for implementation in the FPGA.

These blocks are discussed in the following sections.

7.1.1 Measurement Channels

A key part of the measurement framework is the channel which conveys mea-

surement data to the host system. Though this may seem a simple task, it

is important to minimise the observer effect of the measurement on the op-

eration of the network device. The observer effect refers to changes in the

behaviour of a system under test due to supposedly non-intrusive observation.

In designing a system with integrated measurement, it is important to min-
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imise the observer effect on the device under test. Although digital signals

typically have sufficient entropy to prevent observation affecting their validity

(presuming driver loading is not excessive), higher level architecture design

must include consideration of this phenomenon. This is especially pertinent

given the multiplexed measurement and network data approach that is to be

taken for the host interface. Three distinct blocks are defined to control the

flow of measurement data and manage the observer effect: a multiplexer, a

de-multiplexer, and a duplicator.

The multiplexer block allows combination of two WAG frame FIFO streams.

This is achieved by interleaving from the input streams into the output in

units of entire frames. When a frame header becomes present on one of the

multiplexer inputs, it takes a copy of the frame size field into its transfer

counter. The output stream is then held by this frame, and the frame data

words are transferred on agreement between the source and destination, with

the transfer counter decrementing on each transfer. When the transfer counter

reaches zero, the multiplexer returns to its idle state. A key concern in the use

of such a block is the potential for measurement frames to impact on the transit

of network frames. In the case where both inputs have frames ready-to-go, a

decision must be made as to which one to take. The multiplexer block allows

priority to be assigned to the network frame source over the measurement

frame source to minimise the observer effect.

The de-multiplexer block provides the opposite function to the multiplexer

by splitting a single frame stream into two. This block operates in a similar

fashion to the multiplexer, with the frame type field in the header used to

determine the destination of each frame received on the input port. If one

of the de-multiplexer output streams is blocked in output, then any frames

behind that one will be delayed. For this reason it is vital that measurement

streams be drained at their ultimate destination as quickly as possible.

The duplication block performs a similar function to the de-multiplexer in

splitting a single stream into two, however instead of interleaving frames be-

tween the two output streams, each input frame is replicated on both. Stream

duplication presents similar challenges to multiplexing and de-multiplexing in
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terms of avoiding the observer effect. If frames are to be duplicated whole or

not at all, and the duplication is not to have any effect on the main path, then

the duplicator block must provide enough buffering for the largest frame it will

see.

Though undesirable, blocking of streams may be unavoidable occasionally in

a system with finite resources. Such blocking may cause measurement frames

to be lost, leaving potential for confusing measurement results. In cases where

this occurs it is important that the loss is indicated within an event trace. The

WAG frame header defined in Chapter 6 provides for this through the loss

counter field.

7.1.2 Timing

The timing block is responsible for providing an accurate time reference to

allow correlation of the discrete measurements taken throughout the system.

This block provides a constantly increasing counter which is sampled at the

instant of an event to provide a timestamp for that event.

The required granularity of time-stamping for measurements in such a system

is dependent on the aspect of interest. In some circumstances event order

may be sufficient to glean the necessary information. If timing information

is required, then various parameters within the system may have impact on

the necessary accuracy, including the serialisation rate of the specific physical

layer, the transfer speeds of the host interface, MAC sub-layer data paths,

and the capabilities of the MAC processor. With sub-microsecond accuracy

it becomes possible to measure signal propagation delays over typical wireless

network distances, though this requires some timing synchronisation between

measurement nodes to the same level of accuracy. There is no drawback to

providing a higher degree of timing accuracy than is necessary, and so in the

WAG framework the resolution is constrained by the system clock (100MHz).

In the implementation, a counter on the digital system clock provides the basis

for the measurement reference time. This block provides 64 bits of output,
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using a fixed-point representation where the number represented by the most

significant 32 bits has a unit of seconds, and the lower 32 bits provide the

sub-second resolution where a count corresponds to 1

232 th of a second. The

implementation of this counter uses a 96 bit counter for increased accuracy.

On each cycle, a value known as count per cycle is added to the counter. This

value is initially set appropriately such that the lower 64 bits of the counter

will wrap each second.

Optionally, a pulse-per-second input can be used to manage clock drift and pro-

vide synchronised timing across multiple (possibly distributed) WAG nodes.

The designed hardware provides a phase locked loop on this pulse by resynchro-

nising to it and automatically adjusting the value of count per cycle dependent

on the determined error. Finally, the upper 64 bits of the counter can be man-

ually loaded with a value through the host interface. Using the Network Time

Protocol (NTP) or similar, the host can set the counter to within ±0.5s of real

time, and allow the pulse-per-second input to complete the synchronisation.

The event detection blocks described in Chapter 6 are also used for the mea-

surement event detection and time-stamping blocks. These are extended to

provide latching of the reference time provided by the timing unit on occur-

rence of the specified event. This timestamp block provides a portable source

of timestamps which can be triggered by an event on any signal within the

MAC framework.

Instantiations of these blocks are present in the receive and transmit units to

provide accurate time-stamping of physical layer events. Triggering of such

events is taken as close as the hardware will allow to the appearance of the

first MPDU symbol on the air.

7.1.3 Frame Generation

As previously discussed in Chapter 6, the basic unit of data transfer within the

hardware is known as a WAG frame. The existing WAG framework provides

for transport of data which complies with the WAG frame format over the PCI
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interface to the driver. In Section 7.1.1 blocks have been defined to allow the

multiplexing of measurement data along with network data over this existing

transport. To utilise this framework we define a frame format for carrying

measurement information.

Each measurement frame should represent a discrete event within our frame-

work. This may include the reception of a packet by the radio, the arrival of

a packet at the MAC sub-layer over the network interface, or simply a change

in internal MAC state. The fundamental information required within a mea-

surement frame is the timestamp, and some means of identifying the event.

To support packet capture the frame should also support the attachment of

arbitrary data.

Figure 7.6: Basic Measurement Frame

The basic WAG measurement frame follows the format shown in Figure 7.6.

Along with the standard frame header consisting of magic number, frame size,

type and loss counter fields, the measurement frame also provides for inclusion

of a timestamp, event identifier, and optional data.

The provided measurement frame generation block is a triggered source of

measurement frames. It incorporates the event detection block to provide time-

stamping facilities, and will generate a WAG measurement frame including

the timestamp, and the appropriate event identifier which is specified as a

parameter at block instantiation. This block provides a WAG frame FIFO

output as described in Chapter 6, allowing easy incorporation with the stream

flow control blocks described in Section 7.1.1.
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7.1.4 Firmware Support

The MAC interface defined in Chapter 4 includes a measurement primitive

to allow indication of key changes in internal MAC state. Two approaches

are possible to the generation of measurement frames based on the output of

this signal. The MAC firmware may generate measurement frames and pass

these back to the host through its normal channel, though care should be

taken to ensure the extra processing required will not invalidate the intended

measurement. In this case the firmware is responsible for setting the timestamp

value. To support this approach the timestamp counter is made available to

the PowerPC processor through a memory-mapped register.

An alternative approach is to use the provided dedicated measurement event

interface which attaches to the PowerPC framework. To firmware this inter-

face provides a register, which – when written – will cause a timestamp to be

taken, and a measurement frame to be generated with the written value as

the event identifier. This is the preferred approach due to the reduced pro-

cessing burden on the firmware and accurate timestamps provided through the

dedicated hardware support.

7.2 Host Tools

The ultimate de-multiplexing of network and measurement frames is performed

in the device driver. The Linux driver described in Chapter 6 provides both

a network interface to which all network frame payloads are directed, and

a character device which is intended for measurement trace capture. The

structure of the driver is shown in Figure 7.7. The network aspects of the

driver and the architecture of the host interface have been discussed in Chapter

6. Here we consider the features that pertain to integrated measurement.

The PCI abstraction layer within the driver is responsible for separating the

network and character driver subsystems from the specific detail of the WAG

memory-mapped interface. It is also responsible for the distribution of frames
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Figure 7.7: WAG Device Driver Architecture

received over the host interface. An interrupt from the WAG to the host

indicates the transfer of some amount of data either to the receive, or from the

transmit FIFOs. If the driver interrupt handler determines that a complete

frame is available in the receive FIFO, then it will determine the destination

of that frame from its type and subtype fields and push it to the appropriate

subsystem.

As discussed earlier, it is vital that the measurement stream be drained as

quickly as possible. To allow this, the capture subsystem provides a buffer

in the card-to-host direction, and if this buffer becomes full then any frame

destined for capture will be dropped to allow the progression of network data.

A counter tracks the number of dropped frames and updates the loss counter

field of the next successfully captured frame to ensure the user is aware of the

loss.

Optionally, all network frames received or sent over the host interface can be



Summary 143

copied to the capture device as well. This allows a simple view of host interface

activity without any measurement enabled on the WAG card.

Access to the transmit FIFOs is shared (using a semaphore for locking) between

the two driver subsystems. This allows for the generation of frames for device

testing and control through relatively simple user-space programs.

The Linux character device model means that access to the capture device

presented by the driver is relatively simple. The device can be opened as a file

(/dev/wag) and raw frames are read from, or written to this descriptor.

Both frame capture and generation utilities are provided, along with a tool for

displaying captured traces in a human-readable form. These tools provide the

basic elements required for protocol measurement.

7.3 Summary

The measurement framework described in this chapter provides a flexible

toolkit for the evaluation of protocols implemented within the WPDE. The

architecture presented addresses the problems of indirect capture and provides

for synchronised measurement at the physical and network interfaces, which

can be correlated with changes in internal MAC state. Sufficient timing res-

olution is provided to allow detailed physical layer measurements including

packet transit times, and the use of GPS technology allows highly synchro-

nised, physically distributed measurements to be taken.

The software and hardware elements of the measurement system support the

protocol designer by providing for rapid construction of debugging and evalu-

ation framework for a custom protocol implementation. This allows protocols

to be assessed in a real-world environment to ensure a representative view of

their performance.
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Conclusions

Wireless networking is an active and important area of research, and Medium

Access Control (MAC) protocol development forms an integral part of this.

An increasing amount of functionality is being pushed into the domain of the

MAC protocol, and yet its position just above the physical layer requires that

strict timing constraints are met in its low level functions. These conflicting

demands require a disciplined approach to MAC protocol design.

A MAC can be considered as a real-time distributed algorithm with high re-

liability requirements. It is generally accepted that use of formal methods in

such systems is best design practice for ensuring a robust end-product. The

Specification and Description Language (SDL) provides an intuitive, graphical

design environment for network protocol designers.

By defining a common interface for MAC protocols developed within the frame-

work, automation can be used to ensure consistency between the initial specifi-

cation, and simulation models or implementations. A tool is described, which is

able to convert SDL protocol descriptions into efficient C++ code implementa-

tions for integration into the target simulation and implementation platforms.

Simulations at the various levels of abstraction provide feedback appropriate

for the current design stage. Direct simulation of the SDL specification gives

a first view of its operation, and provides feedback on protocol correctness.

145
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Simple traffic and channel models have been defined to support this process

within a general purpose SDL simulation environment. The level of detail in

traffic and physical layer models is shown to be an important consideration if

conclusions on protocol performance are to be drawn. A described framework

for automated integration of designed protocols into the ns-2 simulator allows

access to its thorough range of simulation models and emulation facilities.

Prototype implementation provides the best opportunity of estimating final

system performance. This allows thorough performance evaluation of the sys-

tem in a ‘real-world’ scenario. A hardware, firmware, and software framework

for automated implementation of wireless MAC protocols under development

is described, allowing implementation to be used at an early stage in the design

process. The hardware provides a MAC-less radio with an 802.11b physical

layer in a mini-PCI form factor. It includes an FPGA which incorporates a

PowerPC processor, allowing for flexibility in design implementation in either

hardware or software. The device driver framework for Linux allows ready

implementation of a network device driver for implementation, as well as sep-

aration of network and measurement traffic from the device under test.

The described measurement framework allows synchronised and distributed

passive measurement across nodes, with direct capture of physical layer activ-

ity. Measurement points integrated in an operating network node mean that

network and physical layer activity and MAC state can be related to allow

debugging and a better understanding of protocol operation. The hardware

allows for real-time synchronisation of distributed measurement nodes by way

of GPS pulse-per-second output and NTP. Measurement units can be inserted

in the MAC data-path hardware, and configured to trigger on various internal

conditions.

8.1 Case Studies

The development of the PTPMAC protocol has demonstrated the use of all

components of the described framework, from requirements capture and initial
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specification in SDL, through SDL and ns-2 simulation to implementation

stages.

The WPDE framework has been used in other studies involving wireless medium

access control protocols. Three of these are briefly discussed here in order to

illustrate the way in which the framework facilitates rapid design of wireless

MAC protocols.

Wireless Location Determination

An investigation by Bartels [108] used elements of the WPDE framework

to construct a location determination system. This used the accurate time-

stamping provided by the measurement elements of the framework to measure

time-of-flight for packets, and thus derive a measure of the physical separation

of nodes. A simple protocol to support the necessary exchange of information

was developed using the WPDE host software and driver, and the extended

capture MAC framework. Planned further work aims to integrate time-of-flight

measurement into an extension to the IEEE 802.11 protocol.

Wireless MAC Protocols for Rural Environments

Recently started work is seeking to develop wireless MAC protocols for use in

rural environments. The WPDE platform has supported the early stages of this

work in which a Point-to-Multi-Point MAC protocol has been developed using

the design flow described within this thesis. This protocol uses a dynamic

TDMA method controlled by the base station, and has been taken rapidly

from initial concept to a working prototype implementation using the WPDE

framework.
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Wireless Mobile and Ad-Hoc MAC Protocols

This work involves the design of a contention-based MAC protocol which will

incorporate location estimation and neighbour mobility prediction features.

This will allow the exploration of cross-layer interactions between MAC and

advanced routing protocols. Initial elements of MAC functionality have been

implemented in VHDL within a derivation of the capture MAC, and the WPDE

framework will also provide support for simulation of the protocol.

8.2 Summary

The dearth of frameworks for supporting wireless MAC protocol research has

likely restricted progress in this area. Such protocols are complex distributed

systems which require careful design processes. This thesis concludes that the

wireless MAC protocol development framework described herein – the Waikato

Protocol Development Environment – facilitates the advancement of knowledge

in the field of wireless MAC protocol research by supporting a rapid transition

from protocol design concept to prototype implementation, encouraging sound

design methodology throughout. Consideration is being given to the various

options for making the described framework available to researchers. Further

information on this will be available through the website of the WAND Network

Research Group [109].
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