18 research outputs found

    Graph-based Semi-Supervised & Active Learning for Edge Flows

    Full text link
    We present a graph-based semi-supervised learning (SSL) method for learning edge flows defined on a graph. Specifically, given flow measurements on a subset of edges, we want to predict the flows on the remaining edges. To this end, we develop a computational framework that imposes certain constraints on the overall flows, such as (approximate) flow conservation. These constraints render our approach different from classical graph-based SSL for vertex labels, which posits that tightly connected nodes share similar labels and leverages the graph structure accordingly to extrapolate from a few vertex labels to the unlabeled vertices. We derive bounds for our method's reconstruction error and demonstrate its strong performance on synthetic and real-world flow networks from transportation, physical infrastructure, and the Web. Furthermore, we provide two active learning algorithms for selecting informative edges on which to measure flow, which has applications for optimal sensor deployment. The first strategy selects edges to minimize the reconstruction error bound and works well on flows that are approximately divergence-free. The second approach clusters the graph and selects bottleneck edges that cross cluster-boundaries, which works well on flows with global trends

    ALPINE : Active Link Prediction using Network Embedding

    Get PDF
    Many real-world problems can be formalized as predicting links in a partially observed network. Examples include Facebook friendship suggestions, consumer-product recommendations, and the identification of hidden interactions between actors in a crime network. Several link prediction algorithms, notably those recently introduced using network embedding, are capable of doing this by just relying on the observed part of the network. Often, the link status of a node pair can be queried, which can be used as additional information by the link prediction algorithm. Unfortunately, such queries can be expensive or time-consuming, mandating the careful consideration of which node pairs to query. In this paper we estimate the improvement in link prediction accuracy after querying any particular node pair, to use in an active learning setup. Specifically, we propose ALPINE (Active Link Prediction usIng Network Embedding), the first method to achieve this for link prediction based on network embedding. To this end, we generalized the notion of V-optimality from experimental design to this setting, as well as more basic active learning heuristics originally developed in standard classification settings. Empirical results on real data show that ALPINE is scalable, and boosts link prediction accuracy with far fewer queries

    Sampling and Recovery of Signals on a Simplicial Complex using Neighbourhood Aggregation

    Full text link
    In this work, we focus on sampling and recovery of signals over simplicial complexes. In particular, we subsample a simplicial signal of a certain order and focus on recovering multi-order bandlimited simplicial signals of one order higher and one order lower. To do so, we assume that the simplicial signal admits the Helmholtz decomposition that relates simplicial signals of these different orders. Next, we propose an aggregation sampling scheme for simplicial signals based on the Hodge Laplacian matrix and a simple least squares estimator for recovery. We also provide theoretical conditions on the number of aggregations and size of the sampling set required for faithful reconstruction as a function of the bandwidth of simplicial signals to be recovered. Numerical experiments are provided to show the effectiveness of the proposed method

    Online Edge Flow Imputation on Networks

    Get PDF
    Author's accepted manuscript© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.An online algorithm for missing data imputation for networks with signals defined on the edges is presented. Leveraging the prior knowledge intrinsic to real-world networks, we propose a bi-level optimization scheme that exploits the causal dependencies and the flow conservation, respectively via (i) a sparse line graph identification strategy based on a group-Lasso and (ii) a Kalman filtering-based signal reconstruction strategy developed using simplicial complex (SC) formulation. The advantages of this first SC-based attempt for time-varying signal imputation have been demonstrated through numerical experiments using EPANET models of both synthetic and real water distribution networks.acceptedVersio

    Sensor Placement for Learning in Flow Networks

    Full text link
    Large infrastructure networks (e.g. for transportation and power distribution) require constant monitoring for failures, congestion, and other adversarial events. However, assigning a sensor to every link in the network is often infeasible due to placement and maintenance costs. Instead, sensors can be placed only on a few key links, and machine learning algorithms can be leveraged for the inference of missing measurements (e.g. traffic counts, power flows) across the network. This paper investigates the sensor placement problem for networks. We first formalize the problem under a flow conservation assumption and show that it is NP-hard to place a fixed set of sensors optimally. Next, we propose an efficient and adaptive greedy heuristic for sensor placement that scales to large networks. Our experiments, using datasets from real-world application domains, show that the proposed approach enables more accurate inference than existing alternatives from the literature. We demonstrate that considering even imperfect or incomplete ground-truth estimates can vastly improve the prediction error, especially when a small number of sensors is available.Comment: 9 pages, 6 figure

    ALPINE: Active Link Prediction using Network Embedding

    Get PDF
    Many real-world problems can be formalized as predicting links in a partially observed network. Examples include Facebook friendship suggestions, consumer-product recommendations, and the identification of hidden interactions between actors in a crime network. Several link prediction algorithms, notably those recently introduced using network embedding, are capable of doing this by just relying on the observed part of the network. Often, the link status of a node pair can be queried, which can be used as additional information by the link prediction algorithm. Unfortunately, such queries can be expensive or time-consuming, mandating the careful consideration of which node pairs to query. In this paper we estimate the improvement in link prediction accuracy after querying any particular node pair, to use in an active learning setup. Specifically, we propose ALPINE (Active Link Prediction usIng Network Embedding), the first method to achieve this for link prediction based on network embedding. To this end, we generalized the notion of V-optimality from experimental design to this setting, as well as more basic active learning heuristics originally developed in standard classification settings. Empirical results on real data show that ALPINE is scalable, and boosts link prediction accuracy with far fewer queries

    Residual Correlation in Graph Neural Network Regression

    Full text link
    A graph neural network transforms features in each vertex's neighborhood into a vector representation of the vertex. Afterward, each vertex's representation is used independently for predicting its label. This standard pipeline implicitly assumes that vertex labels are conditionally independent given their neighborhood features. However, this is a strong assumption, and we show that it is far from true on many real-world graph datasets. Focusing on regression tasks, we find that this conditional independence assumption severely limits predictive power. This should not be that surprising, given that traditional graph-based semi-supervised learning methods such as label propagation work in the opposite fashion by explicitly modeling the correlation in predicted outcomes. Here, we address this problem with an interpretable and efficient framework that can improve any graph neural network architecture simply by exploiting correlation structure in the regression residuals. In particular, we model the joint distribution of residuals on vertices with a parameterized multivariate Gaussian, and estimate the parameters by maximizing the marginal likelihood of the observed labels. Our framework achieves substantially higher accuracy than competing baselines, and the learned parameters can be interpreted as the strength of correlation among connected vertices. Furthermore, we develop linear time algorithms for low-variance, unbiased model parameter estimates, allowing us to scale to large networks. We also provide a basic version of our method that makes stronger assumptions on correlation structure but is painless to implement, often leading to great practical performance with minimal overhead
    corecore