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Abstract
Many real-world problems can be formalized as
predicting links in a partially observed network.
Examples include Facebook friendship sugges-
tions, consumer-product recommendations, and the
identification of hidden interactions between actors
in a crime network. Several link prediction algo-
rithms, notably those recently introduced using net-
work embedding, are capable of doing this by just
relying on the observed part of the network.
Often, the link status of a node pair can be queried,
which can be used as additional information by
the link prediction algorithm. Unfortunately, such
queries can be expensive or time-consuming, man-
dating the careful consideration of which node pairs
to query. In this paper we estimate the improvement
in link prediction accuracy after querying any par-
ticular node pair, to use in an active learning setup.
Specifically, we propose ALPINE (Active Link
Prediction usIng Network Embedding), the first
method to achieve this for link prediction based on
network embedding. To this end, we generalized
the notion of V -optimality from experimental de-
sign to this setting, as well as more basic active
learning heuristics originally developed in standard
classification settings. Empirical results on real
data show that ALPINE is scalable, and boosts link
prediction accuracy with far fewer queries.

1 Introduction
Applications of Link Prediction (LP) in networks range from
predicting social network friendships, consumer-product rec-
ommendations, citations in citation networks, to protein-
protein interactions. Such networks are usually only partially
observed: node pairs are either connected (or linked), discon-
nected (or unlinked), or of unknown status. Indeed, obtaining
network connections is usually resource-intensive (e.g., wet
lab experiments or questionnaires), so that many of them re-
main unknown. Moreover, in many real-world networks new
nodes are continuously added, with very limited information
on their connectivity to the rest of the network. In such Par-
tially Observed Networks (PONs), LP algorithms can be de-
ployed to predict the missing link status information. When

no attribute or meta-data is available for the nodes—the sit-
uation we focus on in this paper—this must be done relying
solely on structural information [Kashima et al., 2009], i.e.,
the observed part of the PON.

In some cases, a budget is available for querying an or-
acle for the link status of a limited number of node pairs.
For example, wet lab experiments can reveal missing protein-
protein interactions, or questionnaires can ask consumers to
indicate whether they have seen particular movies before.
Unfortunately, such queries can be expensive, while the link
status of some node pairs is more informative than those of
others—queries must thus be chosen wisely. Given a finite
budget, an active learning strategy, identifying and prioriti-
zing the most informative queries, is thus required for optimal
LP accuracy of the unobserved part in the PON.

For LP tasks, NE methods have become increasingly popu-
lar, owing to their high accuracy as well as versatility for other
downstream tasks. Thus, in this paper we develop ALPINE
(Active Link Prediction usIng Network Embedding), the first
active learning method for NE-based LP in PONs. For con-
creteness, we derived ALPINE for Conditional Network Em-
bedding [Kang et al., 2019] (CNE), which achieves the state-
of-the-art LP accuracy [Kang et al., 2019]. Moreover, as op-
posed to other popular NE methods (including all those based
on random walks), CNE can distinguish disconnected node
pairs from those with unknown status. Additionally, its ob-
jective function is easy to express analytically, which allows
principled mathematical derivations for our active learning
query strategies. Yet, it will be clear that ALPINE can be
derived also for a wide range of other NE-based LP methods.

Given a PON, ALPINE must thus quantify the usefulness
of querying a node pair with unknown status. We introduce
different strategies for doing this. First, generalizing the no-
tion of V-optimality from experimental design and exploit-
ing the notion of Fisher information, we derive a principled
measure that quantifies the reduction in variance on the link
probabilities for node pairs with unknown status. Second, we
propose several other heuristic strategies similar to those used
in the standard active learning literature.
Example. We illustrate the idea behind ALPINE (with V-
optimality query strategy) on the Harry Potter network [Evans
et al., 2014] of 65 Harry Potter characters and 221 ally con-
nections amongst them (see Fig. 1). We take node ‘Harry
Potter’ (pentagon node) and assume its connectivity is not
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Figure 1: Visualization of the Harry Potter network .

observed except the connection to ‘Rubeus Hagrid’ (square
node). All other connections are assumed observed. ALPINE
then scores the informativeness of the link status of ‘Harry
Potter’ to the other characters. The round nodes are colored
according to the scores: the yellower, the higher. ALPINE se-
lects the Weasley family (nodes with brightest yellow) as the
top ones. Since the Weasley family is well connected with
‘Rubeus Hagrid’ and it is also connected to many other char-
acters, it makes intuitive sense that the link status between
them and ‘Harry Potter’ is indeed very informative for pre-
dicting the other unknown connections for ‘Harry Potter’.

To the best of our knowledge, NE-based active LP has not
been studied before. Indeed, while ample previous work on
active learning for graphs exists, this mainly focuses on node
classification [Yang et al., 2014; Yang et al., 2016; Bilgic et
al., 2010]. The main contributions of this paper are thus:

• We highlight the importance of distinguishing the dis-
connected versus unknown status of node pairs, a rather
obvious but often ignored fact (Sec. 3.1).
• We propose ALPINE, an active learning approach for

LP algorithms that are based on NE (Sec. 3.2).
• To identify the most informative node pairs to query,

we generalize the notion of V-optimality to this setting.
Moreover, we also propose a number of simpler heuristic
query strategies inspired by active learning for standard
learning settings. (Sec. 3.3.)
• Qualitative and quantitative evaluations show that

ALPINE with the V-optimality query strategy does in-
deed perform far better than random querying. More-
over, we show that two easy-to-compute heuristics
achieve very similar performance, making them good al-
ternatives on large networks. (Sec. 4).

2 Background
Here we briefly survey active learning, (NE-based) link pre-
diction, and some directly related work.

2.1 Active Learning and Experimental Design
Active learning is a subfield of machine learning, which aims
to exploit the situation where learning algorithms are allowed
to actively choose the training data from which they learn.
It is particularly valuable in domains where training labels
are scarce and expensive to acquire [Brinker, 2003; Cai et
al., 2017; Settles, 2009]. The success of an active learning
strategy depends on how much more effective its choice of
training data is, when compared to randomly sampled training
data. Of particular interest to the current paper is the pool-
based active learning, where a pool of unlabeled data points
is provided, and a subset from this pool can be selected for
labeling. In the context of the present paper, the unlabeled
‘data points’ are the node pairs with unknown link status, and
an active learning strategy would aim to query the link status
of those node pairs from this pool that are most informative
for a LP algorithm when used to predict the link status of the
node pairs for which it is unknown.

Active learning is closely related to Optimal Experimen-
tal Design (OED) in statistics [Atkinson et al., 2007], which
aims to design optimal ‘experiments’ (i.e., the acquisition
of training labels) with respect to a statistical criterion and
within a certain cost budget. The objective of OED is usu-
ally to minimize a quantity related to the (co)variance matrix
of the estimated model parameters, or of the predictions this
model makes on the test data points. In models estimated by
the maximum likelihood principle, a crucial quantity in OED
is the Fisher Information: as the reciprocal of the estimator
variance, it allows quantifying the amount of information a
training data point carries about the parameter.

While studied since long in statistics, the idea of variance
minimization first shows up in the machine learning literature
for regression [Cohn et al., 1996], and later the Fisher Infor-
mation was used to judge the asymptotic values of unlabeled
data for classification [Zhang and Oles, 2000]. Yet, despite
this related work in active learning, and the rich and mature
statistical literature on OED for classification and regression
problems, to the best of our knowledge the concept of vari-
ance reduction has not yet been applied to LP in networks.

2.2 Link Prediction and Network Embedding
LP algorithms can be used in PONs to predict whether
node pairs with unknown status are linked or not. It has
been widely applied in friendship recommendations, recom-
mender systems, knowledge graph completion, and more.
While there are numerous conventional LP methods based
on heuristic statistics [Martı́nez et al., 2017], recently pro-
posed NE-based methods have been reported to outperform
those [Grover and Leskovec, 2016; Kang et al., 2019].

Given a network G = (V,E) with nodes V and links
E ⊆

(
V
2

)
, the goal of NE is to find a mapping f : V → Rd

from nodes to d-dimensional real vectors. A NE is denoted as
X = (x1,x2, . . . ,xn)

′ ∈ Rn×d, where X∗ denotes an op-
timal embedding given the network G with adjacency matrix



A. NE’s can be used for a variety of downstream tasks, in-
cluding visualization, node classification, and also LP. When
used for LP, a function g : Rd × Rd → R evaluated on the
vectors xi and xj might represent the probability (or other
score) for a link to exist between i and j. In practice, g can
be found by training a classifier (e.g., logistic regression) on
a set of linked and unlinked node pairs, while in other cases
it follows directly from the embedding model. The method
CNE used in this work is of the latter type, and aims to find
an embedding that maximizes the probability of the network
given the embedding:

P (G|X) =
∏

{i,j}∈E

P (aij = 1|X) ·
∏

{k,l}/∈E

P (akl = 0|X),

where P (aij = 1|X) = g(xi,xj) for a suitably defined g.
Most NE methods treat node pairs with unknown status as

unconnected. For example, in methods based on skip gram
with negative sampling (e.g, DeepWalk, node2vec), the ran-
dom walks used to determine similarities between nodes use
only known existing links, ignoring the unknown but poten-
tially existing ones. Those methods may therefore be sub-
optimal when applied to PONs, and they cannot exploit new
knowledge that a node pair with unknown status is not con-
nected. As we will show in Sec. 3, however, CNE can trivially
be modified to distinguish these two situations—an important
factor contributing to our decision to use CNE in this paper.

2.3 Related work
Our work sits at the intersection of three topics: active learn-
ing, link prediction, and network embedding. There exists
work on the pairs of any two but not three. To the best of our
knowledge, ALPINE is the first method for actively learning
a NE for the purpose of LP.
NE-based LP. Many graph embedding methods have been
proposed in the past years. Based on neighborhood informa-
tion, first order methods (e.g., CNE [Kang et al., 2019]) and
higher order methods (e.g., Deepwalk [Perozzi et al., 2014],
node2vec [Grover and Leskovec, 2016]) have been designed
to perform multiple tasks, such as LP and node classification.
Recently also Graph Convolutional Neural Networks (GC-
NNs) [Kipf and Welling, 2017] were introduced, allowing
nodes to recursively aggregate information from their neigh-
bors. However, GCNNs mainly focus on node classification.
Active learning for NE. There are a few works on learning
NE in an active manner recently, but they target node classi-
fication [Cai et al., 2017; Chen et al., 2019] instead of LP.
Active learning and link prediction. Work on active learn-
ing for graphs has focused on node and graph classification,
as well as LP [Settles, 2009; Aggarwal et al., 2014]. The
graph classification task considers data samples as graph ob-
jects, useful for drug discovery and subgraph mining [Kong
et al., 2011], while the node classification task aims to la-
bel nodes in graphs [Bilgic et al., 2010; Cesa-Bianchi et al.,
2013; Guillory and Bilmes, 2009]. Other active learning re-
search for LP considers different problem settings, e.g., link
classification for signed networks [Cesa-Bianchi et al., 2012],
learning for graph edge flows [Jia et al., 2019], and training of
the neural link predictor [Ostapuk et al., 2019]. Probably the

most strongly related method is HALLP [Chen et al., 2014],
which uses active learning for LP. However, the method is
heuristic, it does not distinguish disconnected from unknown
node pairs, and it is based on a simple LP method that classi-
fies node pairs according to a fixed representation of them in
terms of engineered features, rather than a learned NE.

3 Method
Section 3.1 formally defines PONs, and discusses how CNE
is naturally suitable for embedding PONs. Section 3.2 de-
scribes ALPINE, our NE-based active LP framework. Sec-
tion 3.3 shows how we generalize the notion of V-optimality
from experimental design for ALPINE, as well as more
heuristic active learning query strategies.

3.1 Link Prediction for PONs
We formally define PONs as follows:
Definition 1. A Partially Observed Network (PON) is an
undirected network G = (V,E,U) where V is a set of
n = |V | nodes, E ⊆

(
V
2

)
and U ⊆

(
V
2

)
the sets of node

pairs with connected and unknown status respectively, where
E ∩ U = ∅. D ,

(
V
2

)
\ (E ∪ U) is the set of node pairs ob-

served to be disconnected. Therefore, K = E ∪D represents
the observed part of the PON.

To represent three types of node pair status, the adjacency
matrix A of a PON has entries aij ∈ {0, 1, null}.

The task of LP in a PON is to predict the connectivity sta-
tus of node pairs (i, j) ∈ U , and this is based on the avail-
able information in G. Remarkably, most NE methods (and
LP methods more generally) do not treat disconnected node
pairs differently from node pairs with unknown status. This
is inevitably true for methods based on random walks (as a
random walk cannot transition from node i to j if not known
to be connected, regardless of whether known to be discon-
nected), and true also for many other methods such as those
based on matrix decompositions. CNE, however, can be triv-
ially modified to elegantly do so, by maximizing the proba-
bility only for the observed part (i.e., (i, j) ∈ E ∪D):

P (G|X) =
∏

(i,j)∈E

P (aij = 1|X) ·
∏

(k,l)/∈E∪U

P (akl = 0|X).

Furthermore, the link probability in CNE is formed analyt-
ically because the embedding is found by solving a Maximum
Likelihood Estimation (MLE) problem: argmaxX P (G|X).
Next, we will show how it allows us to quantify the informa-
tiveness of the node pairs with unknown status in ALPINE.

3.2 ALPINE
Here, we introduce ALPINE, a pool-based active learning ap-
proach [Settles, 2009] for NE with LP as a downstream task.
We develop ALPINE for CNE although we stress that our ar-
guments can be applied in principle to any other NE method
of which the objective function can be expressed analytically.

ALPINE works by finding an optimal NE for a given PON
G = (V,E,U), selecting one or a few node pairs from U to
query, updating the PON with the new knowledge (i.e. node
pairs from U found to be connected are moved to E, those



unconnected are removed from U ), and re-embedding the up-
dated PON. This process can be iterated until the budget is
exhausted or until the model is sufficiently accurate.

We will introduce different strategies for selecting the node
pairs to query, relying on different utility functions uA,X :
V ×V → R in ALPINE which quantify how useful knowing
the connectivity status of a node pair is estimated to be for the
purpose of increasing the LP accuracy on the node pairs in U ,
when based on the updated NE (see Sec. 3.3). Specifically,
each query strategy will select the next query as:

argmax
(i,j)∈U

uA,X(i, j),

for an appropriate utility function uA,X . In practice, not just
the single best node pair (argmax) is selected in each iteration,
but the s best ones (further referred to as the ‘step size’).

Thus, given a PON G = (V,E,U), an NE model, a query
strategy and associated utility function uA,X , a step size s,
and a budget B (number of node pairs in U that can be
queried), each iteration of ALPINE works as follows. We ini-
tialize the pool of node pairs with unknown status U(0) = U
and that of the known part K(0) at step it = 0 according to
A(0) of G(0) = G given.

1. Compute X∗(it) as an optimal embedding of the G(it);
2. Find the best query Q(it) ⊆ U(it) as the set of
|Q(it)| = min(s,B) elements from U(it) with largest
values for the utility function uA(it),X∗(it);

3. Query the oracle for the connectivity status of the node
pairs in Q(it), set U(it + 1) ← U(it) \ Q(it), and add
each (i, j) ∈ Q(it) revealed as connected to E(it+ 1);

4. Set B ← B − |U(it)|, and break if B == 0.

If desired, the LP accuracy based on the embedding can be
monitored on a hold-out set during these iterations, and one
can stop early as soon as the accuracy meets a threshold.

3.3 Query Strategies for ALPINE
Here we first derive a principled utility function based on the
concept of V-optimality from OED. The utility function mea-
sures the informativeness of the connectivity of a node pair
by identifying to what extent its knowledge is expected to
minimize the variance of the predictions for the link status of
node pairs in U . After that, we also introduce a range of other
heuristic query strategies.
V-optimality and Variance Reduction. V-optimality from
OED aims to choose the training data points so as to minimize
the variance of the predictions of the learned model on the test
data points. As the test set U is finite and given in PONs, this
aim naturally fits our problem setting. Thus, with g the link
prediction function, and with P ∗ij , g(x∗i ,x

∗
j ) = P (aij =

1|X∗) the probability of a link between nodes i and j given
the CNE embedding, the utility function used in V-optimality
is the reduction of

∑
(i,j)∈U Var(P ∗ij) achieved by querying a

particular node pair from U . The challenge to be addressed
is thus the computation of the reduction in the variance terms
Var(P ∗ij). Omitting details, we outline how this can be done.

In ALPINE, CNE finds the optimal embedding X∗ as the
Maximum Likelihood Estimator (MLE) given a PON with

adjacency matrix A, i.e., X∗ maximizes P (G|X) w.r.t. X .
The variance of an MLE can be quantified in terms of the
Fisher Information [Lehmann and Casella, 2006]. More pre-
cisely, the Cramer-Rao bound [Rao, 1992] provides a lower
bound on the variance of a MLE by the inverse of the Fisher
Information: Var(X∗) � I(X∗)−1. Although the Fisher In-
formation can often not be computed exactly (as it requires
knowledge of the data distribution), it can be effectively ap-
proximated by the observed information matrix [Efron and
Hinkley, 1978]. For CNE, this observed information matrix
for the MLE x∗i is given by (proof omitted for brevity):

I(x∗i ) = γ2
∑

(i,j)/∈U

P ∗ij(1− P ∗ij)(x∗i − x∗j )(x
∗
i − x∗j )

T ,

where γ is a CNE-parameter. Thus, we can bound the co-
variance matrix Ci of node i’s MLE embedding x∗i as Ci ,
Cov(x∗i ) � I(x∗i )−1.

Using a first-order analysis (details omitted) to decompose
Var(P ∗ij) into a contribution from each end point as follows:

Var(P ∗ij) = Varx∗
i
(P ∗ij) + Varx∗

j
(P ∗ij), (1)

and using the bound on Cov(x∗i ) for all i, allows bounding the
variance on the estimated probabilities Var(P ∗ij) by bounding
the two terms in the decomposition as follows:

Varx∗
i
(P ∗ij) ≥

[
γP ∗ij(1− P ∗ij)

]2
(x∗i − x∗j )

TCi(x
∗
i − x∗j ),

(2)
and similar for Varx∗

j
(P ∗ij). Querying node pair (i, j) ∈ U

will reduce the covariance matrices Ci and Cj , as it creates
additional information on their optimal values. For example
for x∗i (and similarly for x∗j leading to Ci

j), the new covari-
ance assuming (i, j) has known status, denoted Cj

i , is:

Cj
i =

[
C−1i + γ2P ∗ij(1− P ∗ij)(x∗i − x∗j )(x

∗
i − x∗j )

T
]−1

.

(3)
Thus this leads to a reduction of the bounds on Varx∗

i
(P ∗ij)

and Varx∗
j
(P ∗ij), and thus on Var(P ∗ij) due to Eq. (1).

Putting things together allows defining the V-optimality
utility function, and proves a theorem for computing it:
Definition 2. The V-optimality utility function uA,X∗ evalu-
ated at (i, j) quantifies the reduction in the bound on the sum
of the variances Var(P ∗kl) (see Eqs. (1) and (2)) of all P ∗kl with
(k, l) ∈ U , achieved by querying node pair (i, j) ∈ U .
Theorem 1. The V-optimality utility function is given by:

uA,X∗(i, j) =
∑

k:(i,k)∈U

uik(i, j) +
∑

l:(j,l)∈U

ujl(i, j),

where
uik(i, j) = (γP ∗ik(1− P ∗ik))2(x∗i − x∗k)

T (Ci −Cj
i )(x

∗
i − x∗k),

ujl(i, j) = (γP ∗jl(1− P ∗jl))2(x∗j − x∗l )
T (Cj −Ci

j)(x
∗
j − x∗l ).

Applying the Sherman-Morrison formula to Eq. (3), allows
rewriting uik(i, j) as:

γ4P ∗ij(1− P ∗ij)
1 + γ2P ∗ij(1− P ∗ij)djj(x∗i )

[P ∗ik(1− P ∗ik)]
2
dkj(x

∗
i )

2.

where djj(x∗i ) = (x∗i − x∗j )
TCi(x

∗
i − x∗j ) and dkj(x∗i ) =

(x∗i − x∗k)
TCi(x

∗
i − x∗j ). Thus, unsurprisingly, the variance

reduction is always positive.



Table 1: Percentage increase of AUC with a budget of 10% of |U |.

Query Strategy Polbooks C.elegans
s=10 s=50 s=100 s=10 s=50 s=1k

rand. 0.87 0.81 0.88 1.05 1.03 1.04
max-deg. 0.57 0.70 0.70 1.80 1.54 1.32

page-rank. 1.01 0.88 0.84 1.71 1.45 1.35
min-dis. 1.97 1.91 2.09 2.06 1.65 1.36

max-prob. 1.94 2.13 2.17 2.14 1.57 1.29
max-ent. 2.17 2.28 2.29 2.25 1.73 1.37

v-opt. 2.35 2.34 2.33 2.44 1.88 1.36
USAir MP cc

s=100 s=500 s=1k s=300 s=1.5k s=3k
rand. 0.21 0.22 0.21 0.37 0.37 0.38

max-deg. 0.60 0.58 0.57 0.31 0.32 0.29
page-rank. 0.56 0.57 0.56 0.55 0.56 0.52
min-dis. 0.75 0.75 0.77 0.28 0.29 0.30

max-prob. 0.97 0.93 0.91 0.06 0.06 0.08
max-ent. 0.99 0.95 0.93 0.82 0.82 0.81

v-opt. 0.94 0.90 0.87 0.88 0.85 0.80
PPI Blog

s=10k s=30k s=50k s=100k s=300k s=500k
rand. 0.48 0.50 0.51 0.14 0.13 0.13

max-deg. 0.82 0.85 0.82 0.33 0.32 0.33
page-rank. 0.87 0.88 0.88 0.33 0.33 0.34
min-dis. 0.97 0.97 0.96 0.24 0.23 0.25

max-prob. 1.08 1.07 1.09 0.30 0.28 0.30
max-ent. 1.10 1.09 1.10 0.33 0.31 0.33

v-opt. 1.14 1.16 1.16 0.37 0.35 0.37

Table 2: Runtime evaluation in seconds.

rand. max-deg. page-rank. min-dis. max-prob. max-ent. v-opt.
Polbooks 2e−4 2e−3 0.04 7e−3 1e−3 9e−4 0.09
C.elegans 2e−5 0.02 0.10 0.05 0.01 8e−3 0.75

USAir 3e−5 0.02 0.14 0.07 0.01 0.01 0.93
MP cc 2e−5 0.06 1.59 0.19 0.04 0.03 2.86

PPI 3e−5 2.85 3.86 9.62 2.53 2.23 255.61
Blog 0.02 25.57 36.36 74.04 24.05 7.71 3e3

Heuristic Query Strategy
Besides V-optimality, we also propose 5 heuristic utility func-
tions inspired by common active learning query strategies
(omitting subscripts from the utility function u for brevity):

• max-ent.: u(i, j) = −P ∗ij logP ∗ij−(1−P ∗ij)log(1−P ∗ij).

• max-prob.: u(i, j) = P ∗ij .

• min-dis.: u(i, j) = −||x∗i − x∗j ||2.

• page-rank.: u(i, j) = PRi + PRj .

• max-deg.: u(i, j) =
∑

k:(i,k)/∈U aik +
∑

k:(j,k)/∈U ajk.

The max-ent. query strategy is a specific variant of the pop-
ular uncertainty sampling strategy in active learning, with the
entropy as the uncertainty measure. The second and third
strategies both tend to query node pairs that are linked with
high probability. Indeed, this is true by definition for max-
prob., and approximately true for min-dis. as nearby nodes
in the embedding are connected with higher probability. The
intuition behind these strategies is that links are often sparse
in a network, so that queries that result in the discovery of new
links are more informative. The last two are degree-related,
and PRi in page-rank. is the PageRank score of i evaluated
by treating node pairs with unknown status as disconnected.

4 Experiments
We investigated the following questions: Q1 Does the be-
haviour of ALPINE make sense qualitatively? Q2 Do the
different query strategies perform well in predicting the node
pairs with unknown status? Q3 Do the query strategies scale
to large networks?
Data. ALPINE is evaluated on 6 real datasets of varying
sizes. Polbooks is a network consisting of 105 books about
the US politics among which 441 connections indicate the
co-purchasing relations between the book pairs [Adamic and
Glance, 2005] . C.elegans is a neural network of C.elegans
with 297 neurons and 2,148 synapses as their links [Watts
and Strogatz, 1998]. USAir is a network of 332 airports con-
nected through 2,126 US Airlines [Handcock et al., 2003].
MP cc network is a twitter network we gathered in April
2019 for the Members of Parliament (MP) in the UK, which
originally contains 650 nodes, and we only use its largest
connected component of 567 nodes and 35531 friendship
(i.e., mutual follow) connections. PPI is a protein-protein
interaction network with 3,890 proteins and 76,584 interac-
tions [Breitkreutz et al., 2007]. Blog is a friendship network
of 10312 bloggers from BlogCatalog, containing 333983 con-
nections [Zafarani and Liu, 2009].

4.1 Qualitative evaluation
As illustrated in Fig. 1, we apply ALPINE to the case when a
new node is added to a network, and examine the behaviour
of the V-optimality query strategy. We take node 39 (‘Harry
Potter’, pentagon node) as newly arrived who has only one
initial known connection to node 22 (‘Rubeus Hagrid’, square
node). Thus, the node pairs involving Harry, except the one
with Rubeus, all have unknown status.

In the first iteration, the V-optimality query strategy used
in ALPINE scores all the node pairs (i, j) ∈ U and suggests
to query (‘Harry Potter’, ‘Arthur Weasley’) where ‘Arthur
Weasley’ (node with brightest yellow) is the father of the
Weasley family. The other members of Weasley family are
also scored high. This indicates that predicting the relation-
ships of ‘Harry Potter’ with other characters can be improved
by first querying possible connections with members of the
Weasley family – close allies of ‘Harry Potter’ and with many
connections to other characters.

From the second to the fifth iterations, the top ranked nodes
are ‘Ginny Weasley’, ‘Fred Weasley’, ‘George Weasley’, ‘Al-
bus Dumbledore’. These early suggestions sketch the rela-
tionships of ‘Harry Potter’ to the entire network, thus allow-
ing it to be well-embedded with just a few queries.

4.2 Quantitative evaluation
We quantitatively evaluate ALPINE with different query
strategies for LP on node pairs with unknown status in a
PON in an iterative manner. All query strategies proposed
in Sec. 3.3 are used. Additionally, a baseline query strategy
which samples node pairs uniformly at random from U , is in-
cluded for comparison. In order to construct PON based on
the benchmarks, information on 20% of the node pairs (both
links and non-links) is removed, which forms U . Then we
apply ALPINE for varying budget B and and a range of step
sizes s.



Figure 2: Performance of the AL query strategies in PONs.

Fig. 2 shows the LP accuracy over subsequent iterations
for all datasets, where the first 5 are queried with no budget
limitation (i.e., B = |U |) and Blog with B = 5M . Hereby,
the LP accuracy is quantified as the AUC of all node pairs in
U(0) for it = 0 with respect to the ground truth. Results are
averaged over several U(0)s, and the PON with each U(0) is
initialized with different random embeddings (10×10 for the
first four, 5× 5 for the fifth and 4× 2 for the last). Scores of
the random strategy are further averaged over 5 runs.

All non-random strategies perform consistently and sub-
stantially better than the random query strategy, apparently
clustering into two groups within which the accuracy is simi-
lar. The 4 best strategies are all NE-based: v-opt., max-ent.,
max-prob., and min-dis. With these strategies, ALPINE
boosts link prediction accuracy with far fewer queries. One
interesting finding is that max-prob., while different in spirit
to uncertainty maximization, still performs similar to max-
ent.. The reason could be that positive links are considered
as more informative because real-world networks are usu-
ally sparse such that linked node pairs are more informative.
The second group consists of page-rank, and max-deg., both
strategies that do not require the NE. Thus, the link status of
high-degree nodes is more informative than that of the ran-
dom ones, but as a strategy it is inferior to the NE-based ones.

In practice, however, active learning is particularly useful
when the budget is small. Thus, we investigated in greater
detail the relative performance of the various query strategies
for a small budget B, equal to 10% of |U |. Table 1 shows
the increase in percentage points of the LP AUC compared
to the AUC before active learning, and this for three different
step sizes. The V-optimality query strategy outperforms the
others in most cases, and is close second or third in a few
other cases, although max-prob. and max-ent. are never
much worse. As a side result, the Table shows that the LP
AUC is relatively insensitive to the step size.

We also evaluated ALPINE for predicting the connectivity
to a newly added node, using as few queries as possible, with
similar conclusions (details will be in an extended version).

4.3 Scalability
The runtime analysis (on a server with Intel Core i5 CPU
2.30GHz and 8GB RAM) of ALPINE with different query
strategies is shown in Table 2. The embedding dimension is
set to 8, and the removed information from the original net-
work is 20% of the node pairs. The results are averaged over
10 random runs. It shows that the computation time per itera-
tion of the V-optimality strategy increases dramatically as the
network size grows. Given this, and their competitive perfor-
mance in terms of LP accuracy, max-prob. and max-ent. are
probably the query strategies of choice on larger problems.

5 Conclusion
Link prediction is an important task in network analysis, tack-
led increasingly using network embeddings. It is particularly
important in partially observed networks, where finding out
whether a pair of nodes is linked is time-consuming or costly,
such that for a large number of node pairs it is not known if
they are connected or not.

We propose to make use of active learning in this setting,
and introduce ALPINE, a specific active learning approach
for link prediction in such partially observed networks using
network embedding. We first derived a principled query strat-
egy that generalizes the notion of V-optimality from optimal
experimental design to the current setting, identifying those
node pairs which, if queried, will maximally reduce the vari-
ance on the link scores for the node pairs with unknown con-
nectivity status. Additionally, several heuristic active learn-
ing strategies are also proposed as computationally efficient
alternatives. Empirical evaluations show that ALPINE with
the V-optimality query strategy performs best overall, albeit
at a relatively high computational cost, while two intuitive
heuristics achieve similar accuracies and scale to larger net-
works. All query strategies outperform by a large margin the
random query strategy.

As future work, we plan to further improve the scalability
of ALPINE by e.g., using incremental embeddings at each
iteration.
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