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Online Edge Flow Imputation on Networks
Rohan Money, Joshin Krishnan, Baltasar Beferull-Lozano, Elvin Isufi.

Abstract—An online algorithm for missing data imputation
for networks with signals defined on the edges is presented.
Leveraging the prior knowledge intrinsic to real-world networks,
we propose a bi-level optimization scheme that exploits the
causal dependencies and the flow conservation, respectively via
(i) a sparse line graph identification strategy based on a group-
Lasso and (ii) a Kalman filtering-based signal reconstruction
strategy developed using simplicial complex (SC) formulation.
The advantages of this first SC-based attempt for time-varying
signal imputation have been demonstrated through numerical
experiments using EPANET models of both synthetic and real
water distribution networks.

Index Terms—Topological Signal Processing, Missing Flow
Imputation, Line Graph, Simplicial Complex.

I. INTRODUCTION

Multivariate time series analysis is paramount in sensor,
brain, and social networks, to name a few. Data generated from
such interdependent systems can be represented as a time-
varying graph, in which the recorded signals may be linked
to the nodes [1], [2], or the edges [3], depending on the task
at hand. Many applications including anomaly detection [4],
time series forecasting [5], and missing data imputation [6]
can benefit from learning and exploiting the graph structure.
Among these applications, it is worth paying special attention
to the missing data imputation [6]–[8] since many real-world
systems are partially observed because of e.g., sensor or
communication failure, or simply the impossibility to have
sensors in all locations. This paper focuses on time-varying
data imputation on the edges of networks, such as water or
traffic networks, referred to as flow-based networks. While
there are methods for imputing data at the nodes [6]–[10],
extending them to flow-based networks is not immediate.

Imputation in flow-based networks can benefit from sim-
plicial complex (SC) formulations [11], [12], using algebraic
tools from Hodge theory [13], [14] to encapsulate the adja-
cencies among the flow signals, e.g., the flow conservation in
the network. In addition to this spatial information that SC
encapsulates, one can also exploit the temporal priors, such
as causal dependencies among the signals [15]–[22]. The flow
signals are mostly interdependent in real-world systems, and
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Fig. 1: Causal influence of (t−1)-th flows on t-th flows, represented
using a line graph.

their dependencies are often time-lagged in nature and cannot
be observed physically. For instance, the flow in a pipe of a
water network can influence the flow in another non-directly
connected pipe in a time-lagged way. Similarly, a traffic block
on a road can causally affect the traffic on another road. In such
real-world networks, imputation can be enhanced by exploiting
causal interactions between the flows. Imputation strategies
utilizing both spatial and temporal dependencies have not been
explored in flow-based networks.

This paper proposes a data imputation algorithm exploiting
the spatio-temporal priors related to flow conservation and
causal dependencies among flows. The algorithm learns a line
graph connecting the flows, which stands in for an abstract
representation of the time-lagged causal dependencies, as
illustrated in Fig. 1. One major challenge here is that a batch-
based offline strategy is impractical in applications requiring
real-time imputation of streaming flows. The proposed strategy
learns a line graph in an online fashion. Using the learned line
graph at each time step, a flow-conservation-based Kalman
filter estimates the missing flows from streaming partial ob-
servations. The main contributions of this work are:

i) A method to estimate sparse causal dynamic dependencies
among flows. This is achieved via a vector autoregressive
model and a group-Lasso-based optimization framework.
The latter is solved in an online fashion via composite
objective mirror descent.

ii) A Kalman-filter-based data imputation technique for
streaming flows by exploiting the learned causality and
the flow conservation devised via simplicial complexes.

iii) The proposed algorithm can impute permanently unob-
served flows, benefiting from the joint exploitation of the
flow conservation and the causal dependencies.

To the best of our knowledge, this is the first work that consid-
ers multivariate time series data over simplicial complex. This
work opens the door to the exploitation of learned line graphs
and adjacency relationships among the time-varying signals
over simplices (e.g., edge flows), which is useful in various
applications such as forecasting, control strategy design, and
change point detection.
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II. PRELIMINARIES

Consider a physically connected network G ≜ (V, E), where
V and E denote the sets of nodes and edges with cardinalities
V ≜ |V| and E ≜ |E|, respectively. We consider a flow-based
network, for example, a water network with nodes as junctions,
edges as pipes, and water flows as signals on the edges.

A. Modelling Flow Conservation in a Simplicial Complex
Given the set of nodes V , a k-simplex Sk is a subset of

V having k + 1 distinctive elements [23], [24]. A simplicial
complex (SC) of order K, denoted as ΨK , is a set of k-
simplices for k = 0, 1 . . . ,K such that a simplex Sk ∈ ΨK

only if all of its subsets also belong to ΨK . The typical
low-order simplices, named after their geometrical shapes, are
nodes (0-simplex), edges defined by two nodes (1-simplex),
and triangles defined by three nodes (2-simplex). Let the
number of k-simplices in ΨK be Nk. The proximities between
different k-simplices in an SC can be represented using an
incidence matrix Bk ∈ RNk−1×Nk , k ≥ 1, where the row
and the column indices of Bk correspond to (k − 1)- and
k-simplices, respectively. The structure of a SC is encoded by
Hodge Laplacians, constructed using Bk’s as

Lk =


Bk+1B

⊤
k+1, for k = 0,

B⊤
k Bk +Bk+1B

⊤
k+1, for 1 ≤ k ≤ K − 1,

B⊤
KBK , for k = K,

(1)

where L0 is the graph Laplacian. The higher-order Laplacians
Lk, for 1≤k≤K−1, consist of two terms: i) the lower Laplacian,
Ll

k ≜B⊤
k Bk, which encodes the adjacencies w.r.t. next-low-

order simplices; and ii) the upper Laplacian, Lu
k ≜ Bk+1B

⊤
k+1,

which encodes the adjacencies w.r.t. next-high-order simplices.
In a SC, k-simplex signals are mappings from k-simplices

to the real set R. The 0-simplex, 1-simplex, and 2-simplex
signals reside on the nodes, edges, and triangles, respectively.
For flow-based networks, we consider 1-simplex signals or
simply the flow signals. The flow signal at time t between two
nodes i and j is defined as f(i,j)[t] = −f(j,i)[t], ∀ (i, j) ∈ E .
We stack the flows into a vector f̃ [t] = [f1[t] f2[t] . . . fE [t]]

⊤.
The node-to-edge incidence matrix B1 ∈ RV ×E has entries
B1(m,n) = 1, if the flow n is leaving the node m, −1 if
entering the node m, and 0 if the flow is not connected to m.
According to the flow conservation principle, the sum of flows
entering and leaving a node is zero, i.e., B1 f̃ [t] = 0 ∈ RV [25].
The first-order lower Laplacian Ll

1, can be used to model the
flow conservation since it describes the relationship among the
edges incidenting on a node, which is given by

∥B1 f̃ [t]∥22 = f̃ [t]⊤B⊤
1 B1 f̃ [t] = f̃ [t]⊤Ll

1 f̃ [t] = 0. (2)

One can also exploit the edge-to-triangle relationship of flows
using B2, but we do not consider it since there is no contextual
prior associated with B2.

B. Modelling Causal Dependencies using Line Graphs
We also take advantage from the fact that flows in a

real-world network exhibit causal interactions. We construct
a dynamic line graph connecting the flows using a P -th
order dynamic VAR model to describe the time-lagged causal
dependencies among the flows:

f̃ [t] =

P∑
p=1

[
Ã(p)[t]f̃ [t− p] + b(p)[t]

]
+ u[t], (3)

where Ã(p)[t] ∈ RE×E is the unknown weighted adjacency
matrix of the line graph that captures the influence of the
p-th time-lagged vector flow on the vector flow at time t, and

u[t] is the process noise, which is assumed to be temporarily
white and zero mean. The term b(p)[t] ∈ RE is the bias
component, which makes the model slightly different from
a standard VAR model. We include the bias term since the
normalization of the flow signals, which is a requirement
for the subsequent formulation, cannot easily be achieved for
permanently unobserved flows. Using an augmented matrix
A(p)[t] = [Ã(p)[t] b(p)[t]] ∈ RE×E+1 and the signal vector
f [t] = [f̃ [t]⊤; 1]⊤ ∈ RE+1, (3) can be compactly written as

f [t] =

P∑
p=1

A(p)[t]f [t− p] + u[t]. (4)

III. PROBLEM FORMULATION

Assume that at a particular time t, only a subset of flows
is observable. The observed flow vector is fo[t] = M[t]f [t] ∈
RE+1, where M[t] ∈ R(E+1)×(E+1) is a diagonal masking
matrix, with M(n, n)[t] = 0 if the n-th flow is missing
and M(n, n)[t] = 1, otherwise. In this setting, some flows
can be permanently unobserved. The goal is to find in an
online fashion both a sequence of line graphs {A(p)[t]}p,t,
representing the causal dependencies between flows and the
original signal f [t] from the partial observation fo[t].

IV. ONLINE ESTIMATION OF LINE GRAPH AND DATA

A naive one-step optimization strategy to estimate A(p)[t]
and f [t] leads to nonconvex formulations that are difficult to
solve [6]. Hence, we propose a bi-level optimization problem
with the following steps: i) signal reconstruction- missing
flows are estimated using the observed flows by assuming a
known line graph topology; and ii) line graph identification-
line graph is estimated using the reconstructed signals.

A. Signal Reconstruction

Assume that we have an estimate at time t of the topol-
ogy Â(p)[t], ∀p and estimates of P previous flow values
{f̂ [t − p]}Pp=1. We propose a Kalman-filtering-based strategy
for signal reconstruction, and to facilitate the formulation, the
available data are arranged as

ÂS [t]≜


Â(1:P )[t]︸ ︷︷ ︸
E × P (E + 1)

IP (E + 1)− E 0︸︷︷︸
(P (E + 1)− E)× E

,CS [t]≜


M[t]︸︷︷︸

(E + 1)× (E + 1)

0︸︷︷︸
(E + 1)× (P − 1)(E + 1)

0︸︷︷︸
(P − 1)(E + 1)× (E + 1)

I(P − 1)(E + 1)

,
yS [t] ≜ [fo[t]

⊤; f̂ [t− 1 : t− P + 1]⊤]⊤, (5)

f̂S [t] ≜ [f̂ [t]⊤; f̂ [t− 1]⊤; . . . ; f̂ [t− P + 1]⊤]⊤,

where Â(1:P )[t] = [Â(1)[t], . . . , Â(P )[t]] and IN denotes N ×
N identity matrix. A state-space representation capturing the
VAR relationships (4) and the missing data modelling is

f̂S [t] = ÂS [t]f̂S [t− 1] + vt, (6)

yS [t] = CS [t]f̂S [t] +wt, (7)
where f̂S [t] ∈ RP (E+1) is current state vector,
ÂS [t] ∈ RP (E+1)×P (E+1) is the state transition matrix
and yS [t] ∈ RP (E+1), and CS ∈ RP (E+1)×P (E+1) are the
observed signal and the observation matrix, respectively. The
process noise vt and the observation noise wt are assumed
zero-mean Gaussian. The optimal estimates of f̂S [t] can be
obtained using a Kalman filter (KF) [26].

1) Prediction:



3

f̂St|t−1 = ÂS [t]f̂St−1|t−1, (8)

Pt|t−1 = ÂS [t]Pt−1|t−1Â
S [t]

⊤
+Qt, (9)

where t|t − 1 refers to the estimate at time t given the
observation up to t − 1, Pt|t−1 ∈ R(E+1)P×(E+1)P is the
prediction error covariance matrix and Qt ∈ R(E+1)P×(E+1)P ,
the noise covariance matrix.
2) Update: The KF update of the state vector can be
expressed as convex optimization problem [27], [28]:

minimize
f̂S
t|t,wt

w⊤
t Rt

−1wt+(f̂St|t − f̂St|t−1)
⊤P−1

t|t−1(f̂
S
t|t − f̂St|t−1),

subject to yS [t] = CS [t]f̂St|t +wt. (10)
Solving (10) yields the standard KF update equation:

f̂St|t = f̂St|t−1 +Kt(y
S [t]−CS [t]f̂St|t−1). (11)

The covariance matrix can be updated as

Pt|t = Pt|t−1 −KtC
S [t]Pt|t−1. (12)

whereKt=Pt|t−1C
S [t]⊤(CS [t]Pt|t−1C

S [t]⊤+Rt)
−1is the Kalman

gain and Rt is the covariance matrix of the observation noise.
3) Flow-conservation update: The KF update problem (10),
penalized with the flow conservation (2), can be written as

minimize
f̂S
t|t,wt

w⊤
t Rt

−1wt + (f̂St|t − f̂St|t−1)
⊤P−1

t|t−1(f̂
S
t|t − f̂St|t−1)

+ µf̂St|t[t]
⊤Lf̂St|t[t],

subject to yS [t] = CS [t]f̂St|t +wt, (13)
where

L =

[
L̃l

1 0(E + 1)× (P − 1)(E + 1)

0(P − 1)(E + 1)× (E + 1) 0(P − 1)(E + 1)× (P − 1)(E + 1)

]
,

with L̃l
1=[L

l
1 0E ;0

⊤
E 0]∈R(E+1)×(E+1), the Laplacian Ll

1 padded
with zero vector 0E ∈ RE to nullify the bias component in
f [t] and µ is a hyperparameter. We regularize flow conservation
instead of imposing it as a constraint, based on the assumption
that the flow conservation is not strictly satisfied in real-world
networks. The optimization problem (13) is quadratic with a
closed-form solution (see, Appendix A):

f̂St|t =(CS [t]
⊤
R−1

t CS [t] +P−1
t|t−1 + 2µL)−1×

(CS [t]
⊤
Rt

−1yS [t] +P−1
t|t−1 f̂

S
t|t−1), (14)

B. Line Graph Identification
The element-wise version of (4) for the nth flow is

fn[t] =

E+1∑
n′=1

P∑
p=1

a
(p)

n,n′ [t]fn′ [t− p] + un[t], (15)

where a
(p)
n,n′ [t] ∈ R represents the influence of the p-th time-

lagged value of flow n′ on flow n. For notational convenience,
we stack the elements of a(p)n,n′ [t] in the lexicographic order of
the indices p, and n′ to obtain an[t] ∈ R(E+1)P and also stack
the same elements along index p to obtain an,n′ [t] ∈ RP .
Assuming flows are known, the online topology identification
can be formulated as [19], [29]

ân[t] = arg min
an∈R(E+1)P

ℓnt (an) + λ

E+1∑
n′=1

∥an,n′∥2, (16)

where ℓnt (an) =
1
2 [fn[t]− a⊤

n f̂
S [t− 1]]2 is the instantaneous

loss function for a node n and λ is a hyperparameter. The
second term is a group-lasso regularizer added in line with
the assumption that the real-world dependencies are sparse.

In general, proximal algorithms can solve objective func-
tions of the form (16) having a differentiable loss function
and a non-differentiable regularizer. Following [29], we use
online composite objective mirror descent (COMID), which is

Fig. 2: Schematic representation of the proposed algorithm.
effective and comes with convergence guarantees. The online
COMID update is

ân[t+ 1] = arg min
an∈R(E+1)P

J
(n)
t (an), (17)

where J
(n)
t (an) ≜ ∇ℓnt (ân[t])

⊤ (an − ân[t])

+
1

2γt
∥an − ân[t]∥22 + λ

E+1∑
n′=1

∥an,n′∥2. (18)

Equation (18) has the gradient of the loss ℓnt (an) as the
first term, and the Bregman divergence and sparsity-promoting
regularizer as the second and the third terms, respectively.
Bregman divergence makes the algorithm more stable by
constraining ân[t+1] to be close to ân[t] and it is chosen to be
B(an, ân[t]) =

1
2
∥an − ân[t]∥22 so that the COMID update has

a closed-form solution [30] and γt > 0 is the corresponding
step size. The gradient in (18) is evaluated as

vn[t] ≜ ∇ℓnt (ân[t]) = f̂S [t− 1]
(
a⊤
n f̂

S [t− 1]− fn[t]
)

(19)
The optimization problem is separable across nodes and a
closed-form solution for (17) is obtained via the multidimen-
sional shrinkage-thresholding operator [31]:

ân,n′ [t+1]=(ân,n′ [t]−γtvn,n′ [t])

[
1− γtλ

∥ân,n′ [t]−γtvn,n′ [t]∥2

]
+

,

(20)
where [x]+ = max {0, x}. A schematic representation of the
proposed algorithm is shown in Fig. 2. The computational
complexity of the algorithm is mainly contributed by (14),
and it is of order O

(
P 3(E + 1)3

)
.

V. EXPERIMENTAL RESULTS

We use flow data from a real water network and a synthetic
network, both generated using the EPANET software. The flow
signals are the hourly sampled volume of water in m3/h.
A demand-driven model is used to generate data such that
the water flows meet the time-varying water demands at the
nodes. We compare the results with the state-of-the-art algo-
rithms Graph-based Semi-supervised learning for Edge Flows
(FlowSSL) [25] and Joint Signal and Topology Identification
via Recursive Sparse Online learning (JSTIRSO) [6]. FlowSSL
exploits the flow conservation of the flows, whereas JSTIRSO
uses a causal graph structure to impute the missing data. We
compare the algorithms via the normalized mean squared error
(NMSE):

NMSEn(T ) =

∑T
t=1(fn(t)− f̂n(t))

2∑T
t=1 fn(t)

2
. (21)

A total of 125 data samples are generated, and the initial
25 samples are used to tune the hyperparameters of all the
algorithms to achieve the lowest NMSE averaged across all
edges via grid search. The line graph is initialized with random
values drawn from N (0, 1). The NMSEs are averaged over 50
runs of experiments.

A. Synthetic Water Network
A water distribution model, shown in Fig. 3a, is simulated,

which consists of 1 reservoir, 9 pipes, and 8 nodes. Below,
we examine two types of missing data patterns with the
hyperparameter setting (µ, λ) = (0.5, 0.1).
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Fig. 3: Synthetic Water Network Topology

1) Random variation in missing-flows: We assume that
10%, 20%, and 30% of randomly chosen flows are missing
at each time instant. NMSEs are plotted in Fig. 3b, which
shows that the proposed method is better than the competitors
because, unlike them, it takes full advantage of the flow
conservation and causal dependencies. Going beyond 30% of
missing data results in very high NMSEs by all algorithms,
and is not included in Fig. 3b to maintain the legibility.

2) Permanently unobserved flows: We consider flow-3 and
flow-5 are permanently missing. The NMSEs for both the
missing flows are shown in Fig. 3c. The proposed method
provides better imputation performance compared to FlowSSL
[25], whereas JSTIRSO [6] fails to reconstruct the missing
signal since it does not exploit the flow conservation.

B. Cherry Hills Water Networks

Cherry Hills is a real water network consisting of 40
pipes and 36 nodes [32]. We assume a reference flow di-
rection as in Fig. 4a, and the hyperparamters are tuned to
(µ, λ) = (50, 0.04). We examine four different scenarios in
which 20%, 30%, 40%, and 50% of the flows are randomly
missing at each time stamp. The average NMSEs computed
from the estimates of random missing flows are plotted in
Fig. 5b, where the proposed method outperforms the other two
algorithms, especially with a significant margin for the 50%
missing case. NMSEs of all algorithms is very high when more
than 50% of flows are missing. The experiment is repeated
with 15%, 20%, and 25% of permanently missing flows, and
the results are plotted in Fig. 5a, where the proposed algorithm
outperforms the competitors in all the cases.

One instance of the learned line graph (T =100, p=3)
is shown in Fig. 4b. We wish to note that the line graph
is an abstract graph induced by the various physics-based
equations describing the space-temporal variation of the flows.
Although one could attempt to analyse the line graph using
the underlying differential equations governing the space-time
system, this is a daunting complex process, which is beyond
the scope of this study. However, a good prediction implies
necessarily that the data-driven line graph is close to the
unknown real graph. To demonstrate the importance of the
learned line graph, we repeat the Kalman prediction using a
random line graph without considering any relation to the data.
NMSEs obtained for permanently missing flows at t=100,
using random and learned line graphs, are 1.08 and 0.06,
respectively. Similar results were obtained for all the other
experiments highlighting the role of the learned line graph.

(a) Cherry Hills Flows (b) Estimated Line Graph

Fig. 4: Cherry Hills Water Network
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(a) Permanently Missing Flows
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(b) Randomly Missing Flows
Fig. 5: Cherry Hills Water Network:NMSE

VI. CONCLUSION

We proposed a novel missing data imputation scheme for
flow-based networks. The proposed algorithm comprises a
simplicial-complex-based Kalman filter and a group-lasso-
based optimization strategy to take advantage of the flow con-
servation and causal dependency of real-world networks. This
study paves the way for exploring higher order connectivity
in real-life networks using simplicial complexes.
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