9 research outputs found

    Computational intelligent methods for trusting in social networks

    Get PDF
    104 p.This Thesis covers three research lines of Social Networks. The first proposed reseach line is related with Trust. Different ways of feature extraction are proposed for Trust Prediction comparing results with classic methods. The problem of bad balanced datasets is covered in this work. The second proposed reseach line is related with Recommendation Systems. Two experiments are proposed in this work. The first experiment is about recipe generation with a bread machine. The second experiment is about product generation based on rating given by users. The third research line is related with Influence Maximization. In this work a new heuristic method is proposed to give the minimal set of nodes that maximizes the influence of the network

    Density Representations for Words and Hierarchical Data

    Get PDF
    We demonstrate the benefits of probabilistic representations due to their expressiveness which allows for flexible representations, their ability of capture uncertainty, and their interpretable geometric structures that are suitable for modeling hierarchical data. We show that multimodal densities can be effectively used to represent words in natural text, capturing possibly multiple meanings and their nuances. Probability densities also have natural geometric structures which can be used to represent hierarchies among entities through the concept of encapsulation; that is, dispersed distributions are generic entities that encompass more specific ones. We show an effective approach to train such density embeddings by penalizing order violations which are defined through on asymmetric divergences of probability densities

    Measurement model of brass plated tyre steel cord based on wave feature extraction

    Get PDF
    In the production of Truck and Bus Radial (TBR) vehicle tyres, one of the essential components is the wire that supports the tyre. There are several types of tyre wire, one of which is Brass Plated Tyre Steel Cord (BPTSC), produced by Bekaert Indonesia Company. BPTSC object has a micro-size with a diameter of 0.230 mm and has a wave shape. In checking the quality of steel straps, brass-coated tyres are usually measured manually by experienced experts by measuring instruments to measure the diameter using a micrometre, wave amount, and wavelength using a profile projector. The manual measurement process results in inaccuracy due to fatigue in employees' eyes and low lighting and must be repeated, thus, consuming more time. Technological developments that use computer vision are increasingly widespread. Moreover, from the results of studies in various literature, it is proposed to combine the models obtained to find new models to solve this problem. The objectives of this study were to implement and evaluate an automatic segmentation method for obtaining regions of interest, to propose a BPTSC diameter, wave amount, and wavelength measurement model based on its edge, and to evaluate the proposed model by comparing the results with standard and industrial measurement results. The technique to prepare the brass plated tyre steel cord was done in two ways: image acquisition techniques with enhanced image quality, noise removal, and edge detection. Secondly, ground truth techniques were utilised to find the truth about the stages of the image acquisition process. Finally, sensitivity testing was conducted to find the similarity between the acquired images and the ground truth data using Jaccard, Dice, and Cosine similarity method. From 148 wire samples, the average similarity value was 93% by Jaccard, 96% by Dice, and 91% by the Cosine method. Thus, it can be concluded that the acquisition stage of the brass-coated steel tyre cable with image processing techniques can be carried out. For the subsequent process, the pixel distance and the sliding windows model applied can correctly detect the diameter of the BPTSC properly. The wave amount and wavelength of BPTSC objects in the form of waves were measured using several local minima and maxima approaches. This included maxima of local minima maxima distance, the average of local minima maxima distance, and perpendicular shape to centre distance for measuring wave amounts. While for wavelength measurements, the midpoint of local maxima minima distance and the intersection of local maxima minima with a central line were used. Measurement results were evaluated to determine the accuracy and efficiency of the measurement process compared to standard production values using the accuracy, precision, recall, and Root Mean Square Error (RMSE) test. From the evaluation results of the two methods, the accuracy rate of diameter measurement is 97%, wave rate measurement is 95%, and wavelength measurement is 90%. A new model was formed from the evaluation results that could solve these problems and provide scientific and beneficial contributions to society in general and the companies related to this industry

    Lifelong Machine Learning Of Functionally Compositional Structures

    Get PDF
    A hallmark of human intelligence is the ability to construct self-contained chunks of knowledge and reuse them in novel combinations for solving different yet structurally related problems. Learning such compositional structures has been a significant challenge for artificial systems, due to the underlying combinatorial search. To date, research into compositional learning has largely proceeded separately from work on lifelong or continual learning. This dissertation integrated these two lines of work to present a general-purpose framework for lifelong learning of functionally compositional structures. The framework separates the learning into two stages: learning how to best combine existing components to assimilate a novel problem, and learning how to adapt the set of existing components to accommodate the new problem. This separation explicitly handles the trade-off between the stability required to remember how to solve earlier tasks and the flexibility required to solve new tasks. This dissertation instantiated the framework into various supervised and reinforcement learning (RL) algorithms. Empirical evaluations on a range of supervised learning benchmarks compared the proposed algorithms against well-established techniques, and found that 1)~compositional models enable improved lifelong learning when the tasks are highly diverse by balancing the incorporation of new knowledge and the retention of past knowledge, 2)~the separation of the learning into stages permits lifelong learning of compositional knowledge, and 3)~the components learned by the proposed methods represent self-contained and reusable functions. Similar evaluations on existing and new RL benchmarks demonstrated that 1)~algorithms under the framework accelerate the discovery of high-performing policies in a variety of domains, including robotic manipulation, and 2)~these algorithms retain, and often improve, knowledge that enables them to solve tasks learned in the past. The dissertation extended one lifelong compositional RL algorithm to the nonstationary setting, where the distribution over tasks varies over time, and found that modularity permits individually tracking changes to different elements in the environment. The final contribution of this dissertation was a new benchmark for evaluating approaches to compositional RL, which exposed that existing methods struggle to discover the compositional properties of the environment
    corecore