
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Publicly Accessible Penn Dissertations

2022

Lifelong Machine Learning Of Functionally Compositional Lifelong Machine Learning Of Functionally Compositional

Structures Structures

Jorge Mendez
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/edissertations

 Part of the Artificial Intelligence and Robotics Commons, and the Robotics Commons

Recommended Citation Recommended Citation
Mendez, Jorge, "Lifelong Machine Learning Of Functionally Compositional Structures" (2022). Publicly
Accessible Penn Dissertations. 5470.
https://repository.upenn.edu/edissertations/5470

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/5470
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F5470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=repository.upenn.edu%2Fedissertations%2F5470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=repository.upenn.edu%2Fedissertations%2F5470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5470?utm_source=repository.upenn.edu%2Fedissertations%2F5470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5470
mailto:repository@pobox.upenn.edu

Lifelong Machine Learning Of Functionally Compositional Structures Lifelong Machine Learning Of Functionally Compositional Structures

Abstract Abstract
A hallmark of human intelligence is the ability to construct self-contained chunks of knowledge and reuse
them in novel combinations for solving different yet structurally related problems. Learning such
compositional structures has been a significant challenge for artificial systems, due to the underlying
combinatorial search. To date, research into compositional learning has largely proceeded separately
from work on lifelong or continual learning. This dissertation integrated these two lines of work to present
a general-purpose framework for lifelong learning of functionally compositional structures. The
framework separates the learning into two stages: learning how to best combine existing components to
assimilate a novel problem, and learning how to adapt the set of existing components to accommodate
the new problem. This separation explicitly handles the trade-off between the stability required to
remember how to solve earlier tasks and the flexibility required to solve new tasks. This dissertation
instantiated the framework into various supervised and reinforcement learning (RL) algorithms. Empirical
evaluations on a range of supervised learning benchmarks compared the proposed algorithms against
well-established techniques, and found that 1)~compositional models enable improved lifelong learning
when the tasks are highly diverse by balancing the incorporation of new knowledge and the retention of
past knowledge, 2)~the separation of the learning into stages permits lifelong learning of compositional
knowledge, and 3)~the components learned by the proposed methods represent self-contained and
reusable functions. Similar evaluations on existing and new RL benchmarks demonstrated that
1)~algorithms under the framework accelerate the discovery of high-performing policies in a variety of
domains, including robotic manipulation, and 2)~these algorithms retain, and often improve, knowledge
that enables them to solve tasks learned in the past. The dissertation extended one lifelong
compositional RL algorithm to the nonstationary setting, where the distribution over tasks varies over
time, and found that modularity permits individually tracking changes to different elements in the
environment. The final contribution of this dissertation was a new benchmark for evaluating approaches
to compositional RL, which exposed that existing methods struggle to discover the compositional
properties of the environment.

Degree Type Degree Type
Dissertation

Degree Name Degree Name
Doctor of Philosophy (PhD)

Graduate Group Graduate Group
Computer and Information Science

First Advisor First Advisor
Eric Eaton

Keywords Keywords
compositionality, continual learning, functional composition, lifelong learning, modularity, reinforcement
learning

Subject Categories Subject Categories
Artificial Intelligence and Robotics | Robotics

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/5470

https://repository.upenn.edu/edissertations/5470

LIFELONG MACHINE LEARNING OF
FUNCTIONALLY COMPOSITIONAL STRUCTURES

Jorge Armando Méndez Méndez

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2022

Supervisor of Dissertation

Eric Eaton, Ph.D., Research Associate Professor of Computer and Information Science

Graduate Group Chairperson

Mayur Naik, Ph.D., Professor of Computer and Information Science

Dissertation Committee

Dan Roth (chair), Ph.D., Eduardo D. Glandt Distinguished Professor of Computer and
Information Science

Pratik Chaudhari, Ph.D., Assistant Professor of Electrical and Systems Engineering

Kostas Daniilidis, Ph.D., Ruth Yalom Stone Professor of Computer and Information Science

George Konidaris, Ph.D., John E. Savage Assistant Professor of Computer Science, Brown
University

LIFELONG MACHINE LEARNING OF FUNCTIONALLY COMPOSITIONAL

STRUCTURES

COPYRIGHT

2022

Jorge Armando Méndez Méndez

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 4.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/4.0/

http://creativecommons.org/licenses/by-nc-sa/4.0/

To Laura,

the center of my world,

my inspiration to do this

iii

ACKNOWLEDGMENTS

Eric Eaton, my advisor, deserves my greatest appreciation. Eric took me under his wing as

a naïve Master’s student, and guided me through the road to completing this dissertation.

Along the way, Eric taught me about research, writing, presenting, mentoring, ethics, and

countless more. He never shied away from awkward conversations and always patiently

supported my endeavors, even when those slowed down my research progress. In short, Eric

shaped me into an academic, and I am proud to call him my mentor and friend. I will take

his lessons with me to every subsequent chapter of my life. To him, my deepest thanks.

I would also like to thank Pratik Chaudhari, Kostas Daniilidis, George Konidaris, and Dan

Roth for serving on my dissertation committee. Their collective feedback was instrumental in

the formalization of the problem statement of lifelong compositional learning, which became

a central element of this research. Special thanks go to Pratik Chaudhari, for our lengthy

and insightful discussions on the meaning of lifelong learning, and to George Konidaris, who

mentored me from the distance not only about the research in this dissertation, but also

more broadly in crafting my career path.

My thanks go to Harm van Seijen, too, for his advice and collaboration on the development

of the lifelong compositional reinforcement learning portion of this dissertation. In particular,

his insistence on devising a set of tasks that embodied the notion of compositionality shaped

much of the direction that this dissertation took. His input led to the definition of the

discrete grid-world tasks, which eventually evolved into the CompoSuite benchmark.

Over the years, I had the fortune of working with wonderful people in the Lifelong Machine

Learning group: Shashank Shivkumar, Varun Gupta, Seungwon Lee, Boyu Wang, Meghna

Gummadi, Kyle Vedder, Srinath Rajagopalan, Wenxuan Zhang, Abdullah Zaini, Marcel

Hussing, and David Kent. They all made the lab environment a fun and collaborative space,

for which I am grateful. I give my special thanks to Seungwon Lee, with whom I shared

iv

almost all of the graduate school journey; Boyu Wang, who helped develop the theoretical

proofs of LPG-FTW; and Marcel Hussing, who co-led the development of CompoSuite.

My gratitude also goes to the faculty and staff of the Penn CIS department and the GRASP

lab, for their dedication to making Penn a top place to learn and to do research. I especially

thank Joe Devietti and Swapneel Sheth for granting me the opportunity to teach at Penn and

for their guidance in navigating the often-inescapable difficulties that come with teaching.

I also thank my close friend, Rafael Rodríguez, for his long-term support. He always pushed

me to be better, and from him I learned the value of asking scientific questions and answering

them thoroughly and rigorously.

My sincere appreciation goes to the professors of Universidad Simón Bolívar, who ensured

that my undergraduate education was of the highest quality despite the difficult times that

the Venezuelan academia was facing during those years.

I count myself lucky to be a member of two wonderful Méndez families. I thank all my tíos

and primos, for having been examples of professional growth, of integrating into foreign

cultures as immigrants, and, above all else, of being happy. I give special thanks to my

tía Mariela, for her encouragement and unconditional support that allowed me to pursue a

graduate education at Penn. I also thank my abuela, Lila, for raising our family to treasure

education, and my nono, Eucario, for his memorable lesson, which I paraphrase into: study,

to set yourself free. I have taken their lessons to heart and pursued them to the furthest

extent of my abilities.

I especially thank my immediate family. My parents, Tirso and Milagros, taught me to

give my all to each enterprise I embarked on and to always do so with rectitude. They are,

without question, the most loving, encouraging, and dedicated parents one could ask for. I

owe much of who I am as a researcher to their upbringing, which gave me the discipline,

drive, and self-confidence required to complete this dissertation. I am grateful to my siblings:

Ana Elisa, for being the glue that holds us all together and giving her everything to our

v

family; María Verónica, for showing us that there is more to life than work and teaching us

to value all people equally; and José Alejandro, for his friendship and camaraderie, especially

during the time we shared at Penn, and his uncompromising quest for the truth, which I

have sought to imitate.

And my most profound gratitude goes to my dear wife and the love of my life, Laura.

Graduate school is a journey of many ups and downs; Laura found in every accomplishment

an excuse to celebrate, and held me through every rejected paper, failed project, and series

of sleepless nights. She made every sacrifice I asked of her, and many I did not. Through it

all, Laura reminded me of the bigger picture and made sure that we continued to live our

life, one filled with joy and love. Her companionship made these years go by like a breeze.

For all her love, support, and encouragement, I dedicate this dissertation to her.

The research in this dissertation was partially supported by the DARPA Lifelong Learning

Machines program under grant FA8750-18-2-0117, the DARPA SAIL-ON program under

contract HR001120C0040, the DARPA ShELL program under agreement HR00112190133,

the Army Research Office under MURI grant W911NF-20-1-0080, and Microsoft Research

under the research internship program.

vi

ABSTRACT

LIFELONG MACHINE LEARNING OF

FUNCTIONALLY COMPOSITIONAL STRUCTURES

Jorge Armando Méndez Méndez

Eric Eaton

A hallmark of human intelligence is the ability to construct self-contained chunks of knowledge

and reuse them in novel combinations for solving different yet structurally related problems.

Learning such compositional structures has been a significant challenge for artificial systems,

due to the underlying combinatorial search. To date, research into compositional learning has

largely proceeded separately from work on lifelong or continual learning. This dissertation

integrated these two lines of work to present a general-purpose framework for lifelong learning

of functionally compositional structures. The framework separates the learning into two

stages: learning how to best combine existing components to assimilate a novel problem, and

learning how to adapt the set of existing components to accommodate the new problem. This

separation explicitly handles the trade-off between the stability required to remember how to

solve earlier tasks and the flexibility required to solve new tasks. This dissertation instantiated

the framework into various supervised and reinforcement learning (RL) algorithms. Empirical

evaluations on a range of supervised learning benchmarks compared the proposed algorithms

against well-established techniques, and found that 1) compositional models enable improved

lifelong learning when the tasks are highly diverse by balancing the incorporation of new

knowledge and the retention of past knowledge, 2) the separation of the learning into stages

permits lifelong learning of compositional knowledge, and 3) the components learned by the

proposed methods represent self-contained and reusable functions. Similar evaluations on

existing and new RL benchmarks demonstrated that 1) algorithms under the framework

accelerate the discovery of high-performing policies in a variety of domains, including robotic

manipulation, and 2) these algorithms retain, and often improve, knowledge that enables

vii

them to solve tasks learned in the past. The dissertation extended one lifelong compositional

RL algorithm to the nonstationary setting, where the distribution over tasks varies over time,

and found that modularity permits individually tracking changes to different elements in the

environment. The final contribution of this dissertation was a new benchmark for evaluating

approaches to compositional RL, which exposed that existing methods struggle to discover

the compositional properties of the environment.

viii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iv

ABSTRACT . vii

LIST OF TABLES . xiv

LIST OF ILLUSTRATIONS . xvi

CHAPTER 1 : Introduction . 1

1.1 Motivation . 1

1.2 Thesis Statement . 4

1.3 Fundamental Questions . 4

1.4 Technical Contributions . 5

1.4.1 A General-Purpose Framework for Lifelong Learning of Compositional

Structures . 6

1.4.2 Lifelong Composition in Supervised Learning 7

1.4.3 Lifelong Composition in Reinforcement Learning 8

1.4.4 Nonstationary Lifelong Learning . 11

1.4.5 A Benchmark for Compositional Reinforcement Learning 12

1.5 Manuscript Structure . 13

CHAPTER 2 : Related Work . 15

2.1 Introduction . 15

2.2 Lifelong or Continual Learning . 17

2.2.1 Task-Aware . 18

2.2.2 Task-Agnostic . 24

2.2.3 Reusable Knowledge . 28

ix

2.2.4 Additional Approaches . 29

2.3 Compositional Knowledge . 30

2.3.1 Multitask Learning . 31

2.3.2 Lifelong Learning . 34

2.3.3 Nonmodular Compositional Works . 37

2.3.4 Understanding Composition . 38

2.4 Lifelong Reinforcement Learning . 39

2.5 Compositional Reinforcement Learning . 42

2.5.1 Benchmarking Compositional Reinforcement Learning 46

2.6 Summary . 47

CHAPTER 3 : A General-Purpose Framework for Lifelong Learning of Compositional

Structures . 49

3.1 Introduction . 49

3.2 The Lifelong Learning Problem . 50

3.3 The Compositional Learning Problem . 53

3.4 The Lifelong Compositional Learning Framework 56

3.4.1 Example Compositional Structures . 57

3.4.2 Stages of Lifelong Compositional Learning 60

3.5 Summary . 63

CHAPTER 4 : Application of Lifelong Composition to Supervised Learning 65

4.1 Introduction . 65

4.2 Expansion of the Set of Components M via Component Dropout 66

4.3 Framework Instantiations for the Supervised Setting 66

4.3.1 Shared Subroutines for Lifelong Compositional Algorithms 68

4.3.2 Lifelong Compositional Algorithms Using Naïve Fine-Tuning 69

4.3.3 Lifelong Compositional Algorithms Using Elastic Weight Consolidation 70

4.3.4 Lifelong Compositional Algorithms Using Experience Replay 71

x

4.3.5 Computational Complexity . 71

4.4 Experimental Evaluation . 74

4.4.1 Baselines . 74

4.4.2 Data Sets . 75

4.4.3 Network Architectures . 76

4.4.4 Algorithm Details . 78

4.4.5 Results on Standard Benchmarks . 78

4.4.6 Results on Combined Data Set of Diverse Tasks 89

4.4.7 Evaluation on a Toy Compositional Data Set 91

4.4.8 Visualization of the Learned Components 93

4.5 Summary . 96

CHAPTER 5 : Application of Lifelong Composition to Reinforcement Learning . . . 97

5.1 Introduction . 97

5.2 Background on Reinforcement Learning for Continuous State-Action Spaces . 98

5.3 The Lifelong Reinforcement Learning Problem 100

5.4 The Problem of Lifelong Functional Composition in Reinforcement Learning . 101

5.4.1 Connection Between Functionally Compositional Reinforcement Learn-

ing and Hierarchical Reinforcement Learning 103

5.4.2 Deployment Scenarios for Lifelong Compositional Learning 104

5.5 LPG-FTW: Approximate Modular Lifelong Reinforcement Learning via Pa-

rameter Factorization . 106

5.5.1 Computational Complexity . 110

5.5.2 Base Policy Gradient Algorithms . 110

5.5.3 Connections to PG-ELLA . 112

5.5.4 Theoretical Guarantees . 113

5.6 CompRL: Modular Lifelong Reinforcement Learning via Neural Composition 115

5.6.1 Neural Modular Policy Architecture 115

5.6.2 Sequential Learning of Neural Modules 117

xi

5.6.3 Base Online and Off-Line Reinforcement Learning Techniques 121

5.7 Experimental Evaluation . 122

5.7.1 Evaluation Domains . 123

5.7.2 Model Architectures . 131

5.7.3 Baselines . 134

5.7.4 Hyperparameters . 136

5.7.5 Empirical Evaluation on OpenAI Gym MuJoCo Domains 141

5.7.6 Empirical Evaluation on More Challenging Meta-World Domains . . . 145

5.7.7 Zero-Shot Transfer to Unseen Discrete 2-D Task Combinations via

Multitask Learning . 146

5.7.8 Lifelong Discovery of Modules on Discrete 2-D Tasks 147

5.7.9 Lifelong Discovery of Modules on Realistic Robotic Manipulation Tasks150

5.7.10 Ablative Tests on Compositional Domains 151

5.8 Summary . 155

CHAPTER 6 : Extension of Lifelong Composition to Nonstationary Environments . 158

6.1 Introduction . 158

6.2 Related Work on Nonstationary Lifelong Learning 158

6.3 The Compositional Nonstationary Lifelong Learning Problem 160

6.4 NonstatRL: Nonstationary Lifelong Reinforcement Learning via Composition 161

6.5 Experimental Evaluation . 165

6.5.1 Nonstationary Evaluation Settings . 165

6.5.2 Baselines . 166

6.5.3 Results . 167

6.6 Summary . 168

CHAPTER 7 : CompoSuite: A Compositional Reinforcement Learning Benchmark . 170

7.1 Introduction . 170

7.2 The CompoSuite Benchmark for Compositional Reinforcement Learning . . . 171

xii

7.2.1 Task Design . 171

7.2.2 Evaluation Settings . 178

7.3 Benchmarking Existing Reinforcement Learning Methods on CompoSuite . . 181

7.3.1 Experimental Setting . 182

7.3.2 Hyperparameters . 183

7.3.3 Compositional Network Architecture 183

7.3.4 Evaluation of Baselines on the Full CompoSuite Benchmark 184

7.3.5 Evaluation of Baselines on the Smaller-Scale CompoSuite ∩ IIWA

Benchmark . 186

7.3.6 Evaluation of Baselines on the Restricted CompoSuite \ Pick-and-Place

Benchmark . 187

7.3.7 Empirical Analysis of CompoSuite Properties 189

7.4 Scope, Limitations, and Extensions . 191

7.5 Summary . 193

CHAPTER 8 : Conclusion . 195

8.1 Summary of Technical Contributions . 196

8.2 Future Directions . 197

APPENDIX A : Categorized Related Works on Lifelong Learning and Compositional

Learning . 200

APPENDIX B : Full Results on Lifelong Compositional Supervised Learning 206

APPENDIX C : Additional Results Using EWC for Reinforcement Learning on Ope-

nAI Gym MuJoCo Domains . 208

APPENDIX D : Proofs of Theoretical Guarantees of LPG-FTW 210

APPENDIX E : Visualization of All CompoSuite Tasks 220

BIBLIOGRAPHY . 220

xiii

LIST OF TABLES

TABLE 1 : Time complexity of supervised lifelong compositional methods. 73
TABLE 2 : Data set summary for supervised lifelong composition evaluations. . . 76
TABLE 3 : Performance of supervised lifelong composition: linear models. 79
TABLE 4 : Performance of supervised lifelong composition: soft layer ordering. . 80
TABLE 5 : Number of learned components in supervised lifelong composition:

soft ordering. 83
TABLE 6 : Component reusability in supervised lifelong composition. 85
TABLE 7 : Performance of supervised lifelong composition: soft gating. 87
TABLE 8 : Number of learned components in supervised lifelong composition:

soft gating. 89
TABLE 9 : Performance of supervised lifelong composition on Combined data

set: soft ordering, all methods. 90
TABLE 10 : Performance of supervised lifelong composition on compositional data

set: soft ordering. 92

TABLE 11 : Summary of hyperparameters of LPG-FTW and baselines for lifelong
compositional RL. 137

TABLE 12 : Summary of hyperparameters used for evaluations on explicitly com-
positional RL tasks. 139

TABLE 13 : Performance on current task distribution in 2-D discrete tasks. 168

TABLE 14 : Reward stages per task objective in CompoSuite. 175
TABLE 15 : Summary of hyperparameters used for evaluations on CompoSuite. . 183
TABLE 16 : Zero-shot generalization on the full CompoSuite benchmark. 185
TABLE 17 : Zero-shot generalization on the smaller-scale CompoSuite ∩ IIWA

benchmark. 187
TABLE 18 : Zero-shot generalization on the restricted CompoSuite \ pick-and-

place benchmark. 188
TABLE 19 : Zero-shot success for the MTL agent on CompoSuite \ pick-and-place

for shared and not-shared elements. 189

TABLE 20 : Related work categorization. 200

TABLE 21 : Performance of different versions of EWC on MuJoCo domains used
to evaluate lifelong compositional RL with LPG-FTW. 209

xiv

LIST OF ILLUSTRATIONS

FIGURE 1 : Related work categorization. 16

FIGURE 2 : Compositional problem graph. 54
FIGURE 3 : Compositional structure examples. 57
FIGURE 4 : Lifelong compositional learner. 61

FIGURE 5 : Performance of supervised lifelong composition after each task and
after all tasks: soft ordering. 80

FIGURE 6 : Averaged learning curves for supervised lifelong composition. 81
FIGURE 7 : Catastrophic forgetting on supervised lifelong composition: soft

ordering. 82
FIGURE 8 : Performance of supervised lifelong composition with respect to data

set size. 84
FIGURE 9 : Sensitivity to the rate of assimilation vs. accommodation in super-

vised lifelong composition. 86
FIGURE 10 : Performance of supervised lifelong composition after each task and

after all tasks: soft gating. 88
FIGURE 11 : Catastrophic forgetting on supervised lifelong composition: soft gating. 88
FIGURE 12 : Visualization of first component learned via supervised learning with

soft layer ordering. 94
FIGURE 13 : Visualization of second component learned via supervised learning

with soft layer ordering. 94
FIGURE 14 : Visualization of third component learned via supervised learning

with soft layer ordering. 95
FIGURE 15 : Visualization of fourth component learned via supervised learning

with soft layer ordering. 95

FIGURE 16 : Compositional RL problem graph. 102
FIGURE 17 : Visualization of explicitly compositional discrete 2-D RL tasks. . . . 125
FIGURE 18 : Visualization of explicitly compositional robotic RL tasks. 129
FIGURE 19 : Modular architecture for explicitly compositional discrete 2-D RL

tasks. 133
FIGURE 20 : Modular architecture for explicitly compositional robot tasks. . . . 134
FIGURE 21 : Learning curves of LPG-FTW in lifelong compositional RL on Mu-

JoCo domains with linear policies. 141
FIGURE 22 : Performance of LPG-FTW in lifelong compositional RL before and

after each task, and after all tasks on MuJoCo domains with linear
policies. 143

FIGURE 23 : Diversity of tasks in MuJoCo domains used to evaluate lifelong
compositional RL with LPG-FTW. 144

FIGURE 24 : Performance of LPG-FTW in lifelong compositional RL on Meta-
World domain with deep policies. 145

xv

FIGURE 25 : Performance of modular MTL agent on explicitly compositional
discrete 2-D RL tasks. 147

FIGURE 26 : Performance of lifelong compositional RL in explicitly compositional
discrete 2-D tasks. 149

FIGURE 27 : Performance of lifelong compositional RL on explicitly compositional
robotics tasks. 150

FIGURE 28 : Ablative analysis on explicitly compositional discrete 2-D RL tasks:
module diversity. 152

FIGURE 29 : Ablative analysis on explicitly compositional discrete 2-D RL tasks:
modular architecture. 152

FIGURE 30 : Ablative analysis on explicitly compositional discrete 2-D RL tasks:
number of modules. 153

FIGURE 31 : Ablative analyses on explicitly compositional discrete 2-D RL tasks:
modularity and off-line RL. 154

FIGURE 32 : Ablative analysis on explicitly compositional robotics RL tasks:
off-line RL. 155

FIGURE 33 : Compositional nonstationary RL problem graph. 161
FIGURE 34 : Learning curves of compositional nonstationary RL in 2-D discrete

tasks. 167

FIGURE 35 : Initial conditions for CompoSuite tasks. 171
FIGURE 36 : Modular architecture used for learning compositional policies on

CompoSuite. 183
FIGURE 37 : Training task learning curves on the full CompoSuite benchmark. . 185
FIGURE 38 : Training task learning curves on the smaller-scale CompoSuite ∩

IIWA benchmark. 187
FIGURE 39 : Training task learning curves on the restricted CompoSuite \ pick-

and-place benchmark. 188
FIGURE 40 : Maximum success rate attained for each CompoSuite task across all

trained agents. 190
FIGURE 41 : Task similarity of CompoSuite tasks. 191

FIGURE 42 : Full performance of supervised lifelong composition after each task
and after all tasks: soft ordering. 206

FIGURE 43 : Full learning curves for supervised lifelong composition: soft ordering.207

FIGURE 44 : Visualization of the 64 IIWA tasks. 220
FIGURE 45 : Visualization of the 64 Panda tasks. 221
FIGURE 46 : Visualization of the 64 Jaco tasks. 222
FIGURE 47 : Visualization of the 64 Kinova tasks. 223

xvi

CHAPTER 1 : Introduction

A major goal of artificial intelligence (AI) is to create an agent capable of acquiring a general

understanding of the world. Such an agent would require the ability to continually accumulate

and build upon its knowledge as it encounters new experiences. Lifelong machine learning

(hereafter referred to as simply lifelong learning) addresses this setting, whereby an agent

faces a continual stream of problems and must strive to capture the knowledge necessary for

solving each new task it encounters. If the agent is capable of accumulating knowledge in some

form of compositional representation, it could then selectively reuse and combine relevant

pieces of knowledge to construct novel solutions. This dissertation developed algorithms that

enable AI agents to accumulate reusable and compositional knowledge over their lifetimes.

1.1. Motivation

Consider the standard supervised machine learning (ML) setting. The learning agent

receives a large labeled data set, and processes this entire data set with the goal of making

predictions on data that was not seen during training. The central assumption for this

paradigm is that the data used for training and the unseen future data are independent and

identically distributed (i.i.d.). For example, a service robot that has learned a vision model

for recognizing plates in a kitchen will continue to predict plates in the same kitchen. As

AI systems become more ubiquitous, this i.i.d. assumption becomes impractical. The robot

might move to a new kitchen with different plates, or it might need to recognize cutlery at a

later time. If the underlying data distribution changes at any point in time, like in the robot

example, then the model constructed by the learner becomes invalid, and traditional ML

would require collecting a new large data set for the agent to learn to model the updated

distribution. In contrast, a lifelong learning robot would leverage accumulated knowledge

from having learned to detect plates and adapt it to the novel scenario with little data.

The lifelong learning problem is therefore that of learning under a nonstationary data

distribution, making use of past knowledge when adapting to the updated distribution. One

1

common formalism for modeling the nonstationarity, which this dissertation adopted, is that

of learning a sequence of distinct tasks. In the robot example, three tasks could be detecting

plates in the first kitchen, detecting plates in the second kitchen, and detecting cutlery.

As discussed above, one of the requirements that a lifelong learner should satisfy is to

accelerate the learning of future tasks by leveraging knowledge of past tasks. This ability,

often denoted forward transfer, requires the agent to discover knowledge that is reusable

in the future without knowing what that future looks like. A second requirement, which is

typically in tension with the first, is that the agent should be capable of performing any task

seen in the past even long after having learned it. For example, the robot might move back

to the first kitchen after adapting to the second, and it should still be able to recognize plates.

This necessitates that the agent avoids catastrophic forgetting (McCloskey and Cohen, 1989),

but also that, whenever possible, it achieves backward transfer to those earlier tasks (Ruvolo

and Eaton, 2013). This is possible whenever knowledge from future tasks is useful for learning

better models for older tasks. While most work sees avoiding forgetting as a requirement

solely for being able to perform well on earlier tasks, in many cases it also permits better

forward transfer, by enabling the agent to retain more general knowledge that works for a

large set of tasks seen over its lifetime. In addition to these two desiderata, the growth of the

agent’s memory use should be constrained over time. This choice is practical: if the agent

requires storing large models or data sets for all past tasks in memory, then it would become

impractical to handle very long task sequences.

All these desiderata can be summarized as discovering knowledge that is reusable: reusable

knowledge can be applied to both future and past tasks without uncontrolled growth. Beyond

lifelong learning, the autonomous discovery of reusable knowledge has motivated work in

transfer learning, multitask learning (MTL), and meta-learning—all of which deal with

learning diverse tasks. These fields have received tremendous attention in the past decade,

leading to a large body of literature spanning supervised learning, unsupervised learning, and

reinforcement learning (RL). Traditionally, methods for solving this problem have failed to

2

capture the intuition that, in order for knowledge to be maximally reusable, it must capture

a self-contained unit that can be composed with other similar pieces of knowledge. For

example, a service robot that has learned to both search-and-retrieve objects and navigate

across a university building should be able to quickly learn to put these together to deliver a

stapler to Jorge’s office. Instead, typical methods make assumptions about the way in which

different tasks are related, and impose a structure that dictates the knowledge to share across

tasks, usually in the form of abstract representations that are not explicitly compositional.

Yet, compositionality is a tremendously promising notion for achieving the three lifelong

learning requirements listed above. Knowledge that is compositional can be used in future

tasks by combining it in novel ways; this enables forward transfer. Further, not all knowledge

must be updated upon learning new tasks to account for them, but only the components of

knowledge that are used for solving these new tasks; this prevents catastrophic forgetting

of any unused component and could enable backward transfer to tasks that reuse shared

components. Finally, compositional knowledge permits solving combinatorially many tasks by

combining in different ways; conversely, solving a fixed number of tasks requires logarithmically

many knowledge components, thereby inhibiting the agent’s memory growth.

Recently, an increasing number of works have focused on the problem of learning compositional

pieces of knowledge to share across different tasks (Zaremba et al., 2016; Hu et al., 2017;

Kirsch et al., 2018; Meyerson and Miikkulainen, 2018). At a high level, these methods aim

to simultaneously discover what are the pieces of knowledge to reuse across tasks and how to

compose them for solving each individual task. To date, studies in this field have made one

of two possible assumptions. The first assumption is that the agent has access to a large

batch of tasks to learn simultaneously in an MTL setting. This way, the agent can attempt

numerous combinations of possible components and explore how useful they are for solving

all tasks jointly. While this assumption certainly simplifies the problem by removing the

forward and backward transfer requirements, it is unfortunately unrealistic: AI systems in

the real world will not have access to batches of simultaneous tasks, but instead will face

3

them in sequence in a lifelong setting. The second assumption is that the agent does face

tasks sequentially, but it is capable of learning components on a single task that are reusable

for solving many future tasks. This latter assumption, albeit more realistic, relies on the

agent being able to find optimal and reusable components from solving a single task, which is

not generally possible given the limited data available for the task and the lack of knowledge

about which future components the knowledge must be compatible with.

1.2. Thesis Statement

The thesis of this dissertation is that learning functionally compositional solutions to a

lifelong sequence of tasks improves the capabilities of ML agents to achieve forward transfer,

avoidance of forgetting, backward transfer, and limited growth. These capabilities extend to

both supervised and RL settings, and become increasingly apparent in the presence of long

sequences of highly diverse tasks. In particular, one mechanism that enables the discovery of

such compositional solutions is separating the learning process into stages for 1) initializing a

set of components that generalize to future tasks, 2) discovering how to best combine existing

components to solve a new task, and 3) incorporating new knowledge obtained from the

current task into the set of components.

1.3. Fundamental Questions

This dissertation posed and addressed the novel question of how to learn these compositional

structures in a lifelong learning setting. The purpose of this dissertation was to push the

boundaries of lifelong learning methods by creating lifelong learning agents that are capable

of continually learning to solve new problems, becoming better learners over time. To this

end, this dissertation sought to endow agents with the ability to autonomously discover

reusable components as tasks arrive sequentially.

At an intuitive level, compositionality refers to the ability of an agent to tackle parts of each

problem individually, and then reuse the solution to each of the subproblems in combination

with others to solve multiple bigger problems that contain shared parts. In particular, this

4

dissertation focused on a form of functional composition, where each module or component

processes an input and produces an output to be consumed by a subsequent module. Each

component therefore is analogous to a function in programming, where functions specialize

to solve individual subproblems and combine to solve complex problems.

One key step towards answering the above question was to study how to formalize the

problem of lifelong compositional learning in a way that encapsulates both the supervised and

RL paradigms. Critically, such a formulation should 1) capture realistic settings where an

agent might benefit from discovering compositional solutions, and 2) lend itself to the design

of learning algorithms that exploit these compositional properties. Given these requisites,

this question directly tied to the next inquiry studied in this dissertation: what steps should

a learning algorithm take to tackle such compositional problems and achieve the lifelong

learning desiderata of forward transfer, avoidance of forgetting, and limited growth.

Another question this dissertation sought to address was how modularity and compositionality

could aid a lifelong learner in dealing with a nonstationary environment. In particular, this

dissertation considered the case in which different aspects of the environment change at

different rates (and potentially some aspects remain unchanged). In such cases, the challenge

is to identify these various shifts and then leverage any information from the past that

remains relevant about individual elements of the environment.

This dissertation also endeavored to answer how to evaluate approaches specifically in the RL

setting to study their compositional capabilities. This involved the investigation of a set of

problems that are explicitly compositionally related, and the design of performance metrics

that directly measure an RL agent’s ability to discover the tasks’ compositional structure.

1.4. Technical Contributions

Seeking to answer these fundamental questions, the primary contribution of this dissertation

was the development of a general-purpose framework that is agnostic to the specific algorithms

used for learning and the form of the structures themselves. The proposed framework is

5

capable of incorporating various forms of compositional structures, techniques for learning to

combine these structures, and mechanisms for avoiding catastrophic forgetting. As examples

of its flexibility, this dissertation instantiated the framework to incorporate linear parameter

combinations and multiple forms of neural net module compositions as the compositional

structures; backpropagation, policy gradient (PG) learning, and discrete search to discover

the optimal combination of components for each task; and experience replay, elastic weight

consolidation (Kirkpatrick et al., 2017), and off-line RL as knowledge retention mechanisms.

Various novel combinations of these examples resulted in new lifelong learning algorithms, and

an extensive empirical evaluation validated these methods on new and existing benchmark

problems, demonstrating that the proposed framework increases the capabilities of the

learning system, reducing catastrophic forgetting and achieving higher overall performance.

Moreover, this evaluation verified that the components learned by algorithms within the

proposed framework correspond to self-contained, reusable functions.

Building upon these foundations, this dissertation then developed an extension of the

framework to bring lifelong learning closer to real-world deployment. This extension dealt

with the problem of nonstationary lifelong learning, in which aspects of the environment

change dynamically over time. As one final contribution, this dissertation developed a

new large-scale evaluation benchmark specifically for assessing the compositionality of RL

methods, as a means for fostering future advancements in this direction.

1.4.1. A General-Purpose Framework for Lifelong Learning of Compositional Structures

The first step toward answering the questions outlined above was to formalize the problem

of lifelong learning of compositional structures. In particular, this dissertation defined the

problem around the notion of functional composition, under the assumption that the solution

to each task the agent might encounter throughout its lifetime can be solved by executing

functions one after the next to process the input and transform it into the desired output.

This formulation gave rise to a compositional problem graph, which motivated the design of

the neural architectures used in the algorithmic instantiations of the proposed framework.

6

As a general-purpose solution to lifelong compositional learning, this dissertation proposed

a framework that evokes Piaget’s (1976) assimilation and accommodation stages of human

intellectual development, embodying the benefits of dividing the lifelong learning process into

two distinct stages. In the first stage, the learner strives to solve a new task by combining

existing components it has already acquired. The second stage uses discoveries from the new

task to improve existing components and to construct fresh components if necessary.

The framework definition is broad by design, yet it still provides significant insight into how to

design lifelong learning algorithms. The intuition is that, when learning a new task, the agent

has not acquired any knowledge about that task. Therefore, modifying existing components

containing solidified knowledge might catastrophically damage them by incorporating likely

incorrect information about the current task. Instead, the agent should leverage the existing

knowledge as much as possible for discovering information about the new task. Later, once

the agent has learned the new task, it should incorporate any knowledge about this current

task that might be useful for solving future tasks into the set of existing components. If the

agent finds the existing components to be insufficient for solving the new task, then it should

create new components to incorporate this new knowledge.

1.4.2. Lifelong Composition in Supervised Learning

The first instantiations of the framework developed in this dissertation were a set of nine

lifelong supervised learning algorithms. Each of the methods trains one form of compositional

structures from among linear parameter combinations, soft neural layer ordering (Meyerson

and Miikkulainen, 2018), and a soft version of neural layer gating (Kirsch et al., 2018). On

the other hand, in order to avoid catastrophic forgetting of the component parameters when

updating them with future knowledge, each method uses a choice from naïve fine-tuning,

elastic weight consolidation (Kirkpatrick et al., 2017), and experience replay as knowledge

retention mechanisms. Theoretical computational complexity bounds for each of these

algorithms demonstrated considerable efficiency gains in training time. A comprehensive

empirical evaluation tested all the introduced algorithmic instantiations, with two primary

7

goals: 1) showing that compositional structures enable improved learning, especially in the

presence of highly diverse tasks, and 2) showing that the proposed framework, and in particular

the separation of the learning process into two distinct stages, improves the learning of these

compositional solutions. Beyond simply ascertaining if these results hold, this dissertation

sought to discover why these results hold. As intermediate questions, the empirical evaluation

measured how much knowledge of past tasks the agent forgot after training on future tasks,

as well as how general the knowledge stored in the components became as it was updated

with more tasks. Additional questions studied in the experiments to test the usefulness of

the proposed framework were how rapidly the number of trained components grew, how the

results changed in the presence of varying sample sizes, how reusable the learned components

were across various tasks, and how the schedule for assimilation and accommodation should

be set. As a final test, a brief visualization experiment inspected the meaning of some

components learned in an image generation task, with the goal of discovering whether the

learned components were indeed self-contained and reusable.

1.4.3. Lifelong Composition in Reinforcement Learning

RL has achieved impressive success at complex tasks, from mastering the game of Go (Silver

et al., 2016, 2017) to controlling complex robots (Gu et al., 2017; OpenAI et al., 2020).

However, this success has been mostly limited to solving a single problem given enormous

amounts of experience. In some settings, this experience is prohibitively expensive, such as

when training an actual physical system. If an agent is expected to learn multiple consecutive

tasks over its lifetime, then it would be ideal for it to leverage knowledge from previous tasks

to accelerate the learning of new tasks. This is the premise of lifelong RL methods.

Progress in lifelong RL has been substantially slower than in the supervised counterpart, with

only a minuscule portion of lifelong learning research being devoted to RL. In the context of

this dissertation, this implied that unlike in the supervised setting, it was not possible to

develop a multitude of lifelong RL methods by simply combining existing pieces with minor

adaptations. Instead, in order to adapt the proposed framework to RL, this dissertation

8

created two novel lifelong RL methods from first principles, in particular developing two new

mechanisms for avoiding catastrophic forgetting and achieving backward transfer.

As a first step toward adapting the framework to lifelong RL, this dissertation formulated

the novel problem of lifelong RL of functionally compositional tasks, where tasks can be

solved by recombining modules of knowledge in different manners. The intuition is that

humans’ ability to handle diverse problems stems from their capacity to accumulate, reuse,

and recombine perceptual and motor abilities in various ways to handle novel circumstances.

While RL has studied temporal compositionality for a long time, such as in the options

framework, it has not explored in depth the type of functional compositionality studied in

this dissertation, especially not in the more realistic lifelong learning setting. Functional

compositionality involves a decomposition into subproblems, where the outputs of one

subproblem become inputs to others. This moves beyond standard temporal composition

to functional compositions of layered perceptual and action modules, akin to programming

where functions are used in combination to solve different problems. For example, a typical

robotic manipulation solution interprets perceptual inputs via a sensor module, devises a

path for the robot using a high-level planner, and translates this path into motor controls

with a robot driver. Each of these modules can be used in other combinations to handle a

variety of tasks. The formalization of this problem adapted the compositional problem graph

from the supervised setting to the RL setting.

One of the fundamental differences between lifelong RL and lifelong supervised learning

is that, in RL, the agent is in charge of collecting its own experiences. This imposes a

trade-off between the ability of the agent to discover new regions of its environment and new

behaviors (exploration) and its ability to perform well in the environment (exploitation). In

practice, in order for an agent to learn complex RL tasks with present-day methods, it is

necessary for it to learn a strong exploitation policy and apply minor perturbations over this

policy for exploration. Consequently, an agent that learns an exploitation policy using fewer

exploration steps can learn to solve a task after fewer interactions with the environment. In a

9

lifelong RL setting, this motivates a new metric beyond the standard forward and backward

transfer: the speed of learning each new task. Due to its practical value, this dissertation

treated speed of learning as the main metric of performance for RL methods.

The first lifelong compositional RL method developed in this dissertation wraps around

base PG methods. This lifelong PG algorithm decomposes the parameters of each task’s

policy into a set of components that are linearly combined in a task-specific manner to

construct the desired policy. The method then leverages the existing components during the

training process for each task to accelerate the learning, by searching only over combinations

of those components. The approach further exploits the linear combination structure to

obtain a closed-form solution for incorporating knowledge about each new task into the

existing components without causing forgetting. This simplified structure also permitted

deriving theoretical results about the convergence of the knowledge components. An empirical

evaluation assessed the performance of this first method on a range of continuous control tasks,

including a set of complex and diverse robotic manipulation problems, where it exhibited

accelerated learning via lifelong transfer.

The second method more explicitly captures the structure of the compositional problem graph

via deep modular architectures. Unlike other methods in this dissertation, this approach

separates the initial stage for assimilating the current task into two substages: first, the agent

finds the optimal combination of existing modules via discrete search; second, the agent

leverages the composed modular architecture to explore the environment via standard deep

RL. Then, in order to accommodate new knowledge into the existing components without

forgetting and potentially with backward transfer, the agent uses off-line RL on a small replay

buffer of data collected from all previously seen tasks. This newfound connection between

lifelong RL and off-line RL applies beyond compositional RL to many existing lifelong RL

methods, and is a promising mechanism for enabling backward transfer more generally.

Since this latter method learns an architecture that more closely matches the compositional

problem graph, the evaluation inspected its compositional properties. For this, the experi-

10

ments considered two novel suites of explicitly compositional tasks: one in a discrete 2-D

environment and another in a continuous robotic manipulation setting. The first part of the

experiments studied whether the tasks truly exhibited their intuitive compositional properties.

The second part evaluated the proposed algorithm for its ability to quickly learn new tasks

and improve performance of earlier tasks with further updates to the knowledge modules.

Due to the inherent complexity of modern RL methods, this dissertation did not develop the

final step of incorporating novel components for these two RL algorithms. The question of

how to automatically grow the set of policy modules over time in lifelong RL remains open

for future investigation.

1.4.4. Nonstationary Lifelong Learning

While lifelong learning is itself a problem of nonstationary learning, in some sense it sidesteps

the challenge of nonstationarity by adding a second-layer distribution (over tasks) which

is stationary. This enables existing approaches to utilize i.i.d. learning techniques at the

higher level of the task distribution (e.g., by treating each task as analogous to an in-

dividual i.i.d. data point). However, in many realistic deployments, this assumption of

task-distribution stationarity does not hold. In such cases, approaches should explicitly

consider the nonstationary nature of the environment and incorporate techniques for actively

forgetting previous knowledge that has become obsolete in order to enable adaptation to the

current state of the world.

This dissertation developed an extension of one lifelong compositional RL method to this

nonstationary setting. In particular, the extended algorithm assumes that aspects (or compo-

nents) of the environment vary independently of each other, and leverages its compositional

construction to tackle each component’s distributional shift individually. An empirical

evaluation explored multiple variants of this approach and evaluated their ability to handle

modular nonstationarity on various nonstationary environments.

11

1.4.5. A Benchmark for Compositional Reinforcement Learning

Long before this dissertation, AI research has sought to embed compositionality into intelligent

systems for decades, from early ideas like hierarchical planning (Sacerdoti, 1974) and logic-

based reasoning (Doyle, 1979), all the way to modern learning-based techniques like neural

module networks (Andreas et al., 2016) and skill discovery (Konidaris and Barto, 2009). The

ability to decompose a complex problem into easier subproblems would drastically increase

the capabilities of learning agents by 1) making each learning problem easier (because each

subproblem is easier than the original problem), and 2) enabling the agent to very quickly

learn to solve new tasks by discovering which components from its earlier solutions are

suitable to these new tasks (potentially without ever requiring any data from the new tasks).

Despite the intuitive appeal of these ideas, the RL community has only recently begun to

explore the full potential of AI agents to leverage compositional properties of the environment

to generalize to unknown combinations of known components. This dissertation sought to

foster progress in this direction by introducing CompoSuite, a benchmark for compositional

RL that exploits the compositionality of robot learning tasks to evaluate the compositional

capabilities of learning agents. The benchmark follows the functional compositional RL

formulation of previous chapters, which is akin to the decomposition of programs for solving

robot tasks into software modules for sensing, planning, and acting.

Following this intuition, each CompoSuite task requires a particular robot arm to manipulate

one individual object to achieve a task objective while avoiding an obstacle. For example,

one CompoSuite task requires an IIWA arm to circumvent a wall, pick up a dumbbell, and

place it in a bin. Another task instructs a Jaco arm to traverse a doorway, pick up a plate,

and place it on a shelf. This compositional definition of the tasks endows CompoSuite

with two remarkable properties. First, varying the robot/object/objective/obstacle elements

leads to hundreds of RL tasks, each of which requires a meaningfully different behavior.

Second, CompoSuite can evaluate RL approaches specifically for their ability to learn the

compositional structure of the tasks. Intuitively, if a learning agent is able to appropriately

12

decompose its solutions to the dumbbell and plate problems into functional components,

then it could reuse the IIWA motor module in place of the Jaco motor module in order to

solve the plate-on-shelf task without any experience with the IIWA arm on that task. More

generally, CompoSuite can evaluate (noncompositional) multitask and lifelong RL approaches

for their ability to handle large numbers of highly varied tasks. This is in stark contrast

to most existing multitask RL benchmarks, which are typically limited to at most a few

dozen RL tasks: CompoSuite offers an order of magnitude more tasks, enabling the study of

multitask and lifelong RL at scale.

Concretely, CompoSuite contains 256 compositional simulated robotic manipulation tasks,

all of which require meaningfully different behaviors. In addition, CompoSuite prescribes

various standardized evaluation schemes and metrics in order to foster reproducible evaluation

of future approaches. An empirical evaluation of single-task learning (STL), monolithic

MTL, and modular MTL agents on various evaluation settings sought to 1) validate the

compositional properties of CompoSuite, 2) devise a deeper understanding of the implications

of compositionality on RL agents, and 3) demonstrate that there remains substantial room for

improvement in existing RL methods to exploit the compositional properties of CompoSuite.

1.5. Manuscript Structure

Subsequent chapters of this manuscript are organized as follows:

Chapter 2 – Related Work contextualizes this dissertation in the broader field of

research. In particular, it categorizes existing works along six axes: the learning setting,

whether and how the structure of the problem is given, the application domain, the type of

composition, the learning mechanism, and the form of the structures.

Chapter 3 – A General-Purpose Framework for Lifelong Learning of Composi-

tional Structures formalizes the problems of lifelong learning and compositional learning,

and proposes a framework for addressing the novel problem of lifelong compositional learning.

13

Chapter 4 – Application of Lifelong Composition to Supervised Learning instan-

tiates the framework into a suite of nine lifelong supervised learning algorithms and executes

an extensive evaluation to understand the properties of the framework.

Chapter 5 – Application of Lifelong Composition to Reinforcement Learning

adapts the problem formulation of lifelong composition to the RL setting, proposes two novel

mechanisms for lifelong compositional RL, and evaluates each of the algorithms in a set of

existing and new benchmark problems.

Chapter 6 – Extension of Lifelong Composition to Nonstationary Environments

extends one of the lifelong compositional RL algorithms to the setting of nonstationary

lifelong RL, and evaluates a variety of choices for how to handle changes in the environment

in a range of nonstationary settings.

Chapter 7 – CompoSuite: A Compositional Reinforcement Learning Benchmark

introduces the CompoSuite benchmark for evaluating compositional properties of RL algo-

rithms, and evaluates existing approaches under a variety of experimental settings.

Chapter 8 – Conclusion summarizes the technical contributions of this dissertation, as

well as the findings obtained from these contributions and how they answer the fundamental

questions posed in this introductory chapter. This chapter closes with a discussion of avenues

for future investigation that would potentially have significant impact on the field.

14

CHAPTER 2 : Related Work

2.1. Introduction

This chapter reviews the existing literature on the topics related to this dissertation, with

an aim to contextualize this investigation in the broader research landscape. The survey is

primarily a separate discussion of two topics that are closely related, yet previously disjointly

studied: lifelong or continual learning and compositional knowledge representations. Research

into lifelong learning seeks to endow agents with the capability to accumulate knowledge

over a nonstationary stream of data, typically presented to the agent in the form of tasks.

In principle, if the tasks are related in some way, the agent should be able to detect and

extract the commonalities across the tasks in order to leverage shared knowledge and improve

its overall performance. On the other hand, the goal of learning compositional knowledge

representations is to decompose complex problems into simpler subproblems, such that the

solutions to the easier subproblems can be combined to solve the original, harder problem.

This formulation makes compositional representations an appealing mechanism for learning

the relations across multiple tasks: by discovering subproblems that are common to many

tasks, the learner could reuse the solutions to these subproblems as modules that compose

in different combinations to solve the many tasks. Despite its intuitive appeal, no prior

work had explicitly used compositional representations as a means for transferring knowledge

across a lifelong sequence of tasks. This dissertation leveraged techniques from across lifelong

learning and compositional representations to define general-purpose algorithms that discover

compositional structures in a lifelong learning setting.

The discussion further divides works into those carried out in the supervised and the RL

settings. While many of the techniques used for one are applicable to the other (albeit

with minor-to-major adaptations), research into these two fields has proceeded mostly

separately, with the vast majority of work focusing on the supervised setting. In particular,

the form of functional composition studied in this dissertation had previously been almost

15

No structure given

Supervised

Unsupervised

RL

Lifelong Multitask Single-task

Structure implicitly given

Supervised

Unsupervised

RL

Structure explicitly given

Supervised

Unsupervised

RL

Type of composition: Functional, Temporal, None
Type of structural configuration: Graph, Chaining, Aggregation, None
Application domain: Vision, Robotics, Language, VQA, Audio, Toy,

Figure 1: A categorization of existing works into six axes, defined in text within the figure;
scale represents number of references in this chapter per category. Most work on lifelong or
continual learning has not learned explicitly compositional structures, while most efforts on
compositional learning have operated in the MTL or STL settings. This dissertation created
some of the very first methods developed for lifelong compositional learning. Appendix A
contains a tabular version of this figure, listing all references in their respective categories.

16

entirely overlooked in the RL literature. The general-purpose framework developed in

this investigation adapts to both supervised and RL settings, demonstrating the broad

applicability of the notion of lifelong compositionality.

The discussion ties works together by categorizing them along six axes. Figure 1 includes a

visual depiction of the landscape according to this categorization, while Appendix A lists

all cited references in terms of the same categories. The first axis divides works according

to the learning setting: lifelong learning, MTL, and STL. The second axis analyzes each

approach according to whether the environment provides the structure of the task to the

agent and how. The third axis dissects works in terms of the underlying learning mechanism

used by the agent for training: supervised, unsupervised, or RL. The fourth axis separates

approaches according to the type of compositionality they study: functional composition,

temporal composition, or no composition. The fifth axis classifies works with respect to how

they structurally combine components: via chaining, aggregation, or a more general graph.

The sixth and final axis divides works in terms of the application domain they consider.

There are other avenues of research that are related to aspects of this dissertation. To keep

the discussion focused on the concepts of compositionality and lifelong learning, the chapters

where they are most relevant summarize those separate lines of work. In particular, Chapter 5

discusses the relation between work on off-line RL and catastrophic forgetting, and Chapter 6

discusses work on nonstationary lifelong learning to provide context.

2.2. Lifelong or Continual Learning

In lifelong learning, agents must handle a variety of tasks over their lifetimes, and should

accumulate knowledge in a way that enables them to more efficiently learn to solve new

problems. Thrun (1998) first introduced the concept of lifelong learning, which has received

widespread attention in recent years (Chen and Liu, 2018). Recent efforts have mainly

focused on avoiding catastrophic forgetting (McCloskey and Cohen, 1989). At a high level,

existing approaches define parts of parametric models (e.g., deep neural networks) to share

17

across tasks. As the agent encounters tasks sequentially, it strives to retain the knowledge

that enabled it to solve earlier tasks.

The following sections divide lifelong learning methods into task-aware (those that receive a

task indicator) and task-agnostic (those that do not receive a task indicator). The discussion

then ties this division back to the separation according to how models receive information

about the structure of the tasks.

2.2.1. Task-Aware

The majority of works in lifelong learning in recent years fall in the category of task-aware

methods. This section summarizes the existing works in this category. Note that, in most

cases, the methods that can operate in the task-aware setting can also operate in the task-

agnostic setting. In such cases, their categorization into task-aware or task-agnostic follows

the (majority of the) experiments used in their original evaluation.

Regularization

One common approach to avoid forgetting is to impose data-driven regularization to prevent

parameters from deviating in directions that are harmful to performance on the early tasks.

The intuition is that similar parameters would lead to similar solutions to the earlier tasks.

The canonical example of this idea is elastic weight consolidation (EWC; Kirkpatrick et al.

2017), which, inspired by a Bayesian formulation, places a quadratic penalty on the parameters

for deviating from the parameters of each previously seen task, weighted by the diagonal of

the Fisher information matrix of each task: Ω(θ) =
∑

t̂

(
θ − θ(̂t)

)>
F (̂t)

(
θ − θ(̂t)

)
. EWC is

one of the few exceptional works that was applied to both supervised and RL settings. An

extension of EWC uses a Kronecker-factored approximation of the Fisher information matrix

instead of a diagonal to improve performance at little additional cost (Ritter et al., 2018).

Following this same principle, the literature has proposed a variety of methods for computing

the regularization terms. Departing from the Bayesian formulation, the approach of Zenke

18

et al. (2017) computes an estimate of each parameter’s importance based on the trajectory

of updates to the parameter, and uses this as the weighting for quadratic regularization. A

generalized regularizer combines this latter idea with EWC (Chaudhry et al., 2018). Another

well-known mechanism learns task-specific, (nearly-)binary attention masks to select which

nodes in a neural net to use for each task, and then constrains updates to parameters based

on the previous tasks’ masks (Serrà et al., 2018). A similar technique additively decomposes

each task’s parameters into a shared set of parameters modulated by a task-specific mask

and a set of task-adaptive parameters, applying quadratic regularization to prevent previous

tasks’ parameters from diverging from their original values (Yoon et al., 2020). Recent

work proposed a sparsity-based regularizer that reduces the storage space for regularization

terms by computing node-wise (as opposed to parameter-wise) importance weights (Jung

et al., 2020), and applied this approach to RL. Cha et al. (2021) proposed a complementary

regularizer based on entropy maximization, which encourages wider local minima and can

therefore be used in combination with existing regularizers to avoid forgetting.

While the approaches above were originally proposed and studied solely on vision applications,

recent work has extended them to image captioning, demonstrating their applicability to

language domains (Del Chiaro et al., 2020).

The methods described so far are based on the intuition that parameters that are important

for previous tasks should be modified sparingly in order to avoid forgetting. Recent works

have considered a different intuition: in order for new tasks to be learned without interfering

with past tasks, they should lie on orthogonal subspaces of the parameter space. One

mechanism for doing so is to precompute a set of task-specific orthogonal matrices and

use them to project the feature space of each task (Chaudhry et al., 2020). Alternatively,

it is also possible to compute such projection matrices sequentially based on the learned

solutions to previous tasks. This can be achieved by exploiting the singular vector space of

the activations of the network, which applies to linear and convolutional layers (Saha et al.,

2021; Deng et al., 2021), as well as recurrent layers (Duncker et al., 2020).

19

Another regularization strategy that has become popular is online variational inference,

which approximates the Kullback-Leibler (KL) divergence between the current and previous

predictive distributions in a Bayesian setting. Nguyen et al. (2018) developed the first

variational continual learning (VCL) method, which, akin to EWC (Kirkpatrick et al., 2017)

in the standard regularization-based setting, requires storing penalty terms for each network

parameter. In an effort to reduce storage requirements, Ahn et al. (2019) modified this method

by storing penalty terms for each network node, akin to the work of Jung et al. (2020). A

generalized variational objective adds a tunable hyperparameter to weight the KL divergence

term in the objective function, encompassing EWC and VCL (Loo et al., 2021). These

notions can extend to Gaussian mixture distributions. In particular, Zhang et al. (2021)

developed a continual variational inference method using a Chinese restaurant process to

automatically determine the number of latent components, while Kumar et al. (2021) did

the same using an Indian buffet process for unsupervised and supervised learning.

Other methods instead functionally regularize the outputs of the model directly, penalizing

deviations from the predictions of earlier tasks’ models on new data (Li and Hoiem, 2017).

Benjamin et al. (2019) noted that distance in parameter space (as exploited by regularization-

based methods) is not always representative of distance in function space (as advocated

for by functional regularization methods), which is what should be preserved in continual

learning. The authors subsequently showed that naïvely storing a small set of samples to

estimate function-space distance was sufficient to devise a strong functionally regularized

continual learner. Other methods convert the learned network into a Gaussian process (GP)

and either store a subset of samples from previous tasks to retain in memory (Titsias et al.,

2020; Pan et al., 2020). Then, the GP posterior on those points penalizes the model for

making incorrect predictions on past tasks.

A recent effort used EWC in a different setting, in which the objective is to actively forget

knowledge of past tasks that prevents learning new tasks, using only the Fisher information

for the current task (Wang et al., 2021).

20

Replay

A distinct approach retains a small buffer of data from all tasks, and continually updates the

model parameters utilizing data from the current and previous tasks, thereby maintaining

the knowledge required to solve the earlier tasks. Most naïvely, one could simply iterate

over past tasks’ data when training on the new task (Chaudhry et al., 2019b). In the most

common case, where the amount of data stored for replay is small, one would expect that

the model could overfit to the tiny memory. However, empirical evaluations found that even

this naïve replay approach performs surprisingly well.

Other popular approaches use replay data to constrain the directions of gradient updates to

regions of the parameter space that do not conflict with the earlier tasks’ gradients (Lopez-Paz

and Ranzato, 2017; Chaudhry et al., 2019a). These same techniques have used a meta-

learning objective function, whereby the agent trains directly to optimize the network’s

feature representation to avoid future tasks’ gradients from conflicting with previous tasks’

gradients (Riemer et al., 2019; Gupta et al., 2020a).

Mirzadeh et al. (2021) developed a distinct objective function. The authors found that

a linear curve in the objective function connects the solutions of the MTL and continual

learning problems, and consequently used replay data to encourage finding a solution that

is closer to the (no-forgetting) MTL solution. Similarly, Raghavan and Balaprakash (2021)

found theoretically that the balance between generalization and forgetting, viewed as a

two-player zero-sum game, is stable and corresponds to a saddle point, and developed an

algorithm that searches for this saddle point by playing the two-player game.

Other works have not explicitly modified the objective function, but instead focused on other

aspects of the problem. For example, one approach finds a balance between the loss terms

corresponding to replay and current data via mixed stochastic gradients (Guo et al., 2020b).

As another example, Pham et al. (2021b) used a dual memory to train a set of shared neural

net layers and a task-specific controller to transform the features of the shared layers.

21

Despite the appeal of these more advanced replay-based methods, the basic method that

simply replays randomly stored data remains a strong and popular baseline (Chaudhry et al.,

2019b). In practice, replay-based techniques have proven to be much stronger at avoiding

forgetting than regularization-based methods. One potential theoretical explanation for this

discrepancy is that optimally solving the continual learning problem requires storing and

reusing all past data (Knoblauch et al., 2020).

Replay-based approaches have also followed other, less common directions. One nonparametric

kernel method leverages the idea of episodic memories, using the memory for detecting the

task at inference time instead of for replay (Derakhshani et al., 2021). Other works have

learned hypernetworks that take a task descriptor as input and output the parameters for

a task-specific network, using replay at the task-descriptor level (von Oswald et al., 2020;

Henning et al., 2021). In the unsupervised setting, Rostami (2021) used replay to learn a

Gaussian mixture model in a latent representation space such that all tasks map to the

mixture distribution in the embedding space.

Generative Replay

A related technique is to learn a generative model to “hallucinate” replay data, potentially

reducing the memory footprint by avoiding explicitly storing earlier tasks’ data. For example,

this can be achieved by training a generative adversarial network (GAN) and using the

trained network to generate artificial data for the previous tasks to avoid forgetting (Shin

et al., 2017). In one of the few rare works that has considered lifelong language learning, the

authors leveraged the intuition that a language model itself is a generative model and used

it for replaying its own data (Sun et al., 2020). A recent unsupervised method for training

GANs learns both global features that are kept fixed after the first task and task-specific

transformations to those shared features (Varshney et al., 2021). While the approach does

not train the GANs themselves via generative replay, it can use the GANs to generate replay

data to train a supervised method.

22

Expandable Models

While approaches described so far are capable of learning sequences of tasks without forgetting,

they are limited by one fundamental constraint: the learning of many tasks eventually exhausts

the capacity of the model, and it becomes impossible to learn new tasks without forgetting

past tasks. Note that, while some replay and regularization approaches described so far add

task-specific features that can be considered as a form of capacity expansion, this expansion

is naïvely executed for every task. Some additional methods use per-task growth as their

primary mechanism for avoiding forgetting. One example specific to convolutional layers

keeps the filter parameters fixed after initial training on a single task and adapts them to

each new task via spatial and channel-wise calibration (Singh et al., 2020). However, these

methods still consider the set of shared features to be nonexpansive, and these shared features

might still run out of capacity. As one potential exception, another technique leverages large

pretrained language models that in practice seem to have sufficient capacity for a massive

number of tasks (specifically BERT; Devlin et al., 2019) and adds small modules trained via

task-specific masking to learn a sequence of language tasks (Ke et al., 2021).

As a solution to the issue of limited capacity, a similar line of work has studied how to

automatically expand the capacity of the model as needed to accommodate new tasks. Yoon

et al. (2018) did so via a multistage process that first selects the relevant parameters from

past tasks to optimize, then checks the loss on the new task after training, and—if the loss

exceeds a threshold—expands the capacity and trains the expanded network with group

sparsity regularization to avoid excessive growth. In order to avoid forgetting, the algorithm

measures the change in each neuron’s input weights, and duplicates the neuron and retrains

it if the change is too large. A similar approach sidesteps the need for this duplication step

by maintaining all parameters for past tasks fixed (Hung et al., 2019).

Figure 1 categorizes the vast majority of the approaches discussed in this section for task-

aware lifelong learning as lifelong supervised learning methods with no composition, no

23

task structure provided, and a focus on vision applications. A handful of exceptions were

highlighted that deal with RL or unsupervised learning, as well as with language applications.

While these techniques notably require no information about the way in which tasks are

related, they do require access to a task indicator both during learning and during evaluation.

This choice enables these task-aware methods to use task-specific parameters to specialize

shared knowledge to each individual task, but may be inapplicable in some settings where

there are no evident task boundaries or there is no potential for supervision at the level of

the task indicator.

2.2.2. Task-Agnostic

As an alternative, task-agnostic lifelong approaches instead automatically detect tasks. While

the techniques for learning these models are typically not fundamentally different from those

of the task-aware setting, this survey categorizes them separately to highlight the conceptual

difference of learning in the presence of implicit or explicit information about how tasks

are related to each other. Note that these methods may or may not assume access to task

indicators during training, but they all are unaware of the task indicator during inference.

Since this is inconsequential to the point of the agent receiving information about task

relations, the following discussion omits such distinctions.

Regularization

Like in the task-aware setting, a number of task-agnostic techniques aim at avoiding forgetting

by penalizing deviations from earlier tasks’ solutions. One early method uses a diagonal

Gaussian approximation in order to obtain a closed-form update rule based on the variational

free energy (Zeno et al., 2018). A later extension of this method handles arbitrary Gaussian

distributions by using fixed point equations (Zeno et al., 2021). Another recent technique

combines Kronecker-factored EWC (Ritter et al., 2018) with a novel projection method onto

the trust region over the posterior of previous tasks (Kao et al., 2021). A distinct approach

by Kapoor et al. (2021) trains a variational GP using sparse sets of inducing points per

24

task. Joseph and Balasubramanian (2020) used regularization at a meta level, learning

a generative regularized hypernetwork using a variational autoencoder (VAE) to generate

parameters for each task based on a task descriptor. Whereas these methods have operated

in the supervised setting, Egorov et al. (2021) recently proposed a VAE model with boosting

density approximation for the unsupervised setting.

Functional regularization also applies to the task-agnostic setting for avoiding forgetting. One

such method relies on the lottery ticket hypothesis, which states that deep nets with random

weight initialization contain much smaller subnetworks that can be trained from the same

initialization and reach comparable performance to the original (much larger) network (Frankle

and Carbin, 2019). Chen et al. (2021) extended this hypothesis to the lifelong setting by

using a pruning and regrowing approach, in combination with functional regularization from

unlabeled data from public sources. Another approach combines parameter regularization

(specifically, EWC) with functional regularization to avoid forgetting in an approach based

on weight and feature calibration (Yin et al., 2021).

Replay

Another popular mechanism to avoid forgetting in the task-agnostic setting is to replay past

data stored in memory. One recent approach stores data points along with the network’s

output probabilities, and uses these to functionally regularize the output of the network to

stay close to its past predictions (Buzzega et al., 2020). An additional method learns a dual

network with different learning rates, training a fast learner to transform a slow learner’s

output pixel-wise and replaying past data to avoid forgetting (Pham et al., 2021a).

A drastically different technique uses a graph learning approach to discover pairwise sim-

ilarities between memory and current samples, penalizing forgetting the edges between

samples instead of the predictions in order to maintain correlations between samples while

still permitting significant changes to the network’s representations (Tang and Matteson,

2021). An extension to the technique of Gupta et al. (2020a; from the task-aware setting)

25

for lifelong learning via meta-learning learns an additional binary mask that determines

which parameters to learn for each task, leading to sparse gradients (von Oswald et al., 2021).

Note that this discussion categorizes this method as task-agnostic simply because the paper

conducted the majority of experiments in that setting.

While these examples have focused on how to leverage past examples during training, a

related line of work has explored which samples to store or replay from the earlier tasks. The

method of Aljundi et al. (2019b) stores samples whose parameter gradients are most diverse.

Other work proposed to sample from memory the points whose predictions would be affected

most negatively by parameter updates without replay (Aljundi et al., 2019a). Chrysakis

and Moens (2020) tackled the problem of class imbalance by developing a class-balancing

sampling technique to store instances, in combination with a weighted replay strategy. One

additional approach determines the optimal set of points to store in memory using bilevel

optimization (Borsos et al., 2020).

Intuitively, it is possible that the samples seen during training are not the best to store in

memory for lifelong training (e.g., because they lie far from the decision boundaries). Jin

et al. (2021) leveraged this idea by directly modifying the samples in memory via gradient

updates to make them more challenging for the learner. Alternatively, one could imagine that

storing high-resolution samples might be wasteful, as many features might be superfluous for

retaining performance on past tasks. Prior work has exploited this intuition by automatically

compressing data in memory via a multilevel VAE that iteratively compresses samples to

meet a fixed storage capacity (Caccia et al., 2020a).

As with the rest of the methods, these replay-based approaches have all been used in the

vision domain. One exception to this was the work of de Masson d’Autume et al. (2019),

which directly applied memory-based parameter adaptation (Sprechmann et al., 2018) with

sparse replay to the language domain.

26

Generative Replay

Achille et al. (2018) developed a VAE-based approach to lifelong unsupervised learning of

disentangled representations, which uses generative replay from the VAE to avoid forgetting.

A similar technique uses a dynamically expandable mixture of Gaussians to identify when

the unsupervised model needs to grow to accommodate new data (Rao et al., 2019). Ayub

and Wagner (2021) developed another unsupervised learning method based on neural style

transformers (Gatys et al., 2016). Unlike prior methods, this latter approach explicitly stores

in memory the autogenerated samples in embedding space, and consolidates them into a

centroid-covariance representation to maintain a fixed capacity. As unsupervised approaches,

these three methods can seamlessly extend to the supervised setting, as demonstrated in

the corresponding manuscripts. Alternatively, another approach specifically for supervised

learning relies on three model components: a set of shared parameters, a dynamic parameter

generator for classification layers on top of the shared parameters, and a data generator (Hu

et al., 2019). The data generator serves a dual purpose: to generate embeddings for the

dynamic parameter generator and to be used for replay via functional regularization of the

shared parameters. Another similar approach for supervised learning, inspired by the brain,

also replays hidden representations to avoid forgetting (Van de Ven et al., 2020).

Expandable Models

In the vein of dynamically expandable models, Aljundi et al. (2017) conceived the first

task-agnostic method, which trains a separate expert for each task, and automatically routes

each data point to the relevant expert at inference time. A distinct method automatically

detects distribution shifts during training to meta-learn new components in a mixture of

hierarchical Bayesian models (Jerfel et al., 2019). Similarly, the method of Lee et al. (2020)

trains a dynamically expandable mixture of experts via variational inference.

Overall, task-agnostic learning might appear at first glance as an unqualified improvement

over task-aware learning. However, it comes at the cost of one additional assumption: the

27

task structure must be implicitly embedded in the features of each data point (e.g., one task

might be daylight object detection and another nightlight object detection). In some settings,

this assumption is not valid, for example if the same data point might correspond to different

labels in different tasks (e.g., cat detection and dog detection from images with multiple

animals). Figure 1 therefore categorizes these methods as requiring the task structure to be

implicitly provided, primarily in the supervised and unsupervised settings, with applications

to vision models. To reiterate, note that, in practice, many of the task-aware methods can

operate in the task-agnostic setting with minor modifications, and vice versa.

2.2.3. Reusable Knowledge

Lifelong approaches discussed so far, although effective in avoiding the problem of catastrophic

forgetting, make no substantial effort toward the discovery of reusable knowledge. One could

argue that these methods learn the model parameters in such a way that they are reusable

across all tasks. However, it is unclear what the reusability of these parameters means, and

moreover the architecture design hard-codes how to reuse parameters. This latter issue is

a major drawback when attempting to learn tasks with a high degree of variability, as the

exact form in which tasks connect to one another is often unknown. One would hope that

the algorithm could determine these connections autonomously.

The ELLA framework introduced an alternative formulation based on dictionary learning (Ru-

volo and Eaton, 2013). The elements of the dictionary can be interpreted as a set of models

that are reusable across tasks, and task-specific coefficients select how to reuse them. This

represents a rudimentary form of functional composition, where each component is a full

task model and the new models aggregate the component parameters.

A few other mechanisms identify which knowledge to transfer across tasks. One approach

relies on automatically detecting which layers in a neural net should be specific to a task and

which should leverage a shared set of parameters. Existing work has achieved this either via

variational inference (Adel et al., 2020) or via expectation maximization (Lee et al., 2021a).

28

Another technique is to identify the most similar tasks by training one model via transfer and

another via STL and comparing their validation performances (Ke et al., 2020). Once the

agent has identified similar tasks, it uses an attention mechanism to transfer knowledge from

only those tasks. An additional algorithm instead avoids explicitly selecting tasks or layers

to transfer, and directly meta-learns a set of features that maximize reuse when task-specific

parameters mask the shared weights for transfer (Hurtado et al., 2021).

Going back to the illustration of Figure 1, these methods have included applications to vision

and have worked only in the supervised setting. As a sole exception, extensions of the work

of Ruvolo and Eaton (2013) have applied to RL, as discussed below in Section 2.4.

In a distinct line of work, Yoon et al. (2021) developed a knowledge-sharing mechanism

for lifelong federated learning, selectively transferring knowledge from other clients. In the

language domain, Gupta et al. (2020c) achieved lifelong transfer by sharing latent topics.

2.2.4. Additional Approaches

While the large majority of works on lifelong learning fall into the categories above, some

exceptions do not fit this classification. For completeness, this section briefly describes some

of the most recent such efforts.

Javed and White (2019) developed an online meta-learning algorithm that explicitly trains a

representation that avoids catastrophic forgetting. The problem setting studied in their work

is distinct from the works described so far: instead of a single lifelong sequence of tasks, the

agent faces a pretraining phase, during which it uses multiple “lifelong” sequences of tasks

to meta-learn the representation. A similar method learns a dual network for gating the

outputs of a standard net (Beaulieu et al., 2020). Another related method extended the work

of Javed and White (2019) to include a generative classifier (Banayeeanzade et al., 2021).

A different recent problem formulation is that of continual generalized zero-shot learning,

which requires the agent to generalize to unseen tasks as well as perform well on all past

29

tasks (Skorokhodov and Elhoseiny, 2021). The authors then presented an algorithm for

tackling the problem via class normalization.

Other works have instead focused on understanding aspects of existing lifelong learning

approaches. Mirzadeh et al. (2020) empirically studied the impact of a variety of training

hyperparameters (specifically dropout, learning rate decay, and mini-batch size) on the

width of the obtained local minima—and therefore, on forgetting. This study led to the

development of stable stochastic gradient descent, a now-popular baseline for benchmarking

new lifelong approaches. Another study empirically evaluated the effect of task semantics

on catastrophic forgetting, finding that intermediate similarity leads to the highest amount

of forgetting (Ramasesh et al., 2021). Lee et al. (2021b) obtained a similar finding for

lifelong learning specifically in the teacher-student setting, with additional insight separating

task feature similarity and class similarity. A separate work evaluated existing lifelong

learning methods on recurrent neural networks, finding that they perform reasonably well

and are a solid starting point for the development of lifelong methods specific to recurrent

architectures (Ehret et al., 2021).

Figure 1 categorizes these last few approaches as lifelong supervised learning methods without

any type of composition. Most of the methods either assume no information about the

structure of the tasks (but assume access to a task indicator) or vice versa. The one exception

is the work of Skorokhodov and Elhoseiny (2021), which assumes explicit task descriptors

that enable zero-shot generalization, which equates to explicit information about the task

structure. Similarly, all works considered solely vision applications, with the exception of

Ehret et al. (2021), which additionally considered a simple audio application.

2.3. Compositional Knowledge

A mostly distinct line of parallel work has explored the learning of compositional knowledge.

This section discusses existing methods for functional composition, while Section 2.5 discusses

other forms of composition specifically used in the RL setting.

30

2.3.1. Multitask Learning

The majority of compositional learning methods either learn a set of components given a

known structure for how to compose them, or learn the structure for piecing together a given

set of components. In particular, in the former case, Andreas et al. (2016) proposed to use

neural modules as a means for transferring information across visual question answering (VQA)

tasks. Their method parses the questions in natural language and manually transforms them

into a neural architecture. Given this fixed architecture, the agent then learns modules for

detecting shapes, colors, and spatial relations, and later combines the modules in novel ways to

answer unseen questions. In this context, neural modules represent general-purpose, learnable,

and composable functions, which permits thinking broadly about composition. Consequently,

this dissertation used neural modules as the primary form of learnable components. A related

work extended the neural programmer-interpreter (NPI; Reed and de Freitas, 2016) to learn

an interpreter for the programming language Forth using neural modules as the primitive

functions, given manually specified execution traces (Bošnjak et al., 2017). Another similar

study developed the intuition that, in order for neural modules to be composable, they must

be invertible, and tested this intuition by manually composing these modules with themselves

and other pretrained modules (Wu et al., 2021).

In the latter scenario of a given set of components, Cai et al. (2017) improved generalization

in the NPI framework by incorporating recursion. Another approach based on programming

languages uses RL for rewarding all semantically correct programs and additionally imposes

syntactical correctness directly in the training procedure (Bunel et al., 2018). More advanced

RL techniques have tackled the same problem, removing the need for any supervision in the

form of annotated execution traces or structures (Pierrot et al., 2019). A separate approach

specifically for robot programming tasks uses the application programming interfaces (APIs)

of primitive actions to guide the learning (Xu et al., 2018). Recently, similar ideas have

achieved compositional generalization by directly learning rules over fixed symbols (Nye et al.,

2020) or by providing a curriculum (Chen et al., 2020b). In a related line of work, Saqur

31

and Narasimhan (2020) trained graph neural networks to couple concepts across different

modalities (e.g., image and text), keeping the set of possible symbols fixed.

A more interesting case is when the agent knows neither the structure nor the set of

components, and must autonomously discover the compositional structure underlying a set

of tasks. For example, following Andreas et al. (2016), several approaches for VQA assume

that there exists a mapping from the natural language question to the neural structure

and automatically learn this mapping (Pahuja et al., 2019). The majority of such methods

assume access to a set of ground-truth program traces as a supervisory signal for learning the

structures. The first such method simply learns a sequence-to-sequence model from text to

network architectures in a supervised fashion (Hu et al., 2017). A similar method starts from

supervised learning over a small annotated set of programs and subsequently fine-tunes the

structure via RL (Johnson et al., 2017). Some recent extensions to these ideas have included

using probabilistic modules to parse open-domain text (Gupta et al., 2020b) and modulating

the weights of convolutional layers with language-guided kernels (Akula et al., 2021).

Figure 1 categorizes the compositional works described so far as supervised MTL methods

with explicitly given task structure, either in the form of fixed modules, fixed structures over

the modules, or inputs that directly contain the structure (e.g., in natural language). The

compositional structure is any arbitrary graph connecting the components, even allowing

for components to be reused multiple times in a single task via recursion. Existing works

have used these methods in varied application domains: toy programming tasks (Bošnjak

et al., 2017; Cai et al., 2017; Bunel et al., 2018; Pierrot et al., 2019), VQA (Andreas et al.,

2016; Saqur and Narasimhan, 2020; Pahuja et al., 2019; Hu et al., 2017; Johnson et al., 2017;

Gupta et al., 2020b; Akula et al., 2021), natural language (Nye et al., 2020; Chen et al.,

2020b), vision (Wu et al., 2021), audio (Wu et al., 2021), and even robotics (Xu et al., 2018).

However, some applications require agents (e.g., service robots) to learn more autonomously,

without any kind of supervision on the compositional structures. Several approaches therefore

learn this structure directly from optimization of a cost function. Many such methods assume

32

that the inputs themselves implicitly contain information about their own structure, such

as natural language tasks, and therefore use the inputs to determine the structure. One

challenge in this setting is that the agent must autonomously discover, in an unsupervised

manner, what is the compositional structure that underlies a set of tasks. One approach to

this is to train both the structure and the model end-to-end, assuming that the selection

over modules is differentiable (i.e., soft module selection; Rahaman et al., 2021). Other

approaches instead aim at discovering hard modular models, which increases the difficulty of

the optimization process. Methods for tackling this variant of the problem have included

using RL (Chang et al., 2019) or expectation maximization (Kirsch et al., 2018) as the

optimization tool. These ideas have operated on both vision (Rahaman et al., 2021; Chang

et al., 2019) and natural language (Kirsch et al., 2018) tasks.

Other approaches do not assume there is any information about the structure at all given to

the agent, and it must therefore blindly search for it for every new task it learns. This often

implies that the compositional structure for each task should be fixed across all data points,

but often approaches permit reconfiguring the modular structure even within a task. On the

other hand, much like in the lifelong learning setting without compositional structures, this

assumption also implies that the agent requires access to some sort of task indicator. One

example of this formulation approximates an arbitrary ordering over a set of neural modules

via soft ordering and trains the entire model end-to-end (Meyerson and Miikkulainen, 2018).

A related technique decomposes MTL architectures into tensors such that each matrix in the

tensor corresponds to a subtask, using hypermodules (akin to hypernetworks) to generate

local tensors (Meyerson and Miikkulainen, 2019). Another example assumes a hard module

selection, and trains the modules via meta-learning so that they are able to quickly find

solutions to new, unseen tasks (Alet et al., 2018). An extension of this method learns with

graph neural networks (Alet et al., 2019), and a simplified version discovers whether modules

should be task-specific or shared via Bayesian shrinkage (Chen et al., 2020c). Another

technique also learns a hard modular selection, but using RL to select the modules to use

for each data point and task (Rosenbaum et al., 2018). One of the advantages of keeping

33

the structural configuration fixed for each task (instead of input-dependent) is that the

reduced flexibility protects the model from overfitting. This has enabled applying these

latter methods to domains with smaller data sets than are typically available in language

domains (Meyerson and Miikkulainen, 2019; Chen et al., 2020c), such as vision (Rosenbaum

et al., 2018; Meyerson and Miikkulainen, 2018, 2019) and robotics (Alet et al., 2018, 2019).

Rosenbaum et al. (2019) discussed the challenges of optimizing modular architectures with

an extensive evaluation with and without task indicators in both vision and language tasks.

2.3.2. Lifelong Learning

All compositional methods described so far assume that the agent has access to a large

batch of tasks for MTL, enabling it to evaluate numerous combinations of components and

structures on all tasks simultaneously. In a more realistic setting, the agent faces a sequence

of tasks in a lifelong learning fashion. Most work in this line has assumed that the agent can

fully learn each component by training on a single task, and then reuse the learned module

for other tasks. One example is the NPI, which assumes that the agent receives supervised

module configurations for a set of tasks and can use this signal to learn a mapping from

inputs to module configurations (Reed and de Freitas, 2016). Extensions to the NPI have

operated in the MTL setting and were described in the previous section. Other methods

do not assume that there is any information in the input about the task structure, and

therefore must search for the structure for every new task. Fernando et al. (2017) trained a

set of neural modules and chose the paths for each new task using an evolutionary search

strategy, applying this technique to both supervised learning and RL. The biggest downside

of this technique is that the number of modules is constant, which, added to the fact that

the algorithm keeps the weights of the modules fixed after training them on a single task,

limits the applicability of the method to a small number of tasks. To alleviate these issues,

other methods progressively add new modules, keeping existing modules fixed (Li et al.,

2019). Some such approaches introduce heuristics for searching over the space of possible

module configurations upon encountering a new task to improve efficiency, for example using

34

programming languages techniques (Valkov et al., 2018) or data-driven heuristics (Veniat

et al., 2021). In the language domain, Kim et al. (2019) developed an approach that

progressively grows a modular architecture for solving a VQA task by providing a curriculum

that directly imposes which module solves which subtask, keeping old modules fixed.

Unfortunately, this solution of keeping old modules fixed is infeasible in many real-world

scenarios in which the agent has access to little data for each of the tasks, which would

render these modules highly suboptimal. Therefore, other methods have permitted further

updates to the model parameters. One early example, based on programming languages,

simply assumed that future updates would not be harmful to previous tasks (Gaunt et al.,

2017). This limited the applicability of the method to very simplistic settings. Rajasegaran

et al. (2019) proposed a more complete approach that uses a combination of regularization

and replay strategies to avoid catastrophic forgetting, but requires expensively storing and

training multiple models for each task to select the best one before adapting the existing

parameters, and is designed for a specific choice of architecture. Another approach routes

each data point through a different path in the network, restricting updates to the path via

EWC regularization if the new data point is different from past points routed through the

same path (Chen et al., 2020a). However, this latter approach heavily biases the obtained

solution toward the first task, and does not permit the addition of new modules over time.

Unlike prior methods, the framework developed in this dissertation efficiently learns various

forms of compositional structures in a lifelong learning setting and is easily extensible to

a wider range of compositional structures. It does not assume access to a large batch of

tasks or the ability to learn definitive components after training on a single task. Instead,

it initializes components on the first few tasks, and then autonomously accommodates new

tasks either by adapting the existing components or by creating new ones. Moreover, the

framework applies to both the supervised and the RL settings.

Concurrently to this dissertation, and in particular after the development and publication of

the general framework of Chapter 3 and the supervised instantiations of Chapter 4, a small

35

number of works have also addressed the shortcomings of prior approaches. Qin et al. (2021)

developed a similar supervised learning approach which automatically grows and updates

modules for each new task using an RL-based controller. However, unlike the approaches

of Chapter 4, which completely avoid forgetting in the structure over modules for each

task by making them task-specific, their controller is susceptible to catastrophic forgetting.

Another technique uses a local per-module selector that estimates whether each sample is in-

distribution for the given module, and chooses the module with the highest value (Ostapenko

et al., 2021). This mechanism lets this latter method operate in the task-agnostic setting

and limits forgetting to local, per-module parameters. While this addresses a large part of

the problem of forgetting in the module-selection stage, it enables earlier tasks to select new

modules that are likely to malfunction in the presence of old data they did not train on.

Notably, this method demonstrated the ability of existing modules to combine in novel ways

to solve unseen tasks, exhibiting for the first time compositional generalization in the lifelong

learning setting. This dissertation attained a similar result in lifelong RL.

The vast majority of the approaches described in this section assume an arbitrary graph

structure over the components, and learn to construct paths through this graph. Concretely,

in the case of neural modules, this means that each module can be used as input to any other

module, or equivalently that modules can be chosen at any depth of the network. Some

exceptions, particularly approaches that operate in the lifelong setting, impose a chaining

structure by restricting certain modules to be eligible only at certain depths of the network.

Note that both of these choices still contemplate an exponential number (in the network’s

depth) of possible configurations. However, the chaining approach does simplify the problem

of learning modules, since it reduces the space of possible inputs and outputs that each

module must learn. The framework developed in this dissertation is capable of learning with

both these types of compositional structures, as well as simpler aggregated structures with

no hierarchy. The experiments evaluated all these choices empirically.

36

2.3.3. Nonmodular Compositional Works

While modular neural architectures have become popular in recent years for addressing

compositional problems, they are not the only solution. In particular, a number of works

have dealt with the problem of compositionally generalizing to unseen textual tasks. In this

setting, for example, the agent may have learned the concepts of “walk”, “twice”, and “turn

left” in isolation, and later be required to parse an instruction like “walk twice and turn

left” (Lake and Baroni, 2018).

One approach uses meta-learning to explicitly optimize the agent to reason compositionally by

generalizing to unseen combinations of language instructions (Lake, 2019). Another method,

inspired by the emergence of compositionality in human language, uses iterated learning on

neural nets to compositionally generalize (Ren et al., 2020). Gordon et al. (2020) equated

language composition to equivariance on permutations over group actions, and designed

an architecture that maintains such equivariances. A similar work imposed invariance to

partial permutations on a language understanding system (Guo et al., 2020a). Another

recent technique incorporates a memory of automatically extracted analytical expressions and

uses those to compositionally generalize (Liu et al., 2020). A distinct approach by Akyürek

et al. (2021) uses data augmentation to specifically target compositionality, combining

prototypes of a generative model into multiprototype samples.

One method in this line of work operates in the lifelong setting, where the vocabulary of the

agent grows over time (Li et al., 2020b). In this work, the agent separates the semantics and

syntax of inputs, keeping the syntax for previously learned semantics parameters fixed and

learning additional semantics parameters for each extension of the vocabulary.

The literature on visual object detection has also studied the idea of compositional general-

ization, under the vein of attribute-based zero-shot classification. At a high level, objects in

images contain annotations not only of their class label but also of a set of attributes (e.g.,

color, shape, texture), and the learning system seeks to detect unseen classes based on their

37

attributes. This requires the agent to learn the semantics of the attributes as well as how to

combine them (Huynh and Elhamifar, 2020; Atzmon et al., 2020; Ruis et al., 2021).

In a similar direction, other approaches compose attributes to generate images. One such

method learns one energy-based model per attribute that can later be combined with other

attributes in novel combinations—e.g., to generate a smiling man from the attributes “smiling”

and “man” (Du et al., 2020). Another approach learns embeddings of manual drawings that

can later be composed into complex figures like flowcharts (Aksan et al., 2020). Similarly,

the mechanism of Dor Arad Hudson (2021) uses GANs with structural priors to generate

scenes by composing multiple objects.

While related, this line of work is farther from the approaches developed in this dissertation,

and so a comprehensive overview is outside of the scope of this discussion.

2.3.4. Understanding Composition

A recent line of work has sought to understand various aspects of compositionality. An

initial study defined a measure of the compositionality of a model as the ability to ap-

proximate the output of the model on compositional inputs by combining representational

primitives (Andreas, 2019). Using this measure, the authors evaluated a set of models and

found a correlation (albeit small) between compositionality and generalization on vision and

language tasks. A similar study found that the same definition of compositionality is related

to zero-shot generalization on vision tasks (Sylvain et al., 2020). D’Amario et al. (2021)

showed that explicitly modular (manually defined) neural architectures improve compo-

sitional generalization in VQA tasks. Somewhat contradictorily, Agarwala et al. (2021)

found theoretically and empirically that a single, monolithic network is capable of learning

multiple highly varied tasks. However, this ability requires an appropriate encoding of the

tasks that separates them into clusters. One work used a similar intuition to develop a

mechanism to compute a description of the execution trace of a modular architecture based on

random matrix projections onto separate regions of an embedding space (Ghazi et al., 2019).

38

Given the apparent importance of modularity and compositionality, Csordás et al. (2021)

studied two properties of neural nets without explicitly modular architectures: whether they

automatically learn specialized modules, and whether they reuse those modules. While they

found that neural nets indeed automatically learn highly specialized modules, unfortunately

they do not automatically reuse those, thereby inhibiting compositional generalization.

2.4. Lifelong Reinforcement Learning

The related works discussed so far primarily deal with supervised learning tasks. The number

of approaches that operate in the lifelong RL setting is substantially more reduced. The

following paragraphs describe some of the existing methods for lifelong RL, particularly in

their relation to the compositional methods developed in this dissertation.

Much like in the supervised setting, the majority of lifelong RL approaches rely on monolithic

or nonmodular architectures, which as discussed in Section 2.2 inhibits the discovery of

self-contained and reusable knowledge. These methods mainly use regularization techniques

for avoiding forgetting. A prominent example is EWC (Kirkpatrick et al., 2017), a supervised

method that has been directly applied to RL, and which imposes a quadratic penalty for

deviating from earlier tasks’ parameters. One of the challenges of training RL models

via EWC is that the vast exploration typically required to learn new RL tasks might be

catastrophically damaging to the knowledge stored in the shared parameters. Consequently,

an alternative approach first trains an auxiliary model for each new task and subsequently

discards it and distills any new knowledge into the single shared model via an approximate

version of EWC (Schwarz et al., 2018). While these methods in principle can handle task-

agnostic settings, assuming that the input contains implicit cues about the task structure,

in practice evaluations have tested them most often in the task-aware setting, typically in

vision-based tasks (e.g., Atari games; Bellemare et al., 2013). Moreover, these works have

dealt with limited lifelong settings, with relatively short sequences of tasks and permitting the

agent to revisit earlier tasks several times for additional experience. Even in these simplified

settings, these methods have failed to achieve substantial transfer over an agent trained

39

independently on each task, without any transfer. Kaplanis et al. (2019) trained a similar

monolithic architecture in the task-agnostic setting, including for tasks with continuous

distribution shifts. Their approach regularizes the KL divergence of the policy to lie close to

itself at different timescales, and was evaluated on simulated continuous control tasks.

Other approaches store experiences for future replay. The use of experience replay to

retain performance on earlier tasks requires a number of special considerations in the RL

setting. For example, the data collected over the agent’s training on each individual task is

nonstationary, since the behavior of the agent changes over time. Isele and Cosgun (2018)

proposed various techniques for selectively storing replay examples and evaluated the impact

of these techniques empirically. Another challenge is that, as the agent modifies the policy for

earlier tasks, the distribution of the data stored for them no longer matches the distribution

imposed by the agent’s policy. Rolnick et al. (2019) proposed using an importance sampling

mechanism for limiting the negative effects of this distributional shift. While the former

example considered mostly grid-world-style tasks in the task-aware setting, where the input

contains no information about the task relations, the latter considered vision-based tasks

in the task-agnostic setting, under the assumption that the observation space for each task

contains sufficient information for distinguishing it from others. However, the challenges of

replay in RL have limited the applicability of these methods to short sequences of two or

three tasks, still with the ability to revisit previous tasks. Chapter 5 establishes a connection

between these issues and off-line RL, which this dissertation leveraged to develop a robust

replay mechanism that operates on long sequences of tens of tasks without revisits.

While most lifelong RL works have considered the use of a single monolithic structure

for learning a sequence of tasks, some classical examples have instead followed the ELLA

framework of Ruvolo and Eaton (2013) to devise similar RL variants. PG-ELLA follows

the dictionary-learning mechanics of ELLA, but replaces the supervised models that form

ELLA’s dictionary by policy factors (Bou Ammar et al., 2014). An extension of this approach

supports cross-domain transfer by projecting the dictionary onto domain-specific policy

40

spaces (Bou Ammar et al., 2015). Zhao et al. (2017) followed a similar dictionary-learning

formulation for deep nets, replacing all matrix operations with equivalent tensor operations.

However, this latter method operates in the easier batch MTL setting. This again represents

a rudimentary form of aggregated composition. The primary challenge that ELLA-based

approaches face is that the dictionary-learning technique requires first discovering a policy

for each task in isolation (i.e., ignoring any information from other tasks) to determine

similarity to previous policies, before factoring the parameters to improve performance via

transfer. The downside is that the agent does not benefit from prior experience during initial

exploration, which is critical for efficient learning in lifelong RL. While these methods target

continuous control tasks, their evaluations have considered the interleaved MTL setting,

where the agent revisits tasks multiple times before evaluation.

The first approach for lifelong RL developed in this dissertation uses multiple models like

the latter category, but it learns these models directly via RL training like the former

class. This enables the method to be flexible and handle highly varied tasks while also

benefiting from prior information during the learning process, thus accelerating the training.

A similar approach in the context of model-based RL models the dynamics of the tasks via

an aggregation of supervised models (Nagabandi et al., 2019), but the focus of that work

was discovering when the agent faced new tasks in the absence of task indicators.

Other approaches instead use a completely separate model for each task. One such method

leverages shared knowledge in the form of a metamodel that informs exploration strategies

to task-specific models, resulting in linear growth of the model parameters (Garcia and

Thomas, 2019). Another popular example leverages shared knowledge in the form of lateral

connections in a deep net, resulting in quadratic growth of the model parameters (Rusu

et al., 2016). Both these approaches are infeasible in the presence of large numbers of tasks.

A separate line of lifelong RL work has departed completely from the notion of tasks and

has instead learned information about the environment in a self-guided way. The seminal

approach in this area learns a collection of general value functions for a variety of signals and

41

uses those as a knowledge representation of the environment (Sutton et al., 2011). A more

recent approach learns latent skills that enable the agent to reset itself in the environment in

a way that encourages exploration (Xu et al., 2020).

2.5. Compositional Reinforcement Learning

The most common form of composition studied in RL has been temporal composition. One

influential work in this area is the options framework of Sutton et al. (1999b). At a high level,

options represent temporally extended courses of actions, which can be thought of as skills.

Once the agent has determined a suitable set of options, it can then learn a higher-level

policy directly over the options. In the language used so far, each option represents a module

or component, and the high-level policy is the structural configuration over modules.

Traditional work in temporal composition has assumed that the environment provides the

structure a priori as a fixed set of options (or information about how to learn each option,

such as subgoal rewards). For example, the approach of Lee et al. (2019b) learns a policy

for transitioning from one skill to the next, given a set of pretrained skills. However, other

methods automatically discover both the modules and the configuration over them. One

such method extends actor-critic methods to handle option discovery via an adaptation

to the PG theorem (Bacon et al., 2017). Recent work has developed mechanisms for skill

chaining other than an explicit high-level policy, such as additively combining abstract skill

embeddings (Devin et al., 2019) or multiplicatively combining policies (Peng et al., 2019).

The high expressive power of a policy over options enables learning arbitrary graph structures

over the modules. However, these approaches have primarily been limited to toy applications,

with some exceptions considering simple visual-based or continuous control tasks.

Crucially, the problem considered in this dissertation differs in that the functional composition

occurs at every time step, instead of the temporal chaining considered in the options

literature. These two dimensions are orthogonal, and both capture real-world settings in

which composition would greatly benefit the learning process of artificial agents. Chapter 5

42

contains a deeper discussion of these connections. While in principle many of the techniques

in Chapter 5 could also be applied to option learning, this dissertation left this line of work

for future research. With this in mind, note that the discussion of related works on skill

discovery, which is a vast literature on its own, is by no means comprehensive.

Other forms of hierarchical RL have considered learning state abstractions that enable the

agent to more easily solve tasks (Dayan and Hinton, 1993; Dietterich, 2000; Vezhnevets et al.,

2017). While these are also related, they have mainly focused on a two-layer abstraction.

This represents a simple form of composition where the agent executes actions based on a

learned abstracted state. Instead, general functional composition considers arbitrarily many

layers of abstraction that help the learning of both state and action representations.

The majority of works on both temporal composition and state abstractions have been in the

STL setting, where the agent must simultaneously learn to solve the individual task and learn

to decompose its knowledge into suitable components. In practice, this has implied that there

is not much benefit of learning such a decomposition, since the learning itself becomes more

costly. However, other investigations have considered learning such compositional structures

for multiple tasks, in particular in the lifelong setting. Brunskill and Li (2014) developed

a theoretical framework which automatically discovers options and policies over options

throughout a sequence of tasks. A more practical approach trains each option separately on

a subtask, and later reuses these options for learning subsequent tasks (Tessler et al., 2017).

A recent model-based approach learns skills in an off-line phase that subsequently enable

the agent to learn in a nonstationary lifetime without explicit tasks (Lu et al., 2021). Other

work studied state abstractions from a theoretical perspective in the lifelong setting (Abel

et al., 2018). When learning such compositional structures in a lifelong setting, the agent

amortizes the cost of decomposing knowledge over the multiple tasks, yielding substantial

benefits when the components capture knowledge that is useful in the future.

Another form of composition studied in the RL literature has been to learn behaviors

that solve different objectives and compose those behaviors to achieve combined objectives.

43

Todorov (2009) showed that the linear composition of value functions is optimal in the

case of linearly solvable Markov decision processes (MDPs). A similar result showed that

successor features can be combined to solve this type of combined objectives (Barreto et al.,

2018). One common terminology for discussing how this process combines objectives is

logical composition. Intuitively, if an agent has learned to solve objective A and objective B

separately, it can then combine its behaviors to solve A AND B or A OR B. This intuition

has driven theoretical and empirical results in the setting of entropy-regularized RL (Haarnoja

et al., 2018; Van Niekerk et al., 2019). One approach in this setting explicitly modularizes

the inputs to a neural net to handle each of the different goals, aided by multi-hot indicators

of the active goals (Colas et al., 2019). This is similar to the approach of state decomposition

used in this dissertation in Chapter 5. Nangue Tasse et al. (2020) later formalized the

intuition of logical composition in the lifelong setting. Other recent work developed this

idea of composing multiple simultaneous behaviors specifically for robotic control (Cheng

et al., 2021; Li et al., 2021a; Bylard et al., 2021). A related line of work designed a formal

language for specifying logically compositional tasks (Jothimurugan et al., 2019), and later

used a similar language to learn hierarchical policies (Jothimurugan et al., 2021). These

compositional approaches require a specification of compositional objectives. Another related

vein has sought to decompose the reward into such components, and learn separate policies

for each component that can later be combined. These works have decomposed the reward

manually (Van Seijen et al., 2017) or automatically (Lin et al., 2019, 2020). In practice,

the way in which these logic-based approaches combine behaviors is typically a simple

aggregation of value functions (e.g., weighted combination or addition), which limits their

applicability to components that represent solutions to entire RL problems. In contrast, the

more general functional composition proposed in this dissertation separates each policy itself

into components, such that these components combine to form full policies.

A handful of works have considered functional composition in RL with modular neural nets.

A first method handles a setting where each task is a combination of one robot and one

task objective (Devin et al., 2017). Given prior knowledge of this compositional structure,

44

the authors manually crafted chained modular architectures and trained the agent to learn

the parameters of the neural modules. Other works have instead assumed no knowledge of

the task structure and learned them autonomously, under the assumption that the inputs

contain implicit cues of what distinguishes the modular structure of one task from another.

In this line, one recent technique learns recurrent independent mechanisms by encouraging

modules to become independent via a competition procedure, and combines the modules

in general graph structures (Mittal et al., 2020; Goyal et al., 2021). These methods have

primarily operated in the STL setting. Another closely related method also automatically

learns a mapping from inputs to modular structures in the MTL setting, with applications

to noncompositional robotic manipulation (Yang et al., 2020).

Compositionality has had a long history in RL, given the promise that learning smaller, self-

contained policies might make RL of complex tasks feasible. This has led to a wide diversity

of ways to define composition. For completeness, this paragraph discusses other recent

approaches to compositionality that have received less attention and bear less connection to

the work presented here. As one example, Pathak et al. (2019) sought to decompose policies

via a graph neural network such that each node in the graph corresponds to a link in a

modular robot. A later version of this work extended this idea by considering a setting where

all links are morphologically equivalent in terms of their size and motor, and ensuring that

all modules learn the same policy (Huang et al., 2020). Others have learned object-centric

embeddings in order to generalize to environments with different object configurations (Li

et al., 2020a; Mu et al., 2020). Li et al. (2021b) developed an approach related to skill

discovery, but instead of combining skills, the agent learns to solve progressively harder

tasks by truncating demonstrated trajectories in an imitation learning setting, such that the

starting state leads to a task solvable by the current agent.

The understanding of the modularity of RL agents at a fundamental level has received very

little attention. One exception has been the recent work of Chang et al. (2021), which studied

the modularity of credit assignment as the ability of an algorithm to learn mechanisms for

45

choosing actions that can be modified independently of the mechanisms for choosing other

actions. The conclusion of this study was that some single-step temporal difference methods

are modular, but PG methods are not.

This dissertation formalized the problem of lifelong compositional RL in terms of a composi-

tional problem graph. This formulation led to the design of a second lifelong RL approach,

which differs from these existing compositional RL methods in that 1) it operates in a

lifelong learning setting, where tasks arrive sequentially and the agent may not gain further

experience in a previous task after learning it, and 2) it applies to tasks that are explicitly

compositional at multiple hierarchical levels, enabling in-depth study of the functionality of

each component.

2.5.1. Benchmarking Compositional Reinforcement Learning

The development of large-scale, standardized benchmarks was key to the acceleration of deep

learning research (e.g., ImageNet; Deng et al., 2009). Inspired by this, multiple attempts

have sought to construct equivalent benchmarks for deep RL research, leading to popularly

used evaluation domains in both discrete- (Bellemare et al., 2013; Vinyals et al., 2017) and

continuous-action (Brockman et al., 2016; Tunyasuvunakool et al., 2020) settings.

While these benchmarks have promoted deep RL advancements, they are restricted to

STL—i.e., they design each task to be learned in isolation. Consequently, work in multitask

and lifelong RL has resorted to ad hoc evaluation settings, slowing down progress. Recent

efforts have sought to bridge this gap by creating evaluation domains with multiple tasks

that share a common structure that is (hopefully) transferable across the tasks. One example

varied dynamical system parameters of continuous control tasks (e.g., gravity) to create

multiple related tasks (Henderson et al., 2017). Other work created a grid-world evaluation

domain with tasks of progressive difficulty (Chevalier-Boisvert et al., 2019). In the continual

learning setting, a recent benchmark evaluates approaches in a multiagent coordination

setting (Nekoei et al., 2021). Specifically in the context of robotics, recent works have created

46

large sets of tasks for evaluating MTL, lifelong learning, and meta-learning algorithms (Yu

et al., 2019; James et al., 2020; Wołczyk et al., 2021).

Despite this recent progress, it remains unclear exactly what an agent can transfer between

tasks in these benchmarks, and so existing algorithms are typically limited to transferring

neural net parameters in the hopes that they discover reusable information. Unfortunately,

typical evaluations of compositional learning use such standard benchmarks in both the

supervised and RL settings. While this enables fair performance comparisons, it fails to give

insight into the agent’s ability to find meaningful compositional structures. Some notable

exceptions exist for evaluating compositional generalization in supervised learning (Bahdanau

et al., 2018; Lake and Baroni, 2018; Sinha et al., 2020; Keysers et al., 2020).

This dissertation extended the ideas of compositional generalization to RL, and introduced the

separation of zero-shot compositional generalization and fast adaptation, which is particularly

relevant in RL. To evaluate these notions, this dissertation further created various evaluation

benchmarks of explicitly compositional tasks for evaluating compositional RL methods. In

particular, Chapter 7 introduces one benchmark comprising hundreds of highly diverse RL

tasks with explicit functionally compositional structure.

Concurrently to this dissertation, Gur et al. (2021) developed a benchmark for temporal

(instead of functional) compositional generalization in RL, which is complementary to the

benchmarks presented here. Another related work procedurally created robotics tasks by

varying dynamical parameters to study causality in RL (Ahmed et al., 2021), but considered

a single robot arm and continuous variations in the physical properties of objects.

2.6. Summary

This chapter reviewed the state of prior research on the topics most closely related to those

studied in this dissertation, and categorized them along six dimensions. In summary, lifelong

or continual learning has primarily focused on the problem of catastrophic forgetting in the

supervised setting, but has mostly overlooked how to obtain knowledge that can be reusable

47

for future tasks. On the other hand, compositional learning has developed methods for

obtaining reusable knowledge, but has done so in the simpler case of MTL, where the agent

trains on all tasks simultaneously. This dissertation combined these two lines of work by

developing algorithms that discover reusable compositional knowledge in a lifelong setting.

Few works have attempted to port lifelong learning techniques to the RL setting, and their

shortcomings have prevented their application to complex and diverse sequences of tasks,

which this dissertation overcame by leveraging lifelong composition. In particular, the form

of functional composition studied here had been severely understudied in the RL literature.

48

CHAPTER 3 : A General-Purpose Framework for Lifelong Learning of

Compositional Structures

3.1. Introduction

Despite their intuitive connections, lifelong learning and compositional learning have largely

proceeded as disjoint lines of work. This chapter describes the concrete problem formulations

for both lifelong learning and compositional learning as studied in this dissertation. At a high

level, lifelong learning is the problem of accumulating knowledge over time and reusing it to

solve related tasks, while compositional learning is the problem of decomposing knowledge

into maximally reusable components. To address the joint problem of lifelong compositional

learning, this chapter further presents the first general-purpose framework for lifelong learning

of compositional structures.

Unlike the handful of lifelong compositional learning methods in previous work, this framework

is agnostic to the form of structures learned by the agent, the methods used to discover the

structures, and the mechanisms used for avoiding catastrophic forgetting. As examples of

the structures that the framework supports, this chapter discusses linear combinations of

models (a form of aggregated composition, according to the categorization in Chapter 2),

soft neural layer ordering and soft neural gating (two approximate forms of arbitrary graph

compositions), and hard modular neural nets (a form of chained composition).

In order to learn these structures, the framework separates the learning process into two

distinct stages. First, the learner leverages components that it has already acquired to

discover how to maximally reuse them for solving the current task. Then, once the agent

has assimilated the current task, it accommodates any new knowledge required to solve the

current task either by adapting those existing components or by adding novel components

if needed. These stages evoke Piaget’s assimilation and accommodation stages of cognitive

development (Piaget, 1976), and so the stages of the framework adopt those terms.

49

3.2. The Lifelong Learning Problem

At the highest level, lifelong learning involves learning over a nonstationary and potentially

never-ending stream of data. From this high-level definition, different works have proposed

multiple concrete instantiations of the problem. This section dissects common problem for-

mulations in the literature, defines the problem as was addressed throughout this dissertation,

and provides example problems that can be captured under this definition.

Van de Ven and Tolias (2019) categorized lifelong learning problem definitions in terms of

how nonstationarity is presented to the agent, proposing the following three variations:

• The most common problem definition, denoted task-incremental learning, intro-

duces nonstationarity into the learning problem in the form of tasks. Each task Z(t)

is itself a standard i.i.d. learning problem, with its own input space X (t) and output

space Y(t). There exists a ground-truth mapping f (t) : X (t) 7→ Y(t) that defines the

individual task, as well as a cost function L(t)
(
f̂ (t)
)
that measures how well a learned

f̂ (t) matches the true f (t) under the task’s data distribution D(t)
(
X (t),Y(t)

)
. During

the learning process, the agent faces a sequence of tasks Z(1), . . . ,Z(t), The learner

receives a data set X(t),Y (t) ∼ D(t)
(
X (t),Y(t)

)
along with a task indicator t that

reveals which is the current task, but not how it relates to other tasks. Upon facing

the t-th task, the goal of the learner is to solve (an online approximation of) the MTL

objective: z = 1
t

∑t
t̂=1 L(̂t)

(
f̂
(̂t)
t

)
, where f̂ (̂t)t is the predictor for task Z (̂t) at time t.

• Another common definition is domain-incremental learning. The key distinguishing

factor of this setting is that the learning problem does not inform the agent of the task

indicator t. Instead, the tasks vary only in their input distribution D(t)
(
X (t)

)
, but

there exists a single common solution that solves all tasks. For example, the problem

could be a binary classification problem between “cat” and “dog”, and each different

task could be a variation in the input domain (e.g., changing light conditions or camera

resolutions). The goal of the learner is still to optimize the approximate MTL objective.

50

• Yet another problem setting is class-incremental learning. In this setting, there

is a single multiclass classification task with a large number of classes. The agent

observes classes sequentially, and must be able to predict the correct class among

all previously seen classes. For example, the task could be ImageNet (Deng et al.,

2009) classification, and classes could be presented to the agent ten at a time, with

later stages not containing previous classes in the training data, but indeed requiring

accurate prediction across all seen classes in the test data. One alternative way to

define this same problem is that each learning stage (i.e., each group of classes) is

a distinct task, and the goal of the agent is to simultaneously detect which is the

current task indicator t and which is the current class within that task Z(t). The latter

equivalent formulation, though less intuitive, enables framing the learning objective in

exactly the same way as the previous two problem settings.

This dissertation considered the task-incremental learning setting. Concretely, a vector θ(t)

parameterizes each task’s solution, such that f (t) = fθ(t) . After training on T tasks, the goal

of the lifelong learner is to find parameters θ(1), . . . ,θ(T) that minimize the cost across all

tasks: 1
T

∑T
t=1 L(t)

(
f (t)
)
. The agent does not know the total number of tasks, the order in

which tasks will arrive, or (unless otherwise stated) how tasks are related to each other.

Given limited data for each new task, typically insufficient for obtaining optimal performance

without leveraging information from prior tasks, the agent must strive to discover any relevant

information to 1) relate it to previously stored knowledge in order to permit transfer and

2) store any new knowledge for future reuse. The environment may require the agent to

perform any previous task, implying that it must perform well on all tasks. In consequence,

the agent must strive to retain knowledge from even the earliest tasks.

While prior work in supervised learning has described this task-incremental setting as artificial,

it contains some desirable properties that are missing from other common definitions. First,

unlike in domain-incremental learning, it is not necessary that the inputs are the only aspect

that changes over time. This is useful, for example, when extending these definitions to

51

the RL setting, where different tasks naturally correspond to different reward functions

or transition dynamics. Second, unlike in class-incremental learning, extension to RL is

straightforward, since the learning objective can still easily be averaged across tasks.

In the task-incremental supervised setting, the standard way to craft the different tasks for

benchmarking purposes originates from the class-incremental setting: split each data set into

multiple smaller tasks, each containing a subset of the classes. This is the setting that was

used for most supervised learning experiments in Chapter 4. As an example, CUB-200, a

data set of 200 classes corresponding to bird species, was split randomly into 20 individual

10-way classification tasks to evaluate lifelong agents. However, to show that this is not the

only possible setting that the proposed methods can handle, the experiments also evaluated

the proposed methods in a more complex setting with tasks from various distinct data sets

(concretely, MNIST, Fashion MNIST, and CUB-200).

Note that all the above definitions assume that the agent is required to perform well on all

previously seen tasks. However, this is often not realistic. For example, consider a service

robot that has provided assistance for a long time in a small one-floor apartment, and is later

moved to a much larger two-floor home. While knowledge from the small apartment may be

useful for quickly adapting to the larger home, over time retaining full knowledge about how

to traverse the small apartment might become counterproductive as that information becomes

obsolete. Therefore, this dissertation also proposed adaptations of the developed techniques

to the nonstationary lifelong learning problem, where not only the data distribution changes

from task to task, but also the distribution over tasks itself changes from time to time (like

in the small-apartment-to-large-home example). In this setting, the objective must change,

since it is no longer desirable to retain performance on tasks from out-dated distributions.

Chapter 6 discusses more appropriate objectives for these settings.

52

3.3. The Compositional Learning Problem

Section 3.2 describes the lifelong learning problem in terms of how nonstationarity is presented

to the agent. However, it does not provide insight about how different tasks might be related

to each other. In particular, this dissertation assumed that tasks are compositionally related,

and developed methods that explicitly exploit these compositional assumptions.

Following the problem formulation from Chang et al. (2019), this dissertation assumed

that each task can be decomposed into subtasks. Equivalently, the predictive function

f (t) characterizing each task can be decomposed into multiple subfunctions F (t)
1 , F

(t)
2 , . . .,

such that f (t) = F
(t)
1 ◦ F

(t)
2 ◦ · · · (x). This assumption trivially holds for any function f (t).

Critically, the formulation further assumes that there exists a set of k subfunctions that are

common to all tasks the agent might encounter: F (t)
i ∈ {F1, . . . , Fk} ∀t, i.

This way, the full learning problem can be characterized by a directed graph G = (V, E).

There are two types of nodes in the graph. The first type represents the inputs and outputs

of each task as random variables. Concretely, each task has an input node u(t) with in-degree

zero and an output node v(t) with out-degree zero such that u(t), v(t) ∼ D(t)
(
X (t),Y(t)

)
. The

second type of nodes F represents functional transformations such that:

1. for every edge 〈u, F 〉 the function F takes as input the random variable u,

2. for every edge 〈F, F ′〉 the output of F feeds into F ′, and

3. for every edge 〈F, v〉 v is the output of F .

With this definition, the paths in the graph from u(t) to v(t) represent all possible solutions

to task Z(t) given a set of functional nodes.

This formalism also has an equivalent generative formulation. In particular, a compositional

function graph G generates a task Z(t) by choosing one input node u(t) and a path p(t)

through the graph to some node v(t). Then, the following two steps define the generative

53

distribution for task Z(t). First, instantiate the random variable u(t) by sampling from

the input distribution u(t) = x(t) ∼ D(t). Next, generate the corresponding labels y(t) by

compositionally applying all functions in the chosen path p(t) to the sampled u(t). As noted

by Chang et al. (2019), there are generally multiple possible compositional solutions to each

task. This dissertation assumed that the generative problem graph is that with the minimum

number of possible nodes, such that nodes (i.e., subtasks) are maximally shared across

different tasks. This choice intuitively implies the maximum amount of possible knowledge

transfer across tasks.

Figure 2 shows three different assumptions that learning algorithms make over the space

of tasks. The left-most graph (Figure 2a) shows the standard STL assumption: each task

Z(t) is completely independent from the others, and therefore the agent learns the predictive

functions f (t) in isolation. Note that this doesn’t explicitly prohibit learning compositional

solutions: each f (t) could itself be decomposed into multiple subtasks, but the subtasks would

still be individual to each task. The center graph (Figure 2b) shows the typical monolithic

MTL assumption: all different tasks can be decomposed in such a way that all subtasks

are common to all tasks. The right-most graph (Figure 2c) shows the assumption made

throughout this dissertation: each task can be decomposed into a task-specific sequence of

subtasks, but the set of possible subtasks is common to all tasks.

Input
Spaces

Output
Spaces

<latexit sha1_base64="of9K/QMmW5b0DqTlhGeKjiJwB6I=">AAACUXicbVDJTsMwFHwJWylLCxy5RK2Q2BQlULHcKrhwBImyqAmV4zqtVTuJbAdURfkHDnwLV/gHTv0UbrgpBwo8ydJ45j2/8QQJo1I5zsgwZ2bn5hdKi+Wl5ZXVSnVt/UbGqcCkhWMWi7sAScJoRFqKKkbuEkEQDxi5DQbnY/32kQhJ4+haDRPic9SLaEgxUprqVHe94o226AV+Zjca+7Z7um8fHeYeR6qPEcvu84dsu7GTlzvVumM7RVl/gfsN6s2at/cyag4vO2tGxevGOOUkUpghKduukyg/Q0JRzEhe9lJJEoQHqEfaGkaIE+lnhaHc2tJM1wpjoU+krIL9OZEhLuWQB7pzbFX+1sbkf1o7VeGJn9EoSRWJ8GRRmDJLxdY4IatLBcGKDTVAWFDt1cJ9JBBWOsepLTxlior4aeonWcCn70k3ZBKjhBQRur8D+wtuDmz3yG5c6SzPYFIl2IQabIMLx9CEC7iEFmB4hld4g3fjw/g0wTQnrabxPbMBU2UufQGBAbUz</latexit>

Y(4)

<latexit sha1_base64="w48mjB7gVF8hrfJVTCVI9+9Rodc=">AAACUHicbVDLTsMwENyUVymvFo5colZIrUBRgoD2WMGFI0j0ITWhclynWNhJZDugKso3cOFXuMI/cONPuIHbgkRbRrI8nt317o4fMyqVbX8YuaXlldW1/HphY3Nre6dY2m3LKBGYtHDEItH1kSSMhqSlqGKkGwuCuM9Ix7+/GMc7D0RIGoU3ahQTj6NhSAOKkdJSv1hzJ3/0xND3UtuqN45s6/TkyM5cjtQdRiztZrdp9biW9YsV27InMBeJ80MqzbJ7+PzRHF31S8aOO4hwwkmoMENS9hw7Vl6KhKKYkazgJpLECN+jIelpGiJOpJdO5snMA60MzCAS+oTKnKh/K1LEpRxxX2eOJ5XzsbH4X6yXqKDhpTSME0VCPG0UJMxUkTk2yBxQQbBiI00QFlTPauI7JBBW2saZLjxhiorocWaT1Oez73gQMIlRrBfWFjrzhi2S9rHlnFkn19rLc5giD/tQhio4UIcmXMIVtADDE7zAK7wZ78an8ZUzpqm/N+zBDHKFb1fYtho=</latexit>

X (2)

<latexit sha1_base64="XQUw4ueTRCnLe07nKfzZlTypYO8=">AAACUHicbVBLTsMwFHwpv1J+LSzZRCCkIqooQQjoroINyyJRCmpC5bhOa9VOItsBVVHOwIarsIU7sOtN2IGbgkSBkSyP5z37jcePGZXKtsdGYW5+YXGpuFxaWV1b3yhXNq9llAhMWjhikbjxkSSMhqSlqGLkJhYEcZ+Rtj88n9Tb90RIGoVXahQTj6N+SAOKkdJSt7zv5m90RN/3UrtmHdZrtlWvZy5HaoARS2+zu7Tq7GelbnnXtuwc5l/ifJHdxo578DRujJrdirHh9iKccBIqzJCUHceOlZcioShmJCu5iSQxwkPUJx1NQ8SJ9NLcT2buaaVnBpHQK1Rmrv68kSIu5Yj7unNiVf6uTcT/ap1EBadeSsM4USTE00FBwkwVmZOAzB4VBCs20gRhQbVXEw+QQFjpGGem8IQpKqKHmZ+kPp89x72ASYxikkfo/A7sL7k+tJxj6+hSZ3kGUxRhG3agCg6cQAMuoAktwPAIz/ACr8ab8W58FIxp6/cOWzCDQukTIXG1+Q==</latexit>

Y(1)

<latexit sha1_base64="nNwHx5XBzk7CFqX4sjoMZiVxnvs=">AAACSnicbVBNTsJAGJ0iKuIPoEs3DcQEIyGtGnVJdOMSE/lJaCXTYYoTZtpmZqohTQ/g3nu41Tt4Aa7hzrhxWlhY8CWTvHnf/3MCSoQ0jJmWW8uvb2wWtorbO7t7pXJlvyv8kCPcQT71ed+BAlPi4Y4kkuJ+wDFkDsU9Z3KTxHtPmAvie/dyGmCbwbFHXIKgVNKwXLPSHgM+duzIbBgNI7YYlI8I0qgfP0T1s+NYZRlNI4W+SswFqbWq1snrrDVtDytayRr5KGTYk4hCIQamEUg7glwSRHFctEKBA4gmcIwHinqQYWFH6SaxfqSUke76XD1P6qn6tyKCTIgpc1RmsqlYjiXif7FBKN0rOyJeEErsofkgN6S69PXEGn1EOEaSThWBiBO1q44eIYdIKgMzU1hIJeH+c+aSyGHZfzByqUAwUAcrC81lw1ZJ97RpXjTP75SX12COAjgEVVAHJrgELXAL2qADEHgBb+AdfGif2pf2rf3MU3PaouYAZJDL/wJBkrWr</latexit>

X (3)

<latexit sha1_base64="OeReBX56EwaFey0qfsqTqnJMlH0=">AAACUHicbVDLTsMwENyUVymvFo5cIhBSK1CVIAT0VsGFY5EoVGpC5bhOsWonke2AqijfwIVf4Qr/wK1/wg2cFCQCrGR7PLP27o4XMSqVZU2N0tz8wuJSebmysrq2vlGtbV7LMBaYdHHIQtHzkCSMBqSrqGKkFwmCuMfIjTc+z/SbeyIkDYMrNYmIy9EooD7FSGlqUG04+R99MfLcxDqwmoctvbVaqcORusOIJb30NqnbjXRQ3bWaVh7mX2B/gd32jrP/NG1POoOaseEMQxxzEijMkJR924qUmyChKGYkrTixJBHCYzQifQ0DxIl0k7yf1NzTzND0Q6FXoMyc/fkiQVzKCfd0Ztap/K1l5H9aP1b+qZvQIIoVCfCskB8zU4VmZpA5pIJgxSYaICyo7tXEd0ggrLSNhSo8ZoqK8KEwSeLx4j0a+kxiFOmBtYX2b8P+guvDpn3cPLrUXp7BLMqwDTtQBxtOoA0X0IEuYHiEZ3iBV+PNeDc+SsYs9fuELShEqfIJXuO2Hg==</latexit>

X (1)

<latexit sha1_base64="xcGFVswsiETIGBzOG7NBWp9O0l8=">AAACS3icbVDLTsJAFJ2iKOID0KWbBjTBSEirRl0S3bjERB6GVjIdpjBhpm1mphrS9Adc+yFu9R/8AL7DnXHhtLAQ9CaTnDnn3rlnjhNQIqRhTLXMymp2bT23kd/c2t4pFEu7beGHHOEW8qnPuw4UmBIPtySRFHcDjiFzKO444+tE7zxiLojv3clJgG0Ghx5xCYJSUf3igZW+0eNDx47MmlEzYotBOUKQRvfxQ1Q9PYrz/WLFqBtp6X+BOQeVRtk6fpk2Js1+SStYAx+FDHsSUShEzzQCaUeQS4IojvNWKHAA0RgOcU9BDzIs7Ci1EuuHihnors/V8aSesr8nIsiEmDBHdSZWxbKWkP9pvVC6l3ZEvCCU2EOzRW5IdenrSTb6gHCMJJ0oABEnyquORpBDJFWCC1tYSCXh/tPCTyKHLd6DgUsFggFOIzSXA/sL2id187x+dquyvAKzyoF9UAZVYIIL0AA3oAlaAIFn8ArewLv2oX1qX9r3rDWjzWf2wEJlsj+HJLXA</latexit>

Y(3)

<latexit sha1_base64="6PJl3LtkiHl0DK4eZaf6gM+EIT0=">AAACUXicbVDLTsMwENyEVymPFjhyiUBIvBQlUPG4VXDhCBKFSk2oHNdprdpJZDugKso/cOBbuMI/cOqncMNNe6CFlSyNZ3a94wkSRqVynKFhzs0vLC6Vlssrq2vrlerG5oOMU4FJA8csFs0AScJoRBqKKkaaiSCIB4w8Bv3rkf74TISkcXSvBgnxOepGNKQYKU21q4de8UZLdAM/s2u1Y9u9PLbPTnOPI9XDiGXN/Cnbrx3k5XZ117Gdoqy/wJ2A3fqOd/Q2rA9u2xtGxevEOOUkUpghKVuukyg/Q0JRzEhe9lJJEoT7qEtaGkaIE+lnhaHc2tNMxwpjoU+krIL9PZEhLuWAB7pzZFXOaiPyP62VqvDCz2iUpIpEeLwoTJmlYmuUkNWhgmDFBhogLKj2auEeEggrnePUFp4yRUX8MvWTLODT96QTMolRQooI3dnA/oKHE9s9s2t3OssrGFcJtmEH9sGFc6jDDdxCAzC8wjt8wKfxZXybYJrjVtOYzGzBVJkrP383tTI=</latexit>

X (4)

<latexit sha1_base64="I3YyWGVFEQFAQpN1woEMPY6SSLk=">AAACT3icbVDLTsJAFJ3iC/AFunTTSEwwkqY1KiyJblxiIoKhlUyHKU6caZuZqYY0/QVXfopb/QeXfIk747SwsOBJJjlzzr1z7xw3pERI05xqhZXVtfWNYqm8ubW9s1up7t2JIOIId1FAA953ocCU+LgriaS4H3IMmUtxz326Sv3eM+aCBP6tnITYYXDsE48gKJU0rNTt7I0BH7tObDRbDeP8rGEmNoPyEUEa3ycPcf30OCkPKzXTMDPoy8Sak1r70D55m7YnnWFV27VHAYoY9iWiUIiBZYbSiSGXBFGclO1I4BCiJzjGA0V9yLBw4mydRD9Sykj3Aq6OL/VM/dsRQybEhLmqMl1VLHqp+J83iKTXcmLih5HEPpoN8iKqy0BP89FHhGMk6UQRiDhRu+roEXKIpEoxN4VFVBIevOR+Erssfw9HHhUIhjiL0FoMbJncnRrWhXF2o7K8BDMUwQE4BHVggSZog2vQAV2AwCt4Bx/gU/vSvrWfwry0oM3JPsihUPoFli61uw==</latexit>

Y(2)

<latexit sha1_base64="RfRuwprlE7Cc78v8LwFLZFQMS3k=">AAACKnicbVDLSsNAFJ34rPXRVpeKDBZBEEoioi6Lbly2YNpCG8pkMmmHziRhZqKG0KVrt/oPfkC/w11x686fcPpYmNYDA2fOvZd7z3EjRqUyzbGxsrq2vrGZ28pv7+zuFYql/YYMY4GJjUMWipaLJGE0ILaiipFWJAjiLiNNd3A3qTcfiZA0DB5UEhGHo15AfYqR0pL9DM9h0i2WzYo5BVwm1pyUq0ej+s/L8ajWLRmFjhfimJNAYYakbFtmpJwUCUUxI8N8J5YkQniAeqStaYA4kU46vXYIT7XiQT8U+gUKTtW/EyniUibc1Z0cqb5crE3E/2rtWPk3TkqDKFYkwLNFfsygCuHEOvSoIFixRBOEBdW3QtxHAmGlA8ps4TFTVIRPGSepy7P/yPOZxCjShnWE1mJgy6RxUbGuKpd1neUtmCEHDsEJOAMWuAZVcA9qwAYYUPAK3sC78WF8GmPja9a6YsxnDkAGxvcvl9uqlg==</latexit>

x + y

<latexit sha1_base64="NJuxHjV9qpKX7E8Qo3xk5SS07eg=">AAACMHicbVDLSgNBEJyNr7g+4uPoZTEInsKuiHoRg148KhgVkhBmJ73JkJmdYaZXDUs+w6se/AN/wk9QT+LVr3Cz8WCMBQPVVd10T4VacIu+/+4UpqZnZueK8+7C4tJyaWV17dKqxDCoMSWUuQ6pBcFjqCFHAdfaAJWhgKuwdzL0r27AWK7iC+xraEraiXnEGcVMqjcQ7hAxpQO3tVL2K34Ob5IEP6R89OIe6qdX96y16pQabcUSCTEyQa2tB77GZkoNciZg4DYSC5qyHu1APaMxlWCbaX7zwNvKlLYXKZO9GL1c/T2RUmltX4ZZp6TYtX+9ofifV08wOmimPNYJQsxGi6JEeKi8YQBemxtgKPoZoczw7FaPdamhDLOYxrbIRCA36nbsJ2kox2vdjoRlVEMeYfA3sElyuVMJ9iq75365ekxGKJINskm2SUD2SZWckjNSI4wock8eyKPz7Lw5H87nqLXg/MyskzE4X99HPK14</latexit>

a
<latexit sha1_base64="w4Yu7yxXaCqWAMCkpvANPjzkygE=">AAACMHicbVDLSgNBEJyNr7g+4uPoZTEInsKuiHoRg148KhgVkhBmJ73JkJmdYaZXDUs+w6se/AN/wk9QT+LVr3Cz8WCMBQPVVd10T4VacIu+/+4UpqZnZueK8+7C4tJyaWV17dKqxDCoMSWUuQ6pBcFjqCFHAdfaAJWhgKuwdzL0r27AWK7iC+xraEraiXnEGcVMqjcQ7hAxDQdua6XsV/wc3iQJfkj56MU91E+v7llr1Sk12oolEmJkglpbD3yNzZQa5EzAwG0kFjRlPdqBekZjKsE20/zmgbeVKW0vUiZ7MXq5+nsipdLavgyzTkmxa/96Q/E/r55gdNBMeawThJiNFkWJ8FB5wwC8NjfAUPQzQpnh2a0e61JDGWYxjW2RiUBu1O3YT9JQjte6HQnLqIY8wuBvYJPkcqcS7FV2z/1y9ZiMUCQbZJNsk4Dskyo5JWekRhhR5J48kEfn2XlzPpzPUWvB+ZlZJ2Nwvr4BSQCteQ==</latexit>

b <latexit sha1_base64="dTWutFY39QzIA7S7u049u0Jgzo4=">AAACL3icbVDLSgMxFM3UV3221aUiQRFclRkRdVl047IFq2I7SCbNaGiSGZI76jB06R+41X9w1z8RN+JW/AnT1oXTeiBwcu69nHtPEAtuwHXfncLU9MzsXHF+YXFpeaVUrqyemyjRlDVpJCJ9GRDDBFesCRwEu4w1IzIQ7CLongzqF3dMGx6pM0hj5ktyo3jIKQErXT3gNnDJDE6vy9tu1R0CTxLvl2zXNvqN78fNfv264pTanYgmkimgghjT8twY/Ixo4FSw3kI7MSwmtEtuWMtSRayPnw1X7uEdq3RwGGn7FOCh+nciI9KYVAa2UxK4NeO1gfhfrZVAeORnXMUJMEVHRmEiMER4cD/ucM0oiNQSQjW3u2J6SzShYFPKuchEANfRfe6SLJD5f9wJhaEktgfbCL3xwCbJ+V7VO6juN2yWx2iEIlpHW2gXeegQ1dApqqMmokihJ/SMXpxX5835cD5HrQXnd2YN5eB8/QB1pq0b</latexit>

x⇥ y

<latexit sha1_base64="jyD1o5z4rC07J9P4bYCY5lWV1t4=">AAACKHicbVC7TsMwFHXKq4RHWxhZIiokpipBCFgQFSyMRdCH1IbKcZzWqp1YtgNEUT+BFT6AjR9hZau68iW4j4G0HMnS8bn36t5zPE6JVLY9NnIrq2vrG/lNc2t7Z7dQLO01ZBQLhOsoopFoeVBiSkJcV0RR3OICQ+ZR3PQGN5N68wkLSaLwQSUcuwz2QhIQBJWW7l8ek26xbFfsKaxl4sxJ+erLvOQfI7PWLRmFjh+hmOFQIQqlbDs2V24KhSKI4qHZiSXmEA1gD7c1DSHD0k2ntw6tI634VhAJ/UJlTdW/EylkUibM050Mqr5crE3E/2rtWAUXbkpCHiscotmiIKaWiqyJccsnAiNFE00gEkTfaqE+FBApHU9mC4upIiJ6zjhJPZb9cz+gEkGuDesIncXAlknjpOKcVU7v7HL1GsyQBwfgEBwDB5yDKrgFNVAHCPTAK3gD78an8W2MjPGsNWfMZ/ZBBsbPL44nqgs=</latexit>

xy<latexit sha1_base64="+vqBKRCvFBAM8k4sF1rJLwH5+2M=">AAACK3icbVDLSgMxFM3UVx0fbXXpZrAIrsqMiLoRi25cVrAPaEu5k8m0sclMSDJKGfoPbnXr2u/wA1yI4tb/MH0sbOuBwMm593LvOb5gVGnX/bQyS8srq2vZdXtjc2s7ly/s1FScSEyqOGaxbPigCKMRqWqqGWkISYD7jNT9/tWoXr8nUtE4utUDQdocuhENKQZtpFoLmOhBJ190S+4YziLxpqR48Wafi5cPu9IpWLlWEOOEk0hjBko1PVfodgpSU8zI0G4ligjAfeiSpqERcKLa6fjcoXNglMAJY2lepJ2x+nciBa7UgPumk4PuqfnaSPyv1kx0eNZOaSQSTSI8WRQmzNGxM/LuBFQSrNnAEMCSmlsd3AMJWJuEZrbwhGkq44cZJ6nPZ/8iCJnCIIxhE6E3H9giqR2VvJPS8Y1bLF+iCbJoD+2jQ+ShU1RG16iCqgijO/SIntCz9Wq9W1/W96Q1Y01ndtEMrJ9f5bGrPA==</latexit>↵
<latexit sha1_base64="sq4iDUshEUpKZ6/NBcEpSDNaO0k=">AAACKnicbVDLSsNAFJ3UV62PtrpUJFgEVyURUZdFNy5bMLXQhjKZTNqhM0mYuVFK6NK1W/0HP6Df4a64dedPOH0sTOuBgTPn3su953gxZwosa2Lk1tY3Nrfy24Wd3b39Yql80FRRIgl1SMQj2fKwopyF1AEGnLZiSbHwOH30BnfT+uMTlYpF4QMMY+oK3AtZwAgGLTkdjwLulipW1ZrBXCX2glRqx+PGz8vJuN4tG8WOH5FE0BAIx0q1bSsGN8USGOF0VOgkisaYDHCPtjUNsaDKTWfXjswzrfhmEEn9QjBn6t+JFAulhsLTnQJDXy3XpuJ/tXYCwY2bsjBOgIZkvihIuAmRObVu+kxSAnyoCSaS6VtN0scSE9ABZbaIhAOT0XPGSeqJ7D/2A64IjrVhHaG9HNgqaV5U7avqZUNneYvmyKMjdIrOkY2uUQ3dozpyEEEMvaI39G58GJ/GxPiat+aMxcwhysD4/gWrQKsy</latexit>

�

<latexit sha1_base64="NJuxHjV9qpKX7E8Qo3xk5SS07eg=">AAACMHicbVDLSgNBEJyNr7g+4uPoZTEInsKuiHoRg148KhgVkhBmJ73JkJmdYaZXDUs+w6se/AN/wk9QT+LVr3Cz8WCMBQPVVd10T4VacIu+/+4UpqZnZueK8+7C4tJyaWV17dKqxDCoMSWUuQ6pBcFjqCFHAdfaAJWhgKuwdzL0r27AWK7iC+xraEraiXnEGcVMqjcQ7hAxpQO3tVL2K34Ob5IEP6R89OIe6qdX96y16pQabcUSCTEyQa2tB77GZkoNciZg4DYSC5qyHu1APaMxlWCbaX7zwNvKlLYXKZO9GL1c/T2RUmltX4ZZp6TYtX+9ofifV08wOmimPNYJQsxGi6JEeKi8YQBemxtgKPoZoczw7FaPdamhDLOYxrbIRCA36nbsJ2kox2vdjoRlVEMeYfA3sElyuVMJ9iq75365ekxGKJINskm2SUD2SZWckjNSI4wock8eyKPz7Lw5H87nqLXg/MyskzE4X99HPK14</latexit>

a
<latexit sha1_base64="w4Yu7yxXaCqWAMCkpvANPjzkygE=">AAACMHicbVDLSgNBEJyNr7g+4uPoZTEInsKuiHoRg148KhgVkhBmJ73JkJmdYaZXDUs+w6se/AN/wk9QT+LVr3Cz8WCMBQPVVd10T4VacIu+/+4UpqZnZueK8+7C4tJyaWV17dKqxDCoMSWUuQ6pBcFjqCFHAdfaAJWhgKuwdzL0r27AWK7iC+xraEraiXnEGcVMqjcQ7hAxDQdua6XsV/wc3iQJfkj56MU91E+v7llr1Sk12oolEmJkglpbD3yNzZQa5EzAwG0kFjRlPdqBekZjKsE20/zmgbeVKW0vUiZ7MXq5+nsipdLavgyzTkmxa/96Q/E/r55gdNBMeawThJiNFkWJ8FB5wwC8NjfAUPQzQpnh2a0e61JDGWYxjW2RiUBu1O3YT9JQjte6HQnLqIY8wuBvYJPkcqcS7FV2z/1y9ZiMUCQbZJNsk4Dskyo5JWekRhhR5J48kEfn2XlzPpzPUWvB+ZlZJ2Nwvr4BSQCteQ==</latexit>

b <latexit sha1_base64="RfRuwprlE7Cc78v8LwFLZFQMS3k=">AAACKnicbVDLSsNAFJ34rPXRVpeKDBZBEEoioi6Lbly2YNpCG8pkMmmHziRhZqKG0KVrt/oPfkC/w11x686fcPpYmNYDA2fOvZd7z3EjRqUyzbGxsrq2vrGZ28pv7+zuFYql/YYMY4GJjUMWipaLJGE0ILaiipFWJAjiLiNNd3A3qTcfiZA0DB5UEhGHo15AfYqR0pL9DM9h0i2WzYo5BVwm1pyUq0ej+s/L8ajWLRmFjhfimJNAYYakbFtmpJwUCUUxI8N8J5YkQniAeqStaYA4kU46vXYIT7XiQT8U+gUKTtW/EyniUibc1Z0cqb5crE3E/2rtWPk3TkqDKFYkwLNFfsygCuHEOvSoIFixRBOEBdW3QtxHAmGlA8ps4TFTVIRPGSepy7P/yPOZxCjShnWE1mJgy6RxUbGuKpd1neUtmCEHDsEJOAMWuAZVcA9qwAYYUPAK3sC78WF8GmPja9a6YsxnDkAGxvcvl9uqlg==</latexit>

x + y

<latexit sha1_base64="xne1uvXJyql5j77M3EX+Q7qGrWo=">AAACL3icbVDLTgIxFO34RHwAunQzkZi4IjPGqBsj6sYlJvKIQEindKCx7TTtHZVM+Au3uvEL/Ao/gbgxbv0Ly2Mh4EmanJ57b+49J1CcGfC8T2dhcWl5ZTW1ll7f2NzKZHPbFRPFmtAyiXikawE2lDNJy8CA05rSFIuA02pwfzWsVx+oNiySt9BTtClwR7KQEQxWumsAfQKA5KLfyua9gjeCO0/8Ccmff6TP1NsgXWrlnEyjHZFYUAmEY2PqvqegmWANjHDaTzdiQxUm97hD65ZKLKhpJqOT++6+VdpuGGn7JLgj9e9EgoUxPRHYToGha2ZrQ/G/Wj2G8LSZMKlioJKMF4UxdyFyh/7dNtOUAO9Zgolm9laXdLHGBGxKU1tEzIHp6HHKSRKI6b9qh9wQrKxhG6E/G9g8qRwW/OPC0Y2XL16iMVJoF+2hA+SjE1RE16iEyoggiZ7RC3p13p2B8+V8j1sXnMnMDpqC8/ML06OtRA==</latexit>A

<latexit sha1_base64="7P0wx+QotSLW+BgZevfpR4jSK9A=">AAACL3icbVDLSgMxFM34rPXRqks3wSK4KjMi6kYsunFZwdpiWySTZjSYF8kdtQz9C7e68Qv8Cj9B3Ihb/8L0sbDWA4GTc+/l3nNiI7iDMPwIpqZnZufmcwv5xaXllUJxde3C6dRSVqNaaNuIiWOCK1YDDoI1jGVExoLV49uTfr1+x6zjWp1D17C2JNeKJ5wS8NJlC9gDAGTHvatiKSyHA+BJEo1I6egtf2he3vPVq9Wg0OpomkqmgAriXDMKDbQzYoFTwXr5VuqYIfSWXLOmp4pI5trZ4OQe3vJKByfa+qcAD9TfExmRznVl7DslgRv3t9YX/6s1U0gO2hlXJgWm6HBRkgoMGvf94w63jILoekKo5f5WTG+IJRR8SmNbZCqAW30/5iSL5fjfdBLhKDHesI8w+hvYJLnYKUd75d2zsFQ5RkPk0AbaRNsoQvuogk5RFdUQRQo9oif0HLwG78Fn8DVsnQpGM+toDMH3D9VmrUU=</latexit>B

<latexit sha1_base64="NJuxHjV9qpKX7E8Qo3xk5SS07eg=">AAACMHicbVDLSgNBEJyNr7g+4uPoZTEInsKuiHoRg148KhgVkhBmJ73JkJmdYaZXDUs+w6se/AN/wk9QT+LVr3Cz8WCMBQPVVd10T4VacIu+/+4UpqZnZueK8+7C4tJyaWV17dKqxDCoMSWUuQ6pBcFjqCFHAdfaAJWhgKuwdzL0r27AWK7iC+xraEraiXnEGcVMqjcQ7hAxpQO3tVL2K34Ob5IEP6R89OIe6qdX96y16pQabcUSCTEyQa2tB77GZkoNciZg4DYSC5qyHu1APaMxlWCbaX7zwNvKlLYXKZO9GL1c/T2RUmltX4ZZp6TYtX+9ofifV08wOmimPNYJQsxGi6JEeKi8YQBemxtgKPoZoczw7FaPdamhDLOYxrbIRCA36nbsJ2kox2vdjoRlVEMeYfA3sElyuVMJ9iq75365ekxGKJINskm2SUD2SZWckjNSI4wock8eyKPz7Lw5H87nqLXg/MyskzE4X99HPK14</latexit>

a
<latexit sha1_base64="7P0wx+QotSLW+BgZevfpR4jSK9A=">AAACL3icbVDLSgMxFM34rPXRqks3wSK4KjMi6kYsunFZwdpiWySTZjSYF8kdtQz9C7e68Qv8Cj9B3Ihb/8L0sbDWA4GTc+/l3nNiI7iDMPwIpqZnZufmcwv5xaXllUJxde3C6dRSVqNaaNuIiWOCK1YDDoI1jGVExoLV49uTfr1+x6zjWp1D17C2JNeKJ5wS8NJlC9gDAGTHvatiKSyHA+BJEo1I6egtf2he3vPVq9Wg0OpomkqmgAriXDMKDbQzYoFTwXr5VuqYIfSWXLOmp4pI5trZ4OQe3vJKByfa+qcAD9TfExmRznVl7DslgRv3t9YX/6s1U0gO2hlXJgWm6HBRkgoMGvf94w63jILoekKo5f5WTG+IJRR8SmNbZCqAW30/5iSL5fjfdBLhKDHesI8w+hvYJLnYKUd75d2zsFQ5RkPk0AbaRNsoQvuogk5RFdUQRQo9oif0HLwG78Fn8DVsnQpGM+toDMH3D9VmrUU=</latexit>

B

<latexit sha1_base64="+vqBKRCvFBAM8k4sF1rJLwH5+2M=">AAACK3icbVDLSgMxFM3UVx0fbXXpZrAIrsqMiLoRi25cVrAPaEu5k8m0sclMSDJKGfoPbnXr2u/wA1yI4tb/MH0sbOuBwMm593LvOb5gVGnX/bQyS8srq2vZdXtjc2s7ly/s1FScSEyqOGaxbPigCKMRqWqqGWkISYD7jNT9/tWoXr8nUtE4utUDQdocuhENKQZtpFoLmOhBJ190S+4YziLxpqR48Wafi5cPu9IpWLlWEOOEk0hjBko1PVfodgpSU8zI0G4ligjAfeiSpqERcKLa6fjcoXNglMAJY2lepJ2x+nciBa7UgPumk4PuqfnaSPyv1kx0eNZOaSQSTSI8WRQmzNGxM/LuBFQSrNnAEMCSmlsd3AMJWJuEZrbwhGkq44cZJ6nPZ/8iCJnCIIxhE6E3H9giqR2VvJPS8Y1bLF+iCbJoD+2jQ+ShU1RG16iCqgijO/SIntCz9Wq9W1/W96Q1Y01ndtEMrJ9f5bGrPA==</latexit>

↵ <latexit sha1_base64="MD4JKADh7fK+lMFxZrlpC+Gvsds=">AAACL3icbVDLSgMxFM3UVx0fbXXpZrAIrsqMiLoRS924rGAf2A4lk2ba0CQTkoxShv6FW934BX6Fn1DciFv/wkzrwmm9EDg5517uPScQlCjtuh9WbmV1bX0jv2lvbe/sFoqlvaaKYolwA0U0ku0AKkwJxw1NNMVtITFkAcWtYHSd6q0HLBWJ+J0eC+wzOOAkJAhqQ913GdRDyZLapFcsuxV3Vs4y8H5B+erdvhSvU7veK1mFbj9CMcNcIwqV6niu0H4CpSaI4ondjRUWEI3gAHcM5JBh5SezkyfOkWH6ThhJ87h2ZuzfiQQypcYsMJ3piWpRS8n/tE6swws/IVzEGnM0XxTG1NGRk/p3+kRipOnYAIgkMbc6aAglRNqklNnCYqqJjB4zTpKAZf+iH1KFoDCGTYTeYmDLoHlS8c4qp7duuVoD88qDA3AIjoEHzkEV3IA6aAAEOHgCz+DFerOm1qf1NW/NWb8z+yBT1vcPlVmtIQ==</latexit>

B

<latexit sha1_base64="dU4PPpFMe9WbrE1tnGbWro2qvTA=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSLUS0lE1GPRi8cK9gPaWDbbSbt0swm7G6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoduq3nlBpHssHM07Qj+hA8pAzaqzUCh+zinc26ZXKbtWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n83OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwms/4zJJDUo2XxSmgpiYTH8nfa6QGTG2hDLF7a2EDamizNiEijYEb/HlZdI8r3qXVe/+oly7yeMowDGcQAU8uIIa3EEdGsBgBM/wCm9O4rw4787HvHXFyWeO4A+czx99JI8E</latexit>

f (1)

<latexit sha1_base64="IVZvXN73T971s2naOdi4un+zxsg=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3iHoMevEYwTwgiWF20psMmZ1dZmaFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7/FhwbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SxbDBIhGptk81Ci6xYbgR2I4V0tAX2PLHtzO/9YRK80g+mEmMvZAOJQ84o8ZKreAxLVfPp/1iya24c5BV4mWkBBnq/eJXdxCxJERpmKBadzw3Nr2UKsOZwGmhm2iMKRvTIXYslTRE3Uvn507JmVUGJIiULWnIXP09kdJQ60no286QmpFe9mbif14nMcF1L+UyTgxKtlgUJIKYiMx+JwOukBkxsYQyxe2thI2ooszYhAo2BG/55VXSrFa8y4p3f1Gq3WRx5OEETqEMHlxBDe6gDg1gMIZneIU3J3ZenHfnY9Gac7KZY/gD5/MHfqqPBQ==</latexit>

f (2)

<latexit sha1_base64="EOCqxszJzT/BsLiNnmhkO6PHGEs=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXRT0GvXiMYB6QxDA76U2GzM4uM7NCWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dfiy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUy6caBZdYN9wIbMUKaegLbPqj26nffEKleSQfzDjGbkgHkgecUWOlZvCYls9PJ71iya24M5Bl4mWkBBlqveJXpx+xJERpmKBatz03Nt2UKsOZwEmhk2iMKRvRAbYtlTRE3U1n507IiVX6JIiULWnITP09kdJQ63Ho286QmqFe9Kbif147McF1N+UyTgxKNl8UJIKYiEx/J32ukBkxtoQyxe2thA2poszYhAo2BG/x5WXSOKt4lxXv/qJUvcniyMMRHEMZPLiCKtxBDerAYATP8ApvTuy8OO/Ox7w152Qzh/AHzucPgDCPBg==</latexit>

f (3)

<latexit sha1_base64="py1UQ0bD8tf/nptFqq5Jg1WBWyg=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMevEYwTwgiWF20psMmZ1dZmaFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7/FhwbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SxbDBIhGptk81Ci6xYbgR2I4V0tAX2PLHtzO/9YRK80g+mEmMvZAOJQ84o8ZKreAxLVfPp/1iya24c5BV4mWkBBnq/eJXdxCxJERpmKBadzw3Nr2UKsOZwGmhm2iMKRvTIXYslTRE3Uvn507JmVUGJIiULWnIXP09kdJQ60no286QmpFe9mbif14nMcF1L+UyTgxKtlgUJIKYiMx+JwOukBkxsYQyxe2thI2ooszYhAo2BG/55VXSvKh4lxXvvlqq3WRx5OEETqEMHlxBDe6gDg1gMIZneIU3J3ZenHfnY9Gac7KZY/gD5/MHgbaPBw==</latexit>

f (4)

(a) Single-task

Input
Spaces

Output
Spaces

<latexit sha1_base64="of9K/QMmW5b0DqTlhGeKjiJwB6I=">AAACUXicbVDJTsMwFHwJWylLCxy5RK2Q2BQlULHcKrhwBImyqAmV4zqtVTuJbAdURfkHDnwLV/gHTv0UbrgpBwo8ydJ45j2/8QQJo1I5zsgwZ2bn5hdKi+Wl5ZXVSnVt/UbGqcCkhWMWi7sAScJoRFqKKkbuEkEQDxi5DQbnY/32kQhJ4+haDRPic9SLaEgxUprqVHe94o226AV+Zjca+7Z7um8fHeYeR6qPEcvu84dsu7GTlzvVumM7RVl/gfsN6s2at/cyag4vO2tGxevGOOUkUpghKduukyg/Q0JRzEhe9lJJEoQHqEfaGkaIE+lnhaHc2tJM1wpjoU+krIL9OZEhLuWQB7pzbFX+1sbkf1o7VeGJn9EoSRWJ8GRRmDJLxdY4IatLBcGKDTVAWFDt1cJ9JBBWOsepLTxlior4aeonWcCn70k3ZBKjhBQRur8D+wtuDmz3yG5c6SzPYFIl2IQabIMLx9CEC7iEFmB4hld4g3fjw/g0wTQnrabxPbMBU2UufQGBAbUz</latexit>

Y(4)

<latexit sha1_base64="w48mjB7gVF8hrfJVTCVI9+9Rodc=">AAACUHicbVDLTsMwENyUVymvFo5colZIrUBRgoD2WMGFI0j0ITWhclynWNhJZDugKso3cOFXuMI/cONPuIHbgkRbRrI8nt317o4fMyqVbX8YuaXlldW1/HphY3Nre6dY2m3LKBGYtHDEItH1kSSMhqSlqGKkGwuCuM9Ix7+/GMc7D0RIGoU3ahQTj6NhSAOKkdJSv1hzJ3/0xND3UtuqN45s6/TkyM5cjtQdRiztZrdp9biW9YsV27InMBeJ80MqzbJ7+PzRHF31S8aOO4hwwkmoMENS9hw7Vl6KhKKYkazgJpLECN+jIelpGiJOpJdO5snMA60MzCAS+oTKnKh/K1LEpRxxX2eOJ5XzsbH4X6yXqKDhpTSME0VCPG0UJMxUkTk2yBxQQbBiI00QFlTPauI7JBBW2saZLjxhiorocWaT1Oez73gQMIlRrBfWFjrzhi2S9rHlnFkn19rLc5giD/tQhio4UIcmXMIVtADDE7zAK7wZ78an8ZUzpqm/N+zBDHKFb1fYtho=</latexit>

X (2)

<latexit sha1_base64="XQUw4ueTRCnLe07nKfzZlTypYO8=">AAACUHicbVBLTsMwFHwpv1J+LSzZRCCkIqooQQjoroINyyJRCmpC5bhOa9VOItsBVVHOwIarsIU7sOtN2IGbgkSBkSyP5z37jcePGZXKtsdGYW5+YXGpuFxaWV1b3yhXNq9llAhMWjhikbjxkSSMhqSlqGLkJhYEcZ+Rtj88n9Tb90RIGoVXahQTj6N+SAOKkdJSt7zv5m90RN/3UrtmHdZrtlWvZy5HaoARS2+zu7Tq7GelbnnXtuwc5l/ifJHdxo578DRujJrdirHh9iKccBIqzJCUHceOlZcioShmJCu5iSQxwkPUJx1NQ8SJ9NLcT2buaaVnBpHQK1Rmrv68kSIu5Yj7unNiVf6uTcT/ap1EBadeSsM4USTE00FBwkwVmZOAzB4VBCs20gRhQbVXEw+QQFjpGGem8IQpKqKHmZ+kPp89x72ASYxikkfo/A7sL7k+tJxj6+hSZ3kGUxRhG3agCg6cQAMuoAktwPAIz/ACr8ab8W58FIxp6/cOWzCDQukTIXG1+Q==</latexit>

Y(1)

<latexit sha1_base64="nNwHx5XBzk7CFqX4sjoMZiVxnvs=">AAACSnicbVBNTsJAGJ0iKuIPoEs3DcQEIyGtGnVJdOMSE/lJaCXTYYoTZtpmZqohTQ/g3nu41Tt4Aa7hzrhxWlhY8CWTvHnf/3MCSoQ0jJmWW8uvb2wWtorbO7t7pXJlvyv8kCPcQT71ed+BAlPi4Y4kkuJ+wDFkDsU9Z3KTxHtPmAvie/dyGmCbwbFHXIKgVNKwXLPSHgM+duzIbBgNI7YYlI8I0qgfP0T1s+NYZRlNI4W+SswFqbWq1snrrDVtDytayRr5KGTYk4hCIQamEUg7glwSRHFctEKBA4gmcIwHinqQYWFH6SaxfqSUke76XD1P6qn6tyKCTIgpc1RmsqlYjiXif7FBKN0rOyJeEErsofkgN6S69PXEGn1EOEaSThWBiBO1q44eIYdIKgMzU1hIJeH+c+aSyGHZfzByqUAwUAcrC81lw1ZJ97RpXjTP75SX12COAjgEVVAHJrgELXAL2qADEHgBb+AdfGif2pf2rf3MU3PaouYAZJDL/wJBkrWr</latexit>

X (3)

<latexit sha1_base64="OeReBX56EwaFey0qfsqTqnJMlH0=">AAACUHicbVDLTsMwENyUVymvFo5cIhBSK1CVIAT0VsGFY5EoVGpC5bhOsWonke2AqijfwIVf4Qr/wK1/wg2cFCQCrGR7PLP27o4XMSqVZU2N0tz8wuJSebmysrq2vlGtbV7LMBaYdHHIQtHzkCSMBqSrqGKkFwmCuMfIjTc+z/SbeyIkDYMrNYmIy9EooD7FSGlqUG04+R99MfLcxDqwmoctvbVaqcORusOIJb30NqnbjXRQ3bWaVh7mX2B/gd32jrP/NG1POoOaseEMQxxzEijMkJR924qUmyChKGYkrTixJBHCYzQifQ0DxIl0k7yf1NzTzND0Q6FXoMyc/fkiQVzKCfd0Ztap/K1l5H9aP1b+qZvQIIoVCfCskB8zU4VmZpA5pIJgxSYaICyo7tXEd0ggrLSNhSo8ZoqK8KEwSeLx4j0a+kxiFOmBtYX2b8P+guvDpn3cPLrUXp7BLMqwDTtQBxtOoA0X0IEuYHiEZ3iBV+PNeDc+SsYs9fuELShEqfIJXuO2Hg==</latexit>

X (1)

<latexit sha1_base64="xcGFVswsiETIGBzOG7NBWp9O0l8=">AAACS3icbVDLTsJAFJ2iKOID0KWbBjTBSEirRl0S3bjERB6GVjIdpjBhpm1mphrS9Adc+yFu9R/8AL7DnXHhtLAQ9CaTnDnn3rlnjhNQIqRhTLXMymp2bT23kd/c2t4pFEu7beGHHOEW8qnPuw4UmBIPtySRFHcDjiFzKO444+tE7zxiLojv3clJgG0Ghx5xCYJSUf3igZW+0eNDx47MmlEzYotBOUKQRvfxQ1Q9PYrz/WLFqBtp6X+BOQeVRtk6fpk2Js1+SStYAx+FDHsSUShEzzQCaUeQS4IojvNWKHAA0RgOcU9BDzIs7Ci1EuuHihnors/V8aSesr8nIsiEmDBHdSZWxbKWkP9pvVC6l3ZEvCCU2EOzRW5IdenrSTb6gHCMJJ0oABEnyquORpBDJFWCC1tYSCXh/tPCTyKHLd6DgUsFggFOIzSXA/sL2id187x+dquyvAKzyoF9UAZVYIIL0AA3oAlaAIFn8ArewLv2oX1qX9r3rDWjzWf2wEJlsj+HJLXA</latexit>

Y(3)

<latexit sha1_base64="6PJl3LtkiHl0DK4eZaf6gM+EIT0=">AAACUXicbVDLTsMwENyEVymPFjhyiUBIvBQlUPG4VXDhCBKFSk2oHNdprdpJZDugKso/cOBbuMI/cOqncMNNe6CFlSyNZ3a94wkSRqVynKFhzs0vLC6Vlssrq2vrlerG5oOMU4FJA8csFs0AScJoRBqKKkaaiSCIB4w8Bv3rkf74TISkcXSvBgnxOepGNKQYKU21q4de8UZLdAM/s2u1Y9u9PLbPTnOPI9XDiGXN/Cnbrx3k5XZ117Gdoqy/wJ2A3fqOd/Q2rA9u2xtGxevEOOUkUpghKVuukyg/Q0JRzEhe9lJJEoT7qEtaGkaIE+lnhaHc2tNMxwpjoU+krIL9PZEhLuWAB7pzZFXOaiPyP62VqvDCz2iUpIpEeLwoTJmlYmuUkNWhgmDFBhogLKj2auEeEggrnePUFp4yRUX8MvWTLODT96QTMolRQooI3dnA/oKHE9s9s2t3OssrGFcJtmEH9sGFc6jDDdxCAzC8wjt8wKfxZXybYJrjVtOYzGzBVJkrP383tTI=</latexit>

X (4)

<latexit sha1_base64="I3YyWGVFEQFAQpN1woEMPY6SSLk=">AAACT3icbVDLTsJAFJ3iC/AFunTTSEwwkqY1KiyJblxiIoKhlUyHKU6caZuZqYY0/QVXfopb/QeXfIk747SwsOBJJjlzzr1z7xw3pERI05xqhZXVtfWNYqm8ubW9s1up7t2JIOIId1FAA953ocCU+LgriaS4H3IMmUtxz326Sv3eM+aCBP6tnITYYXDsE48gKJU0rNTt7I0BH7tObDRbDeP8rGEmNoPyEUEa3ycPcf30OCkPKzXTMDPoy8Sak1r70D55m7YnnWFV27VHAYoY9iWiUIiBZYbSiSGXBFGclO1I4BCiJzjGA0V9yLBw4mydRD9Sykj3Aq6OL/VM/dsRQybEhLmqMl1VLHqp+J83iKTXcmLih5HEPpoN8iKqy0BP89FHhGMk6UQRiDhRu+roEXKIpEoxN4VFVBIevOR+Erssfw9HHhUIhjiL0FoMbJncnRrWhXF2o7K8BDMUwQE4BHVggSZog2vQAV2AwCt4Bx/gU/vSvrWfwry0oM3JPsihUPoFli61uw==</latexit>

Y(2)

<latexit sha1_base64="RfRuwprlE7Cc78v8LwFLZFQMS3k=">AAACKnicbVDLSsNAFJ34rPXRVpeKDBZBEEoioi6Lbly2YNpCG8pkMmmHziRhZqKG0KVrt/oPfkC/w11x686fcPpYmNYDA2fOvZd7z3EjRqUyzbGxsrq2vrGZ28pv7+zuFYql/YYMY4GJjUMWipaLJGE0ILaiipFWJAjiLiNNd3A3qTcfiZA0DB5UEhGHo15AfYqR0pL9DM9h0i2WzYo5BVwm1pyUq0ej+s/L8ajWLRmFjhfimJNAYYakbFtmpJwUCUUxI8N8J5YkQniAeqStaYA4kU46vXYIT7XiQT8U+gUKTtW/EyniUibc1Z0cqb5crE3E/2rtWPk3TkqDKFYkwLNFfsygCuHEOvSoIFixRBOEBdW3QtxHAmGlA8ps4TFTVIRPGSepy7P/yPOZxCjShnWE1mJgy6RxUbGuKpd1neUtmCEHDsEJOAMWuAZVcA9qwAYYUPAK3sC78WF8GmPja9a6YsxnDkAGxvcvl9uqlg==</latexit>

x + y
<latexit sha1_base64="NJuxHjV9qpKX7E8Qo3xk5SS07eg=">AAACMHicbVDLSgNBEJyNr7g+4uPoZTEInsKuiHoRg148KhgVkhBmJ73JkJmdYaZXDUs+w6se/AN/wk9QT+LVr3Cz8WCMBQPVVd10T4VacIu+/+4UpqZnZueK8+7C4tJyaWV17dKqxDCoMSWUuQ6pBcFjqCFHAdfaAJWhgKuwdzL0r27AWK7iC+xraEraiXnEGcVMqjcQ7hAxpQO3tVL2K34Ob5IEP6R89OIe6qdX96y16pQabcUSCTEyQa2tB77GZkoNciZg4DYSC5qyHu1APaMxlWCbaX7zwNvKlLYXKZO9GL1c/T2RUmltX4ZZp6TYtX+9ofifV08wOmimPNYJQsxGi6JEeKi8YQBemxtgKPoZoczw7FaPdamhDLOYxrbIRCA36nbsJ2kox2vdjoRlVEMeYfA3sElyuVMJ9iq75365ekxGKJINskm2SUD2SZWckjNSI4wock8eyKPz7Lw5H87nqLXg/MyskzE4X99HPK14</latexit>

a
<latexit sha1_base64="w4Yu7yxXaCqWAMCkpvANPjzkygE=">AAACMHicbVDLSgNBEJyNr7g+4uPoZTEInsKuiHoRg148KhgVkhBmJ73JkJmdYaZXDUs+w6se/AN/wk9QT+LVr3Cz8WCMBQPVVd10T4VacIu+/+4UpqZnZueK8+7C4tJyaWV17dKqxDCoMSWUuQ6pBcFjqCFHAdfaAJWhgKuwdzL0r27AWK7iC+xraEraiXnEGcVMqjcQ7hAxDQdua6XsV/wc3iQJfkj56MU91E+v7llr1Sk12oolEmJkglpbD3yNzZQa5EzAwG0kFjRlPdqBekZjKsE20/zmgbeVKW0vUiZ7MXq5+nsipdLavgyzTkmxa/96Q/E/r55gdNBMeawThJiNFkWJ8FB5wwC8NjfAUPQzQpnh2a0e61JDGWYxjW2RiUBu1O3YT9JQjte6HQnLqIY8wuBvYJPkcqcS7FV2z/1y9ZiMUCQbZJNsk4Dskyo5JWekRhhR5J48kEfn2XlzPpzPUWvB+ZlZJ2Nwvr4BSQCteQ==</latexit>

b <latexit sha1_base64="dTWutFY39QzIA7S7u049u0Jgzo4=">AAACL3icbVDLSgMxFM3UV3221aUiQRFclRkRdVl047IFq2I7SCbNaGiSGZI76jB06R+41X9w1z8RN+JW/AnT1oXTeiBwcu69nHtPEAtuwHXfncLU9MzsXHF+YXFpeaVUrqyemyjRlDVpJCJ9GRDDBFesCRwEu4w1IzIQ7CLongzqF3dMGx6pM0hj5ktyo3jIKQErXT3gNnDJDE6vy9tu1R0CTxLvl2zXNvqN78fNfv264pTanYgmkimgghjT8twY/Ixo4FSw3kI7MSwmtEtuWMtSRayPnw1X7uEdq3RwGGn7FOCh+nciI9KYVAa2UxK4NeO1gfhfrZVAeORnXMUJMEVHRmEiMER4cD/ucM0oiNQSQjW3u2J6SzShYFPKuchEANfRfe6SLJD5f9wJhaEktgfbCL3xwCbJ+V7VO6juN2yWx2iEIlpHW2gXeegQ1dApqqMmokihJ/SMXpxX5835cD5HrQXnd2YN5eB8/QB1pq0b</latexit>

x⇥ y

<latexit sha1_base64="jyD1o5z4rC07J9P4bYCY5lWV1t4=">AAACKHicbVC7TsMwFHXKq4RHWxhZIiokpipBCFgQFSyMRdCH1IbKcZzWqp1YtgNEUT+BFT6AjR9hZau68iW4j4G0HMnS8bn36t5zPE6JVLY9NnIrq2vrG/lNc2t7Z7dQLO01ZBQLhOsoopFoeVBiSkJcV0RR3OICQ+ZR3PQGN5N68wkLSaLwQSUcuwz2QhIQBJWW7l8ek26xbFfsKaxl4sxJ+erLvOQfI7PWLRmFjh+hmOFQIQqlbDs2V24KhSKI4qHZiSXmEA1gD7c1DSHD0k2ntw6tI634VhAJ/UJlTdW/EylkUibM050Mqr5crE3E/2rtWAUXbkpCHiscotmiIKaWiqyJccsnAiNFE00gEkTfaqE+FBApHU9mC4upIiJ6zjhJPZb9cz+gEkGuDesIncXAlknjpOKcVU7v7HL1GsyQBwfgEBwDB5yDKrgFNVAHCPTAK3gD78an8W2MjPGsNWfMZ/ZBBsbPL44nqgs=</latexit>

xy<latexit sha1_base64="+vqBKRCvFBAM8k4sF1rJLwH5+2M=">AAACK3icbVDLSgMxFM3UVx0fbXXpZrAIrsqMiLoRi25cVrAPaEu5k8m0sclMSDJKGfoPbnXr2u/wA1yI4tb/MH0sbOuBwMm593LvOb5gVGnX/bQyS8srq2vZdXtjc2s7ly/s1FScSEyqOGaxbPigCKMRqWqqGWkISYD7jNT9/tWoXr8nUtE4utUDQdocuhENKQZtpFoLmOhBJ190S+4YziLxpqR48Wafi5cPu9IpWLlWEOOEk0hjBko1PVfodgpSU8zI0G4ligjAfeiSpqERcKLa6fjcoXNglMAJY2lepJ2x+nciBa7UgPumk4PuqfnaSPyv1kx0eNZOaSQSTSI8WRQmzNGxM/LuBFQSrNnAEMCSmlsd3AMJWJuEZrbwhGkq44cZJ6nPZ/8iCJnCIIxhE6E3H9giqR2VvJPS8Y1bLF+iCbJoD+2jQ+ShU1RG16iCqgijO/SIntCz9Wq9W1/W96Q1Y01ndtEMrJ9f5bGrPA==</latexit>↵
<latexit sha1_base64="sq4iDUshEUpKZ6/NBcEpSDNaO0k=">AAACKnicbVDLSsNAFJ3UV62PtrpUJFgEVyURUZdFNy5bMLXQhjKZTNqhM0mYuVFK6NK1W/0HP6Df4a64dedPOH0sTOuBgTPn3su953gxZwosa2Lk1tY3Nrfy24Wd3b39Yql80FRRIgl1SMQj2fKwopyF1AEGnLZiSbHwOH30BnfT+uMTlYpF4QMMY+oK3AtZwAgGLTkdjwLulipW1ZrBXCX2glRqx+PGz8vJuN4tG8WOH5FE0BAIx0q1bSsGN8USGOF0VOgkisaYDHCPtjUNsaDKTWfXjswzrfhmEEn9QjBn6t+JFAulhsLTnQJDXy3XpuJ/tXYCwY2bsjBOgIZkvihIuAmRObVu+kxSAnyoCSaS6VtN0scSE9ABZbaIhAOT0XPGSeqJ7D/2A64IjrVhHaG9HNgqaV5U7avqZUNneYvmyKMjdIrOkY2uUQ3dozpyEEEMvaI39G58GJ/GxPiat+aMxcwhysD4/gWrQKsy</latexit>

�

<latexit sha1_base64="NJuxHjV9qpKX7E8Qo3xk5SS07eg=">AAACMHicbVDLSgNBEJyNr7g+4uPoZTEInsKuiHoRg148KhgVkhBmJ73JkJmdYaZXDUs+w6se/AN/wk9QT+LVr3Cz8WCMBQPVVd10T4VacIu+/+4UpqZnZueK8+7C4tJyaWV17dKqxDCoMSWUuQ6pBcFjqCFHAdfaAJWhgKuwdzL0r27AWK7iC+xraEraiXnEGcVMqjcQ7hAxpQO3tVL2K34Ob5IEP6R89OIe6qdX96y16pQabcUSCTEyQa2tB77GZkoNciZg4DYSC5qyHu1APaMxlWCbaX7zwNvKlLYXKZO9GL1c/T2RUmltX4ZZp6TYtX+9ofifV08wOmimPNYJQsxGi6JEeKi8YQBemxtgKPoZoczw7FaPdamhDLOYxrbIRCA36nbsJ2kox2vdjoRlVEMeYfA3sElyuVMJ9iq75365ekxGKJINskm2SUD2SZWckjNSI4wock8eyKPz7Lw5H87nqLXg/MyskzE4X99HPK14</latexit>

a
<latexit sha1_base64="w4Yu7yxXaCqWAMCkpvANPjzkygE=">AAACMHicbVDLSgNBEJyNr7g+4uPoZTEInsKuiHoRg148KhgVkhBmJ73JkJmdYaZXDUs+w6se/AN/wk9QT+LVr3Cz8WCMBQPVVd10T4VacIu+/+4UpqZnZueK8+7C4tJyaWV17dKqxDCoMSWUuQ6pBcFjqCFHAdfaAJWhgKuwdzL0r27AWK7iC+xraEraiXnEGcVMqjcQ7hAxDQdua6XsV/wc3iQJfkj56MU91E+v7llr1Sk12oolEmJkglpbD3yNzZQa5EzAwG0kFjRlPdqBekZjKsE20/zmgbeVKW0vUiZ7MXq5+nsipdLavgyzTkmxa/96Q/E/r55gdNBMeawThJiNFkWJ8FB5wwC8NjfAUPQzQpnh2a0e61JDGWYxjW2RiUBu1O3YT9JQjte6HQnLqIY8wuBvYJPkcqcS7FV2z/1y9ZiMUCQbZJNsk4Dskyo5JWekRhhR5J48kEfn2XlzPpzPUWvB+ZlZJ2Nwvr4BSQCteQ==</latexit>

b <latexit sha1_base64="RfRuwprlE7Cc78v8LwFLZFQMS3k=">AAACKnicbVDLSsNAFJ34rPXRVpeKDBZBEEoioi6Lbly2YNpCG8pkMmmHziRhZqKG0KVrt/oPfkC/w11x686fcPpYmNYDA2fOvZd7z3EjRqUyzbGxsrq2vrGZ28pv7+zuFYql/YYMY4GJjUMWipaLJGE0ILaiipFWJAjiLiNNd3A3qTcfiZA0DB5UEhGHo15AfYqR0pL9DM9h0i2WzYo5BVwm1pyUq0ej+s/L8ajWLRmFjhfimJNAYYakbFtmpJwUCUUxI8N8J5YkQniAeqStaYA4kU46vXYIT7XiQT8U+gUKTtW/EyniUibc1Z0cqb5crE3E/2rtWPk3TkqDKFYkwLNFfsygCuHEOvSoIFixRBOEBdW3QtxHAmGlA8ps4TFTVIRPGSepy7P/yPOZxCjShnWE1mJgy6RxUbGuKpd1neUtmCEHDsEJOAMWuAZVcA9qwAYYUPAK3sC78WF8GmPja9a6YsxnDkAGxvcvl9uqlg==</latexit>

x + y

<latexit sha1_base64="xne1uvXJyql5j77M3EX+Q7qGrWo=">AAACL3icbVDLTgIxFO34RHwAunQzkZi4IjPGqBsj6sYlJvKIQEindKCx7TTtHZVM+Au3uvEL/Ao/gbgxbv0Ly2Mh4EmanJ57b+49J1CcGfC8T2dhcWl5ZTW1ll7f2NzKZHPbFRPFmtAyiXikawE2lDNJy8CA05rSFIuA02pwfzWsVx+oNiySt9BTtClwR7KQEQxWumsAfQKA5KLfyua9gjeCO0/8Ccmff6TP1NsgXWrlnEyjHZFYUAmEY2PqvqegmWANjHDaTzdiQxUm97hD65ZKLKhpJqOT++6+VdpuGGn7JLgj9e9EgoUxPRHYToGha2ZrQ/G/Wj2G8LSZMKlioJKMF4UxdyFyh/7dNtOUAO9Zgolm9laXdLHGBGxKU1tEzIHp6HHKSRKI6b9qh9wQrKxhG6E/G9g8qRwW/OPC0Y2XL16iMVJoF+2hA+SjE1RE16iEyoggiZ7RC3p13p2B8+V8j1sXnMnMDpqC8/ML06OtRA==</latexit>A

<latexit sha1_base64="7P0wx+QotSLW+BgZevfpR4jSK9A=">AAACL3icbVDLSgMxFM34rPXRqks3wSK4KjMi6kYsunFZwdpiWySTZjSYF8kdtQz9C7e68Qv8Cj9B3Ihb/8L0sbDWA4GTc+/l3nNiI7iDMPwIpqZnZufmcwv5xaXllUJxde3C6dRSVqNaaNuIiWOCK1YDDoI1jGVExoLV49uTfr1+x6zjWp1D17C2JNeKJ5wS8NJlC9gDAGTHvatiKSyHA+BJEo1I6egtf2he3vPVq9Wg0OpomkqmgAriXDMKDbQzYoFTwXr5VuqYIfSWXLOmp4pI5trZ4OQe3vJKByfa+qcAD9TfExmRznVl7DslgRv3t9YX/6s1U0gO2hlXJgWm6HBRkgoMGvf94w63jILoekKo5f5WTG+IJRR8SmNbZCqAW30/5iSL5fjfdBLhKDHesI8w+hvYJLnYKUd75d2zsFQ5RkPk0AbaRNsoQvuogk5RFdUQRQo9oif0HLwG78Fn8DVsnQpGM+toDMH3D9VmrUU=</latexit>B

<latexit sha1_base64="NJuxHjV9qpKX7E8Qo3xk5SS07eg=">AAACMHicbVDLSgNBEJyNr7g+4uPoZTEInsKuiHoRg148KhgVkhBmJ73JkJmdYaZXDUs+w6se/AN/wk9QT+LVr3Cz8WCMBQPVVd10T4VacIu+/+4UpqZnZueK8+7C4tJyaWV17dKqxDCoMSWUuQ6pBcFjqCFHAdfaAJWhgKuwdzL0r27AWK7iC+xraEraiXnEGcVMqjcQ7hAxpQO3tVL2K34Ob5IEP6R89OIe6qdX96y16pQabcUSCTEyQa2tB77GZkoNciZg4DYSC5qyHu1APaMxlWCbaX7zwNvKlLYXKZO9GL1c/T2RUmltX4ZZp6TYtX+9ofifV08wOmimPNYJQsxGi6JEeKi8YQBemxtgKPoZoczw7FaPdamhDLOYxrbIRCA36nbsJ2kox2vdjoRlVEMeYfA3sElyuVMJ9iq75365ekxGKJINskm2SUD2SZWckjNSI4wock8eyKPz7Lw5H87nqLXg/MyskzE4X99HPK14</latexit>

a
<latexit sha1_base64="7P0wx+QotSLW+BgZevfpR4jSK9A=">AAACL3icbVDLSgMxFM34rPXRqks3wSK4KjMi6kYsunFZwdpiWySTZjSYF8kdtQz9C7e68Qv8Cj9B3Ihb/8L0sbDWA4GTc+/l3nNiI7iDMPwIpqZnZufmcwv5xaXllUJxde3C6dRSVqNaaNuIiWOCK1YDDoI1jGVExoLV49uTfr1+x6zjWp1D17C2JNeKJ5wS8NJlC9gDAGTHvatiKSyHA+BJEo1I6egtf2he3vPVq9Wg0OpomkqmgAriXDMKDbQzYoFTwXr5VuqYIfSWXLOmp4pI5trZ4OQe3vJKByfa+qcAD9TfExmRznVl7DslgRv3t9YX/6s1U0gO2hlXJgWm6HBRkgoMGvf94w63jILoekKo5f5WTG+IJRR8SmNbZCqAW30/5iSL5fjfdBLhKDHesI8w+hvYJLnYKUd75d2zsFQ5RkPk0AbaRNsoQvuogk5RFdUQRQo9oif0HLwG78Fn8DVsnQpGM+toDMH3D9VmrUU=</latexit>

B

<latexit sha1_base64="+vqBKRCvFBAM8k4sF1rJLwH5+2M=">AAACK3icbVDLSgMxFM3UVx0fbXXpZrAIrsqMiLoRi25cVrAPaEu5k8m0sclMSDJKGfoPbnXr2u/wA1yI4tb/MH0sbOuBwMm593LvOb5gVGnX/bQyS8srq2vZdXtjc2s7ly/s1FScSEyqOGaxbPigCKMRqWqqGWkISYD7jNT9/tWoXr8nUtE4utUDQdocuhENKQZtpFoLmOhBJ190S+4YziLxpqR48Wafi5cPu9IpWLlWEOOEk0hjBko1PVfodgpSU8zI0G4ligjAfeiSpqERcKLa6fjcoXNglMAJY2lepJ2x+nciBa7UgPumk4PuqfnaSPyv1kx0eNZOaSQSTSI8WRQmzNGxM/LuBFQSrNnAEMCSmlsd3AMJWJuEZrbwhGkq44cZJ6nPZ/8iCJnCIIxhE6E3H9giqR2VvJPS8Y1bLF+iCbJoD+2jQ+ShU1RG16iCqgijO/SIntCz9Wq9W1/W96Q1Y01ndtEMrJ9f5bGrPA==</latexit>

↵ <latexit sha1_base64="MD4JKADh7fK+lMFxZrlpC+Gvsds=">AAACL3icbVDLSgMxFM3UVx0fbXXpZrAIrsqMiLoRS924rGAf2A4lk2ba0CQTkoxShv6FW934BX6Fn1DciFv/wkzrwmm9EDg5517uPScQlCjtuh9WbmV1bX0jv2lvbe/sFoqlvaaKYolwA0U0ku0AKkwJxw1NNMVtITFkAcWtYHSd6q0HLBWJ+J0eC+wzOOAkJAhqQ913GdRDyZLapFcsuxV3Vs4y8H5B+erdvhSvU7veK1mFbj9CMcNcIwqV6niu0H4CpSaI4ondjRUWEI3gAHcM5JBh5SezkyfOkWH6ThhJ87h2ZuzfiQQypcYsMJ3piWpRS8n/tE6swws/IVzEGnM0XxTG1NGRk/p3+kRipOnYAIgkMbc6aAglRNqklNnCYqqJjB4zTpKAZf+iH1KFoDCGTYTeYmDLoHlS8c4qp7duuVoD88qDA3AIjoEHzkEV3IA6aAAEOHgCz+DFerOm1qf1NW/NWb8z+yBT1vcPlVmtIQ==</latexit>

B

<latexit sha1_base64="ctajA+Ew79AFF9gq5hDForI4aIg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUCPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBzOmM8A==</latexit>

f

(b) Multitask

Input
Spaces

Output
Spaces

<latexit sha1_base64="of9K/QMmW5b0DqTlhGeKjiJwB6I=">AAACUXicbVDJTsMwFHwJWylLCxy5RK2Q2BQlULHcKrhwBImyqAmV4zqtVTuJbAdURfkHDnwLV/gHTv0UbrgpBwo8ydJ45j2/8QQJo1I5zsgwZ2bn5hdKi+Wl5ZXVSnVt/UbGqcCkhWMWi7sAScJoRFqKKkbuEkEQDxi5DQbnY/32kQhJ4+haDRPic9SLaEgxUprqVHe94o226AV+Zjca+7Z7um8fHeYeR6qPEcvu84dsu7GTlzvVumM7RVl/gfsN6s2at/cyag4vO2tGxevGOOUkUpghKduukyg/Q0JRzEhe9lJJEoQHqEfaGkaIE+lnhaHc2tJM1wpjoU+krIL9OZEhLuWQB7pzbFX+1sbkf1o7VeGJn9EoSRWJ8GRRmDJLxdY4IatLBcGKDTVAWFDt1cJ9JBBWOsepLTxlior4aeonWcCn70k3ZBKjhBQRur8D+wtuDmz3yG5c6SzPYFIl2IQabIMLx9CEC7iEFmB4hld4g3fjw/g0wTQnrabxPbMBU2UufQGBAbUz</latexit>

Y(4)

<latexit sha1_base64="w48mjB7gVF8hrfJVTCVI9+9Rodc=">AAACUHicbVDLTsMwENyUVymvFo5colZIrUBRgoD2WMGFI0j0ITWhclynWNhJZDugKso3cOFXuMI/cONPuIHbgkRbRrI8nt317o4fMyqVbX8YuaXlldW1/HphY3Nre6dY2m3LKBGYtHDEItH1kSSMhqSlqGKkGwuCuM9Ix7+/GMc7D0RIGoU3ahQTj6NhSAOKkdJSv1hzJ3/0xND3UtuqN45s6/TkyM5cjtQdRiztZrdp9biW9YsV27InMBeJ80MqzbJ7+PzRHF31S8aOO4hwwkmoMENS9hw7Vl6KhKKYkazgJpLECN+jIelpGiJOpJdO5snMA60MzCAS+oTKnKh/K1LEpRxxX2eOJ5XzsbH4X6yXqKDhpTSME0VCPG0UJMxUkTk2yBxQQbBiI00QFlTPauI7JBBW2saZLjxhiorocWaT1Oez73gQMIlRrBfWFjrzhi2S9rHlnFkn19rLc5giD/tQhio4UIcmXMIVtADDE7zAK7wZ78an8ZUzpqm/N+zBDHKFb1fYtho=</latexit>

X (2)

<latexit sha1_base64="XQUw4ueTRCnLe07nKfzZlTypYO8=">AAACUHicbVBLTsMwFHwpv1J+LSzZRCCkIqooQQjoroINyyJRCmpC5bhOa9VOItsBVVHOwIarsIU7sOtN2IGbgkSBkSyP5z37jcePGZXKtsdGYW5+YXGpuFxaWV1b3yhXNq9llAhMWjhikbjxkSSMhqSlqGLkJhYEcZ+Rtj88n9Tb90RIGoVXahQTj6N+SAOKkdJSt7zv5m90RN/3UrtmHdZrtlWvZy5HaoARS2+zu7Tq7GelbnnXtuwc5l/ifJHdxo578DRujJrdirHh9iKccBIqzJCUHceOlZcioShmJCu5iSQxwkPUJx1NQ8SJ9NLcT2buaaVnBpHQK1Rmrv68kSIu5Yj7unNiVf6uTcT/ap1EBadeSsM4USTE00FBwkwVmZOAzB4VBCs20gRhQbVXEw+QQFjpGGem8IQpKqKHmZ+kPp89x72ASYxikkfo/A7sL7k+tJxj6+hSZ3kGUxRhG3agCg6cQAMuoAktwPAIz/ACr8ab8W58FIxp6/cOWzCDQukTIXG1+Q==</latexit>

Y(1)

<latexit sha1_base64="nNwHx5XBzk7CFqX4sjoMZiVxnvs=">AAACSnicbVBNTsJAGJ0iKuIPoEs3DcQEIyGtGnVJdOMSE/lJaCXTYYoTZtpmZqohTQ/g3nu41Tt4Aa7hzrhxWlhY8CWTvHnf/3MCSoQ0jJmWW8uvb2wWtorbO7t7pXJlvyv8kCPcQT71ed+BAlPi4Y4kkuJ+wDFkDsU9Z3KTxHtPmAvie/dyGmCbwbFHXIKgVNKwXLPSHgM+duzIbBgNI7YYlI8I0qgfP0T1s+NYZRlNI4W+SswFqbWq1snrrDVtDytayRr5KGTYk4hCIQamEUg7glwSRHFctEKBA4gmcIwHinqQYWFH6SaxfqSUke76XD1P6qn6tyKCTIgpc1RmsqlYjiXif7FBKN0rOyJeEErsofkgN6S69PXEGn1EOEaSThWBiBO1q44eIYdIKgMzU1hIJeH+c+aSyGHZfzByqUAwUAcrC81lw1ZJ97RpXjTP75SX12COAjgEVVAHJrgELXAL2qADEHgBb+AdfGif2pf2rf3MU3PaouYAZJDL/wJBkrWr</latexit>

X (3)

<latexit sha1_base64="OeReBX56EwaFey0qfsqTqnJMlH0=">AAACUHicbVDLTsMwENyUVymvFo5cIhBSK1CVIAT0VsGFY5EoVGpC5bhOsWonke2AqijfwIVf4Qr/wK1/wg2cFCQCrGR7PLP27o4XMSqVZU2N0tz8wuJSebmysrq2vlGtbV7LMBaYdHHIQtHzkCSMBqSrqGKkFwmCuMfIjTc+z/SbeyIkDYMrNYmIy9EooD7FSGlqUG04+R99MfLcxDqwmoctvbVaqcORusOIJb30NqnbjXRQ3bWaVh7mX2B/gd32jrP/NG1POoOaseEMQxxzEijMkJR924qUmyChKGYkrTixJBHCYzQifQ0DxIl0k7yf1NzTzND0Q6FXoMyc/fkiQVzKCfd0Ztap/K1l5H9aP1b+qZvQIIoVCfCskB8zU4VmZpA5pIJgxSYaICyo7tXEd0ggrLSNhSo8ZoqK8KEwSeLx4j0a+kxiFOmBtYX2b8P+guvDpn3cPLrUXp7BLMqwDTtQBxtOoA0X0IEuYHiEZ3iBV+PNeDc+SsYs9fuELShEqfIJXuO2Hg==</latexit>

X (1)

<latexit sha1_base64="xcGFVswsiETIGBzOG7NBWp9O0l8=">AAACS3icbVDLTsJAFJ2iKOID0KWbBjTBSEirRl0S3bjERB6GVjIdpjBhpm1mphrS9Adc+yFu9R/8AL7DnXHhtLAQ9CaTnDnn3rlnjhNQIqRhTLXMymp2bT23kd/c2t4pFEu7beGHHOEW8qnPuw4UmBIPtySRFHcDjiFzKO444+tE7zxiLojv3clJgG0Ghx5xCYJSUf3igZW+0eNDx47MmlEzYotBOUKQRvfxQ1Q9PYrz/WLFqBtp6X+BOQeVRtk6fpk2Js1+SStYAx+FDHsSUShEzzQCaUeQS4IojvNWKHAA0RgOcU9BDzIs7Ci1EuuHihnors/V8aSesr8nIsiEmDBHdSZWxbKWkP9pvVC6l3ZEvCCU2EOzRW5IdenrSTb6gHCMJJ0oABEnyquORpBDJFWCC1tYSCXh/tPCTyKHLd6DgUsFggFOIzSXA/sL2id187x+dquyvAKzyoF9UAZVYIIL0AA3oAlaAIFn8ArewLv2oX1qX9r3rDWjzWf2wEJlsj+HJLXA</latexit>

Y(3)
<latexit sha1_base64="6PJl3LtkiHl0DK4eZaf6gM+EIT0=">AAACUXicbVDLTsMwENyEVymPFjhyiUBIvBQlUPG4VXDhCBKFSk2oHNdprdpJZDugKso/cOBbuMI/cOqncMNNe6CFlSyNZ3a94wkSRqVynKFhzs0vLC6Vlssrq2vrlerG5oOMU4FJA8csFs0AScJoRBqKKkaaiSCIB4w8Bv3rkf74TISkcXSvBgnxOepGNKQYKU21q4de8UZLdAM/s2u1Y9u9PLbPTnOPI9XDiGXN/Cnbrx3k5XZ117Gdoqy/wJ2A3fqOd/Q2rA9u2xtGxevEOOUkUpghKVuukyg/Q0JRzEhe9lJJEoT7qEtaGkaIE+lnhaHc2tNMxwpjoU+krIL9PZEhLuWAB7pzZFXOaiPyP62VqvDCz2iUpIpEeLwoTJmlYmuUkNWhgmDFBhogLKj2auEeEggrnePUFp4yRUX8MvWTLODT96QTMolRQooI3dnA/oKHE9s9s2t3OssrGFcJtmEH9sGFc6jDDdxCAzC8wjt8wKfxZXybYJrjVtOYzGzBVJkrP383tTI=</latexit>

X (4)

<latexit sha1_base64="I3YyWGVFEQFAQpN1woEMPY6SSLk=">AAACT3icbVDLTsJAFJ3iC/AFunTTSEwwkqY1KiyJblxiIoKhlUyHKU6caZuZqYY0/QVXfopb/QeXfIk747SwsOBJJjlzzr1z7xw3pERI05xqhZXVtfWNYqm8ubW9s1up7t2JIOIId1FAA953ocCU+LgriaS4H3IMmUtxz326Sv3eM+aCBP6tnITYYXDsE48gKJU0rNTt7I0BH7tObDRbDeP8rGEmNoPyEUEa3ycPcf30OCkPKzXTMDPoy8Sak1r70D55m7YnnWFV27VHAYoY9iWiUIiBZYbSiSGXBFGclO1I4BCiJzjGA0V9yLBw4mydRD9Sykj3Aq6OL/VM/dsRQybEhLmqMl1VLHqp+J83iKTXcmLih5HEPpoN8iKqy0BP89FHhGMk6UQRiDhRu+roEXKIpEoxN4VFVBIevOR+Erssfw9HHhUIhjiL0FoMbJncnRrWhXF2o7K8BDMUwQE4BHVggSZog2vQAV2AwCt4Bx/gU/vSvrWfwry0oM3JPsihUPoFli61uw==</latexit>

Y(2)
,

,

<latexit sha1_base64="RfRuwprlE7Cc78v8LwFLZFQMS3k=">AAACKnicbVDLSsNAFJ34rPXRVpeKDBZBEEoioi6Lbly2YNpCG8pkMmmHziRhZqKG0KVrt/oPfkC/w11x686fcPpYmNYDA2fOvZd7z3EjRqUyzbGxsrq2vrGZ28pv7+zuFYql/YYMY4GJjUMWipaLJGE0ILaiipFWJAjiLiNNd3A3qTcfiZA0DB5UEhGHo15AfYqR0pL9DM9h0i2WzYo5BVwm1pyUq0ej+s/L8ajWLRmFjhfimJNAYYakbFtmpJwUCUUxI8N8J5YkQniAeqStaYA4kU46vXYIT7XiQT8U+gUKTtW/EyniUibc1Z0cqb5crE3E/2rtWPk3TkqDKFYkwLNFfsygCuHEOvSoIFixRBOEBdW3QtxHAmGlA8ps4TFTVIRPGSepy7P/yPOZxCjShnWE1mJgy6RxUbGuKpd1neUtmCEHDsEJOAMWuAZVcA9qwAYYUPAK3sC78WF8GmPja9a6YsxnDkAGxvcvl9uqlg==</latexit>

x + y

<latexit sha1_base64="NJuxHjV9qpKX7E8Qo3xk5SS07eg=">AAACMHicbVDLSgNBEJyNr7g+4uPoZTEInsKuiHoRg148KhgVkhBmJ73JkJmdYaZXDUs+w6se/AN/wk9QT+LVr3Cz8WCMBQPVVd10T4VacIu+/+4UpqZnZueK8+7C4tJyaWV17dKqxDCoMSWUuQ6pBcFjqCFHAdfaAJWhgKuwdzL0r27AWK7iC+xraEraiXnEGcVMqjcQ7hAxpQO3tVL2K34Ob5IEP6R89OIe6qdX96y16pQabcUSCTEyQa2tB77GZkoNciZg4DYSC5qyHu1APaMxlWCbaX7zwNvKlLYXKZO9GL1c/T2RUmltX4ZZp6TYtX+9ofifV08wOmimPNYJQsxGi6JEeKi8YQBemxtgKPoZoczw7FaPdamhDLOYxrbIRCA36nbsJ2kox2vdjoRlVEMeYfA3sElyuVMJ9iq75365ekxGKJINskm2SUD2SZWckjNSI4wock8eyKPz7Lw5H87nqLXg/MyskzE4X99HPK14</latexit>

a
<latexit sha1_base64="w4Yu7yxXaCqWAMCkpvANPjzkygE=">AAACMHicbVDLSgNBEJyNr7g+4uPoZTEInsKuiHoRg148KhgVkhBmJ73JkJmdYaZXDUs+w6se/AN/wk9QT+LVr3Cz8WCMBQPVVd10T4VacIu+/+4UpqZnZueK8+7C4tJyaWV17dKqxDCoMSWUuQ6pBcFjqCFHAdfaAJWhgKuwdzL0r27AWK7iC+xraEraiXnEGcVMqjcQ7hAxDQdua6XsV/wc3iQJfkj56MU91E+v7llr1Sk12oolEmJkglpbD3yNzZQa5EzAwG0kFjRlPdqBekZjKsE20/zmgbeVKW0vUiZ7MXq5+nsipdLavgyzTkmxa/96Q/E/r55gdNBMeawThJiNFkWJ8FB5wwC8NjfAUPQzQpnh2a0e61JDGWYxjW2RiUBu1O3YT9JQjte6HQnLqIY8wuBvYJPkcqcS7FV2z/1y9ZiMUCQbZJNsk4Dskyo5JWekRhhR5J48kEfn2XlzPpzPUWvB+ZlZJ2Nwvr4BSQCteQ==</latexit>

b
<latexit sha1_base64="xne1uvXJyql5j77M3EX+Q7qGrWo=">AAACL3icbVDLTgIxFO34RHwAunQzkZi4IjPGqBsj6sYlJvKIQEindKCx7TTtHZVM+Au3uvEL/Ao/gbgxbv0Ly2Mh4EmanJ57b+49J1CcGfC8T2dhcWl5ZTW1ll7f2NzKZHPbFRPFmtAyiXikawE2lDNJy8CA05rSFIuA02pwfzWsVx+oNiySt9BTtClwR7KQEQxWumsAfQKA5KLfyua9gjeCO0/8Ccmff6TP1NsgXWrlnEyjHZFYUAmEY2PqvqegmWANjHDaTzdiQxUm97hD65ZKLKhpJqOT++6+VdpuGGn7JLgj9e9EgoUxPRHYToGha2ZrQ/G/Wj2G8LSZMKlioJKMF4UxdyFyh/7dNtOUAO9Zgolm9laXdLHGBGxKU1tEzIHp6HHKSRKI6b9qh9wQrKxhG6E/G9g8qRwW/OPC0Y2XL16iMVJoF+2hA+SjE1RE16iEyoggiZ7RC3p13p2B8+V8j1sXnMnMDpqC8/ML06OtRA==</latexit>

A
<latexit sha1_base64="7P0wx+QotSLW+BgZevfpR4jSK9A=">AAACL3icbVDLSgMxFM34rPXRqks3wSK4KjMi6kYsunFZwdpiWySTZjSYF8kdtQz9C7e68Qv8Cj9B3Ihb/8L0sbDWA4GTc+/l3nNiI7iDMPwIpqZnZufmcwv5xaXllUJxde3C6dRSVqNaaNuIiWOCK1YDDoI1jGVExoLV49uTfr1+x6zjWp1D17C2JNeKJ5wS8NJlC9gDAGTHvatiKSyHA+BJEo1I6egtf2he3vPVq9Wg0OpomkqmgAriXDMKDbQzYoFTwXr5VuqYIfSWXLOmp4pI5trZ4OQe3vJKByfa+qcAD9TfExmRznVl7DslgRv3t9YX/6s1U0gO2hlXJgWm6HBRkgoMGvf94w63jILoekKo5f5WTG+IJRR8SmNbZCqAW30/5iSL5fjfdBLhKDHesI8w+hvYJLnYKUd75d2zsFQ5RkPk0AbaRNsoQvuogk5RFdUQRQo9oif0HLwG78Fn8DVsnQpGM+toDMH3D9VmrUU=</latexit>

B

<latexit sha1_base64="xne1uvXJyql5j77M3EX+Q7qGrWo=">AAACL3icbVDLTgIxFO34RHwAunQzkZi4IjPGqBsj6sYlJvKIQEindKCx7TTtHZVM+Au3uvEL/Ao/gbgxbv0Ly2Mh4EmanJ57b+49J1CcGfC8T2dhcWl5ZTW1ll7f2NzKZHPbFRPFmtAyiXikawE2lDNJy8CA05rSFIuA02pwfzWsVx+oNiySt9BTtClwR7KQEQxWumsAfQKA5KLfyua9gjeCO0/8Ccmff6TP1NsgXWrlnEyjHZFYUAmEY2PqvqegmWANjHDaTzdiQxUm97hD65ZKLKhpJqOT++6+VdpuGGn7JLgj9e9EgoUxPRHYToGha2ZrQ/G/Wj2G8LSZMKlioJKMF4UxdyFyh/7dNtOUAO9Zgolm9laXdLHGBGxKU1tEzIHp6HHKSRKI6b9qh9wQrKxhG6E/G9g8qRwW/OPC0Y2XL16iMVJoF+2hA+SjE1RE16iEyoggiZ7RC3p13p2B8+V8j1sXnMnMDpqC8/ML06OtRA==</latexit>A

<latexit sha1_base64="7P0wx+QotSLW+BgZevfpR4jSK9A=">AAACL3icbVDLSgMxFM34rPXRqks3wSK4KjMi6kYsunFZwdpiWySTZjSYF8kdtQz9C7e68Qv8Cj9B3Ihb/8L0sbDWA4GTc+/l3nNiI7iDMPwIpqZnZufmcwv5xaXllUJxde3C6dRSVqNaaNuIiWOCK1YDDoI1jGVExoLV49uTfr1+x6zjWp1D17C2JNeKJ5wS8NJlC9gDAGTHvatiKSyHA+BJEo1I6egtf2he3vPVq9Wg0OpomkqmgAriXDMKDbQzYoFTwXr5VuqYIfSWXLOmp4pI5trZ4OQe3vJKByfa+qcAD9TfExmRznVl7DslgRv3t9YX/6s1U0gO2hlXJgWm6HBRkgoMGvf94w63jILoekKo5f5WTG+IJRR8SmNbZCqAW30/5iSL5fjfdBLhKDHesI8w+hvYJLnYKUd75d2zsFQ5RkPk0AbaRNsoQvuogk5RFdUQRQo9oif0HLwG78Fn8DVsnQpGM+toDMH3D9VmrUU=</latexit>B

<latexit sha1_base64="dTWutFY39QzIA7S7u049u0Jgzo4=">AAACL3icbVDLSgMxFM3UV3221aUiQRFclRkRdVl047IFq2I7SCbNaGiSGZI76jB06R+41X9w1z8RN+JW/AnT1oXTeiBwcu69nHtPEAtuwHXfncLU9MzsXHF+YXFpeaVUrqyemyjRlDVpJCJ9GRDDBFesCRwEu4w1IzIQ7CLongzqF3dMGx6pM0hj5ktyo3jIKQErXT3gNnDJDE6vy9tu1R0CTxLvl2zXNvqN78fNfv264pTanYgmkimgghjT8twY/Ixo4FSw3kI7MSwmtEtuWMtSRayPnw1X7uEdq3RwGGn7FOCh+nciI9KYVAa2UxK4NeO1gfhfrZVAeORnXMUJMEVHRmEiMER4cD/ucM0oiNQSQjW3u2J6SzShYFPKuchEANfRfe6SLJD5f9wJhaEktgfbCL3xwCbJ+V7VO6juN2yWx2iEIlpHW2gXeegQ1dApqqMmokihJ/SMXpxX5835cD5HrQXnd2YN5eB8/QB1pq0b</latexit>

x⇥ y

<latexit sha1_base64="NJuxHjV9qpKX7E8Qo3xk5SS07eg=">AAACMHicbVDLSgNBEJyNr7g+4uPoZTEInsKuiHoRg148KhgVkhBmJ73JkJmdYaZXDUs+w6se/AN/wk9QT+LVr3Cz8WCMBQPVVd10T4VacIu+/+4UpqZnZueK8+7C4tJyaWV17dKqxDCoMSWUuQ6pBcFjqCFHAdfaAJWhgKuwdzL0r27AWK7iC+xraEraiXnEGcVMqjcQ7hAxpQO3tVL2K34Ob5IEP6R89OIe6qdX96y16pQabcUSCTEyQa2tB77GZkoNciZg4DYSC5qyHu1APaMxlWCbaX7zwNvKlLYXKZO9GL1c/T2RUmltX4ZZp6TYtX+9ofifV08wOmimPNYJQsxGi6JEeKi8YQBemxtgKPoZoczw7FaPdamhDLOYxrbIRCA36nbsJ2kox2vdjoRlVEMeYfA3sElyuVMJ9iq75365ekxGKJINskm2SUD2SZWckjNSI4wock8eyKPz7Lw5H87nqLXg/MyskzE4X99HPK14</latexit>

a
<latexit sha1_base64="7P0wx+QotSLW+BgZevfpR4jSK9A=">AAACL3icbVDLSgMxFM34rPXRqks3wSK4KjMi6kYsunFZwdpiWySTZjSYF8kdtQz9C7e68Qv8Cj9B3Ihb/8L0sbDWA4GTc+/l3nNiI7iDMPwIpqZnZufmcwv5xaXllUJxde3C6dRSVqNaaNuIiWOCK1YDDoI1jGVExoLV49uTfr1+x6zjWp1D17C2JNeKJ5wS8NJlC9gDAGTHvatiKSyHA+BJEo1I6egtf2he3vPVq9Wg0OpomkqmgAriXDMKDbQzYoFTwXr5VuqYIfSWXLOmp4pI5trZ4OQe3vJKByfa+qcAD9TfExmRznVl7DslgRv3t9YX/6s1U0gO2hlXJgWm6HBRkgoMGvf94w63jILoekKo5f5WTG+IJRR8SmNbZCqAW30/5iSL5fjfdBLhKDHesI8w+hvYJLnYKUd75d2zsFQ5RkPk0AbaRNsoQvuogk5RFdUQRQo9oif0HLwG78Fn8DVsnQpGM+toDMH3D9VmrUU=</latexit>

B
<latexit sha1_base64="jyD1o5z4rC07J9P4bYCY5lWV1t4=">AAACKHicbVC7TsMwFHXKq4RHWxhZIiokpipBCFgQFSyMRdCH1IbKcZzWqp1YtgNEUT+BFT6AjR9hZau68iW4j4G0HMnS8bn36t5zPE6JVLY9NnIrq2vrG/lNc2t7Z7dQLO01ZBQLhOsoopFoeVBiSkJcV0RR3OICQ+ZR3PQGN5N68wkLSaLwQSUcuwz2QhIQBJWW7l8ek26xbFfsKaxl4sxJ+erLvOQfI7PWLRmFjh+hmOFQIQqlbDs2V24KhSKI4qHZiSXmEA1gD7c1DSHD0k2ntw6tI634VhAJ/UJlTdW/EylkUibM050Mqr5crE3E/2rtWAUXbkpCHiscotmiIKaWiqyJccsnAiNFE00gEkTfaqE+FBApHU9mC4upIiJ6zjhJPZb9cz+gEkGuDesIncXAlknjpOKcVU7v7HL1GsyQBwfgEBwDB5yDKrgFNVAHCPTAK3gD78an8W2MjPGsNWfMZ/ZBBsbPL44nqgs=</latexit>

xy<latexit sha1_base64="+vqBKRCvFBAM8k4sF1rJLwH5+2M=">AAACK3icbVDLSgMxFM3UVx0fbXXpZrAIrsqMiLoRi25cVrAPaEu5k8m0sclMSDJKGfoPbnXr2u/wA1yI4tb/MH0sbOuBwMm593LvOb5gVGnX/bQyS8srq2vZdXtjc2s7ly/s1FScSEyqOGaxbPigCKMRqWqqGWkISYD7jNT9/tWoXr8nUtE4utUDQdocuhENKQZtpFoLmOhBJ190S+4YziLxpqR48Wafi5cPu9IpWLlWEOOEk0hjBko1PVfodgpSU8zI0G4ligjAfeiSpqERcKLa6fjcoXNglMAJY2lepJ2x+nciBa7UgPumk4PuqfnaSPyv1kx0eNZOaSQSTSI8WRQmzNGxM/LuBFQSrNnAEMCSmlsd3AMJWJuEZrbwhGkq44cZJ6nPZ/8iCJnCIIxhE6E3H9giqR2VvJPS8Y1bLF+iCbJoD+2jQ+ShU1RG16iCqgijO/SIntCz9Wq9W1/W96Q1Y01ndtEMrJ9f5bGrPA==</latexit>↵
<latexit sha1_base64="sq4iDUshEUpKZ6/NBcEpSDNaO0k=">AAACKnicbVDLSsNAFJ3UV62PtrpUJFgEVyURUZdFNy5bMLXQhjKZTNqhM0mYuVFK6NK1W/0HP6Df4a64dedPOH0sTOuBgTPn3su953gxZwosa2Lk1tY3Nrfy24Wd3b39Yql80FRRIgl1SMQj2fKwopyF1AEGnLZiSbHwOH30BnfT+uMTlYpF4QMMY+oK3AtZwAgGLTkdjwLulipW1ZrBXCX2glRqx+PGz8vJuN4tG8WOH5FE0BAIx0q1bSsGN8USGOF0VOgkisaYDHCPtjUNsaDKTWfXjswzrfhmEEn9QjBn6t+JFAulhsLTnQJDXy3XpuJ/tXYCwY2bsjBOgIZkvihIuAmRObVu+kxSAnyoCSaS6VtN0scSE9ABZbaIhAOT0XPGSeqJ7D/2A64IjrVhHaG9HNgqaV5U7avqZUNneYvmyKMjdIrOkY2uUQ3dozpyEEEMvaI39G58GJ/GxPiat+aMxcwhysD4/gWrQKsy</latexit>

�

<latexit sha1_base64="+vqBKRCvFBAM8k4sF1rJLwH5+2M=">AAACK3icbVDLSgMxFM3UVx0fbXXpZrAIrsqMiLoRi25cVrAPaEu5k8m0sclMSDJKGfoPbnXr2u/wA1yI4tb/MH0sbOuBwMm593LvOb5gVGnX/bQyS8srq2vZdXtjc2s7ly/s1FScSEyqOGaxbPigCKMRqWqqGWkISYD7jNT9/tWoXr8nUtE4utUDQdocuhENKQZtpFoLmOhBJ190S+4YziLxpqR48Wafi5cPu9IpWLlWEOOEk0hjBko1PVfodgpSU8zI0G4ligjAfeiSpqERcKLa6fjcoXNglMAJY2lepJ2x+nciBa7UgPumk4PuqfnaSPyv1kx0eNZOaSQSTSI8WRQmzNGxM/LuBFQSrNnAEMCSmlsd3AMJWJuEZrbwhGkq44cZJ6nPZ/8iCJnCIIxhE6E3H9giqR2VvJPS8Y1bLF+iCbJoD+2jQ+ShU1RG16iCqgijO/SIntCz9Wq9W1/W96Q1Y01ndtEMrJ9f5bGrPA==</latexit>↵
<latexit sha1_base64="MD4JKADh7fK+lMFxZrlpC+Gvsds=">AAACL3icbVDLSgMxFM3UVx0fbXXpZrAIrsqMiLoRS924rGAf2A4lk2ba0CQTkoxShv6FW934BX6Fn1DciFv/wkzrwmm9EDg5517uPScQlCjtuh9WbmV1bX0jv2lvbe/sFoqlvaaKYolwA0U0ku0AKkwJxw1NNMVtITFkAcWtYHSd6q0HLBWJ+J0eC+wzOOAkJAhqQ913GdRDyZLapFcsuxV3Vs4y8H5B+erdvhSvU7veK1mFbj9CMcNcIwqV6niu0H4CpSaI4ondjRUWEI3gAHcM5JBh5SezkyfOkWH6ThhJ87h2ZuzfiQQypcYsMJ3piWpRS8n/tE6swws/IVzEGnM0XxTG1NGRk/p3+kRipOnYAIgkMbc6aAglRNqklNnCYqqJjB4zTpKAZf+iH1KFoDCGTYTeYmDLoHlS8c4qp7duuVoD88qDA3AIjoEHzkEV3IA6aAAEOHgCz+DFerOm1qf1NW/NWb8z+yBT1vcPlVmtIQ==</latexit>

B

<latexit sha1_base64="+vqBKRCvFBAM8k4sF1rJLwH5+2M=">AAACK3icbVDLSgMxFM3UVx0fbXXpZrAIrsqMiLoRi25cVrAPaEu5k8m0sclMSDJKGfoPbnXr2u/wA1yI4tb/MH0sbOuBwMm593LvOb5gVGnX/bQyS8srq2vZdXtjc2s7ly/s1FScSEyqOGaxbPigCKMRqWqqGWkISYD7jNT9/tWoXr8nUtE4utUDQdocuhENKQZtpFoLmOhBJ190S+4YziLxpqR48Wafi5cPu9IpWLlWEOOEk0hjBko1PVfodgpSU8zI0G4ligjAfeiSpqERcKLa6fjcoXNglMAJY2lepJ2x+nciBa7UgPumk4PuqfnaSPyv1kx0eNZOaSQSTSI8WRQmzNGxM/LuBFQSrNnAEMCSmlsd3AMJWJuEZrbwhGkq44cZJ6nPZ/8iCJnCIIxhE6E3H9giqR2VvJPS8Y1bLF+iCbJoD+2jQ+ShU1RG16iCqgijO/SIntCz9Wq9W1/W96Q1Y01ndtEMrJ9f5bGrPA==</latexit>

↵ <latexit sha1_base64="MD4JKADh7fK+lMFxZrlpC+Gvsds=">AAACL3icbVDLSgMxFM3UVx0fbXXpZrAIrsqMiLoRS924rGAf2A4lk2ba0CQTkoxShv6FW934BX6Fn1DciFv/wkzrwmm9EDg5517uPScQlCjtuh9WbmV1bX0jv2lvbe/sFoqlvaaKYolwA0U0ku0AKkwJxw1NNMVtITFkAcWtYHSd6q0HLBWJ+J0eC+wzOOAkJAhqQ913GdRDyZLapFcsuxV3Vs4y8H5B+erdvhSvU7veK1mFbj9CMcNcIwqV6niu0H4CpSaI4ondjRUWEI3gAHcM5JBh5SezkyfOkWH6ThhJ87h2ZuzfiQQypcYsMJ3piWpRS8n/tE6swws/IVzEGnM0XxTG1NGRk/p3+kRipOnYAIgkMbc6aAglRNqklNnCYqqJjB4zTpKAZf+iH1KFoDCGTYTeYmDLoHlS8c4qp7duuVoD88qDA3AIjoEHzkEV3IA6aAAEOHgCz+DFerOm1qf1NW/NWb8z+yBT1vcPlVmtIQ==</latexit>

B

<latexit sha1_base64="NJuxHjV9qpKX7E8Qo3xk5SS07eg=">AAACMHicbVDLSgNBEJyNr7g+4uPoZTEInsKuiHoRg148KhgVkhBmJ73JkJmdYaZXDUs+w6se/AN/wk9QT+LVr3Cz8WCMBQPVVd10T4VacIu+/+4UpqZnZueK8+7C4tJyaWV17dKqxDCoMSWUuQ6pBcFjqCFHAdfaAJWhgKuwdzL0r27AWK7iC+xraEraiXnEGcVMqjcQ7hAxpQO3tVL2K34Ob5IEP6R89OIe6qdX96y16pQabcUSCTEyQa2tB77GZkoNciZg4DYSC5qyHu1APaMxlWCbaX7zwNvKlLYXKZO9GL1c/T2RUmltX4ZZp6TYtX+9ofifV08wOmimPNYJQsxGi6JEeKi8YQBemxtgKPoZoczw7FaPdamhDLOYxrbIRCA36nbsJ2kox2vdjoRlVEMeYfA3sElyuVMJ9iq75365ekxGKJINskm2SUD2SZWckjNSI4wock8eyKPz7Lw5H87nqLXg/MyskzE4X99HPK14</latexit>

a
<latexit sha1_base64="7P0wx+QotSLW+BgZevfpR4jSK9A=">AAACL3icbVDLSgMxFM34rPXRqks3wSK4KjMi6kYsunFZwdpiWySTZjSYF8kdtQz9C7e68Qv8Cj9B3Ihb/8L0sbDWA4GTc+/l3nNiI7iDMPwIpqZnZufmcwv5xaXllUJxde3C6dRSVqNaaNuIiWOCK1YDDoI1jGVExoLV49uTfr1+x6zjWp1D17C2JNeKJ5wS8NJlC9gDAGTHvatiKSyHA+BJEo1I6egtf2he3vPVq9Wg0OpomkqmgAriXDMKDbQzYoFTwXr5VuqYIfSWXLOmp4pI5trZ4OQe3vJKByfa+qcAD9TfExmRznVl7DslgRv3t9YX/6s1U0gO2hlXJgWm6HBRkgoMGvf94w63jILoekKo5f5WTG+IJRR8SmNbZCqAW30/5iSL5fjfdBLhKDHesI8w+hvYJLnYKUd75d2zsFQ5RkPk0AbaRNsoQvuogk5RFdUQRQo9oif0HLwG78Fn8DVsnQpGM+toDMH3D9VmrUU=</latexit>

B

<latexit sha1_base64="xQu75I9eS4yTRt820vklhyvbKOc=">AAACKnicbVDLTgIxFG3xhfgAdOlmIpi4IjPEqEuiiXGJiQMkMCGdTgca2s6k7WjIhG9wq//g17gjbv0QC8zCAU/S5PTce3PvOX7MqNK2PYeFre2d3b3ifung8Oi4XKmedFSUSExcHLFI9nykCKOCuJpqRnqxJIj7jHT9yf2i3n0hUtFIPOtpTDyORoKGFCNtJLf+MHTqw0rNbthLWJvEyUgNZGgPq7A8CCKccCI0ZkipvmPH2kuR1BQzMisNEkVihCdoRPqGCsSJ8tLltTPrwiiBFUbSPKGtpfp3IkVcqSn3TSdHeqzWawvxv1o/0eGtl1IRJ5oIvFoUJszSkbWwbgVUEqzZ1BCEJTW3WniMJMLaBJTbwhOmqYxec05Sn+f/cRAyhVFsDJsInfXANkmn2XCuG1dPzVrrLguzCM7AObgEDrgBLfAI2sAFGFDwBt7BB/yEX3AOv1etBZjNnIIc4M8vWWKmrw==</latexit>

F1

<latexit sha1_base64="2Hl+2RM5ZIXdw+qlUx/BRvnBy0E=">AAACKnicbVDLTgIxFG19Ij4AXbqZCCauyAwx6pLoxiUmDpDAhHQ6HWhoO03b0ZAJ3+BW/8GvcUfc+iGWx8IBT9Lk9Nx7c+85oWRUG9edwa3tnd29/cJB8fDo+KRUrpy2dZIqTHycsER1Q6QJo4L4hhpGulIRxENGOuH4YV7vvBClaSKezUSSgKOhoDHFyFjJr/GBVxuUq27dXcDZJN6KVMEKrUEFlvpRglNOhMEMad3zXGmCDClDMSPTYj/VRCI8RkPSs1QgTnSQLa6dOpdWiZw4UfYJ4yzUvxMZ4lpPeGg7OTIjvV6bi//VeqmJ74KMCpkaIvByUZwyxyTO3LoTUUWwYRNLEFbU3urgEVIIGxtQbgtPmaEqec05yUKe/8soZhojaQ3bCL31wDZJu1H3burXT41q834VZgGcgwtwBTxwC5rgEbSADzCg4A28gw/4Cb/gDH4vW7fgauYM5AB/fgGeZabW</latexit>m1

<latexit sha1_base64="z0KhPEylrPktMm4vXi6QJFlhQC4=">AAACKnicbVDLTgIxFG3xhfgAdOlmIpi4IjPEqEuiiXGJiQMkMCGdTgca2pmm7WjIhG9wq//g17gjbv0QC8zCAU/S5PTce3PvOb5gVGnbnsPC1vbO7l5xv3RweHRcrlRPOipOJCYujlksez5ShNGIuJpqRnpCEsR9Rrr+5H5R774QqWgcPeupIB5Ho4iGFCNtJLf+MGzWh5Wa3bCXsDaJk5EayNAeVmF5EMQ44STSmCGl+o4ttJciqSlmZFYaJIoIhCdoRPqGRogT5aXLa2fWhVECK4yleZG2lurfiRRxpabcN50c6bFary3E/2r9RIe3XkojkWgS4dWiMGGWjq2FdSugkmDNpoYgLKm51cJjJBHWJqDcFp4wTWX8mnOS+jz/F0HIFEbCGDYROuuBbZJOs+FcN66emrXWXRZmEZyBc3AJHHADWuARtIELMKDgDbyDD/gJv+Acfq9aCzCbOQU5wJ9fWyWmsA==</latexit>

F2

<latexit sha1_base64="RwrCepFqDjV9hHoyTlDVO3eYrco=">AAACKnicbVDLTgIxFO34RHwAunTTCCauyAwx6pLoxiUmDpDAhHQ6HWhoO03b0ZAJ3+BW/8GvcUfc+iEWmIWAJ2lyeu69ufecUDKqjevOnK3tnd29/cJB8fDo+KRUrpy2dZIqTHycsER1Q6QJo4L4hhpGulIRxENGOuH4YV7vvBClaSKezUSSgKOhoDHFyFjJr/FBozYoV926uwDcJF5OqiBHa1BxSv0owSknwmCGtO55rjRBhpShmJFpsZ9qIhEeoyHpWSoQJzrIFtdO4aVVIhgnyj5h4EL9O5EhrvWEh7aTIzPS67W5+F+tl5r4LsiokKkhAi8XxSmDJoFz6zCiimDDJpYgrKi9FeIRUggbG9DKFp4yQ1XyuuIkC/nqX0Yx0xhJa9hG6K0Htknajbp3U79+alSb93mYBXAOLsAV8MAtaIJH0AI+wICCN/AOPpxP58uZOd/L1i0nnzkDK3B+fgGgKKbX</latexit>m2

<latexit sha1_base64="EeCnO/vJ3jUEzsgK85YYZ8rPgFg=">AAACKnicbVDLTsJAFJ36RHwAunTTCCauSItGXRJNjEtMLJBAQ6bTKUyYRzMz1ZCGb3Cr/+DXuCNu/RAH6MKCJ5nkzLn35t5zgpgSpR1nZm1sbm3v7Bb2ivsHh0elcuW4rUQiEfaQoEJ2A6gwJRx7mmiKu7HEkAUUd4Lx/bzeecFSEcGf9STGPoNDTiKCoDaSV3sYXNYG5apTdxaw14mbkSrI0BpUrFI/FChhmGtEoVI914m1n0KpCaJ4WuwnCscQjeEQ9wzlkGHlp4trp/a5UUI7EtI8ru2F+ncihUypCQtMJ4N6pFZrc/G/Wi/R0a2fEh4nGnO0XBQl1NbCnlu3QyIx0nRiCESSmFttNIISIm0Cym1hCdVEiteckzRg+X8cRlQhGBvDJkJ3NbB10m7U3ev61VOj2rzLwiyAU3AGLoALbkATPIIW8AACBLyBd/BhfVpf1sz6XrZuWNnMCcjB+vkFXOimsQ==</latexit>

F3

<latexit sha1_base64="8woDH7p7a9JXI13vgcl5bAfBZdw=">AAACKnicbVDLTgIxFG3xhfgAdOlmIpi4IjNo1CXRjUtMHCCBCel0OtDQdiZtR0MmfINb/Qe/xh1x64dYYBYOeJImp+fem3vP8WNGlbbtOSxsbe/s7hX3SweHR8flSvWko6JEYuLiiEWy5yNFGBXE1VQz0oslQdxnpOtPHhb17guRikbiWU9j4nE0EjSkGGkjuXU+vKoPKzW7YS9hbRInIzWQoT2swvIgiHDCidCYIaX6jh1rL0VSU8zIrDRIFIkRnqAR6RsqECfKS5fXzqwLowRWGEnzhLaW6t+JFHGlptw3nRzpsVqvLcT/av1Eh3deSkWcaCLwalGYMEtH1sK6FVBJsGZTQxCW1Nxq4TGSCGsTUG4LT5imMnrNOUl9nv/HQcgURrExbCJ01gPbJJ1mw7lpXD81a637LMwiOAPn4BI44Ba0wCNoAxdgQMEbeAcf8BN+wTn8XrUWYDZzCnKAP7+h66bY</latexit>m3

<latexit sha1_base64="PGkRsXpa959Oeq9JOA16C0BF8tg=">AAACKnicbVDLTgIxFO34RHwAunQzEUxckRlC1CXRxLjExAESmJBOpwMN7bRpOxoy4Rvc6j/4Ne6IWz/EArNwwJM0OT333tx7TiAoUdpx5tbW9s7u3n7hoHh4dHxSKldOO4onEmEPccplL4AKUxJjTxNNcU9IDFlAcTeY3C/q3RcsFeHxs54K7DM4iklEENRG8moPw2ZtWK46dWcJe5O4GamCDO1hxSoNQo4ShmONKFSq7zpC+ymUmiCKZ8VBorCAaAJHuG9oDBlWfrq8dmZfGiW0Iy7Ni7W9VP9OpJApNWWB6WRQj9V6bSH+V+snOrr1UxKLROMYrRZFCbU1txfW7ZBIjDSdGgKRJOZWG42hhEibgHJbWEI1kfw15yQNWP4vwogqBIUxbCJ01wPbJJ1G3b2uN58a1dZdFmYBnIMLcAVccANa4BG0gQcQIOANvIMP69P6subW96p1y8pmzkAO1s8vXqumsg==</latexit>

F4

<latexit sha1_base64="tkfbMi7tANiR/XVtBCNgYPsknnw=">AAACKnicbVDLTgIxFO3gC/EB6NLNRDBxRWYIUZdENy4xcYAEJqTT6UBDO23ajoZM+Aa3+g9+jTvi1g+xwCwc8CRNTs+9N/eeEwhKlHachVXY2d3bPygelo6OT07LlepZV/FEIuwhTrnsB1BhSmLsaaIp7guJIQso7gXTh2W994KlIjx+1jOBfQbHMYkIgtpIXp2NWvVRpeY0nBXsbeJmpAYydEZVqzwMOUoYjjWiUKmB6wjtp1Bqgiiel4aJwgKiKRzjgaExZFj56erauX1llNCOuDQv1vZK/TuRQqbUjAWmk0E9UZu1pfhfbZDo6M5PSSwSjWO0XhQl1NbcXlq3QyIx0nRmCESSmFttNIESIm0Cym1hCdVE8teckzRg+b8II6oQFMawidDdDGybdJsN96bRemrW2vdZmEVwAS7BNXDBLWiDR9ABHkCAgDfwDj6sT+vLWljf69aClc2cgxysn1+jrqbZ</latexit>m4

<latexit sha1_base64="Cw8iOrgIIYSar1WnlTYUS96whaE=">AAACKnicbVDLTgIxFG3xhfgAdOlmIpi4IjPE15LoxiUmDpDAhHQ6HWhoO5O2oyETvsGt/oNf44649UMsMAsHPEmT03Pvzb3n+DGjStv2HBa2tnd294r7pYPDo+NypXrSUVEiMXFxxCLZ85EijAriaqoZ6cWSIO4z0vUnD4t694VIRSPxrKcx8TgaCRpSjLSR3DofXteHlZrdsJewNomTkRrI0B5WYXkQRDjhRGjMkFJ9x461lyKpKWZkVhokisQIT9CI9A0ViBPlpctrZ9aFUQIrjKR5QltL9e9EirhSU+6bTo70WK3XFuJ/tX6iwzsvpSJONBF4tShMmKUja2HdCqgkWLOpIQhLam618BhJhLUJKLeFJ0xTGb3mnKQ+z//jIGQKo9gYNhE664Ftkk6z4dw0rp6atdZ9FmYRnIFzcAkccAta4BG0gQswoOANvIMP+Am/4Bx+r1oLMJs5BTnAn1+lcaba</latexit>m5
<latexit sha1_base64="JtIyXTA7XTcP2zf+grU84w/FCm0=">AAACKnicbVDLTsJAFJ36RHwAunTTCCauSEt8LYkmxiUmFkigIdPpFCbMo5mZakjDN7jVf/Br3BG3fogDdGHBk0xy5tx7c+85QUyJ0o4zszY2t7Z3dgt7xf2Dw6NSuXLcViKRCHtIUCG7AVSYEo49TTTF3VhiyAKKO8H4fl7vvGCpiODPehJjn8EhJxFBUBvJqz0MrmqDctWpOwvY68TNSBVkaA0qVqkfCpQwzDWiUKme68TaT6HUBFE8LfYThWOIxnCIe4ZyyLDy08W1U/vcKKEdCWke1/ZC/TuRQqbUhAWmk0E9Uqu1ufhfrZfo6NZPCY8TjTlaLooSamthz63bIZEYaToxBCJJzK02GkEJkTYB5bawhGoixWvOSRqw/D8OI6oQjI1hE6G7Gtg6aTfq7nX98qlRbd5lYRbAKTgDF8AFN6AJHkELeAABAt7AO/iwPq0va2Z9L1s3rGzmBORg/fwCYG6msw==</latexit>

F5

(c) Compositional multitask

Figure 2: Compositional problem graph. Each node in the graph represents a random
variable for a representational space, produced by the output of a module or function. STL
agents assume that tasks are unrelated and learn modules in isolation, while monolithic MTL
agents assume that all tasks share a single module. In contrast, more general compositional
MTL agents assume that tasks selectively share a set of modules, yielding different solutions
to each task constructed from common solutions to subtasks.

54

As a first example that matches the latter formulation, consider the following set of tasks:

• Z(1): count the number of cats in an image

• Z(2): locate the largest cat in an image

• Z(3): locate the largest dog in an image

• Z(4): count the number of dogs in an image

These tasks can be decomposed into: detect cats, detect dogs, locate largest, and count. If an

agent learns tasks Z(1), Z(2), and Z(3), and along the way discovers generalizable solutions

to each of the four subtasks, then solving Z(4) would simply involve reusing the solutions to

the dog detector and the general counter.

Consider another example from the language domain. In particular, the set of tasks may be:

• Z(1): translate text from English to Spanish

• Z(2): translate text from Spanish to Italian

• Z(3): translate text from English to Italian

As above, if the learner has learned to solve tasks Z(1) and Z(2), it could solve task Z(3) by

first translating the text from English to Spanish and subsequently translating the resulting

text from Spanish to Italian. Here, Spanish would act as a pivot language.

This definition can be applied to RL problems as well. Consider the following task components

in a robotic manipulation setting:

• Robot manipulator: diverse robotic arms with different dynamics and kinematic

configurations can be used to solve each task.

• Objective: each task might have a different objective, like placing an object on a shelf

or throwing it in the trash.

55

• Obstacle: various obstacles may impede the robot’s actions, such as a door frame the

robot needs to go through or a wall the robot needs to circumvent.

• Object: different objects require different grasping strategies.

One way to solve each robot-objective-obstacle-object task is to decompose it into subtasks:

grasp the object, avoid the obstacle, reach the objective, and drive the robot’s joints.

Chapter 7 instantiates these ideas into a compositional evaluation benchmark for RL. Note

that this is not equivalent to the temporal composition of skills or options. Instead, each

time step requires solving all subtasks simultaneously (e.g., the actions must be tailored to

the current robot arm at all times). A detailed description of the problem formulation for the

RL case, along with an in-depth comparison to temporal composition, is given in Chapter 5.

The purpose of the empirical evaluations in this dissertation was two-fold: to demonstrate

that compositional solutions arise in a range of interesting, realistic problems, and to show

that the proposed algorithms can find such compositional solutions in complex problems.

With these objectives in mind, the experiments evaluated supervised learning methods on

standard benchmark tasks that are not explicitly compositional, while they evaluated RL

methods on explicitly compositional tasks. The latter enabled a more in-depth analysis of

the modularity of the learned solutions.

3.4. The Lifelong Compositional Learning Framework

This section describes the main contribution developed in this dissertation: a general-

purpose framework for lifelong learning of compositional structures. The framework admits a

variety of forms of modules (e.g., linear factors and deep neural net modules), compositional

structures (e.g., soft weighting and hard selection), base learning algorithms (e.g., stochastic

gradient descent and PG learning), and knowledge retention mechanisms (e.g., elastic weight

consolidation and experience replay). To demonstrate the flexibility of the framework,

the remainder of this dissertation presents multiple algorithmic instantiations of it for the

supervised and RL settings, along with extensive empirical evaluations of each method.

56

The framework stores knowledge in a set of k shared componentsM = {m1, . . . ,mk} that are

acquired and refined over the agent’s lifetime. Each component or module mi = mφi ∈M is

a self-contained, reusable function parameterized by φi that can be combined with other

components. The agent reconstructs each task’s predictive function f (t) via a task-specific

structure s(t) : X (t)×Mk 7→ F , withMk being the set of possible collections of k components,

such that f (t)(x) = s(t)(x,M)(x), where s(t) is parameterized by a vector ψ(t). Note that

s(t) yields a function from F . The structure functions select the modules from M and the

order in which to compose them to construct the model for each task (the f (t)’s).

3.4.1. Example Compositional Structures

The following paragraphs describe specific examples of components and structures that can

be learned within the proposed framework. Each example structure is accompanied by a

description of how it relates to the graph in Figure 2c.

<latexit sha1_base64="feYJlqRAt9N6RJRnwkNptAVwjek=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIehGKXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7qZ+6wmV5rF8MOME/YgOJA85o8ZK9ZteqexW3BnIMvFyUoYctV7pq9uPWRqhNExQrTuemxg/o8pwJnBS7KYaE8pGdIAdSyWNUPvZ7NAJObVKn4SxsiUNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa89jMuk9SgZPNFYSqIicn0a9LnCpkRY0soU9zeStiQKsqMzaZoQ/AWX14mzfOKd1nx6hfl6m0eRwGO4QTOwIMrqMI91KABDBCe4RXenEfnxXl3PuatK04+cwR/4Hz+AI7FjMc=</latexit>=
<latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥

<latexit sha1_base64="FG9kwABaXzYYyOjlAlQsA9HVrTU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix68SK0YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqd+6wmV5rF8MOME/YgOJA85o8ZK9fteqexW3BnIMvFyUoYctV7pq9uPWRqhNExQrTuemxg/o8pwJnBS7KYaE8pGdIAdSyWNUPvZ7NAJObVKn4SxsiUNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa89jMuk9SgZPNFYSqIicn0a9LnCpkRY0soU9zeStiQKsqMzaZoQ/AWX14mzfOKd1nx6hfl6k0eRwGO4QTOwIMrqMId1KABDBCe4RXenEfnxXl3PuatK04+cwR/4Hz+AKcFjNc=</latexit>

M
<latexit sha1_base64="IgmDDEU+/lmm19GdQlwe/sEcKEc=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSLUS0lE1GPRi8cK9gPaWDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6wHHC/YgOlAgFo2ilVviYVfBs0iuV3ao7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx27oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uw2s/EypJkSs2XxSmkmBMpr+TvtCcoRxbQpkW9lbChlRThjahog3BW3x5mTTPq95l1bu/KNdu8jgKcAwnUAEPrqAGd1CHBjAYwTO8wpuTOC/Ou/Mxb11x8pkj+APn8wfjNo9H</latexit>

f (t)
<latexit sha1_base64="bQS0TNJYpoE9dnJit4JHmh4899s=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSLUS0lE1GPRi8cK9gPaWDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6wHHC/YgOlAgFo2illnnMKng26ZXKbtWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7d0JOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4bWfCZWkyBWbLwpTSTAm099JX2jOUI4toUwLeythQ6opQ5tQ0YbgLb68TJrnVe+y6t1flGs3eRwFOIYTqIAHV1CDO6hDAxiM4Ble4c1JnBfn3fmYt644+cwR/IHz+QP3OI9U</latexit>

s(t)

(a) Linear model combinations

<latexit sha1_base64="IgmDDEU+/lmm19GdQlwe/sEcKEc=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSLUS0lE1GPRi8cK9gPaWDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6wHHC/YgOlAgFo2ilVviYVfBs0iuV3ao7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx27oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uw2s/EypJkSs2XxSmkmBMpr+TvtCcoRxbQpkW9lbChlRThjahog3BW3x5mTTPq95l1bu/KNdu8jgKcAwnUAEPrqAGd1CHBjAYwTO8wpuTOC/Ou/Mxb11x8pkj+APn8wfjNo9H</latexit>

f (t)

<latexit sha1_base64="XHltJrj6Cu/RtT6Abf+eksTQEPo=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyqqMegF48RzEOSNcxOZpMhM7vLTK8QlnyFFw+KePVzvPk3Th4HTSxoKKq66e4KEikMuu63s7S8srq2ntvIb25t7+wW9vbrJk414zUWy1g3A2q4FBGvoUDJm4nmVAWSN4LBzdhvPHFtRBzd4zDhvqK9SISCUbTSg+mcPWYlPBl1CkW37E5AFok3I0WYodopfLW7MUsVj5BJakzLcxP0M6pRMMlH+XZqeELZgPZ4y9KIKm78bHLwiBxbpUvCWNuKkEzU3xMZVcYMVWA7FcW+mffG4n9eK8Xwys9ElKTIIzZdFKaSYEzG35Ou0JyhHFpCmRb2VsL6VFOGNqO8DcGbf3mR1E/L3kXZuzsvVq5nceTgEI6gBB5cQgVuoQo1YKDgGV7hzdHOi/PufExbl5zZzAH8gfP5AyMxj/o=</latexit>

s
(t)
3

<latexit sha1_base64="J9oR6zruWlm6L4Zw1lXhPgCQjGU=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJewGUY9BLx4jmIcka5idTJIhs7PLTK8QlnyFFw+KePVzvPk3TpI9aGJBQ1HVTXdXEEth0HW/nZXVtfWNzdxWfntnd2+/cHDYMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbqZ+84lrIyJ1j+OY+yEdKNEXjKKVHky38piW8GzSLRTdsjsDWSZeRoqQodYtfHV6EUtCrpBJakzbc2P0U6pRMMkn+U5ieEzZiA5421JFQ278dHbwhJxapUf6kbalkMzU3xMpDY0Zh4HtDCkOzaI3Ff/z2gn2r/xUqDhBrth8UT+RBCMy/Z70hOYM5dgSyrSwtxI2pJoytBnlbQje4svLpFEpexdl7+68WL3O4sjBMZxACTy4hCrcQg3qwCCEZ3iFN0c7L8678zFvXXGymSP4A+fzByGnj/k=</latexit>

s
(t)
2

<latexit sha1_base64="EUGRrEJ21iPvd58ctPUyNezZwMc=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoMQL2FXRD0GvXiMYB6SrGF2MkmGzOwuM71CWPIVXjwo4tXP8ebfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGSxHyOgqUvBVrTlUgeTMY3Uz95hPXRkThPY5j7is6CEVfMIpWejBd7zEt4+mkWyy5FXcGsky8jJQgQ61b/Or0IpYoHiKT1Ji258bop1SjYJJPCp3E8JiyER3wtqUhVdz46ezgCTmxSo/0I20rRDJTf0+kVBkzVoHtVBSHZtGbiv957QT7V34qwjhBHrL5on4iCUZk+j3pCc0ZyrEllGlhbyVsSDVlaDMq2BC8xZeXSeOs4l1UvLvzUvU6iyMPR3AMZfDgEqpwCzWoAwMFz/AKb452Xpx352PemnOymUP4A+fzByAdj/g=</latexit>

s
(t)
1

<latexit sha1_base64="sfdGg2dfd1lIb7mH12XPFqFQ61M=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoMQL2FXRD0GvXiMYB6SrGF2MkmGzOwuM71CWPIVXjwo4tXP8ebfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGSxHyOgqUvBVrTlUgeTMY3Uz95hPXRkThPY5j7is6CEVfMIpWejBd9zEt4+mkWyy5FXcGsky8jJQgQ61b/Or0IpYoHiKT1Ji258bop1SjYJJPCp3E8JiyER3wtqUhVdz46ezgCTmxSo/0I20rRDJTf0+kVBkzVoHtVBSHZtGbiv957QT7V34qwjhBHrL5on4iCUZk+j3pCc0ZyrEllGlhbyVsSDVlaDMq2BC8xZeXSeOs4l1UvLvzUvU6iyMPR3AMZfDgEqpwCzWoAwMFz/AKb452Xpx352PemnOymUP4A+fzBx6Tj/c=</latexit>

s
(t)
0

(b) Soft layer ordering

<latexit sha1_base64="IgmDDEU+/lmm19GdQlwe/sEcKEc=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSLUS0lE1GPRi8cK9gPaWDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6wHHC/YgOlAgFo2ilVviYVfBs0iuV3ao7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx27oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uw2s/EypJkSs2XxSmkmBMpr+TvtCcoRxbQpkW9lbChlRThjahog3BW3x5mTTPq95l1bu/KNdu8jgKcAwnUAEPrqAGd1CHBjAYwTO8wpuTOC/Ou/Mxb11x8pkj+APn8wfjNo9H</latexit>

f (t)

<latexit sha1_base64="XHltJrj6Cu/RtT6Abf+eksTQEPo=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyqqMegF48RzEOSNcxOZpMhM7vLTK8QlnyFFw+KePVzvPk3Th4HTSxoKKq66e4KEikMuu63s7S8srq2ntvIb25t7+wW9vbrJk414zUWy1g3A2q4FBGvoUDJm4nmVAWSN4LBzdhvPHFtRBzd4zDhvqK9SISCUbTSg+mcPWYlPBl1CkW37E5AFok3I0WYodopfLW7MUsVj5BJakzLcxP0M6pRMMlH+XZqeELZgPZ4y9KIKm78bHLwiBxbpUvCWNuKkEzU3xMZVcYMVWA7FcW+mffG4n9eK8Xwys9ElKTIIzZdFKaSYEzG35Ou0JyhHFpCmRb2VsL6VFOGNqO8DcGbf3mR1E/L3kXZuzsvVq5nceTgEI6gBB5cQgVuoQo1YKDgGV7hzdHOi/PufExbl5zZzAH8gfP5AyMxj/o=</latexit>

s
(t)
3

<latexit sha1_base64="J9oR6zruWlm6L4Zw1lXhPgCQjGU=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJewGUY9BLx4jmIcka5idTJIhs7PLTK8QlnyFFw+KePVzvPk3TpI9aGJBQ1HVTXdXEEth0HW/nZXVtfWNzdxWfntnd2+/cHDYMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbqZ+84lrIyJ1j+OY+yEdKNEXjKKVHky38piW8GzSLRTdsjsDWSZeRoqQodYtfHV6EUtCrpBJakzbc2P0U6pRMMkn+U5ieEzZiA5421JFQ278dHbwhJxapUf6kbalkMzU3xMpDY0Zh4HtDCkOzaI3Ff/z2gn2r/xUqDhBrth8UT+RBCMy/Z70hOYM5dgSyrSwtxI2pJoytBnlbQje4svLpFEpexdl7+68WL3O4sjBMZxACTy4hCrcQg3qwCCEZ3iFN0c7L8678zFvXXGymSP4A+fzByGnj/k=</latexit>

s
(t)
2

<latexit sha1_base64="EUGRrEJ21iPvd58ctPUyNezZwMc=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoMQL2FXRD0GvXiMYB6SrGF2MkmGzOwuM71CWPIVXjwo4tXP8ebfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGSxHyOgqUvBVrTlUgeTMY3Uz95hPXRkThPY5j7is6CEVfMIpWejBd7zEt4+mkWyy5FXcGsky8jJQgQ61b/Or0IpYoHiKT1Ji258bop1SjYJJPCp3E8JiyER3wtqUhVdz46ezgCTmxSo/0I20rRDJTf0+kVBkzVoHtVBSHZtGbiv957QT7V34qwjhBHrL5on4iCUZk+j3pCc0ZyrEllGlhbyVsSDVlaDMq2BC8xZeXSeOs4l1UvLvzUvU6iyMPR3AMZfDgEqpwCzWoAwMFz/AKb452Xpx352PemnOymUP4A+fzByAdj/g=</latexit>

s
(t)
1

<latexit sha1_base64="sfdGg2dfd1lIb7mH12XPFqFQ61M=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoMQL2FXRD0GvXiMYB6SrGF2MkmGzOwuM71CWPIVXjwo4tXP8ebfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGSxHyOgqUvBVrTlUgeTMY3Uz95hPXRkThPY5j7is6CEVfMIpWejBd9zEt4+mkWyy5FXcGsky8jJQgQ61b/Or0IpYoHiKT1Ji258bop1SjYJJPCp3E8JiyER3wtqUhVdz46ezgCTmxSo/0I20rRDJTf0+kVBkzVoHtVBSHZtGbiv957QT7V34qwjhBHrL5on4iCUZk+j3pCc0ZyrEllGlhbyVsSDVlaDMq2BC8xZeXSeOs4l1UvLvzUvU6iyMPR3AMZfDgEqpwCzWoAwMFz/AKb452Xpx352PemnOymUP4A+fzBx6Tj/c=</latexit>

s
(t)
0

(c) Soft gating

Figure 3: Compositional structure examples.

57

Linear combinations of models In the simplest setting, depicted in Figure 3a, each

component is a linear model, and they are composed via linear combinations. Specifically,

assume that X (t) ⊆ Rd, and that each task-specific function is given by fθ(t)(x) = θ(t)
>
x,

with θ(t) ∈ Rd. The model constructs each predictive function from a set of linear modules

mφi(x) = φi
>x, with φi ∈ Rd, by linearly combining them via a task-specific weight vector

ψ(t) ∈ Rk, yielding:

f (t)(x) = sψ(t)(x,M)(x) = ψ(t)>(Φ>x) , (3.1)

where the matrix Φ = [φ1, . . . ,φk] collects all k components. This corresponds to a crude

approximation to the compositional function graph, where each task function f (t) contains a

single subtask solution fi, approximated by softly combining all the fi’s. This dissertation

used this formulation in both supervised and RL evaluations; prior lifelong learning works

had also used this formulation (Ruvolo and Eaton, 2013; Bou Ammar et al., 2014, 2015;

Isele et al., 2016; Rostami et al., 2020). Note that there is no strict requirement that the

models must be linear in order to linearly combine them. However, the linear combination of

nonlinear models is no longer equivalent to the linear combination of their model parameters.

Yet, as shown in Chapter 5, linear parameter combinations accept efficient optimization in

the lifelong setting. Critically, these techniques can also be used to train nonlinear models

(e.g., deep neural networks), at the cost of making the approximation to the compositional

problem graph even cruder.

Soft layer ordering In order to handle more complex models, compositional deep nets

compute each layer’s output as a linear combination of the outputs of multiple modules. As

proposed by Meyerson and Miikkulainen (2018), this model assumes that each module is one

layer, the number of components matches the network’s depth, and all components share

the input and output dimensions. Concretely, each component is a deep net layer mφi(x) =

σ
(
φi
>x
)
, where σ is any nonlinear activation and φi ∈ Rd̃×d̃. Each task network contains

input E(t) and output D(t) transformations such that E(t) : X (t) 7→ Rd̃ and D(t) : Rd̃ 7→ Y(t).

58

A set of parameters ψ(t) ∈ Rk×k weights the output of the components at each depth:

s(t) = D(t) ◦
k∑
i=1

ψ
(t)
i,1mi ◦ · · · ◦

k∑
i=1

ψ
(t)
i,kmi ◦ E(t) , (3.2)

where the weights are restricted to sum to one at each depth j to approximate a hard selection:∑k
i=1ψ

(t)
i,j = 1. This architecture, illustrated in Figure 3b, is a soft approximation of the

compositional problem graph, where the number of possible subtasks is k. This dissertation

used this structure in the supervised learning evaluations.

Soft gating In the presence of large data, it is often beneficial to modify the architecture

for each input x (Rosenbaum et al., 2018; Kirsch et al., 2018), unlike both approaches above

which use a constant structure for each task. Consequently, the next architecture modifies

the soft layer ordering architecture by weighting each component’s output at depth j by an

input-dependent soft gating net s(t)j : X (t) 7→ Rk, giving a predictive function:

s(t) = D(t) ◦
k∑
i=1

[
s
(t)
1 (x)

]
i
mi ◦ · · · ◦

k∑
i=1

[
s
(t)
k (x)

]
i
mi ◦ E(t) . (3.3)

As above, the weights are restricted to sum to one at each depth:
∑k

i=1

[
s
(t)
j (x)

]
i

= 1. This

structure, visualized in Figure 3c, still represents a soft approximation to the compositional

problem graph, with the difference that the agent chooses the path through the graph dynam-

ically based on the current input. Consequently, the evaluations assessed this architecture in

the supervised setting, too.

Hard modular nets The three example structures described so far resort to soft combi-

nations of modules to approximate compositional solutions. The primary reason for doing

this is that it permits optimizing the models directly via gradient-based training. However,

this intuitively comes at the cost of yielding less differentiated and self-contained modules.

As an alternative, one can in principle replace the soft weighting scheme by a hard selection

mechanism and use discrete optimization techniques to find a solution. Examples for how to

59

do this have included expectation-maximization methods (Kirsch et al., 2018), reinforcement

learning (Rosenbaum et al., 2018; Chang et al., 2019), and explicit discrete search (Alet

et al., 2018). Chapter 5 describes an instantiation of a hard modular net for RL, where the

choice of modules is specific to each layer (unlike the soft ordering and soft gating structures)

and domain knowledge is used to decompose the input into module-specific components.

3.4.2. Stages of Lifelong Compositional Learning

The intuition behind the proposed framework is that, at any point in time t, the agent

has acquired a set of components suitable for solving tasks it encountered previously—

Z(1), . . . ,Z(t−1). If these components, with minor adaptations, can be combined to solve

the current task Z(t), then the agent should first learn how to reuse these components

before making any modifications to them. The rationale for this idea of keeping components

fixed during the early stages of training on the current task Z(t), before the agent has

acquired sufficient knowledge to perform well on Z(t), is that premature modification could

be catastrophically damaging to the set of existing components. Once the agent has learned

the structure s(t), the framework considers that it has captured sufficient knowledge about

the current task, and it would be sensible to update the components to better accommodate

that knowledge. If, instead, it is not possible to capture the current task with the existing

components, then new components should be added. These notions loosely mirror the stages

of assimilation and accommodation in Piaget’s (1976) theories of intellectual development,

and so the stages of the framework adopt those terms. Algorithms under this framework

take the form of Algorithm 1, split into the following steps, illustrated in Figure 4.

Initialization The componentsM should be initialized encouraging reusability, both across

tasks and within different structural configurations of task models. The former signifies that

the components should solve a particular subproblem regardless of the objective of the task.

The latter means that the structure for a single task’s model may reuse components multiple

times, or that different tasks may use them at different structural orders. For example, in

deep nets, this means that the components could be used at different depths—of course, this

60

Algorithm 1 Lifelong Compositional Learning
Initialize components M for reusability across tasks
while Z(t) ← getTask() do
for i = 1, . . . , structureUpdates, keeping M fixed do
Take assimilation step on structure parameters ψ(t) to find optimal structure s(t)

if i mod adaptationFrequency = 0 then
for j = 1, . . . , componentUpdates, keeping s(t) fixed and unfixing M do
Take adaptation step on module parameters φ to add new knowledge into M

end for
end if

end for
Conditionally add new components via expansion
Store any necessary information for future adaptation

end while

previous tasks future tasks

…
1. Initialize components

2. Reuse existing
components to
solve new tasks

3. Improve old
components

initial tasks

4. Add new
components

…

previously learned
components .

Lifelong
Learning System

current task

training
data

?
learned task model

<latexit sha1_base64="IgmDDEU+/lmm19GdQlwe/sEcKEc=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSLUS0lE1GPRi8cK9gPaWDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6wHHC/YgOlAgFo2ilVviYVfBs0iuV3ao7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx27oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uw2s/EypJkSs2XxSmkmBMpr+TvtCcoRxbQpkW9lbChlRThjahog3BW3x5mTTPq95l1bu/KNdu8jgKcAwnUAEPrqAGd1CHBjAYwTO8wpuTOC/Ou/Mxb11x8pkj+APn8wfjNo9H</latexit>

f (t)

<latexit sha1_base64="It7VOjnl98HiZ9WEQ3bwTw/pFew=">AAAB6HicdVDLSgMxFM3UV62vqks3wSK4GiZjn7uiGzdCC/YB7VAyaaaNzWSGJCOUoV/gxoUibv0kd/6N6UNQ0QMXDufcy733+DFnSjvOh5VZW9/Y3Mpu53Z29/YP8odHbRUlktAWiXgkuz5WlDNBW5ppTruxpDj0Oe34k6u537mnUrFI3OppTL0QjwQLGMHaSM2bQb7g2MgtFWsOdGwX1cpO1ZCLmotKFYhsZ4ECWKExyL/3hxFJQio04VipHnJi7aVYakY4neX6iaIxJhM8oj1DBQ6p8tLFoTN4ZpQhDCJpSmi4UL9PpDhUahr6pjPEeqx+e3PxL6+X6KDqpUzEiaaCLBcFCYc6gvOv4ZBJSjSfGoKJZOZWSMZYYqJNNjkTwten8H/Sdm1UtlGzWKhfruLIghNwCs4BAhVQB9egAVqAAAoewBN4tu6sR+vFel22ZqzVzDH4AevtExHgjSE=</latexit>

M

<latexit sha1_base64="J8QENsFqzrfMnLg6Ixv2Zj7LACo=">AAAB6nicdVDLSgMxFM34rPVVdekmWARBGJKxz13RjcuK9gHtUDJp2oZmMkOSEcrQT3DjQhG3fpE7/8b0IajogQuHc+7l3nuCWHBtEPpwVlbX1jc2M1vZ7Z3dvf3cwWFTR4mirEEjEal2QDQTXLKG4UawdqwYCQPBWsH4aua37pnSPJJ3ZhIzPyRDyQecEmOlW3Pu9XJ55GKvWKgiiFwPV0uoYslF1cPFMsQumiMPlqj3cu/dfkSTkElDBdG6g1Fs/JQow6lg02w30SwmdEyGrGOpJCHTfjo/dQpPrdKHg0jZkgbO1e8TKQm1noSB7QyJGenf3kz8y+skZlDxUy7jxDBJF4sGiYAmgrO/YZ8rRo2YWEKo4vZWSEdEEWpsOlkbwten8H/S9FxccvFNIV+7XMaRAcfgBJwBDMqgBq5BHTQABUPwAJ7AsyOcR+fFeV20rjjLmSPwA87bJyTcjbk=</latexit>

t + 2
<latexit sha1_base64="STD7toVTDqYRBecmTaEE8eJQl+g=">AAAB6nicdVDLSgMxFM34rPVVdekmWARBGJLa567oxmVF+4B2KJk004ZmMkOSEcrQT3DjQhG3fpE7/8b0IajogQuHc+7l3nv8WHBtEPpwVlbX1jc2M1vZ7Z3dvf3cwWFLR4mirEkjEamOTzQTXLKm4UawTqwYCX3B2v74aua375nSPJJ3ZhIzLyRDyQNOibHSrTnH/VweubhQKtYQRG4B18qoaslFrYBLFYhdNEceLNHo5957g4gmIZOGCqJ1F6PYeClRhlPBptleollM6JgMWddSSUKmvXR+6hSeWmUAg0jZkgbO1e8TKQm1noS+7QyJGenf3kz8y+smJqh6KZdxYpiki0VBIqCJ4OxvOOCKUSMmlhCquL0V0hFRhBqbTtaG8PUp/J+0Ci4uu/immK9fLuPIgGNwAs4ABhVQB9egAZqAgiF4AE/g2RHOo/PivC5aV5zlzBH4AeftEyNYjbg=</latexit>

t + 1
<latexit sha1_base64="A8whuThSfruJAeS1cvEoPvltngQ=">AAAB6HicdVDLSgMxFM3UV62vqks3wSK4GpLa567oxmULthXaoWTSTBubyQxJRihDv8CNC0Xc+knu/BvTh6CiBy4czrmXe+/xY8G1QejDyaytb2xuZbdzO7t7+wf5w6OOjhJFWZtGIlK3PtFMcMnahhvBbmPFSOgL1vUnV3O/e8+U5pG8MdOYeSEZSR5wSoyVWmaQLyAXF8ulOoLILeJ6BdUsuagXcbkKsYsWKIAVmoP8e38Y0SRk0lBBtO5hFBsvJcpwKtgs1080iwmdkBHrWSpJyLSXLg6dwTOrDGEQKVvSwIX6fSIlodbT0LedITFj/dubi395vcQENS/lMk4Mk3S5KEgENBGcfw2HXDFqxNQSQhW3t0I6JopQY7PJ2RC+PoX/k07RxRUXt0qFxuUqjiw4AafgHGBQBQ1wDZqgDShg4AE8gWfnznl0XpzXZWvGWc0cgx9w3j4BTPyNSA==</latexit>

t
<latexit sha1_base64="FNonHLN9NqRJnF5kRDt8Ir6PRwE=">AAAB6nicdVDLSgMxFM34rPVVdekmWAQ3Dkntc1d047KifUA7lEyaaUMzmSHJCGXoJ7hxoYhbv8idf2P6EFT0wIXDOfdy7z1+LLg2CH04K6tr6xubma3s9s7u3n7u4LClo0RR1qSRiFTHJ5oJLlnTcCNYJ1aMhL5gbX98NfPb90xpHsk7M4mZF5Kh5AGnxFjp1pzjfi6PXFwoFWsIIreAa2VUteSiVsClCsQumiMPlmj0c++9QUSTkElDBdG6i1FsvJQow6lg02wv0SwmdEyGrGupJCHTXjo/dQpPrTKAQaRsSQPn6veJlIRaT0LfdobEjPRvbyb+5XUTE1S9lMs4MUzSxaIgEdBEcPY3HHDFqBETSwhV3N4K6YgoQo1NJ2tD+PoU/k9aBReXXXxTzNcvl3FkwDE4AWcAgwqog2vQAE1AwRA8gCfw7Ajn0XlxXhetK85y5gj8gPP2CSZijbo=</latexit>

t� 1
<latexit sha1_base64="ZyXjkvRGiVOXE592pTja4H/31KY=">AAAB6nicdVDLSgMxFM34rPVVdekmWAQ3DsnY567oxmVF+4B2KJk0bUMzmSHJCGXoJ7hxoYhbv8idf2P6EFT0wIXDOfdy7z1BLLg2CH04K6tr6xubma3s9s7u3n7u4LCpo0RR1qCRiFQ7IJoJLlnDcCNYO1aMhIFgrWB8NfNb90xpHsk7M4mZH5Kh5ANOibHSrTn3erk8crFXLFQRRK6HqyVUseSi6uFiGWIXzZEHS9R7ufduP6JJyKShgmjdwSg2fkqU4VSwababaBYTOiZD1rFUkpBpP52fOoWnVunDQaRsSQPn6veJlIRaT8LAdobEjPRvbyb+5XUSM6j4KZdxYpiki0WDREATwdnfsM8Vo0ZMLCFUcXsrpCOiCDU2nawN4etT+D9pei4uufimkK9dLuPIgGNwAs4ABmVQA9egDhqAgiF4AE/g2RHOo/PivC5aV5zlzBH4AeftEyfmjbs=</latexit>

t� 2

Figure 4: Lifelong compositional learner. (1) The framework for lifelong compositional
learning initializes a set of components by training on a small set of tasks. (2) The agent
learns each new task by composing the relevant components. Subsequently, the it (3) improves
imperfect components with newly discovered knowledge, and (4) adds any new components
that were discovered during training on the current task.

is only relevant for architectures that permit selecting a module at various depths, unlike the

hard modular nets described in the previous section. In the simplest case of linear module

combinations, one simple example for how to do this is to incrementally train new modules

61

on each new task until the capacity of M is met, reusing earlier components and the new

module upon training on the new task. In the case of deep modular nets, one could train

the first few tasks the agent encounters jointly (in a small batch MTL setting) to initialize

M , keeping a fixed (but random) structure that reuses components to encourage reusability.

Alternatively, one could instead impose a curriculum over tasks with known compositional

structures, such that the modules trained on the first few tasks are disjoint and therefore

become specialized. This dissertation used these three examples as building blocks to develop

the various algorithms under the framework.

Assimilation The framework assimilates the current task by keeping the components M

fixed and learning only the structure s(t). Existing algorithms for finding compositional

knowledge vary in how they optimize each task’s structure. In modular nets, component

selection can be learned via RL (Johnson et al., 2017; Rosenbaum et al., 2018; Chang et al.,

2019; Pahuja et al., 2019), stochastic search (Fernando et al., 2017; Alet et al., 2018), or

backpropagation (Shazeer et al., 2017; Kirsch et al., 2018; Meyerson and Miikkulainen, 2018).

The framework uses any of these mechanisms for assimilation. Approaches supported by the

framework must accept decoupling the learning of the structure from the learning of the

components themselves; this requirement holds for all the above examples.

Accommodation An effective approach should maintain performance on earlier tasks, yet

be flexible to incorporate new knowledge. To accommodate new knowledge from the current

task, the learner may adapt existing components or expand to include new components:

• Adaptation step Once the agent has obtained a suitable structure over modules, the

framework incorporates new knowledge into the selected modules, keeping the structure

fixed. Approaches for incorporating new knowledge into noncompositional structures

have been to naïvely fine-tune models with data from the current task, to impose

regularization to selectively freeze weights (Kirkpatrick et al., 2017; Ritter et al., 2018),

or to store a portion of data from previous tasks and use experience replay (Lopez-Paz

62

and Ranzato, 2017; Isele and Cosgun, 2018). Note that the last two approaches avoid

catastrophically forgetting knowledge of how to solve earlier tasks. The framework can

be instantiated by using any of these methods to accommodate new knowledge into

existing components after assimilating the current task. For this to be possible, the

method must be able to be selectively applied to only the component parameters φ.

• Expansion step Often, existing components, even with some adaptation, are in-

sufficient to solve the current task. In this case, the learner would incorporate novel

components, which should encode knowledge distinct from existing components and

combine with those components to solve the new task. The ability to discover new

components endows the learner with the flexibility required to learn over a lifetime.

Unlike for prior stages, there are no widespread mechanisms for automatically expand-

ing the set of modules in a compositional architecture over time. Consequently, this

dissertation created component dropout, described in Chapter 4, as a technique for

assessing the effect of adding new modules without the need for storing and training

multiple separate models.

Chapter 4 presents concrete instantiations of Algorithm 1 for the supervised setting and

a corresponding evaluation, while Chapter 5 includes the corresponding description of

algorithms and evaluation for the RL setting.

3.5. Summary

This chapter formalized the problem of lifelong compositional learning studied throughout

this dissertation. At a high level, a lifelong learner is faced with a sequence of learning tasks,

each of which is characterized by a compositional function. The goal of the agent is to find

the set of shared modules or components that make up the functional solutions to each task,

in such a way that there is maximum sharing across the different tasks.

Next, this chapter described a general-purpose framework for lifelong compositional learning.

This constitutes the central contribution of this dissertation. The key insight of the framework

63

is that in order to learn meaningful knowledge decompositions sequentially, it is useful to

split the learning process into phases, such that in the early stages of learning a new task,

the agent does not need to worry about retaining knowledge of past tasks and can instead

focus solely on acquiring knowledge of the current task. Then, once the agent has acquired

sufficient knowledge about the current task, it may seek to combine this newly obtained

knowledge with any knowledge from the earlier tasks to consolidate it all into the shared

set of components. These stages have connections to Piagetian theory of development,

and therefore they are adequately denoted assimilation and accommodation per Piagetian

terms. These connections open the door for future investigations that bridge between lifelong

learning and developmental psychology.

The proposed framework is simple conceptually, and as shown in Chapter 4, it is easy to

combine with existing continual or compositional learning techniques, and effective in trading

off the flexibility and stability required for lifelong learning. The framework further permits

developing novel algorithms, even in the RL setting, as shown in Chapter 5.

64

CHAPTER 4 : Application of Lifelong Composition to Supervised Learning

4.1. Introduction

Chapter 3 introduced the problems of lifelong and compositional learning, and additionally

proposed a general-purpose framework for the joint problem of lifelong compositional learning,

which this dissertation adopted to develop a multitude of algorithms. This chapter presents

the first set of such algorithms, specifically for the supervised learning setting. The framework

splits the learning process into broad stages: initialization, assimilation, and accommodation

with its own adaptation and expansion substages. In particular, these stages are agnostic to

the specific form of the compositional structures used for learning and to the base lifelong

learning methods used for adaptation of the components with new knowledge.

This chapter first presents a simple mechanism for determining when to expand the set of

components when those components correspond to neural modules. This technique, based

on dropout regularization, permits training and comparing networks with and without new

components to assess the relative benefits of expanding after training on each new task.

The exposition then turns to introduce nine concrete algorithms developed under the frame-

work. These methods combine variants of existing modular structures—linear combinations

of models, soft layer ordering, and soft gating—and lifelong learning mechanisms for avoiding

catastrophic forgetting—naïve fine-tuning, elastic weight consolidation, and experience replay.

The chapter then describes the derivations of computational complexity bounds for each of

the nine resulting algorithms, and the obtained costs demonstrate that methods under the

framework are more efficient at training than existing approaches.

The remainder of the chapter is devoted to an extensive empirical evaluation to validate

the design choices and demonstrate the power of compositional knowledge representations

for lifelong learning and of the two-stage mechanism dictated by the proposed framework.

To this end, the primary baselines used for comparison consider training noncompositional

65

models or compositional models without two-stage training. The results across a range of

data sets of varying complexity demonstrate that methods under the framework consistently

outperform competing methods. It becomes apparent that the main driver of this improved

performance is the reduced amount of forgetting suffered by these approaches, which itself

stems from the design choice to maintain the set of shared components fixed throughout

most of the training (while the agent is still assimilating the current task).

4.2. Expansion of the Set of Components M via Component Dropout

To enable deep compositional learners to discover new components, this dissertation created

an expansion step where the agent considers adding a single new component per task. In

order to assess the benefit of the new component, the agent learns two different networks:

with and without the novel component. Dropout enables training multiple neural networks

without additional storage (Hinton et al., 2012), and prior work has used it to prune neural

net nodes in noncompositional settings (Gomez et al., 2019). The proposed dropout strategy

deterministically alternates backpropagation steps with and without the new component,

which is denoted in this chapter component dropout. Intermittently bypassing the new

component ensures that existing components can compensate for it if it is discarded. After

training, the agent applies a post hoc criterion (in the experiments herein, a validation error

check) to potentially prune the new component.

4.3. Framework Instantiations for the Supervised Setting

The experiments evaluated the framework with the three examples of soft compositional

structures of Chapter 3: linear combinations of models, soft layer ordering, and soft gating.

All methods assimilate task Z(t) via backpropagation on the structure’s parameters ψ(t);

the training considers the input E(t) and output D(t) transformations as part of each task’s

structure, and so they are only updated during assimilation. The experiments trained each

model structure with three instantiations of Algorithm 1, varying the adaptation method:

• Naïve fine-tuning (NFT) updates components via backpropagation, ignoring past tasks.

66

• Kronecker-factored elastic weight consolidation (KEWC; Ritter et al., 2018) penalizes

modifying model parameters via λ
2

∑T−1
t=1 ‖θ − θ(t)‖2F (t) , where F (t) is the Fisher infor-

mation around θ(t), approximated with Kronecker factors. Adaptation steps carry out

backpropagation on the regularized loss.

• Experience replay (ER) stores nm samples per task in a replay buffer, and during

adaptation takes backpropagation steps with both replay and current-task data.

The evaluation explored two variations for each adaptation method, with and without the

expansion step: dynamic + compositional methods use component dropout to add new

modules, while compositional methods keep a fixed-size set.

For simplicity, the evaluation fixed the values of structureUpdates, adaptationFrequency,

and componentUpdates such that the learning process would be split into multiple epochs

of assimilation followed by a single final epoch of adaptation. This is the most extreme

separation of the learning into assimilation and accommodation: the agent accommodates

no knowledge into existing components until after assimilation has finished. Section 4.4.5

studies the effects of this choice.

Algorithms 6–11 summarize the implementations of all framework instantiations used in the

experiments. Algorithms 2–5 contain all shared subroutines, and blank lines in compositional

methods highlight missing steps from their dynamic + compositional counterparts. The

learner first initializes the components by jointly training on the first Tinit tasks it encounters.

At every subsequent time t, during the first (numEpochs−1) epochs, the agent assimilates the

new task by training the task-specific structure parameters ψ(t) via backpropagation, learning

how to combine existing components for task Z(t). For dynamic + compositional methods,

this assimilation step incorporates component dropout and simultaneously optimizes the

parameters of the newly added component φk+1. The adaptation step varies according to the

base lifelong learning method, applying techniques for avoiding forgetting to the whole set

of component parameters Φ for one epoch. This step also incorporates component dropout

67

for dynamic + compositional methods. Finally, dynamic + compositional methods discard

the fresh component if it does not improve performance by more than a threshold τ on the

current task Z(t), and otherwise keep it for future training.

4.3.1. Shared Subroutines for Lifelong Compositional Algorithms

Algorithm 2 Initialization

1: s(t) ← randomInitialization()

2: init_buff← init_buff ∪ Z(t).train

3: if t = Tinit − 1

4: for i = 1, . . . , numEpochs

5: for t̂,x← init_buff

6: Φ← Φ− η∇ΦL(̂t)
(
f (̂t)(x)

)
7: end for

8: end for . backprop on components

9: end if

Algorithm 3 Expansion

1: a1 ← accuracy
(
Z(t).validation

)
2: hideComponent(k + 1)

3: a2 ← accuracy
(
Z(t).validation

)
4: recoverComponent(k + 1)

5: if a1−a2
a2

< τ . validation error check

6: discardComponent(k + 1)

7: k ← k + 1

8: end if

Algorithm 4 Assimilation (Comp.)

Φ← [Φ; randomVector()] new comp.

ψ
(t)
k+1,1:k ← 1

1: for i = 1, . . . , numEpochs− 1

2: for x← Z(t).train

3: ψ(t) ← ψ(t) − η∇ψ(t)L(t)
(
f (t)(x)

)
φk+1←φk+1 − η∇φk+1

L(t)
(
f (t)(x)

)
hideComponent(k + 1)

4: ψ(t) ← ψ(t) − η∇ψ(t)L(t)
(
f (t)(x)

)
recoverComponent(k + 1)

5: end for

6: end for . backprop on structure

Algorithm 5 Assimilation (Dyn. + Comp.)

1: Φ← [Φ; randomVector()] . new comp.

2: ψ
(t)
k+1,1:k ← 1

3: for i = 1, . . . , numEpochs− 1

4: for x← Z(t).train

5: ψ(t) ← ψ(t) − η∇ψ(t)L(t)
(
f (t)(x)

)
6: φk+1←φk+1 − η∇φk+1

L(t)
(
f (t)(x)

)
7: hideComponent(k + 1)

8: ψ(t) ← ψ(t) − η∇ψ(t)L(t)
(
f (t)(x)

)
9: recoverComponent(k + 1)

10: end for

11: end for . component dropout

68

4.3.2. Lifelong Compositional Algorithms Using Naïve Fine-Tuning

Algorithm 6 Compositional NFT

1: while Z(t) ← getTask()

2: if t < Tinit

3: Call Algorithm 2 . initialization

4: else

5: Call Algorithm 4 . assimilation

6: for x← Z(t).train

7: Φ← Φ− η∇ΦL(t)
(
f (t)(x)

)
hideComponent(k + 1)

Φ← Φ− η∇ΦL(t)
(
f (t)(x)

)
recoverComponent(k + 1)

8: end for . adaptation

Call Algorithm 3 expansion

9: end if

10: end while

Algorithm 7 Dyn. + Compositional NFT

1: while Z(t) ← getTask()

2: if t < Tinit

3: Call Algorithm 2 . initialization

4: else

5: Call Algorithm 5 . assimilation

6: for x← Z(t).train

7: Φ← Φ− η∇ΦL(t)
(
f (t)(x)

)
8: hideComponent(k + 1)

9: Φ← Φ− η∇ΦL(t)
(
f (t)(x)

)
10: recoverComponent(k + 1)

11: end for . adaptation

12: Call Algorithm 3 . expansion

13: end if

14: end while

69

4.3.3. Lifelong Compositional Algorithms Using Elastic Weight Consolidation

Algorithm 8 Compositional KEWC

1: while Z(t) ← getTask()

2: if t < Tinit

3: Call Algorithm 2 . initialization

4: else

5: Call Algorithm 4 . assimilation

6: for x← Z(t).train

7: A←∑t−1
t̂
a(̂t)Φb(̂t)

8: g ← ∇ΦL(t)
(
f (t)(x)

)
+ λ(A−B)

9: Φ← Φ− ηg

hideComponent(k + 1)

A←∑t−1
t̂
a(̂t)Φb(̂t)

g ← ∇ΦL(t)
(
f (t)(x)

)
+ λ(A−B)

Φ← Φ− ηg

recoverComponent(k + 1)

10: end for . adaptation

Call Algorithm 3 expansion

11: end if

12: a(t), b(t) ← KFAC
(
Z(t).train,Φ

)
13: B ← B − a(t)Φb(t)

14: end while

Algorithm 9 Dyn. + Compositional KEWC

1: while Z(t) ← getTask()

2: if t < Tinit

3: Call Algorithm 2 . initialization

4: else

5: Call Algorithm 5 . assimilation

6: for x← Z(t).train

7: A←∑t−1
t̂
a(̂t)Φb(̂t)

8: g ← ∇ΦL(t)
(
f (t)(x)

)
+ λ(A−B)

9: Φ← Φ− ηg

10: hideComponent(k + 1)

11: A←∑t−1
t̂
a(̂t)Φb(̂t)

12: g ← ∇ΦL(t)
(
f (t)(x)

)
+ λ(A−B)

13: Φ← Φ− ηg

14: recoverComponent(k + 1)

15: end for . adaptation

16: Call Algorithm 3 . expansion

17: end if

18: a(t), b(t) ← KFAC
(
Z(t).train,Φ

)
19: B ← B − a(t)Φb(t)

20: end while

70

4.3.4. Lifelong Compositional Algorithms Using Experience Replay

Algorithm 10 Compositional ER

1: while Z(t) ← getTask()

2: if t < Tinit

3: Call Algorithm 2 . initialization

4: else

5: Call Algorithm 4 . assimilation

6: for t̂,x←
(
t,Z(t).train

)
∪ buffer

7: Φ← Φ− η∇ΦL(̂t)
(
f (̂t)(x)

)
hideComponent(k + 1)

Φ← Φ− η∇ΦL(̂t)
(
f (̂t)(x)

)
recoverComponent(k + 1)

8: end for . adaptation

Call Algorithm 3 expansion

9: end if

10: buffer[t]← sample
(
Z(t).train, nm

)
11: end while

Algorithm 11 Dyn. + Compositional ER

1: while Z(t) ← getTask()

2: if t < Tinit

3: Call Algorithm 2 . initialization

4: else

5: Call Algorithm 5 . assimilation

6: for t̂,x←
(
t,Z(t).train

)
∪ buffer

7: Φ← Φ− η∇ΦL(̂t)
(
f (̂t)(x)

)
8: hideComponent(k + 1)

9: Φ← Φ− η∇ΦL(̂t)
(
f (̂t)(x)

)
10: recoverComponent(k + 1)

11: end for . adaptation

12: Call Algorithm 3 . expansion

13: end if

14: buffer[t]← sample
(
Z(t).train, nm

)
15: end while

4.3.5. Computational Complexity

Approaches to lifelong learning tend to be computationally intensive, revisiting data or

parameters from previous tasks at each training step. The proposed framework only carries

out these expensive operations during (infrequent) adaptation steps. This section contains

the derivations of asymptotic bounds for the computational complexity of all algorithms

within the framework described in Section 4.3, as well as the baselines used for the empirical

evaluation. Briefly, joint baselines train compositional structures in a single stage, while

no-components baselines optimize a monolithic architecture across all tasks. Section 4.4.1

provides more detailed descriptions of the baselines. These derivations assume the network

71

architecture uses fully connected layers, and soft layer ordering for compositional structures.

Extending these results to convolutional layers and soft gating is straightforward.

A single forward and backward pass through a standard fully connected layer of di inputs

and do outputs requires O(dido) computations, and is additive across layers. Assuming a

binary classification net, the no-components architecture contains one input layer E(t) with d

inputs and d̃ outputs, k layers with d̃ inputs and d̃ outputs, and one output layer D(t) with

d̃ inputs and one output. Consequently, training such a net in the standard STL setting

requires O
(
dd̃+ d̃2k + d̃

)
computations per input point. For a full epoch of training on a

data set with n data points, the training cost would then be O
(
nd̃
(
d̃k + d

))
. This is exactly

the computational cost of no-components NFT, since it ignores any information from past

tasks during training, and leverages only the initialization of parameters.

On the other hand, a soft layer ordering net evaluates all k layers of size d̃× d̃ at every one

of the k depths in the network, resulting in a cost of O
(
d̃2k2

)
for those layers. This results

in an overall cost per epoch of O
(
nd̃
(
d̃k2 + d

))
for single-task training, and therefore also for

joint NFT training. Since compositional methods do not use information from earlier tasks

during assimilation, because they only train the task-specific structure s(t) during this stage,

then the cost per epoch of assimilation is also O
(
nd̃
(
d̃k2 + d

))
. Dynamic + compositional

methods can at most contain T components if they add one new component for every seen

task. This leads to a cost of O
(
d̃2kT

)
for the shared layers, and an overall cost per epoch of

assimilation of O
(
nd̃
(
d̃kT + d

))
.

KEWC requires computing two O
(
d̃ × d̃

)
matrices, a(t) and b(t), for every observed task.

It then modifies the gradient of component mi by adding λ
∑T

t=1 b
(t)φib

(t) − b(t)φi(t)b(t) at

each iteration, where φi(t) are the parameters of component mi obtained after training on

task Z(t). While the second term of this sum can be precomputed and stored in memory,

it is not possible to precompute the first term. Theoretically, one can apply Kronecker

product properties to store a (prohibitively large) O
(
d̃2 × d̃2

)
matrix and avoid computing

the per-task sum, but practical implementations avoid this and instead compute the sum for

72

Table 1: Time complexity per epoch (of assimilation, where applicable) for n samples of d
features, k components of d̃ nodes, T tasks, and nm replay samples per task.

ER KEWC1 NFT

Dyn. + Comp. O
(
nd̃
(
d̃kT + d

))
Compositional O

(
nd̃
(
d̃k2 + d

))
Joint O

(
(Tnm + n)d̃

(
d̃k2 + d

))
O
(
nd̃
(
T d̃2k + d̃k2 + d

))
O
(
nd̃
(
d̃k2 + d

))
No Comp. O

(
(Tnm + n)d̃

(
d̃k + d

))
O
(
nd̃
(
T d̃2k + d̃k + d

))
O
(
nd̃
(
d̃k + d

))
every task, at a cost of O

(
T d̃3k

)
per mini-batch. With O(n) mini-batches per epoch, this

yields an additional cost with respect to joint and no-components NFT of O
(
nT d̃3k

)
. Note

that the learning carries out this step after obtaining the gradients for each layer, and thus

there is no additional k2 term for joint KEWC.

Deriving the complexity bound of ER simply requires extending the size of the batch of data

from n to (Tnm + n) for a replay buffer size of nm per task.

Table 1 summarizes these results, highlighting that the assimilation step of the proposed

methods with expansion (dynamic + compositional) is comparable to joint baselines in the

worst case (one new component per task), and the method without expansion (compositional)

is always at least as fast.

To put the computational complexity of dynamic + compositional methods into perspective,

consider the number of components required to solve T tasks with networks with hard layer

ordering, assuming that all T tasks can be represented by different orders over the same set

of components. Given a network with k depths and k̃ components, it is possible to create

k̃k different layer orderings. If all T tasks require different orderings, then the architecture

requires at least k̃ = k
√
T components. Designing a lifelong learning algorithm that can

provably attain this bound in the number of components, or any sublinear growth in T ,

remains an open problem.
1While it is theoretically possible for KEWC to operate in constant time with respect to T , practical

implementations use per-task Kronecker factors due to the enormous computational requirements of the
constant-time solution.

73

For completeness, note that the (very infrequent) adaptation steps for compositional methods

incur the same computational cost as any epoch of joint methods. On the other hand, to

obtain the cost of adaptation steps for dynamic + compositional methods, replace k2 terms

in the expressions for joint methods by kT , again noting that this corresponds to the worst

case, where the agent adds a new component for every task it encounters.

4.4. Experimental Evaluation

The primary contribution of this portion of the dissertation was a large-scale empirical evalu-

ation, conducted to assess the capabilities of compositional lifelong learning. In particular,

the evaluation considered multiple combinations of the algorithms described in the previous

section with the compositional structures of Chapter 3: linear model combinations, soft layer

ordering, and soft gating. The primary focus of this study was to verify that compositionality

improves the overall performance of lifelong learning systems, and that the two-stage process

prescribed by the proposed framework enables learning such compositional solutions. In

summary, the obtained results demonstrate that methods under the proposed framework

achieve higher overall performance in standard lifelong learning benchmarks, more complex

benchmarks combining highly varied tasks, and toy compositional tasks.

The evaluation repeated each experiment for ten trials, varying the random seed which

controlled the tasks (whenever tasks were not fixed by definition), the splits for train-

ing/validation/test, and the order in which the agent encountered the tasks. Only dynamic +

compositional learners used the validation set, for deciding whether to keep a new component.

Code and data sets are at https://github.com/Lifelong-ML/Mendez2020Compositional.

4.4.1. Baselines

The evaluation considered two baselines for every adaptation method listed above:

• Joint baselines use compositional structures, but do not separate assimilation and

accommodation, and instead update components and structures jointly.

74

https://github.com/Lifelong-ML/Mendez2020Compositional

• No-components baselines optimize a single architecture to be used for all tasks, with

additional task-specific input and output mappings, E(t) and D(t).

The latter baselines correspond to the most common lifelong learning approach, which learns

a monolithic structure shared across tasks, while the former are the naïve extensions of

those methods to a compositional setting. Additionally, the experiments trained an ablated

version of the framework that keeps all components fixed after initialization (FM), only

taking assimilation steps for each new task.

4.4.2. Data Sets

The evaluation tested linear combinations of models on three data sets used previously for

evaluating linear lifelong learning (Ruvolo and Eaton, 2013). The Facial Recognition (FERA)

data set tasks involve recognizing one of three facial expression action units for one of seven

people, for a total of T = 21 tasks. The Landmine data set consists of T = 29 tasks, which

require detecting land mines in radar images from different regions. Finally, the London

Schools (Schools) data set contains T = 139 regression tasks, each corresponding to exam

score prediction in a different school. These three data sets underwent the same processing

and train/test split of Ruvolo and Eaton (2013).

The experiments for deep compositional methods, with soft ordering and soft gating, used five

benchmark data sets, all of which split multiclass computer vision tasks into multiple tasks.

Binary MNIST (MNIST; LeCun et al., 1998) is a common lifelong learning benchmark,

where each task is a binary classification problem between a pair of digits. MNIST evaluations

constructed T = 10 tasks by randomly sampling the digits, allowing digits to be reused

across tasks. The Binary Fashion MNIST (Fashion; Xiao et al., 2017) data set is similar

to MNIST, but images correspond to items of clothing. A more complex lifelong learning

problem commonly used in the literature is Split CUB-200 (CUB; Welinder et al., 2010),

where the agent must classify bird species. CUB evaluations constructed T = 20 tasks by

randomly sampling ten species for each, without reusing classes across tasks. A preprocessing

75

Table 2: Data set summary.

tasks classes features feature extractor train val test
FERA 21 2 100 PCA 225–499 — 225–500
Landmine 29 2 9 — 222–345 — 223–345
Schools 139 — 27 — 11–125 — 11–126
MNIST 10 2 784 — ∼ 9500 ∼ 2500 ∼ 2000
Fashion 10 2 784 — ∼ 9500 ∼ 2500 2000
CUB 20 10 512 ResNet-18 ∼ 120 ∼ 30 ∼ 150
CIFAR 20 5 32× 32× 3 — ∼ 2000 ∼ 500 500
Omniglot 50 14–55 105× 105 — 224–880 28–110 28–110

step cropped CUB images by the provided bounding boxes and resized them to 224×224. For

these first three data sets, all architectures were fully connected networks. To show that the

proposed framework supports more complex convolutional architectures, the evaluation used

two additional data sets. The first such data set was a lifelong learning version of CIFAR-

100 (CIFAR; Krizhevsky and Hinton, 2009) with T = 20 tasks, each of them constructed by

randomly sampling five classes, without reusing classes across tasks. For these four data sets,

the experiments used the standard train/test split, and further divided the training set into

80% for training and 20% for validation. Finally, the evaluation used the Omniglot (Lake

et al., 2015) data set, which consists of T = 50 multiclass classification problems, each

corresponding to detecting handwritten symbols in a given alphabet. Omniglot evaluations

split the data set into 80% for training, 10% for validation, and 10% for test, for each task.

Table 2 summarizes the details of these data sets and the splits.

4.4.3. Network Architectures

All compositional algorithms with fixed k used k=4 components, and methods with dynamic

expansion used k = 4 components for initialization. This is the only architectural choice for

linear models. The following paragraphs describe the architectures used for other experiments.

Soft layer ordering The soft layer ordering architectures followed those used by Meyerson

and Miikkulainen (2018), whenever possible. For MNIST and Fashion, agents used a task-

specific linear input transformation layer E(t) initialized at random and kept fixed throughout

76

training, to ensure that the input spaces were sufficiently different, and each component

was a fully connected layer of 64 units. For CUB, all tasks shared a fixed (i.e., not trained)

ResNet-18 pretrained on ImageNet2 (Deng et al., 2009) as a shared input transformation

E , followed by a task-specific input transformation E(t) given by a linear trained layer, and

each component was a fully connected layer of 256 units. For CIFAR, there was no input

transformation E , and each component was a convolutional layer of 50 channels with 3× 3

kernels and padding of 1 pixel, followed by a max-pooling layer of size 2 × 2. Finally, for

Omniglot, there was also no input transformation E , and each component was a convolutional

layer of 53 channels with 3× 3 kernels and no padding, followed by max-pooling of 2× 2

patches. The input images to the convolutional nets on CIFAR and Omniglot were padded

with all-zero channels in order to match the number of channels required by all component

layers (50 and 53, respectively). All component layers were followed by ReLU activation and

a dropout layer with dropout probability p = 0.5. The output of each network was a linear

task-specific output transformation D(t) trained individually on each task. The architectures

for jointly trained baselines were identical to these, and those for no-components baselines

had the same layers but no mechanism to select the order of the layers.

Soft gating The soft gating architectures mimicked those of the soft layer ordering archi-

tectures closely, all having the same input and output transformations, as well as the same

components. The only difference was in the structure architectures. For fully connected

nets, at each depth, the structure function s(t) was a linear layer that took as input the

previous depth’s output and whose output was a soft selection over the component layers for

the current depth. For convolutional nets, there was one gating net per task with the same

architecture as the main network. The model computed the structure s(t) by passing the

previous depth’s output in the main network through the remaining depths in the gating

network (e.g., the model passed the output of depth 2 in the original network through depths

3 and 4 in the gating network to compute the structure over modules at depth 3).
2The evaluation used the pretrained ResNet-18 provided by PyTorch, and followed the preprocessing

recommended at https://pytorch.org/docs/stable/torchvision/models.html.

77

https://pytorch.org/docs/stable/torchvision/models.html

4.4.4. Algorithm Details

All agents trained for 100 epochs on each task, with a mini-batch of 32 samples. Compositional

agents used the first 99 epochs solely for assimilation and the final epoch for adaptation.

Dynamic + compositional agents followed this same process, but executed every assimilation

step via component dropout; after the adaptation step, the agent kept the new component

if its validation performance with the added component represented at least a 5% relative

improvement over the performance without the additional component. Joint agents trained

all components and the structure for the current task jointly during all 100 epochs, keeping

the structure for the previous tasks fixed, while no-components agents trained the whole

model at every epoch.

ER-based algorithms used a replay buffer of a single mini-batch per task. Similarly, KEWC-

based algorithms used a single mini-batch to compute the approximate Fisher information

matrix required for regularization, and used a fixed regularization parameter λ = 10−3.

To ensure a fair comparison, all algorithms, including the baselines, used the same initialization

procedure by training the first Tinit=4 tasks jointly, in order to encourage the network to

generalize across tasks. For soft ordering nets, the model initialized the order of modules

for the initial tasks as a random one-hot vector for each task at each depth, selecting each

component at least once, and for soft gating nets, the model initialized the gating nets

randomly. The model kept the structures over initial tasks fixed during training, modifying

only the parameters of the components.

4.4.5. Results on Standard Benchmarks

The first evaluation considered tasks with no evident compositional structure, in order

to demonstrate that there is no strict requirement for a certain type of compositionality.

Section 4.4.7 introduces a simple compositional data set, and shows that the results naturally

extend to that setting.

78

Table 3: Average final performance across tasks using factored linear models—accuracy for
FERA and Landmine (higher is better) and RMSE for Schools (lower is better). Compositional
methods were best on FERA and Landmine, and no-components methods performed best on
Schools, demonstrating that the latter data set contains very similar tasks. Standard errors
across ten seeds reported after the ±.

Base Algorithm FERA Landmine Schools

ER
Compositional 79.0±0.4% 93.6±0.1% 10.65±0.04

Joint 78.2±0.4% 90.5±0.3% 11.55±0.09

No Comp. 66.4±0.3% 93.5±0.1% 10.34±0.02

KEWC
Compositional 79.0±0.4% 93.7±0.1% 10.55±0.03

Joint 72.1±0.7% 92.2±0.2% 10.73±0.17

No Comp. 60.1±0.5% 93.5±0.1% 10.35±0.02

NFT
Compositional 79.0±0.4% 93.7±0.1% 10.87±0.07

Joint 67.9±0.6% 72.8±2.5% 25.80±2.35

No Comp. 57.0±0.9% 92.7±0.4% 18.01±1.04

Linear Combinations of Models

Table 3 summarizes the results obtained with linear models on the FERA, Landmine, and

Schools data sets. The compositional versions of ER, KEWC, and NFT clearly outperformed

all the joint versions, which learn the same form of models but by jointly optimizing

structures and components. This suggests that the separation of the learning process into

assimilation and accommodation stages enables the agent to better capture the structure of

the problem. Interestingly, the no-components variants, which learn a single linear model for

all tasks, performed better than the jointly trained versions on two of the data sets, and even

outperformed the compositional algorithms on one. This indicates that the tasks in those

two data sets (Landmine and Schools) are so similar that a single model can capture them.

Deep Compositional Learning With Soft Layer Ordering

The next evaluation studied the performance of the algorithms when learning deep nets with

soft layer ordering, using five data sets: MNIST, Fashion, CUB, CIFAR, and Omniglot.

Results in Table 4 show that all the algorithms conforming to the framework outperformed

the joint and no-components learners. On four out of the five data sets, the dynamic addition

79

Table 4: Average final accuracy across tasks using soft layer ordering. Dynamic + composi-
tional methods performed best, followed closely by compositional methods without dynamic
expansion, except on CIFAR. Standard errors across ten seeds reported after the ±.

Base Algorithm MNIST Fashion CUB CIFAR Omniglot

ER

Dyn. + Comp. 97.6±0.2% 96.6±0.4% 79.0±0.5% 77.6±0.3% 71.7±0.5%
Compositional 96.5±0.2% 95.9±0.6% 80.6±0.3% 58.7±0.5% 71.2±1.0%
Joint 94.2±0.3% 95.1±0.7% 77.7±0.5% 65.8±0.4% 70.7±0.3%
No Comp. 91.2±0.3% 93.6±0.6% 44.0±0.9% 51.6±0.6% 43.2±4.2%

KEWC

Dyn. + Comp. 97.2±0.2% 96.5±0.4% 73.9±1.0% 77.6±0.3% 71.5±0.5%
Compositional 96.7±0.2% 95.9±0.6% 73.6±0.9% 48.0±1.7% 53.4±5.2%
Joint 66.4±1.4% 69.6±1.6% 65.4±0.9% 42.9±0.4% 58.6±1.1%
No Comp. 66.0±1.1% 68.8±1.1% 50.6±1.2% 36.0±0.7% 68.8±0.4%

NFT

Dyn. + Comp. 97.3±0.2% 96.4±0.4% 73.0±0.7% 73.0±0.4% 69.4± 0.4%
Compositional 96.5±0.2% 95.9±0.6% 74.5±0.7% 54.8±1.2% 68.9±0.9%
Joint 67.4±1.4% 69.2±1.9% 65.1±0.7% 43.9±0.6% 63.1±0.9%
No Comp. 64.4±1.1% 67.0±1.3% 49.1±1.6% 36.6±0.6% 68.9±1.0%

FM Dyn. + Comp. 99.1±0.0% 97.3±0.3% 78.3±0.4% 78.4±0.3% 71.0±0.4%
Compositional 84.1±0.8% 86.3±1.3% 80.1±0.3% 48.8±1.6% 63.0±3.3%

of new components yielded either no or marginal improvements. However, on CIFAR

it was crucial for the agent to be capable of detecting when it needed new components.

This added flexibility enables compositional learners to handle more varied tasks, where

new problems may not be solved without substantially new knowledge. Algorithms with

adaptation outperformed the ablated compositional FM agent, showing that it is necessary

to accommodate new knowledge into the set of components in order to handle a diversity of

tasks. When FM was allowed to dynamically add new components (keeping old ones fixed),

it yielded the best performance on MNIST and Fashion by adding far more components than

methods with adaptation, as shown in Table 5, and CIFAR exhibited a similar trend.

D+C C J NC1.0

1.5

Ga
in

Final average performance

(a) ER
D+C C J NC1.0

1.5

Ga
in

Final average performance

(b) KEWC
D+C C J NC1.0

1.5

Ga
in

Final average performance

(c) NFT

D+C C1.0

1.5

Ga
in

Final average performance

Forward
Final

Figure 5: Average gain with respect to no-components NFT across tasks and data sets using
soft ordering, immediately after training on each task (forward) and after training on all
tasks (final), using soft ordering (top) and soft gating (bottom). Algorithms within the
proposed framework (C and D+C) outperformed baselines. Gaps between forward and final
performance indicate that the framework exhibits less forgetting.

80

To study how flexibly compositional agents learn new tasks and how stably they retain

knowledge about earlier tasks, Figure 5 shows accuracy gains immediately after learning each

task (forward) and after learning all tasks (final), with respect to no-components NFT (final).

Compositional learners without expansion struggled to match the forward performance of

joint baselines, indicating that learning the ordering over existing layers during much of the

training is less flexible than modifying the layers themselves, as expected. However, the

added stability dramatically decreased forgetting with respect to joint methods.

The dynamic addition of new layers yielded substantial improvements in the forward stage,

while still reducing catastrophic forgetting with respect to the baselines. Figure 6 shows

0 200 400 600
epochs

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ERDynamic on Fashion

(a) ER Dyn. + Comp.

0 200 400 600
epochs

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ERComposable on Fashion

(b) ER Compositional

0 200 400 600
epochs

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ERNoncomposable on Fashion

(c) ER Joint

0 200 400 600
epochs

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

EROriginal on Fashion

(d) ER No Components

Figure 6: Learning curves averaged across MNIST and Fashion using ER and soft ordering.
Each curve shows a single task trained for 100 epochs and continually evaluated during and
after training. Algorithms under the proposed framework displayed no forgetting. For ER
dynamic + compositional, as the agent saw and accommodated more tasks, assimilation
performance of later tasks improved. Joint and no-components versions dropped performance
of early tasks during the learning of later tasks.

81

the learning curves on MNIST and Fashion tasks using ER, the best adaptation method.

Performance jumps in 100-epoch intervals show adaptation steps incorporating knowledge

about the current task into the existing components without noticeably impacting earlier

tasks’ performance. Compositional and dynamic + compositional ER exhibited almost no

performance drop after training on a task, whereas accuracy for the joint and no-components

versions diminished as the agent learned subsequent tasks. Most notably, as dynamic ER saw

more tasks, the existing components became better able to assimilate new tasks, shown by

the trend of increasing performance as the number of tasks increases. This suggests that the

later tasks’ accommodation stage can successfully determine which new knowledge should

be incorporated into existing components (enabling those components to better generalize

across tasks), and which must be incorporated into a new component. See Appendix B for

versions of Figure 5 and 6 separated by each data set.

The gap between the first and second bar for each algorithm in Figure 5 is an indicator of

the amount of catastrophic forgetting. However, it hides details of how forgetting affects

each individual task. On the other hand, the decay rate of each task in Figure 6 shows

how the learners forget each task over time, but does not measure quantitatively how much0 2 4 6 8
Task ID

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 R
et

en
tio

n
Ra

te

Average catastrophic forgetting

Dyn. + Comp. Compositional Joint No Comp.

0 2 4 6 8
Task ID

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

 R
et

en
tio

n
Ra

te

Average catastrophic forgetting

(a) ER

0 2 4 6 8
Task ID

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 R
et

en
tio

n
Ra

te

Average catastrophic forgetting

(b) KEWC

0 2 4 6 8
Task ID

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 R
et

en
tio

n
Ra

te

Average catastrophic forgetting

(c) NFT

Figure 7: Catastrophic forgetting across data sets using soft ordering. Ratio of accuracy
immediately after learning a task to after learning all tasks. For data sets with more than ten
tasks, the evaluation sampled ten interleaved tasks to match all the x-axes. Compositional
algorithms had practically no forgetting, whereas jointly trained and no-components baselines
forgot knowledge required to solve earlier tasks.

82

Table 5: Number of learned components using soft ordering. MNIST, Fashion, CUB,
and Omniglot required few additional components, except for FM. CIFAR required many
more modules, explaining the gap in performance between compositional and dynamic +
compositional methods. Standard errors across ten seeds reported after the ±.

Base MNIST Fashion CUB CIFAR Omniglot
ER 5.2±0.3 4.9±0.3 5.9±0.3 19.1±0.3 9.3±0.3

KEWC 5.0±0.3 4.7±0.2 5.8±0.2 19.6±0.2 10.1±0.3

NFT 5.0±0.2 4.8±0.3 6.1±0.3 17.7±0.3 10.0±0.7

FM 10.0±0.0 8.8±0.2 6.5±0.4 19.1±0.4 10.2±0.6

forgetting occurs. Based on prior work (Lee et al., 2019a), Figure 7 shows knowledge retention

quantitatively as the ratio of performance after training on each task to after training on

all tasks. Results show that compositional methods exhibit substantially less catastrophic

forgetting, particularly for the earlier tasks seen during training.

In the experiments discussed so far, it was in many cases necessary to incorporate an expansion

step in order for compositional algorithms to be sufficiently flexible to handle the stream

of incoming tasks. This expansion step enables compositional methods to dynamically add

new components if the existing ones are insufficient to achieve good performance on the new

task. Table 5 shows the number of components learned by each dynamic algorithm, averaged

across all ten trials. Notably, in order for dynamic methods to work on the CIFAR data set,

they required learning almost one component per task. This explains why compositional

algorithms without dynamic component additions performed poorly on CIFAR.

One of the key aspects of lifelong learning is the ability to learn in the presence of little data

for each task, using knowledge acquired from previous tasks to acquire better generalization

for new tasks. To evaluate the sample efficiency of compositional algorithms, the following

experiment varied the number of data points used for training for MNIST, Fashion, and CUB,

using ER as the adaptation method. The evaluation was repeated for 50 trials, each with

a different random seed controlling the selection of classes and samples for each task, and

the order over tasks. Note that this experiment required more trials to obtain statistically

significant results because the smaller sample sizes led to higher variance in the learning

83

4 8 16 32 64 128
data points

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Learning curves on CUB

Dyn. + Comp. Compositional Joint No Comp.

16 32 64 128 256 512
data points

0.75

0.80

0.85

0.90

0.95
Ac

cu
ra

cy

Learning curves on MNIST

(a) MNIST

16 32 64 128 256 512
data points

0.825

0.850

0.875

0.900

0.925

0.950

Ac
cu

ra
cy

Learning curves on Fashion

(b) Fashion

4 8 16 32 64 128
data points

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Learning curves on CUB

(c) CUB

Figure 8: Accuracy of ER-based methods with varying data sizes. Compositional methods
performed better even with extremely little data per task. The shaded area represents
standard errors across 50 seeds.

performance of the various algorithms. Learners trained for 1,000 epochs, with compositional

methods alternating nine epochs of assimilation and one epoch of adaptation. For each sample

size n, all agents used a mini-batch of size b = 32, and the replay buffer size was limited

to 10% of the sample or a single mini-batch, whichever was smaller: min(max(b0.1nc, 1), b).

Figure 8 shows the learning accuracy for ER-based algorithms as a function of the number

of training points, revealing that compositional algorithms work better than baselines even

in the presence of very little data.

The proposed compositional learning framework seeks to discover a set of components that

are reusable across multiple tasks. To verify that this occurs, the next evaluation studied

how many tasks reused each component. Taking the models pretrained via compositional

and dynamic + compositional ER, this evaluation measured the accuracy of the models on

each task if the model discarded any individual component. A task counted as reusing a

given component if removing it caused a relative drop in accuracy of more than 5%. Table 6

shows the number of tasks that reused each component. Since there is no fixed ordering over

components across trials, the evaluation sorted each trial’s components in descending order

of the number of tasks that reused each component. Moreover, for dynamic + compositional

ER, the results only considered components that were created across all trials for a given

data set, to ensure that all averages were statistically significant. Results show that across

84

Table 6: Number of tasks that reuse a component. A task reuses a component if its accuracy
drops by more than 5% relative when not using the component. Several tasks reuse most
modules, except on CIFAR. Standard errors across ten seeds reported after the ±.

Algorithm Comp. MNIST Fashion CUB CIFAR Omniglot

Compositional

0 6.40±0.43 6.00±0.24 13.40±0.78 18.90±0.30 46.40±0.98

1 4.90±0.26 4.70±0.28 7.90±0.41 16.20±0.80 30.60±2.86

2 4.10±0.26 4.10±0.17 5.90±0.57 11.90±1.14 18.80±3.76

3 3.00±0.32 2.60±0.32 3.20±0.49 5.70±0.97 10.90±2.17

Dyn. + Comp.

0 4.70±0.38 5.10±0.26 9.80±0.98 13.30±1.27 21.90±1.82

1 3.60±0.25 3.90±0.22 6.20±0.56 6.20±0.61 12.30±0.68

2 2.80±0.28 3.30±0.28 4.40±0.62 4.00±0.35 9.20±0.61

3 1.90±0.26 2.10±0.22 2.70±0.20 3.10±0.26 7.40±0.47

4 — — — 3.00±0.32 6.50±0.49

5 — — — 1.80±0.13 5.00±0.51

6 — — — 1.50±0.16 4.20±0.46

7 — — — 1.10±0.09 3.40±0.47

8 — — — 1.00±0.00 1.90±0.30

9 — — — 1.00±0.00 —
10 — — — 1.00±0.00 —
11 — — — 1.00±0.00 —
12 — — — 1.00±0.00 —
13 — — — 0.90±0.09 —
14 — — — 0.90±0.09 —

all data sets and algorithms, multiple tasks reused all k = 4 components available from

initialization. For the Omniglot data set, this behavior persisted even for components that

were dynamically added in the expansion step. However, this was not the case for the CIFAR

data set, for which multiple tasks indeed reused the first few dynamically added components,

but only a single task used subsequent ones. This indicates that the agent added those

components merely for increasing performance on that individual task, but found no reusable

knowledge useful for future tasks.

When designing algorithms under the framework, one needs to choose how to alternate the

processes of assimilation and accommodation. Most experiments so far considered the simplest

case, where the learning carries out adaptation entirely after finishing assimilation. However,

it is possible that other choices yield better results, enabling the learner to incorporate

knowledge about the current task that further enables it to assimilate it better. To study

85

this question, the evaluation executed additional experiments using ER variants on the

MNIST, Fashion, and CUB data sets with soft layer ordering. Instead of executing the

adaptation step only after completing assimilation, the agent alternated epochs of assimilation2 5 10 20 50 100
adaptFreq

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Learning curves on CUB

Dyn. + Comp. Compositional Joint No Comp.

2 5 10 20 50 100
adaptFreq

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

Learning curves on MNIST

(a) ER on MNIST

2 5 10 20 50 100
adaptFreq

0.7

0.8

0.9

Ac
cu

ra
cy

Learning curves on MNIST

(b) KEWC on MNIST

2 5 10 20 50 100
adaptFreq

0.7

0.8

0.9

Ac
cu

ra
cy

Learning curves on MNIST

(c) NFT on MNIST

2 5 10 20 50 100
adaptFreq

0.93

0.94

0.95

0.96

0.97

Ac
cu

ra
cy

Learning curves on Fashion

(d) ER on Fashion

2 5 10 20 50 100
adaptFreq

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Learning curves on Fashion

(e) KEWC on Fashion

2 5 10 20 50 100
adaptFreq

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Learning curves on Fashion

(f) NFT on Fashion

2 5 10 20 50 100
adaptFreq

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Learning curves on CUB

(g) ER on CUB

2 5 10 20 50 100
adaptFreq

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Learning curves on CUB

(h) KEWC on CUB

2 5 10 20 50 100
adaptFreq

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Learning curves on CUB

(i) NFT on CUB

Figure 9: Effect of the assimilation and accommodation schedule. Average accuracy across
tasks with respect to the number of assimilation epochs between accommodation epochs.
Broadly, methods under the proposed framework performed better with a scheduled that
favored stability, taking more assimilation steps before accommodating any new knowledge
into the set of existing components.

86

with epochs of adaptation with various frequencies. Figure 9 displays the obtained results.

Generally, it was beneficial to carry out adaptation steps infrequently, with a clear increasing

trend in performance as the learner took more assimilation steps before each adaptation

step. For MNIST and Fashion, all choices of schedule led to improved performance over

baselines, highlighting the benefits of splitting the learning process into assimilation and

accommodation. For CUB, the results were more nuanced, with very fast accommodation

rates achieving lower accuracy than the baselines. This is consistent with the results in

Table 4, where compositional FM—equivalent to compositional ER with a schedule of infinite

assimilation steps per accommodation step—performed nearly as well as compositional ER

with a single adaptation epoch.

Deep Compositional Learning With Soft Gating

Having completed an extensive evaluation on the performance of compositional algorithms

using soft ordering nets as the compositional structures, a similar study considered using the

Table 7: Average final accuracy across all tasks using soft gating. The gap between compo-
sitional and dynamic + compositional methods was smallar than with soft ordering, and
in particular FM methods were competitive, due to the increased flexibility of the gating
approach. Standard errors across ten seeds reported after the ±.

Base Algorithm MNIST Fashion CIFAR Omniglot

ER

Dyn. + Comp. 98.2±0.1% 97.1±0.4% 74.9±0.3% 73.7±0.3%
Compositional 98.0±0.2% 97.0±0.4% 75.9±0.4% 73.9±0.3%
Joint 93.8±0.3% 94.6±0.7% 72.0±0.4% 72.6±0.2%
No Comp. 91.2±0.3% 93.6±0.6% 51.6±0.6% 43.2±4.2%

KEWC

Dyn. + Comp. 98.2±0.1% 97.0±0.4% 76.6±0.5% 73.6±0.4%
Compositional 98.0±0.2% 97.0±0.4% 76.9±0.3% 74.6±0.2%
Joint 68.6±0.9% 69.5±1.8% 49.9±1.1% 63.5±1.2%
No Comp. 66.0±1.1% 68.8±1.1% 36.0±0.7% 68.8±0.4%

NFT

Dyn. + Comp. 98.2±0.1% 97.1±0.4% 66.6±0.7% 69.1±0.9%
Compositional 98.0±0.2% 96.9±0.5% 68.2±0.5% 72.1±0.3%
Joint 67.3±1.7% 66.4±1.9% 51.0±0.8% 65.8±1.3%
No Comp. 64.4±1.1% 67.0±1.3% 36.6±0.6% 68.9±1.0%

FM Dyn. + Comp. 98.4±0.1% 97.0±0.4% 77.2±0.3% 74.0±0.4%
Compositional 94.8±0.4% 96.3±0.4% 77.2±0.3% 74.1±0.3%

87

D+C C J NC1.0

1.5

Ga
in

Final average performance

(a) ER
D+C C J NC1.0

1.5

Ga
in

Final average performance

(b) KEWC
D+C C J NC1.0

1.5

Ga
in

Final average performance

(c) NFT

D+C C1.0

1.5

Ga
in

Final average performance

Forward
Final

Figure 10: Average gain with respect to no-components NFT across tasks and data sets
using soft ordering, immediately after training on each task (forward) and after training on
all tasks (final), using soft ordering (top) and soft gating (bottom). Algorithms within the
proposed framework (C and D+C) outperformed baselines. Gaps between forward and final
performance indicate that the framework exhibits less forgetting.

proposed algorithms for training soft gating nets. Table 7 shows a substantial improvement

of compositional algorithms with respect to baselines in overall performance. One reasonable

hypothesis is that the gating net should grant the assimilation step more flexibility, which is

confirmed in Figure 10—the forward accuracy of compositional methods was nearly identical

to that of jointly trained and no-components versions. This added flexibility enabled the

simplest version of a compositional algorithm, FM, to perform better than the full versions

of the algorithm on the CIFAR data set with convolutional gating nets, showing that even

the components initialized with only a few tasks are sufficient for top lifelong learning

performance. Early experiments with this method on the CUB data set revealed that all

algorithms (including the baselines) were incapable of generalizing to test data. This is0 2 4 6 8
Task ID

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 R
et

en
tio

n
Ra

te

Average catastrophic forgetting

Dyn. + Comp. Compositional Joint No Comp.

0 2 4 6 8
Task ID

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

 R
et

en
tio

n
Ra

te

Average catastrophic forgetting

(a) ER

0 2 4 6 8
Task ID

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 R
et

en
tio

n
Ra

te

Average catastrophic forgetting

(b) KEWC

0 2 4 6 8
Task ID

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 R
et

en
tio

n
Ra

te

Average catastrophic forgetting

(c) NFT

Figure 11: Catastrophic forgetting across data sets using soft gating. Ratio of accuracy
immediately after learning a task to after learning all tasks. For data sets with more than ten
tasks, the evaluation sampled ten interleaved tasks to match all the x-axes. Compositional
algorithms had practically no forgetting, whereas jointly trained and no-components baselines
forgot knowledge required to solve earlier tasks.

88

Table 8: Number of learned components using soft gating. The model growth was substantially
more controlled with this more flexible architecture. Standard errors across ten seeds reported
after the ±.

Base MNIST Fashion CIFAR Omniglot
ER 4.0±0.0 4.2±0.1 4.1±0.1 7.1±0.4

KEWC 4.1±0.1 4.0±0.0 4.8±0.2 7.4±0.4

NFT 4.1±0.1 4.2±0.1 4.1±0.1 7.2±0.3

FM 5.4±0.2 4.7±0.2 4.4±0.2 7.3±0.4

consistent with findings in prior work, which showed that gating nets require vast amounts

of data, unavailable on CUB (Rosenbaum et al., 2018; Kirsch et al., 2018).

Results in Figure 11 show the knowledge retention ratio for all tested methods using soft

gating nets, once more revealing that compositional methods exhibit substantially less

catastrophic forgetting, particularly for the earlier tasks seen during training. On the other

hand, Table 8 shows that soft gating nets typically required adding fewer new components

than soft ordering nets, which is to be expected, since the gating structure gives each

component substantially more flexibility to adapt to a larger number of tasks. Notably, this

result holds even for FM, which does not get to adapt existing modules to new tasks.

4.4.6. Results on Combined Data Set of Diverse Tasks

One of the key advantages of learning compositional structures is that they enable learning a

more diverse set of tasks, by recombining components in novel ways to solve each problem.

In this setting, noncompositional structures struggle to capture the diversity of the tasks

in a single monolithic architecture. To verify that this is indeed the case, this evaluation

created a novel data set that combines the 10 MNIST tasks, 10 Fashion tasks, and 20 CUB

tasks into a single Combined lifelong learning data set of T = 40 tasks, and compared

all methods and baselines on this new data set. The experiment gave no indication to the

agents that each task came from a different data set, and they all trained following the exact

same setup of Section 4.4.5. The framework instantiations and baselines trained with the

soft layer ordering method, using the same architecture as used for CUB in Section 4.4.5.

89

Table 9: Average final accuracy across tasks on the Combined data set, which consists of
highly varied tasks. Each column shows accuracy on the subset of tasks from each given
data set, as labeled. No-components methods were incapable of learning CUB tasks, and
the full dynamic + compositional version of the framework with ER achieved the highest
performance. Standard errors across ten seeds reported after the ±.

Base Algorithm All data sets MNIST Fashion CUB

ER

Dyn. + Comp. 86.5±1.8% 99.5±0.0% 98.0±0.3% 74.2±2.0%
Compositional 82.1±2.5% 99.5±0.0% 97.8±0.3% 65.5±2.4%
Joint 72.8±4.1% 98.9±0.3% 97.0±0.7% 47.6±6.2%
No Comp. 47.4±4.5% 91.8±1.3% 83.5±2.5% 7.1±0.4%

KEWC

Dyn. + Comp. 75.1±3.2% 98.7±0.5% 97.1±0.7% 52.4±2.9%
Compositional 71.3±4.0% 99.4±0.0% 96.1±0.9% 44.8±3.5%
Joint 52.2±5.0% 85.1±5.5% 88.6±3.8% 17.5±1.5%
No Comp. 28.9±2.8% 52.9±1.6% 52.5±1.4% 5.0±0.4%

NFT

Dyn. + Comp. 75.5±3.2% 99.1±0.3% 96.2±0.9% 53.3±2.8%
Compositional 70.6±3.8% 98.5±0.5% 95.6±0.8% 44.2±3.5%
Joint 52.7±4.9% 85.5±4.9% 88.5±3.7% 18.4±1.7%
No Comp. 34.6±3.7% 61.3±3.8% 59.8±3.6% 8.7±0.5%

FM Dyn. + Comp. 83.8±2.0% 99.6±0.0% 98.3±0.3% 68.7±1.5%
Compositional 74.6±3.1% 99.5±0.0% 98.1±0.3% 50.3±2.0%

The pretrained ResNet-18 processed only the CUB images, whereas the task-specific input

transformation E(t) consumed directly the MNIST and Fashion images.

Table 9 summarizes the results. As expected, compositional methods clearly outperformed

all baselines, by a much wider margin than in the single-data-set settings of Section 4.4.5. In

particular, no-components baselines (those with monolithic architectures) were completely

incapable of learning to solve the CUB tasks, showing that handling this more complex

setting requires compositional architectures. Even the jointly trained variants, which do

have compositional structures but learn them naïvely with existing lifelong methods, failed

drastically. Compositional methods performed remarkably well, especially when using ER as

the base adaptation method and dynamically adding components.

Note that, in order to match the requirements of the CUB data set, the architecture used for

these experiments gave MNIST and Fashion a higher capacity (layers of size 256 vs. 64) and

the ability to train the input transformation for each task individually (instead of keeping

90

it fixed) compared to the architecture described in Section 4.4.3. This explains the higher

performance of most methods in those two data sets compared to the results in Table 4.

4.4.7. Evaluation on a Toy Compositional Data Set

The results of Sections 4.4.5 and 4.4.6 show the compositional learning performance on a suite

of data sets that does not explicitly require any compositional structure. This deliberate choice

permitted studying the generality of the proposed framework, and revealed that algorithms

that instantiate it work well across data sets with a range of feature representations, relations

across tasks, numbers of tasks, and sample sizes. This section introduces a data set that

explicitly embodies a compositional structure that intuitively matches the assumptions of the

soft layer ordering architecture, and shows that the results obtained for noncompositional

data sets still hold for this class of problems.

The new Objects data set consists of 48 classes, each corresponding to an object composed

of a shape (circle, triangle, or square), color (orange, blue, pink, or green), and location

(each of the four quadrants in the image). The data set contains n = 100 images of size

28× 28 per class. The data generation process sampled the center location, color, and size

of each data point uniformly at random from each attribute’s corresponding range. The

range for the centers was [cx − 3, cx + 3], [cy − 3, cy + 3], where cx and cy are the centers of

the quadrant for each class, respectively. The range for the red-green-blue (RGB) values

was [r − 16, r + 16], [g − 16, g + 16], [b− 16, g + 16], where r, g, and b are the nominal RGB

values for the color of each class. Finally, the range of the object sizes was [3, 7] pixels.

To test the proposed framework in this setting, the experiment created a lifelong version of

the Objects data set by randomly splitting the data into T = 16 three-way classification tasks.

The evaluation used 50% of the instances for each class as training data, 20% as validation

data, and 30% as test data. The learners used soft ordering nets with k = 4 components

of 64 fully connected hidden units shared across tasks, and a linear input transformation

E(t) trained for each task. All agents trained for 100 epochs per task using a mini-batch of

91

size 32, with compositional agents using 99 epochs for assimilation and a single epoch for

adaptation. The regularization hyperparameter for KEWC was set to λ = 1e− 3, and ER

was given a replay buffer of size nm = 5. Each experiment was repeated for 50 trials with

different random seeds controlling class splits for each task, training/validation/test splits

for each class, and the ordering of tasks.

The experiments considered four different evaluation settings. The Random setting split

classes and ordered them into task sequences randomly, matching the experimental setting

of Section 4.4.5. The other, more challenging settings held out one shape, location, or color

only for the final four (for color and location) or five (for shape) tasks, requiring the agents

to adapt to never-seen components dynamically. Results in Table 10 show that each of the

compositional methods outperformed all baselines in all settings, showcasing the ability of

the proposed framework to discover the underlying compositional structures.

Table 10: Average final accuracy across tasks on the compositional Objects data set using
soft layer ordering. Column labels indicate which component was held out for final tasks.
Compositional approaches outperformed the baselines in this setting that explicitly matches
the compositional assumptions. Standard errors across ten seeds reported after the ±.

Base Algorithm Circle Top-left Orange Random

ER

Dyn. + Comp. 93.4±0.7% 85.9±1.0% 89.4±1.0% 91.8±0.6%
Compositional 92.2±0.9% 84.9±1.2% 88.7±1.2% 90.9±0.9%
Joint 92.0±0.8% 83.5±1.0% 87.8±1.2% 89.1±0.6%
No Comp. 91.2±1.0% 83.5±1.1% 88.4±0.8% 89.8±1.0%

KEWC

Dyn. + Comp. 93.4±0.7% 85.9±1.0% 89.5±1.1% 91.6±0.7%
Compositional 92.0±1.1% 85.3±1.2% 88.7±1.2% 90.9±0.9%
Joint 91.1±0.8% 82.4±1.3% 87.0±1.4% 90.1±0.7%
No Comp. 88.1±1.8% 81.0±1.5% 83.3±2.5% 86.3±2.1%

NFT

Dyn. + Comp. 93.3±0.7% 86.3±1.0% 89.6±1.1% 91.5±0.6%
Compositional 92.3±0.8% 85.7±1.1% 88.7±1.2% 90.6±0.9%
Joint 90.6±0.9% 81.8±1.2% 86.6±1.3% 88.4±1.2%
No Comp. 89.2±2.0% 77.5±1.9% 86.8±1.2% 85.7±1.5%

FM Dyn. + Comp. 93.0±0.7% 86.0±1.0% 89.5±1.1% 91.4±0.5%
Compositional 90.8±1.4% 83.8±1.5% 88.1±1.2% 89.4±0.9%

92

4.4.8. Visualization of the Learned Components

The primary motivation for the proposed framework was the creation of lifelong learning

algorithms capable of discovering self-contained, reusable components, useful for solving a

variety of tasks. This section visually inspects the components learned by the framework to

verify that they are indeed self-contained and reusable.

The experimental setting followed that of Meyerson and Miikkulainen (2018), where each

task corresponded to a single image of the digit “4”, and each pixel in the image constituted

one data-point. The x, y coordinates of the pixel constituted the features, and the pixel’s

intensity was the associated label. The preprocessing normalized the pixel coordinates and

intensities to [0, 1]. The agent trained using all pixels in the image, since the goal was

understanding the learned representations, as opposed to generalizing to unseen data. The

agent used a network with k = 4 components shared across all tasks, and used soft layer

ordering to learn the structure s(t) for each task. The network first processed the input with

a linear transformation layer E shared across all tasks, and after the compositional structure

passed its output through a shared sigmoid output transformation layer D. Sharing the

input and output transformations across tasks ensured that the only differences across the

models of the different tasks were due to the structure of each task over the components.

The network minimized the binary cross-entropy loss on T = 10 tasks for 1,000 epochs via

the compositional and jointly trained versions of ER with a replay buffer and mini-batch of

32 pixel instances, updating the components of the compositional version every 100 epochs.

To assess the ability of compositional ER to capture reusable functional primitives, the

evaluation varied the intensity ψ(t)
i,j with which the network chose one specific component mi

at different depths j, and observed the reconstructed images output by the network. The

evaluation focused on the last two tasks seen by the learner, in order to disregard the effects

of catastrophic forgetting, which rendered the visualizations of the outputs of the joint ER

baseline incomprehensible for earlier tasks. Figures 12–15 show these reconstructions as the

intensity of each component individually varies at different depths. The components trained

93

4
←
−d

ep
th
−→

1

0 ←− intensity −→ 1

Task 9

0 ←− intensity −→ 1

Task 9

4
←
−d

ep
th
−→

1

Task 10
(a) ER Compositional

Task 10
(b) ER Joint

Figure 12: Visualization of reconstructed MNIST “4” digits on the last two tasks seen by
compositional and joint ER with soft layer ordering, varying the intensity of component
i = 0. Compositional ER learned a functional primitive: the more intensely the component
is selected (left to right), the thinner the lines of the digit become. The magnitude of this
effect decreases with depth (top to bottom), with the digit disappearing as the component
is more intensely selected at the earliest layers, but only becoming slightly sharper with
intensity at the deepest layers. This effect is consistent across both tasks. Joint ER did not
exhibit this consistent behavior, with different effects observed across depths and tasks.

4
←
−d

ep
th
−→

1

0 ←− intensity −→ 1

Task 9

0 ←− intensity −→ 1

Task 9

4
←
−d

ep
th
−→

1

Task 10
(a) ER Compositional

Task 10
(b) ER Joint

Figure 13: Visualization of reconstructed MNIST “4” digits, varying the intensity of component
i = 1. The component learned via compositional ER consistently decreases the length of the
left side of the digit and increases that of the right side. Again, it was not possible to detect
any consistency in the effect of the component learned via joint ER.

94

4
←
−d

ep
th
−→

1

0 ←− intensity −→ 1

Task 9

0 ←− intensity −→ 1

Task 9

4
←
−d

ep
th
−→

1

Task 10
(a) ER Compositional

Task 10
(b) ER Joint

Figure 14: Visualization of reconstructed MNIST “4” digits, varying the intensity of component
i = 2. As the intensity of the component learned via compositional ER increased, the digit
changed from very sharp to very smooth. Joint ER did not exhibit any consistent behavior.

4
←
−d

ep
th
−→

1

0 ←− intensity −→ 1

Task 9

0 ←− intensity −→ 1

Task 9

4
←
−d

ep
th
−→

1

Task 10
(a) ER Compositional

Task 10
(b) ER Joint

Figure 15: Visualization of reconstructed MNIST “4” digits, varying the intensity of component
i = 3. This component also interpolates between sharper and smoother digits, while also
rotating the digit. There was no consistency in the component learned by Joint ER.

with compositional ER learned to produce effects on the digits consistent across tasks, with

more extreme effects at the initial layers. For example, Figure 12 reveals that the discovered

component learned to vary the thickness of the digit regardless of the task at hand, with the

95

effect being more pronounced at the initial layers. In contrast, joint ER learned components

whose effects are different for different tasks and at different depths.

4.5. Summary

This chapter developed concrete instantiations for the supervised setting of the general-

purpose framework for lifelong learning of compositional structures presented in Chapter 3.

These instantiations demonstrated the flexibility of the proposed framework by capturing

nine different concrete algorithms, varying the choice of compositional structures and the

back-bone mechanism for accommodating knowledge of multiple tasks sequentially. An

extensive evaluation empirically tested each instantiation, showing that these algorithms are

stronger lifelong learners than existing approaches. In particular, the evaluation demonstrated

that both learning traditional monolithic architectures and naïvely training compositional

structures via existing methods lead to substantially degraded performance. In contrast,

methods that follow the proposed framework suffered from minimal amounts of forgetting,

improved the quality of the model over time as they trained on more tasks, performed well

even in the face of extremely little data, and achieved higher overall performance. Therefore,

not only is the framework simple conceptually, but it is also easy to combine with existing

continual or compositional learning techniques, and effective in trading off the flexibility and

stability required for lifelong learning.

This chapter showed the potential of compositional structures to enable strong lifelong learning.

One major line of open work remains properly understanding how to measure the quality of

the obtained compositional solutions, especially in settings without obvious decompositions,

like those considered in Section 4.4.5. While the visualizations in Section 4.4.8 and results in

Table 6 suggest that instantiations of the framework obtain reusable components, so far this

lacks a proper metric to assess the degree to which the learned structures are compositional.

Chapter 5 develops benchmarks for the RL setting that are explicitly compositional, and which

consequently permit assessing whether the obtained solutions are indeed compositional.

96

CHAPTER 5 : Application of Lifelong Composition to Reinforcement Learning

5.1. Introduction

So far, the discussion of the contributions of this dissertation has centered around super-

vised learning, demonstrating the promise of the proposed framework for lifelong discovery

of compositional knowledge representations. This chapter expands on this discussion by

demonstrating that functionally compositional knowledge is a powerful tool for RL, too.

To this end, this chapter first formalizes the problem of discovering functionally compositional

knowledge specifically for RL, adapting the supervised learning definition described in

Chapter 3 into the RL setting. Intuitively, each functional module can be thought of as akin

to a function in a data processing pipeline for a programmed robot controller. In particular,

this is fundamentally different from the typical temporal composition considered by the

majority of hierarchical RL works.

Subsequently, the chapter presents two novel algorithms for lifelong RL, following the lifelong

compositional learning framework of Chapter 3. Unlike in the supervised setting, there is no

wealth of existing modular architectures and lifelong mechanisms for RL. Consequently, this

dissertation developed the two methods described in this chapter from basic principles.

The first mechanism uses the compositional structure with linear model combinations

described in Chapter 3. In the assimilation stage, this method directly trains the selection

over existing components via PG learning; in the accommodation stage, it approximates the

overall MTL cost via a second-order Taylor expansion and solves the resulting optimization

problem in closed form. These simplifying assumptions permitted deriving theoretical proofs

that the proposed algorithm finds an optimum of the approximate MTL objective. An

empirical evaluation of this method on a range of continuous control problems, including a

challenging set of robotic manipulation tasks from Meta-World (Yu et al., 2019), demonstrated

the capability of the method to accelerate the learning of existing single-task PG methods.

97

The second mechanism uses a form of hard modular net, introduced in Chapter 3 and

described in detail here in Section 5.6.1. This method separates the assimilation stage

into two substages: a discrete search stage, where the agent chooses the optimal module

combination, and an exploration stage, where the agent trains via standard RL using the

chosen modules as an initialization. The accommodation stage uses data collected during the

exploration stage from the current and previous tasks to perform experience replay. Learning

a policy off-line from fixed data introduces a distributional shift between the data and the

learned policy, which strains the capabilities of standard methods (Levine et al., 2020). One

recent technique is to constrain the departure from the observed data distribution (Fujimoto

et al., 2019b; Laroche et al., 2019; Kumar et al., 2019). This issue bears close connections to

lifelong RL: obtaining backward transfer after training on future tasks requires modifying

the behavior on the earlier tasks without additional experience. The accommodation stage

exploits this connection by storing a portion of the data collected on each task and replaying

it for off-line RL after training on future tasks. Given the fact that the hard modular

architecture used by this method closely matches the functional composition assumption,

the evaluation constructed two sets of RL tasks that specifically match these compositional

assumptions and tested the proposed method on those tasks. The second of these benchmarks,

which consists of a set of tens of robotic manipulation tasks, was subsequently extended in

Chapter 7 into hundreds of far more complex and diverse robotics tasks.

5.2. Background on Reinforcement Learning for Continuous State-Action Spaces

Formally, an RL problem is given by an MDP Z = 〈X ,U , R, P, γ〉, where X ⊆ Rd is the set

of states, U ⊆ Rm is the set of actions, P : X ×U ×X 7→ [0, 1] is the probability distribution

p
(
x′ | x,u

)
of transitioning to state x′ upon executing action u in state x, R : X ×U 7→ R is

the reward function measuring the goodness of a given state-action pair, with Ri = R(xi,ui)

being the reward obtained at step i, and γ ∈ [0, 1) is the discount factor that reduces the

importance of rewards obtained far in the future. A policy π : X × U 7→ [0, 1] dictates the

agent’s behavior, giving the probability p(u | x) of selecting action u in state x. The goal of

98

the agent is to find the policy π∗ ∈ Π that maximizes the expected discounted long-term

returns E
[∑∞

i=0 γ
iRi
]
(Sutton and Barto, 2018).

Existing approaches to solve the RL problem rely on two common quantities to evaluate the

quality of a given policy π. The state-value function, given by:

V π(x) = E

[
R(x,u ∼ π(x)) +

∞∑
i=1

γiR(xi ∼ P (xi−1,ui−1,xi),ui ∼ π(xi))

]
, (5.1)

represents how good a given state x is under a given policy π. If evaluated on the (potentially

stochastic) initial state x0, V gives the expected overall performance of the policy π. Similarly,

the action-value function, given by:

Qπ(x,u) = E

[
R(x,u) +

∞∑
i=1

γiR(xi ∼ P (xi−1,ui−1,xi),ui ∼ π(xi))

]
, (5.2)

characterizes how good a given state-action pair x,u is under the policy π. From these two

quantities, one can also obtain the advantage function Aπ(x,u) = Qπ(x,u)− V π(x) as the

improvement of the action u over the average action in the current state x. In principle,

one can find the optimal policy π∗ by optimizing the Q-function by repeatedly applying the

Bellman equation:

Q∗(x,u) = R(x,u) + max
u′

γQ∗
(
x′ ∼ P (x,u,x′),u′

)
. (5.3)

This is at a high level the principle followed by Q-learning (Watkins, 1989) and its variants,

including the deep Q-network algorithm (DQN; Mnih et al., 2015). However, in cases where

the action space is continuous, as considered in most of this dissertation, the maximization

in Equation 5.3 is infeasible to compute.

PG algorithms have shown success in solving continuous-action RL problems by assuming

that a vector θ ∈ Rd parameterizes the policy πθ and searching for the set of parameters θ∗

that optimizes the long-term rewards: J (θ) = E
[∑∞

i=0 γ
iRi
]
(Sutton et al., 1999a; Schulman

99

et al., 2015; Lillicrap et al., 2016). Different approaches use varied strategies for estimating

the gradient ∇θJ (θ). However, the common high-level idea is to use the current policy πθ

to sample trajectories of interaction with the environment for exploration, and then estimate

the gradient as the average of some function of the state features and rewards encountered

through the trajectories.

Alternatively, actor-critic methods simultaneously learn a policy and a Q-function to estimate

the quality of the policy. Broadly, the learning trains a parametric policy πθπ to solve the

inner maximization problem of Equation 5.3, and a parametric Q-function QθQ to solve the

outer optimization (Konda and Borkar, 1999; Mnih et al., 2016; Schulman et al., 2017).

5.3. The Lifelong Reinforcement Learning Problem

Chapter 3 described the problem of lifelong supervised learning used to develop the algorithms

in Chapter 4, where the agent must learn predictive functions for a sequence of tasks by

leveraging information that is common to multiple tasks. This section adapts the problem

definition to the RL setting, where the agent instead must learn policies and value functions

based on shared information. Concretely, the agent faces a sequence of tasks Z(1), . . . ,Z(T),

each of which is an MDP Z(t) = 〈X (t),U (t), P (t), R(t), γ〉. The environment draws tasks

i.i.d. from a fixed, stationary environment. Section 5.5.4 formalizes this stationarity assump-

tion for a simplified setting, and the remaining sections of this chapter use it in an informal

sense; Chapter 6 extends the problem definition to a nonstationary setting. The goal of

the agent is to find the policy parameters
{
θ
(1)
π , . . . ,θ

(T)
π

}
and value-function parameters{

θ
(1)
Q , . . . ,θ

(T)
Q

}
that maximize the performance across all tasks: 1

T

∑T
t=1 E

[∑∞
i=0 γ

iR
(t)
i

]
.

As in the supervised case, the agent is unaware of the total number of tasks it will face or

the order in which tasks will arrive. However, the agent does receive a task indicator t that

lets it differentiate tasks from one another.

Upon observing each task, the agent is allowed to interact with the environment for a limited

time, typically insufficient for obtaining optimal performance without exploiting information

100

from prior tasks. During this time, the learner explores the effects of different behaviors

on the environment, striving to discover any relevant information from the current task to

1) relate it to previously stored knowledge in order to permit transfer and 2) store any newly

discovered knowledge for future reuse. At any time, the environment may evaluate the agent

on any previously seen task, so it must retain knowledge from all early tasks.

As discussed in Chapter 2, unlike in the supervised setting, there is no wealth of lifelong or

continual learning methods for RL. In consequence, this dissertation developed two novel

methods for incorporating knowledge from multiple consecutive tasks into a repository

of shared components. Sections 5.5 and 5.6 describe how these two new accommodation

techniques yield two corresponding new lifelong RL approaches.

5.4. The Problem of Lifelong Functional Composition in Reinforcement Learning

The problem formulation of compositional learning described in Chapter 3 for the supervised

setting is natural, and existing works have extensively used it for designing modular supervised

learning architectures: each predictive function is a composition of multiple simpler functions,

and the goal of the agent is to find the optimal function decomposition to maximize transfer

across multiple tasks.

In the case of RL, complex problems can also often be divided into easier subproblems.

However, most works in RL consider temporal composition, where the agent executes skills

one after another. While this dissertation shares the premise of compositional solutions with

such hierarchical RL efforts, those works do not consider the formulation presented here,

where functional composition occurs at multiple hierarchical levels of abstraction.

Recent years have taught us that, given unlimited experience, artificial agents can tackle

such complex problems without any sense of their compositional structures (Silver et al.,

2016; Gu et al., 2017). However, discovering the underlying subproblems and learning to

solve those would enable learning with substantially less experience, especially when faced

with numerous tasks that share a common structure.

101

An RL problem Z is a composition of subproblems F1, F2, . . . if its optimal policy π∗ can be

constructed by combining solutions to those subproblems: π∗(x) = m1 ◦m2 ◦ · · · , where each

mi ∈M : Xi 7→ Yi is the solution to the corresponding Fi. From an intuitive perspective, in

RL each subproblem could involve pure sensing, pure acting, or a combination of both. For

instance, recall the robotic manipulation example of Chapter 3, where a variety of robot arms

learn to achieve various objectives with different objects while avoiding a choice of obstacles.

In that case, each task can be decomposed into recognizing objects (sensing), detecting

the obstacle and devising a plan to avoid it (combined), detecting the target location and

devising a plan to reach it (combined), and actuating the robot to follow the plans (acting).

In lifelong compositional RL, the agent faces a sequence of MDPs Z(1), . . . ,Z(T) over

its lifetime. All MDPs are compositions of different subsets from k shared subproblems

F = {F1, . . . , Fk}. The goal of the lifelong learner is to find the set of solutions to these

subproblems as a set of modules M = {m1, . . . ,mk}, such that learning to solve a new

State
Spaces

Action
Spaces

,

,<latexit sha1_base64="2Hl+2RM5ZIXdw+qlUx/BRvnBy0E=">AAACKnicbVDLTgIxFG19Ij4AXbqZCCauyAwx6pLoxiUmDpDAhHQ6HWhoO03b0ZAJ3+BW/8GvcUfc+iGWx8IBT9Lk9Nx7c+85oWRUG9edwa3tnd29/cJB8fDo+KRUrpy2dZIqTHycsER1Q6QJo4L4hhpGulIRxENGOuH4YV7vvBClaSKezUSSgKOhoDHFyFjJr/GBVxuUq27dXcDZJN6KVMEKrUEFlvpRglNOhMEMad3zXGmCDClDMSPTYj/VRCI8RkPSs1QgTnSQLa6dOpdWiZw4UfYJ4yzUvxMZ4lpPeGg7OTIjvV6bi//VeqmJ74KMCpkaIvByUZwyxyTO3LoTUUWwYRNLEFbU3urgEVIIGxtQbgtPmaEqec05yUKe/8soZhojaQ3bCL31wDZJu1H3burXT41q834VZgGcgwtwBTxwC5rgEbSADzCg4A28gw/4Cb/gDH4vW7fgauYM5AB/fgGeZabW</latexit>m1
<latexit sha1_base64="xQu75I9eS4yTRt820vklhyvbKOc=">AAACKnicbVDLTgIxFG3xhfgAdOlmIpi4IjPEqEuiiXGJiQMkMCGdTgca2s6k7WjIhG9wq//g17gjbv0QC8zCAU/S5PTce3PvOX7MqNK2PYeFre2d3b3ifung8Oi4XKmedFSUSExcHLFI9nykCKOCuJpqRnqxJIj7jHT9yf2i3n0hUtFIPOtpTDyORoKGFCNtJLf+MHTqw0rNbthLWJvEyUgNZGgPq7A8CCKccCI0ZkipvmPH2kuR1BQzMisNEkVihCdoRPqGCsSJ8tLltTPrwiiBFUbSPKGtpfp3IkVcqSn3TSdHeqzWawvxv1o/0eGtl1IRJ5oIvFoUJszSkbWwbgVUEqzZ1BCEJTW3WniMJMLaBJTbwhOmqYxec05Sn+f/cRAyhVFsDJsInfXANkmn2XCuG1dPzVrrLguzCM7AObgEDrgBLfAI2sAFGFDwBt7BB/yEX3AOv1etBZjNnIIc4M8vWWKmrw==</latexit>

F1

<latexit sha1_base64="RwrCepFqDjV9hHoyTlDVO3eYrco=">AAACKnicbVDLTgIxFO34RHwAunTTCCauyAwx6pLoxiUmDpDAhHQ6HWhoO03b0ZAJ3+BW/8GvcUfc+iEWmIWAJ2lyeu69ufecUDKqjevOnK3tnd29/cJB8fDo+KRUrpy2dZIqTHycsER1Q6QJo4L4hhpGulIRxENGOuH4YV7vvBClaSKezUSSgKOhoDHFyFjJr/FBozYoV926uwDcJF5OqiBHa1BxSv0owSknwmCGtO55rjRBhpShmJFpsZ9qIhEeoyHpWSoQJzrIFtdO4aVVIhgnyj5h4EL9O5EhrvWEh7aTIzPS67W5+F+tl5r4LsiokKkhAi8XxSmDJoFz6zCiimDDJpYgrKi9FeIRUggbG9DKFp4yQ1XyuuIkC/nqX0Yx0xhJa9hG6K0Htknajbp3U79+alSb93mYBXAOLsAV8MAtaIJH0AI+wICCN/AOPpxP58uZOd/L1i0nnzkDK3B+fgGgKKbX</latexit>m2
<latexit sha1_base64="z0KhPEylrPktMm4vXi6QJFlhQC4=">AAACKnicbVDLTgIxFG3xhfgAdOlmIpi4IjPEqEuiiXGJiQMkMCGdTgca2pmm7WjIhG9wq//g17gjbv0QC8zCAU/S5PTce3PvOb5gVGnbnsPC1vbO7l5xv3RweHRcrlRPOipOJCYujlksez5ShNGIuJpqRnpCEsR9Rrr+5H5R774QqWgcPeupIB5Ho4iGFCNtJLf+MGzWh5Wa3bCXsDaJk5EayNAeVmF5EMQ44STSmCGl+o4ttJciqSlmZFYaJIoIhCdoRPqGRogT5aXLa2fWhVECK4yleZG2lurfiRRxpabcN50c6bFary3E/2r9RIe3XkojkWgS4dWiMGGWjq2FdSugkmDNpoYgLKm51cJjJBHWJqDcFp4wTWX8mnOS+jz/F0HIFEbCGDYROuuBbZJOs+FcN66emrXWXRZmEZyBc3AJHHADWuARtIELMKDgDbyDD/gJv+Acfq9aCzCbOQU5wJ9fWyWmsA==</latexit>

F2

<latexit sha1_base64="8woDH7p7a9JXI13vgcl5bAfBZdw=">AAACKnicbVDLTgIxFG3xhfgAdOlmIpi4IjNo1CXRjUtMHCCBCel0OtDQdiZtR0MmfINb/Qe/xh1x64dYYBYOeJImp+fem3vP8WNGlbbtOSxsbe/s7hX3SweHR8flSvWko6JEYuLiiEWy5yNFGBXE1VQz0oslQdxnpOtPHhb17guRikbiWU9j4nE0EjSkGGkjuXU+vKoPKzW7YS9hbRInIzWQoT2swvIgiHDCidCYIaX6jh1rL0VSU8zIrDRIFIkRnqAR6RsqECfKS5fXzqwLowRWGEnzhLaW6t+JFHGlptw3nRzpsVqvLcT/av1Eh3deSkWcaCLwalGYMEtH1sK6FVBJsGZTQxCW1Nxq4TGSCGsTUG4LT5imMnrNOUl9nv/HQcgURrExbCJ01gPbJJ1mw7lpXD81a637LMwiOAPn4BI44Ba0wCNoAxdgQMEbeAcf8BN+wTn8XrUWYDZzCnKAP7+h66bY</latexit>m3
<latexit sha1_base64="EeCnO/vJ3jUEzsgK85YYZ8rPgFg=">AAACKnicbVDLTsJAFJ36RHwAunTTCCauSItGXRJNjEtMLJBAQ6bTKUyYRzMz1ZCGb3Cr/+DXuCNu/RAH6MKCJ5nkzLn35t5zgpgSpR1nZm1sbm3v7Bb2ivsHh0elcuW4rUQiEfaQoEJ2A6gwJRx7mmiKu7HEkAUUd4Lx/bzeecFSEcGf9STGPoNDTiKCoDaSV3sYXNYG5apTdxaw14mbkSrI0BpUrFI/FChhmGtEoVI914m1n0KpCaJ4WuwnCscQjeEQ9wzlkGHlp4trp/a5UUI7EtI8ru2F+ncihUypCQtMJ4N6pFZrc/G/Wi/R0a2fEh4nGnO0XBQl1NbCnlu3QyIx0nRiCESSmFttNIISIm0Cym1hCdVEiteckzRg+X8cRlQhGBvDJkJ3NbB10m7U3ev61VOj2rzLwiyAU3AGLoALbkATPIIW8AACBLyBd/BhfVpf1sz6XrZuWNnMCcjB+vkFXOimsQ==</latexit>

F3

<latexit sha1_base64="tkfbMi7tANiR/XVtBCNgYPsknnw=">AAACKnicbVDLTgIxFO3gC/EB6NLNRDBxRWYIUZdENy4xcYAEJqTT6UBDO23ajoZM+Aa3+g9+jTvi1g+xwCwc8CRNTs+9N/eeEwhKlHachVXY2d3bPygelo6OT07LlepZV/FEIuwhTrnsB1BhSmLsaaIp7guJIQso7gXTh2W994KlIjx+1jOBfQbHMYkIgtpIXp2NWvVRpeY0nBXsbeJmpAYydEZVqzwMOUoYjjWiUKmB6wjtp1Bqgiiel4aJwgKiKRzjgaExZFj56erauX1llNCOuDQv1vZK/TuRQqbUjAWmk0E9UZu1pfhfbZDo6M5PSSwSjWO0XhQl1NbcXlq3QyIx0nRmCESSmFttNIESIm0Cym1hCdVE8teckzRg+b8II6oQFMawidDdDGybdJsN96bRemrW2vdZmEVwAS7BNXDBLWiDR9ABHkCAgDfwDj6sT+vLWljf69aClc2cgxysn1+jrqbZ</latexit>m4
<latexit sha1_base64="PGkRsXpa959Oeq9JOA16C0BF8tg=">AAACKnicbVDLTgIxFO34RHwAunQzEUxckRlC1CXRxLjExAESmJBOpwMN7bRpOxoy4Rvc6j/4Ne6IWz/EArNwwJM0OT333tx7TiAoUdpx5tbW9s7u3n7hoHh4dHxSKldOO4onEmEPccplL4AKUxJjTxNNcU9IDFlAcTeY3C/q3RcsFeHxs54K7DM4iklEENRG8moPw2ZtWK46dWcJe5O4GamCDO1hxSoNQo4ShmONKFSq7zpC+ymUmiCKZ8VBorCAaAJHuG9oDBlWfrq8dmZfGiW0Iy7Ni7W9VP9OpJApNWWB6WRQj9V6bSH+V+snOrr1UxKLROMYrRZFCbU1txfW7ZBIjDSdGgKRJOZWG42hhEibgHJbWEI1kfw15yQNWP4vwogqBIUxbCJ01wPbJJ1G3b2uN58a1dZdFmYBnIMLcAVccANa4BG0gQcQIOANvIMP69P6subW96p1y8pmzkAO1s8vXqumsg==</latexit>

F4

<latexit sha1_base64="Cw8iOrgIIYSar1WnlTYUS96whaE=">AAACKnicbVDLTgIxFG3xhfgAdOlmIpi4IjPE15LoxiUmDpDAhHQ6HWhoO5O2oyETvsGt/oNf44649UMsMAsHPEmT03Pvzb3n+DGjStv2HBa2tnd294r7pYPDo+NypXrSUVEiMXFxxCLZ85EijAriaqoZ6cWSIO4z0vUnD4t694VIRSPxrKcx8TgaCRpSjLSR3DofXteHlZrdsJewNomTkRrI0B5WYXkQRDjhRGjMkFJ9x461lyKpKWZkVhokisQIT9CI9A0ViBPlpctrZ9aFUQIrjKR5QltL9e9EirhSU+6bTo70WK3XFuJ/tX6iwzsvpSJONBF4tShMmKUja2HdCqgkWLOpIQhLam618BhJhLUJKLeFJ0xTGb3mnKQ+z//jIGQKo9gYNhE664Ftkk6z4dw0rp6atdZ9FmYRnIFzcAkccAta4BG0gQswoOANvIMP+Am/4Bx+r1oLMJs5BTnAn1+lcaba</latexit>m5
<latexit sha1_base64="JtIyXTA7XTcP2zf+grU84w/FCm0=">AAACKnicbVDLTsJAFJ36RHwAunTTCCauSEt8LYkmxiUmFkigIdPpFCbMo5mZakjDN7jVf/Br3BG3fogDdGHBk0xy5tx7c+85QUyJ0o4zszY2t7Z3dgt7xf2Dw6NSuXLcViKRCHtIUCG7AVSYEo49TTTF3VhiyAKKO8H4fl7vvGCpiODPehJjn8EhJxFBUBvJqz0MrmqDctWpOwvY68TNSBVkaA0qVqkfCpQwzDWiUKme68TaT6HUBFE8LfYThWOIxnCIe4ZyyLDy08W1U/vcKKEdCWke1/ZC/TuRQqbUhAWmk0E9Uqu1ufhfrZfo6NZPCY8TjTlaLooSamthz63bIZEYaToxBCJJzK02GkEJkTYB5bawhGoixWvOSRqw/D8OI6oQjI1hE6G7Gtg6aTfq7nX98qlRbd5lYRbAKTgDF8AFN6AJHkELeAABAt7AO/iwPq0va2Z9L1s3rGzmBORg/fwCYG6msw==</latexit>

F5

<latexit sha1_base64="bihrEtnNAQjUuMOqWOZnfNn8JoI=">AAACEnicbVBLS8NAGNzUV62vqEcvwSK0UEKioeqt6sVjBdsKSSyb7bZdunmwuxFKyG/w4l/x4kERr568+W/cpDlo68DCMPN9u7PjRZRwYRjfSmlpeWV1rbxe2djc2t5Rd/e6PIwZwh0U0pDdeZBjSgLcEURQfBcxDH2P4p43ucr83gNmnITBrZhG2PXhKCBDgqCQUl+tO/kdNht5bqJbVkM3zxt68yR1fCjGCNLkIr1PalY97atVQzdyaIvELEgVFGj31S9nEKLYx4FAFHJum0Yk3AQyQRDFacWJOY4gmsARtiUNoI+5m+RxUu1IKgNtGDJ5AqHl6u+NBPqcT31PTmZB+byXif95diyGZ25CgigWOECzh4Yx1USoZf1oA8IwEnQqCUSMyKwaGkMGkZAtVmQJ5vyXF0n3WDebunljVVuXRR1lcAAOQQ2Y4BS0wDVogw5A4BE8g1fwpjwpL8q78jEbLSnFzj74A+XzB3qGnBg=</latexit>

A(4)

<latexit sha1_base64="I6IlKl+KlcLHR1qGvogZbqNvv6Y=">AAACEnicbVBLS8NAGNzUV62vqEcvwSK0UEKioeqt6MVjRdsKSSyb7bZdunmwuxFKyG/w4l/x4kERr568+W/cpDlo68DCMPN9u7PjRZRwYRjfSmlpeWV1rbxe2djc2t5Rd/e6PIwZwh0U0pDdeZBjSgLcEURQfBcxDH2P4p43ucz83gNmnITBrZhG2PXhKCBDgqCQUl+tO/kdNht5bqJbVkM3zxt68yR1fCjGCNLkJr1PalY97atVQzdyaIvELEgVFGj31S9nEKLYx4FAFHJum0Yk3AQyQRDFacWJOY4gmsARtiUNoI+5m+RxUu1IKgNtGDJ5AqHl6u+NBPqcT31PTmZB+byXif95diyGZ25CgigWOECzh4Yx1USoZf1oA8IwEnQqCUSMyKwaGkMGkZAtVmQJ5vyXF0n3WDebunltVVsXRR1lcAAOQQ2Y4BS0wBVogw5A4BE8g1fwpjwpL8q78jEbLSnFzj74A+XzB5ZMnCo=</latexit>

S(4)

<latexit sha1_base64="973Bd+L5aqrgZXY73TLmqfFit8E=">AAACEHicbVA7T8MwGHTKq5RXgJElokIUqYqSqtCOFSyMRdCHlITKcd3WqvOQ7SBVUX4CC3+FhQGEWBnZ+Dc4aQZoOcnS6e777PO5ISVcGMa3UlhZXVvfKG6WtrZ3dvfU/YMuDyKGcAcFNGB9F3JMiY87ggiK+yHD0HMp7rnTq9TvPWDGSeDfiVmIHQ+OfTIiCAopDdRTO7vDYmPXifVGs6qf16tGYntQTBCk8W1yH1dqZ8lALRu6kUFbJmZOyiBHe6B+2cMARR72BaKQc8s0QuHEkAmCKE5KdsRxCNEUjrElqQ89zJ04C5NoJ1IZaqOAyeMLLVN/b8TQ43zmuXIyDcoXvVT8z7MiMWo6MfHDSGAfzR8aRVQTgZa2ow0Jw0jQmSQQMSKzamgCGURCdliSJZiLX14m3ZpuXujmTb3cuszrKIIjcAwqwAQN0ALXoA06AIFH8AxewZvypLwo78rHfLSg5DuH4A+Uzx+hepuz</latexit>

S(2)
<latexit sha1_base64="rxYI2+br5O7flNlP8cCBTUpjd68=">AAACEHicbVA7T8MwGHTKq5RXgJElokIUqYqSqtCOBRbGItGHlITKcd3WqvOQ7SBVUX4CC3+FhQGEWBnZ+Dc4aQZoOcnS6e777PO5ISVcGMa3UlhZXVvfKG6WtrZ3dvfU/YMuDyKGcAcFNGB9F3JMiY87ggiK+yHD0HMp7rnT69TvPWDGSeDfiVmIHQ+OfTIiCAopDdRTO7vDYmPXifVGs6qf16tGYntQTBCk8WVyH1dqZ8lALRu6kUFbJmZOyiBHe6B+2cMARR72BaKQc8s0QuHEkAmCKE5KdsRxCNEUjrElqQ89zJ04C5NoJ1IZaqOAyeMLLVN/b8TQ43zmuXIyDcoXvVT8z7MiMWo6MfHDSGAfzR8aRVQTgZa2ow0Jw0jQmSQQMSKzamgCGURCdliSJZiLX14m3ZpuXujmbb3cusrrKIIjcAwqwAQN0AI3oA06AIFH8AxewZvypLwo78rHfLSg5DuH4A+Uzx+FtJuh</latexit>

A(2)

<latexit sha1_base64="5AJgFvhPHcB5mHTCPwzskgohjG0=">AAACDHicbVDLSgMxFM3UV62vqks3wSJUKGUioi6rblxWsA+YGUsmzbShmQdJRijDfIAbf8WNC0Xc+gHu/Bsz01lo64HA4Zxzk5vjRpxJZZrfRmlpeWV1rbxe2djc2t6p7u51ZRgLQjsk5KHou1hSzgLaUUxx2o8Exb7Lac+dXGd+74EKycLgTk0j6vh4FDCPEay0NKjW7PwOS4xcJzEbZgOlto/VmGCeXKb3SR0dpzplNs0ccJGggtRAgfag+mUPQxL7NFCEYyktZEbKSbBQjHCaVuxY0giTCR5RS9MA+1Q6Sb5ICo+0MoReKPQJFMzV3xMJ9qWc+q5OZovKeS8T//OsWHkXTsKCKFY0ILOHvJhDFcKsGThkghLFp5pgIpjeFZIxFpgo3V9Fl4Dmv7xIuidNdNZEt6e11lVRRxkcgENQBwicgxa4AW3QAQQ8gmfwCt6MJ+PFeDc+ZtGSUczsgz8wPn8Ah2qapQ==</latexit>

A(1)
<latexit sha1_base64="vJ0F22azCk01T7kkysxMHUIN1hA=">AAACDHicbVDLSgMxFM3UV62vqks3wSJUKGUioi6LblxWtA+YGUsmzbShmQdJRijDfIAbf8WNC0Xc+gHu/Bsz01lo64HA4Zxzk5vjRpxJZZrfRmlpeWV1rbxe2djc2t6p7u51ZRgLQjsk5KHou1hSzgLaUUxx2o8Exb7Lac+dXGV+74EKycLgTk0j6vh4FDCPEay0NKjW7PwOS4xcJzEbZgOlto/VmGCe3Kb3SR0dpzplNs0ccJGggtRAgfag+mUPQxL7NFCEYyktZEbKSbBQjHCaVuxY0giTCR5RS9MA+1Q6Sb5ICo+0MoReKPQJFMzV3xMJ9qWc+q5OZovKeS8T//OsWHkXTsKCKFY0ILOHvJhDFcKsGThkghLFp5pgIpjeFZIxFpgo3V9Fl4Dmv7xIuidNdNZEN6e11mVRRxkcgENQBwicgxa4Bm3QAQQ8gmfwCt6MJ+PFeDc+ZtGSUczsgz8wPn8AozCatw==</latexit>

S(1)

<latexit sha1_base64="EFfSp1i2tUcIcR74D6xBW0IEMcU=">AAACDHicbVBPS8MwHE39O+e/qUcvwSFMGKNVUY9DLx4nuj/Q1pFm6RaWpiVJhVH6Abz4Vbx4UMSrH8Cb38a060E3HwQe771f8svzIkalMs1vY2FxaXlltbRWXt/Y3Nqu7Ox2ZBgLTNo4ZKHoeUgSRjlpK6oY6UWCoMBjpOuNrzK/+0CEpCG/U5OIuAEacupTjJSW+pWqk99hi6HnJlbdrJupEyA1woglt+l9Ujs5SnXKbJg54DyxClIFBVr9ypczCHEcEK4wQ1LalhkpN0FCUcxIWnZiSSKEx2hIbE05Coh0k3yRFB5qZQD9UOjDFczV3xMJCqScBJ5OZovKWS8T//PsWPkXbkJ5FCvC8fQhP2ZQhTBrBg6oIFixiSYIC6p3hXiEBMJK91fWJVizX54nneOGddawbk6rzcuijhLYBwegBixwDprgGrRAG2DwCJ7BK3gznowX4934mEYXjGJmD/yB8fkDpkCauQ==</latexit>

S(3)

<latexit sha1_base64="riHHNefBe7EAIA+QBIE44DhO8yU=">AAACDHicbVBPS8MwHE39O+e/qUcvwSFMGKNVUY9TLx4nuD/Q1pFm6RaWpiVJhVH6Abz4Vbx4UMSrH8Cb38a060E3HwQe771f8svzIkalMs1vY2FxaXlltbRWXt/Y3Nqu7Ox2ZBgLTNo4ZKHoeUgSRjlpK6oY6UWCoMBjpOuNrzO/+0CEpCG/U5OIuAEacupTjJSW+pWqk99hi6HnJlbdrJupEyA1wogll+l9Ujs5SnXKbJg54DyxClIFBVr9ypczCHEcEK4wQ1LalhkpN0FCUcxIWnZiSSKEx2hIbE05Coh0k3yRFB5qZQD9UOjDFczV3xMJCqScBJ5OZovKWS8T//PsWPkXbkJ5FCvC8fQhP2ZQhTBrBg6oIFixiSYIC6p3hXiEBMJK91fWJVizX54nneOGddawbk+rzauijhLYBwegBixwDprgBrRAG2DwCJ7BK3gznowX4934mEYXjGJmD/yB8fkDinqapw==</latexit>

A(3)

Figure 16: Compositional RL problem graph. Each node in the graph represents a state
space, an action space, or the representational space corresponding to one subproblem that
must be solved as part of a set of tasks. Different paths through the graph apply a sequence
of transformations to the input and yield the solutions to different tasks.

102

problem reduces to finding how to combine these modules optimally. Each module can be

viewed as a processing stage in a hierarchical processing pipeline, or equivalently as functions

in a program, and the goal of the agent is to find the correct module to execute at each stage

and the instantiation of that module (i.e., its parameters).

Similar to the supervised setting, the compositional RL problem can be formalized as a graph

G = (V, E) (e.g., Figure 16) whose nodes are the subproblem solutions augmented with the

state and action spaces of the MDPs: V = F ⋃ X̆ ⋃ Ŭ , where X̆ = unique
({
X (1), . . . ,X (T)

})
are the unique1 state spaces and Ŭ = unique

({
U (1), . . . ,U (T)

})
are the unique action spaces.

Each subproblem Fi corresponds to a latent representational space Yi, generated by the

corresponding module mi ∈M : Xi 7→ Yi. Similarly, the state and action spaces X (t)’s and

U (t)’s can serve as representation spaces (Xt,Yt).

A pair of state and action nodes
(
X (t),U (t)

)
in the graph then specify a corresponding

problem Z(t), and the goal of the compositional learner is to find a path between those nodes

corresponding to a policy π(t)∗ that maximizes R(t). More generally, the graph formalism

allows for recurrent computations via walks with cycles, and parallel computations via

concurrent multipaths; an extended definition of multiwalks trivially captures both settings.

The methods in this chapter consider only the path formulation, and restrict the number of

edges in the graph by organizing the modules into layers, as explained in Section 5.6.1.

5.4.1. Connection Between Functionally Compositional Reinforcement Learning and Hierar-

chical Reinforcement Learning

This section discusses the close connections between the proposed functionally compositional

RL problem and the popular hierarchical RL setting,

The primary conceptual difference between hierarchical RL and the proposed functionally

compositional RL problem is that hierarchical RL considers composition of sequences of

actions in time, whereas the proposed problem considers composition of functions that, when
1This process combines comparable spaces into one node, such as one state space used by multiple tasks.

103

combined, form a full policy. In particular, for a given compositional task, the agent uses all

functions that make up its modular policy at every time step to determine the action to take

(given the current state).

Going back to the example of robot programming from Section 5.1, modules in the com-

positional RL formulation might correspond to sensor processing drivers, path planners, or

robot motor drivers. In programming, at every time step, the sensory input passes through

modules in some preprogrammed sequential order, which finally outputs the motor torques

to actuate the robot. Similarly, in compositional RL, the state observation passes through

the different modules, used in combination to execute the agent’s actions.

Hierarchical RL takes a complementary approach. Instead, each “module” (e.g., an option) is

a self-contained policy that receives as input the state observation and outputs an action.

Each of these options operates in the environment, for example to reach a particular subgoal

state. Upon termination of an option, the agent selects a different option to execute, starting

from the state reached by the previous option. In contrast, the compositional RL framework

assumes that the agent uses a single policy to solve a complete task.

An integrated approach is possible that decomposes the problem along both a functional

axis and a temporal axis. This would enable selecting a different functionally modular policy

at different stages of solving a task, simplifying the amount of information that each module

should encode. Consequently, the proposed framework could be used to learn individual

options, which the agent would then compose sequentially. This would enable options to be

made up of functionally modular components, simplifying the form of the options themselves

and enabling reuse across options. Research in this direction could drastically improve the

data efficiency of RL approaches.

5.4.2. Deployment Scenarios for Lifelong Compositional Learning

This section describes two possible deployment settings for compositional RL agents, de-

pending on whether the agent receives information that enables predicting the optimal

104

compositional structure for a task without collecting data, or data is necessary for discovering

the compositional structure.

Zero-shot generalization with full information In some scenarios, the agent may have

access to a task descriptor that encodes how the current task relates to others in terms of

their compositional structures. This descriptor might be sufficient to combine modules into

a solution (i.e., zero-shot generalization), provided that the agent has learned to map the

descriptors into a solution structure. The descriptor could take different forms, such as a

multi-hot encoding of the various components, natural language, or highlighting the target

objects in the input image. The experiments in this chapter studied multi-hot descriptors as

a means to provide the compositional structure. Formally, zero-shot generalization assumes

that the agent receives a descriptor as an external input t ∈ T , and that there exists some

function s : T ×M 7→ Π that can map this input and an optimal set of modules M into an

optimal policy for the current task s(t,M) = π(t)∗. This would enable the agent to achieve

compositional generalization: the ability to solve a new task entirely by reusing components

learned from previous tasks.

Fast adaptation with restricted information In other scenarios, the agent does not

have the luxury of information about the compositional structure. This is common in RL,

where the only supervisory signal is typically the reward. In this case, the agent would be

incapable of zero-shot transfer. Instead, this setting measures generalization as the agent’s

ability to learn from limited experience a task-specific function s(t) :M 7→ Π that combines

existing modules M into the optimal policy for the current task s(t)(M) = π(t)∗. Intuitively,

if the agent has accumulated a useful set of modules M , then one would expect it to be

capable of quickly discovering how to combine and adapt them to solve new tasks.

105

5.5. LPG-FTW: Approximate Modular Lifelong Reinforcement Learning via Parame-

ter Factorization

The first lifelong RL algorithm developed in this dissertation, lifelong PG: faster training

without forgetting (LPG-FTW), uses the compositional architecture that linearly combines

model parameters, described in Chapter 3. Concretely, LPG-FTW assumes that the policy

parameters for task Z(t) can factor into θ(t) ≈ Φψ(t), where Φ ∈ Rd×k is a shared dictionary

of policy factors and ψ(t) ∈ Rk are task-specific coefficients that select components for the

current task. LPG-FTW further assumes access to some base PG algorithm that can find a

parametric policy that performs well on a single task, although not necessarily optimally.

In the case of linear parameterization of the policies, this linear factorization induces a

soft approximation of the graph in Figure 16. In particular, it assumes that all paths from

states to actions have only one intermediate node, corresponding to the functional policy

(i.e., the length of the path is two edges). Instead of selecting a single one of the k possible

intermediate nodes or components, LPG-FTW softly combines all k components via the

ψ(t)’s. If the policy is instead parameterized by a deep net, this approximation is much

cruder, since linear combinations of parameters do not correspond to linear combinations

of the outputs of the network. Despite the coarseness of this approximation, results in

Chapter 5.7.6 show that parameter factorization of deep nets can still achieve accelerated

learning in complex robotic manipulation tasks.

Following the framework prescribed in Chapter 3, LPG-FTW splits its learning process into

the following stages, summarized in Algorithm 12.

Initialization Like other approaches in this dissertation, LPG-FTW requires proper ini-

tialization of the shared components Φ. If Φ is naïvely initialized at random, then the ψ(t)’s

are unlikely to find a well-performing policy, and so updates to Φ would not leverage any

useful information. One common alternative is to initialize the k columns of Φ with the

STL solutions to the first k tasks. However, this method prevents tasks Z(2), . . . ,Z(k) from

106

Algorithm 12 LPG-FTW(d, k, λ, µ,M)

T ← 0, Φ← initializeModules(d, k)
while Z(t) ← getTask() do
if isNewTask

(
Z(t)

)
then

ψ(t) ← initializeStructure(k)
T ← T + 1

else . subtract from cost
A← A− 2

(
ψ(t)ψ(t)>

)
⊗H(t)

b← b−ψ(t) ⊗
(
− g(t) + 2H(t)α(t)

)
end if
for i = 1, . . . , structureUpdates do . assimilation via PGs
T← getTrajectories

(
Φψ(t)

)
ψ(t) ← PGStep

(
T,Φ,ψ(t), µ

)
if i mod adaptationFrequency = 0 then . accommodation via 2nd-order
α(t) ← Φψ(t)

g(t),H(t) ← gradientAndHessian
(
α(t)

)
Atmp ← A+ 2

(
ψ(t)ψ(t)>

)
⊗H(t)

btmp ← b+ψ(t) ⊗
(
− g(t) + 2H(t)α(t)

)
vec(Φ)←

(
1
TAtmp − 2λI

)−1 (1
T btmp

)
end if

end for
A← Atmp, b← btmp

end while

leveraging information from earlier tasks, impeding them from achieving potentially higher

performance. Moreover, several tasks might rediscover redundant information, leading to

wasted training time and capacity of Φ. The initialization method for LPG-FTW, presented

as Algorithm 13, enables early tasks to leverage knowledge from previous tasks and prevents

the discovery of redundant information. The algorithm starts from an empty set of compo-

nents and adds a new error vector ε(t) ∈ Rd as a new component for each of the initial k

tasks. For each task Z(t), the agent uses the base learner to simultaneously learn ψ(t) to

combine initialized components and an additional set of learnable parameters, ε(t):

ψ(t), ε(t) = arg max
ψ,ε

J (t)(Φt−1ψ + ε)− µ‖ψ‖1 − λ‖ε‖22 . (5.4)

107

Algorithm 13 InitializeModules(d, k, λ, µ)

T ← 0, Φ← empty(d, 0) . create empty set of modules
while T < k do
Z(t) ← getTask()
ψ(t) ← initializeStructure(k)
T ← T + 1
for i = 1, . . . , structureUpdates do . PG training of new module
T← getTrajectories

(
Φψ(t)

)
ψ(t), ε(t) ← PGStep

(
T,Φ,ψ(t), ε(t), µ

)
end for
Φ← addColumn

(
Φ, ε(t)

)
. incorporate new module

α(t) ← Φψ(t) + ε(t)

g(t),H(t) ← gradientAndHessian
(
α(t)

)
A← A+ 2

(
ψ(t)ψ(t)>

)
⊗H(t)

b← b+ψ(t) ⊗
(
− g(t) + 2H(t)α(t)

)
end while

Intuitively, each ε(t) finds knowledge of task Z(t) that is not currently contained in Φ. Then,

ε(t) is incorporated as a new component in Φ. Once ε(t) is included as a component, the

agent makes no further modifications to it during initialization training via Equation 5.4.

Assimilation Upon encountering a new task Z(t), LPG-FTW uses the base learner to

optimize the task-specific coefficients ψ(t), without modifying the shared components in Φ.

This corresponds to searching for the optimal policy that can be obtained by combining the

factors of Φ. Concretely, the agent strives to solve the following optimization:

ψ(t) = arg max
ψ

`(Φt−1,ψ) = arg max
ψ

J (t)(Φt−1ψ)− µ‖ψ‖1 , (5.5)

where Φt−1 denotes the Φ trained up to task Z(t−1), J (t)(·) is any PG objective, and the `1

norm encourages sparsity.

Accommodation Every adaptationFrequency� 1 steps, the agent updates the compo-

nents in Φ with any relevant information collected from Z(t) up to that point. Similar to

108

Bou Ammar et al. (2014), the agent approximates the MTL objective via a second-order

Taylor expansion, yielding the following optimization objective:

Φt = arg max
Φ

ĝt(Φ) = arg max
Φ

−λ‖Φ‖2F +
1

t

t∑
t̂=1

ˆ̀
(
Φ,ψ(̂t),α(̂t),H (̂t), g(̂t)

)
(5.6)

ˆ̀
(
Φ,ψ(̂t),α(̂t),H (̂t), g(̂t)

)
=−µ

∥∥∥ψ(̂t)
∥∥∥
1
+
∥∥∥α(̂t)−Φψ(̂t)

∥∥∥2
H (̂t)

+ g(̂t)>
(
Φψ(̂t)−α(̂t)

)
, (5.7)

where ˆ̀ is the second-order approximation to the objective of a previously seen task Z (̂t).

The learner evaluates the gradient g(̂t) = ∇θJ (̂t)(θ) and Hessian H (̂t) = 1
2∇θ,θ>J (̂t)(θ) at

the policy for task Z (̂t) immediately after training, α(̂t) = Φt̂−1ψ
(̂t). The solution to this

optimization can be obtained in closed form as vec(Φt) = A−1b, where:

A =− 2λI +
2

t

t∑
t̂=1

(
ψ(̂t)ψ(̂t)>

)
⊗H (̂t) (5.8)

b =
1

t

t∑
t̂=1

ψ(̂t) ⊗
(
−g(̂t) + 2H (̂t)α(̂t)

)
, (5.9)

using ⊗ to denote the Kronecker tensor product. Notably, these can be computed incre-

mentally as each new task arrives, so that Φ can be updated without preserving data or

parameters from earlier tasks. Moreover, the Hessians H (̂t) needed to compute A and b

can be discarded after each task if the agent does not expect to revisit tasks for further

training. If instead the environment allows the agent to revisit tasks multiple times (e.g., for

interleaved MTL), then each H (̂t) must be stored at a cost of O(d2T).

Intuitively, in Equation 5.5 the agent leverages knowledge from all past tasks while training

on task Z(t), by searching for θ(t) in the span of Φt−1. This makes LPG-FTW fundamentally

different from prior multimodel methods that learn each task’s parameter vector in isolation

and subsequently combine prior knowledge to improve performance. One potential drawback

is that, by restricting the search to the span of Φt−1, the agent might miss other, potentially

better policies. However, any set of parameters far from the space spanned by Φt−1 would be

uninformative for the MTL objective, since the approximations to the previous tasks would

109

be poor near the current task’s parameters and vice versa. Then, in Equation 5.6, LPG-FTW

approximates the loss around the current set of parameters α(t) via a second-order expansion

and finds the Φt that optimizes the average approximate cost over all tasks seen so far,

accommodating new knowledge while ensuring that the agent does not forget the knowledge

required to solve the previously learned tasks.

5.5.1. Computational Complexity

The computational complexity of LPG-FTW can be trivially obtained by following the

derivations of Ruvolo and Eaton (2013). In particular, the assimilation stage introduces an

(additive) overhead of O(k× d) per PG step, due to the multiplication of the gradient by Φ>.

Additionally, every adaptationFrequency� 1 steps, the accommodation step of Φ takes

an additional O(d3k2). Notably, this latter value is constant with respect to the number of

tasks seen so far, since Equation 5.6 is solved incrementally, unlike other approaches in the

supervised setting from Chapter 4. This is possible thanks to the strong assumption that the

inverse of A in Equation 5.6 can be computed at a cost of O(d3k2), which is only feasible for

reasonably small models.

If the number of parameters d is too high, the learner could use faster techniques for solving the

inverse ofA, like the conjugate gradient method, or approximate the Hessian with a Kronecker-

factored or diagonal matrix. While this dissertation did not test these approximations, they

work well in related methods (Bou Ammar et al., 2014; Ritter et al., 2018), so one would

expect LPG-FTW to behave similarly. However, while the time complexity of LPG-FTW

would remain constant with respect to the number of tasks for diagonal approximations, it

would scale linearly for Kronecker-factored approximations, which require storing all Hessians

and recomputing the cost for every new task.

5.5.2. Base Policy Gradient Algorithms

This section describes how two single-task PG learning algorithms can be used as the base

learner of LPG-FTW.

110

Episodic REINFORCE

The vanilla PG learning method, REINFORCE (Williams, 1992), updates parameters as:

θj ←θj−1 + ηjgθj−1
(5.10)

gθ = ∇θJ (θ) =E

[∞∑
i=0

∇θ log πθ(xi,ui)A(xi,ui)

]
, (5.11)

where gθ is the gradient of the policy and A(x,u) is the advantage function. LPG-FTW

would then update the ψ(t)’s as:

ψ(t)
j ←ψ(t)

j−1 + ηj∇ψ
[
J (t)(Φt−1ψ)− µ‖ψ‖1

] ∣∣∣
ψ=ψ(t)

j

(5.12)

∇ψ
[
J (t)(Φt−1ψ)− µ‖ψ‖1

]
=Φ>t−1gΦt−1ψ − µ sign(ψ) . (5.13)

The Hessian for Equation 5.6 is given by H = 1
2E
[∑∞

i=0∇θ,θ> log πθ(xi,ui)A(xi,ui)
]
,

which evaluates to H = − 1
2σ2E

[∑∞
i=0 xx

>A(xi,ui)
]
in the case where the policy is a linear

Gaussian (i.e., πθ = N
(
θ>x, σ

)
). One major drawback of this is that the Hessian is not

guaranteed to be negative definite, so Equation 5.6 might move the policy arbitrarily far

from the original policy used for sampling trajectories.

Natural Policy Gradient

The natural PG (NPG) algorithm gets around this issue. In particular, the formulation

followed by Rajeswaran et al. (2017) at each iteration optimizes:

max
θ

g>θj−1
(θ − θj−1) (5.14)

s.t. ‖θ − θj−1‖2Fθj−1
≤ δ , (5.15)

where Fθ = E
[
∇θ log πθ(x,u)∇θ log πθ(x,u)>

]
is the approximate Fisher information ma-

trix of πθ (Kakade, 2002). The base learner would then update the policy parameters at

111

each iteration as:

θj ← θj−1 + ηθF
−1
θj−1

gθj−1 , (5.16)

with ηθ =
√

δ
g>θj−1

F−1
θj−1

gθj−1

. To use NPG as the base learner, at each step LPG-FTW solves:

max
ψ

g>
ψ(t)

j−1
(ψ −ψ(t)

j−1) (5.17)

s.t.
∥∥∥ψ −ψ(t)

j−1

∥∥∥2
F
ψ(t)

j−1

≤ δ , (5.18)

which yields the update:

ψ(t)
j ← ψ(t)

j−1 + ηψ(t)F−1
ψ(t)

j−1
gψ(t)

j−1
. (5.19)

The Hessian for Equation 5.6 is computed by using the equivalent soft-constrained problem:

Ĵ (θ) = g>θj−1
(θ − θj−1) +

‖θ − θj−1‖2Fθj−1
− δ

2ηθ
, (5.20)

which gives H = − 1
ηθ
Fθj−1

. This Hessian is negative definite, and thus encourages the

parameters to stay close to the original ones, where the approximation is valid.

5.5.3. Connections to PG-ELLA

LPG-FTW and PG-ELLA (Bou Ammar et al., 2014) both learn a factorization of policies

into Φ and ψ(t). To optimize the factors, PG-ELLA first trains individual task policies via

STL, potentially leading to policy parameters that are incompatible with a shared Φ. In

contrast, LPG-FTW learns the ψ(t)’s directly via PG learning, leveraging shared knowledge

in Φ to accelerate the learning and restricting the α(t)’s to the span of Φ. This choice implies

that, even if the agent finds the (typically infeasible) optimal ψ(t), this may not result in an

optimal policy, so Equation 5.6 explicitly includes a linear term, which PG-ELLA omits. On

the other hand, PG-ELLA typically initializes the shared components with the policies of

the first k tasks. Instead, LPG-FTW exploits the policies from the few previously observed

112

tasks to 1) accelerate the learning of the earliest tasks and 2) discover k distinct knowledge

components. These improvements enable the proposed method to operate in a true lifelong

setting, where the agent encounters tasks sequentially. In contrast, PG-ELLA was evaluated

in the easier interleaved MTL setting, in which the agent experiences each task multiple times,

alternating between tasks frequently. These modifications also enable applying LPG-FTW

to far more complex dynamical systems than PG-ELLA, including domains requiring deep

policies, previously out of reach for factored policy learning methods.

5.5.4. Theoretical Guarantees

Part of the appeal of using linear combinations of model parameters is that it permits deriving

strong theoretical guarantees. This dissertation proved that LPG-FTW converges to an

optimum of the (approximate) MTL objective for any ordering over tasks, despite the online

approximation of keeping the ψ(t)’s fixed after initial training. In other words, LPG-FTW

finds a set of components that are in some approximate sense optimal under the observed

task distribution. The proofs follow those of Ruvolo and Eaton (2013) from the supervised

setting, but are substantially adapted to handle the nonoptimality of the α(t)’s and the fact

that the ψ(t)’s and Φ optimize different objectives. This section contains sketches of the

main proofs, while complete proofs are available in Appendix D.

The objective defined in Equation 5.6, ĝ, considers the optimization of each ψ(t) separately

with the Φt known up to that point, and is a surrogate for the true objective:

gt(Φ) =
1

t

t∑
t̂=1

max
ψ(̂t)

[∥∥∥α(̂t)−Φψ(̂t)
∥∥∥2
H (̂t)

+ g(̂t)
>(

Φψ(̂t)−α(̂t)
)
− µ

∥∥∥ψ(̂t)
∥∥∥
1

]
− λ‖Φ‖2F , (5.21)

which considers the simultaneous optimization of all ψ(t)’s. The expected objective is:

g(Φ) = EH(t),g(t),α(t)

[
max
ψ

ˆ̀
(
Φ,ψ,α(t),H(t), g(t)

)]
, (5.22)

which measures how well Φ can represent a random future task without accommodation.

113

The main theoretical results presented in this section are that: 1) Φt becomes increasingly

stable, 2) ĝt, gt, and g converge to the same value, and 3) Φt converges to a stationary point

of g. These results are based on the following assumptions:

A. The tuples
(
H(t), g(t)

)
are drawn i.i.d. from a distribution with compact support.

B. The sequence
{
α(t)

}∞
t=1

is stationary and φ-mixing.

C. The magnitude of J (t)(0) is bounded by B.

D. For all Φ, H(t), g(t), and α(t), the largest eigenvalue (smallest in magnitude) of

Φ>γH
(t)Φγ is at most −κ, with κ > 0, where γ is the set of nonzero indices of

ψ(t) = arg maxψ
ˆ̀
(
Φ,ψ,H(t), g(t),α(t)

)
. The nonzero elements of the unique maximiz-

ing ψ(t) are given by: ψ(t)
γ =

(
Φ>γH

(t)Φγ

)−1(
Φ>
(
H(t)α(t) − g(t)

)
− µ sign

(
ψ(t)

γ

))
.

Proposition 1. Φt −Φt−1 = O(1t) .

Proof sketch. The first step in the proof is to show that the entries of Φ, ψ(t), and α(t) are

bounded by Assumptions A and C and the regularization terms. The next step is showing

that ĝt−ĝt−1 is O
(
1
t

)
–Lipschitz. The facts that Φt−1 maximizes ĝt−1 and the eigenvalues of

the Hessian of ĝt−1 are bounded complete the proof. �

The critical step for adapting the proof from Ruvolo and Eaton (2013) to LPG-FTW is to

introduce the following lemma, which shows the equality of the maximizers of ` and ˆ̀.

Lemma 1. ˆ̀
(
Φt,ψ

(t+1),α(t+1),H(t+1), g(t+1)
)

= maxψ ˆ̀
(
Φt,ψ,α

(t+1),H(t+1), g(t+1)
)

.

Proof sketch. The facts that the STL objective ˆ̀ is a second-order approximation at ψ(t+1)

of ` and that ψ(t+1) is a maximizer of ` imply that ψ(t+1) is also a maximizer of ˆ̀. �

Proposition 2.

1. ĝt(Φt) converges a.s.

2. gt(Φt)− ĝt(Φt) converges a.s. to 0

114

3. gt(Φt)− ĝ(Φt) converges a.s. to 0

4. g(Φt) converges a.s.

Proof sketch. The first step is to use Lemma 1 to show that the sum of negative variations

of the stochastic process ut = ĝt(Φt) is bounded. Given this result, the next step shows that

ut is a quasi-martingale that converges almost surely (Part 1). This fact, along with a simple

lemma of positive sequences, permits proving Part 2. The final two parts can be shown due

to the equivalence of g and gt as t→∞. �

Proposition 3. The distance between Φt and the set of all stationary points of g converges

a.s. to 0 as t→∞.

Proof sketch. The following two facts lead to completing the proof: 1) ĝt and g have Lipschitz

gradients with constants independent of t, and 2) ĝt and g converge almost surely. �

5.6. CompRL: Modular Lifelong Reinforcement Learning via Neural Composition

This section describes CompRL, the second of the lifelong RL approaches developed in

this dissertation. This second method utilizes a version of the hard modular architecture

introduced in Chapter 3, which is the representation that most accurately represents the

problem of compositional learning as described in Section 5.4.

At a high level, the agent constructs a different neural net policy for every task by selecting

from a set of available modules. The modules themselves are used to accelerate the learning

of each new task and are then automatically improved by the agent with new knowledge

from this latest task.

5.6.1. Neural Modular Policy Architecture

Few recent works have attempted to solve modular RL problems via neural composition, but

without a substantial effort to study their applicability to truly compositional problems (Yang

115

et al., 2020; Goyal et al., 2021). One notable exception proposed a specialized modular

architecture to handle multitask, multirobot problems (Devin et al., 2017). This latter

architecture inspired the design of the new modular policy described in this section, which

tackles compositional RL more generally.

Following the assumptions of Section 5.4, each neural module mi is in charge of solving one

specific subproblem Fi (e.g., finding an object’s grasping point in the robot tasks), such that

there is a one-to-one and onto mapping from subproblems to modules. All tasks that require

solving Fi share mi. To construct the network for a task, the model chains modules in

sequence, thereby replicating the graph structure depicted in Figure 16 with neural modules.

Most modular architectures consider a pure chaining structure, in which the complete input

passes through a sequence of modules. In such architectures, each module must not only

process the information needed to solve its subproblem (e.g., the obstacle in the robot

examples), but also pass through information required by subsequent modules. Additionally,

the chaining structure induces brittle dependencies among the modules, and so a tiny change

to the first module can have cascading effects. While in MTL it is viable to learn such

complex modules, in the lifelong setting the modules must generalize to unseen combinations

with other modules after training on just a few tasks in sequence. A better solution is to let

each module mi only receive information needed to solve its subproblem Fi, ensuring that it

only needs to output the solution to Fi. Devin et al. (2017) used this insight to design a

similar modular architecture. Therefore, the architecture used by CompRL assumes that

the state can factor into module-specific components, such that each subproblem Fi requires

only access to a subset of the state components and passes only the relevant subset to each

module. For example, in the robotics domain, robot modules only receive as input the state

components related to the robot state. Equivalently, the model treats each element of the

state vector as a variable and feeds only the variables necessary for solving each subproblem

Fi into mi. This process requires only high-level information about the semantics of the

state representation, similar to the architecture of Devin et al. (2017).

116

At each depth d in the modular net, the agent has access to kd modules. Each module is a

small neural net that takes as inputs the module-specific state component and the output

of the module at the previous depth d−1. Note that this differs from gating networks in

that the modular structure is fixed for each individual task, instead of modulated by the

input. The number of modular layers dmax is the number of subproblems that must be solved

(e.g., dmax = 3 for (1) grasping an object and (2) avoiding an obstacle with (3) a robot arm).

Section 5.7.2 describes the exact architectures used for the experiments.

5.6.2. Sequential Learning of Neural Modules

CompRL follows the framework prescribed in Chapter 3, yet is in some ways fundamentally

different from the supervised learning methods from Chapter 4 and even LPG-FTW from

Section 5.5. The key difference is that the assimilation stage does not restrict the agent to

only searching over combinations of fixed, existing modules. Instead, it allows the agent to

explore beyond those rigid modules, which was necessary to achieve reasonable performance

given the strict modularity assumptions of the architecture. The accommodation stage then

uses off-line RL techniques to incorporate new knowledge obtained during the exploration

stage into the existing modules. The following paragraphs describe the stages of the approach

in detail, and Algorithm 14 summarizes the overall process.

Initialization Finding a good set of initial modules is a major challenge. In order to

achieve lifelong transfer to future tasks, the agent must start from a sufficiently strong and

diverse set of modules. To achieve this, CompRL learns each new task on disjoint sets

of neural modules until it has initialized all modules. Intuitively, this corresponds to the

assumption that the first tasks contain disjoint sets of components. The empirical evaluation

of Section 5.7.8 shows that this assumption is not necessary in practice.

Assimilation Like other methods in this dissertation, the assimilation stage keeps shared

modules fixed in order to avoid incorporating new (likely incorrect) information about the

current task during the initial stages of training on that task. However, the strict modular

117

Algorithm 14 Lifelong Compositional RL
1: T ← 0
2: while Z(t) ← getTask() do
3: if T ≤ k then . initialization
4: steps← 0; sd ← T ∀d
5: else . find module combination
6: s, steps← discreteSearch()
7: bckModules← clone(M)
8: end if
9: π(t), Q(t) ← modularNets(M, s)

10: while steps < onlineSteps do . online exploration
11: x,u, r, s′ ← rollouts

(
π(t), iterSteps

)
12: buffer[t].push(x,u, r, s′)

13: π(t), Q(t) ← PPOStep
(
x,u, r, s′, π(t), Q(t)

)
14: steps← steps + iterSteps

15: end while
16: if T < numModules then
17: M ← bckModules

18: end if
19: for i = 1, . . . , offlineSteps do . accommodation via off-line RL
20: for t = 1, . . . , seenTasks do
21: x,u, r, s′ ← buffer[t].sample()
22: π(t) ← arg minπ̃ NLL(π̃(x),u)
23: u′ ← arg maxũ:π(t)(s′,ũ)>τ Q

(t)(s′, ũ)

24: targetQ← r +Q(t)′(s′,u′)
25: Q(t) ← arg minQ̃(Q̃(x,u)− targetQ)
26: end for
27: end for
28: end while

architecture used by CompRL makes it difficult to combine existing modules into a solution

that achieves high performance without improving the modules. While in principle subsequent

accommodation stages could achieve such improvements, in practice it becomes infeasible for

an RL agent to discover high-performing behaviors without ever having experienced them

online. Therefore, CompRL subdivides the assimilation stage into two stages:

• Module selection Upon encountering a new task, the agent selects the best modules

to solve the task without any modifications to the module parameters. This ensures

that the choice of modules requires minimal modifications to those parameters, as is

118

needed to retain knowledge of the earlier tasks. The evaluation considered two versions

of the method. In one case, the environment gives the agent the correct choice of

modules, and the agent does not need to search over module combinations. In the

other (more general) case, the agent must discover which modules are relevant to the

current task. Since the previous stage has already initialized a diverse set of modules,

this is achieved via exhaustive search of the possible module combinations in terms of

the reward they yield when combined. This type of combinatorial search requires the

least amount of additional assumptions. In practice, this process rolls out the policy

resulting from each of the possible combinations in the environment for some number

of episodes, and chooses the combination that yields the highest average return.

• Exploration Once the agent has chosen the set of modules to use for the current task,

it might be able to perform reasonably well on the task. However, especially on the

earliest tasks, when the agent has not yet learned fully general modules, it is unlikely

that modules that have never combined into a trained policy work together perfectly.

In the supervised setting, the agent has access to a data set that is representative of the

data distribution of the current task, which enables the agent to incorporate knowledge

into the modules directly using the provided data after module selection. However, in

RL there is no given data set, and the agent must instead explore the environment

to collect data that represents near-optimal behavior. In order to avoid catastrophic

damage to existing neural components and at the same time enable full flexibility for

exploring the current task, CompRL executes this exploration via standard RL training

on a copy of the shared modules, leveraging the selected modules to initialize the policy,

but without modifying the actual shared module parameters.

The rationale for executing selection and exploration separately is that the selected modules

should be updated as little as possible in the next and final stage. If the learner instead

jointly explores via module adaptation and searches over module configurations, it would

likely find a solution that makes drastic modifications to the selected modules. If instead

119

it restricts module selection to the fixed modules, then this stage is more likely to find a

solution that requires little module adaptation.

Accommodation While the exploration stage enables learning about the current task, this

is typically insufficient for training a lifelong learner, since 1) the learner would need to store

all copies of the modules in order to perform well on each task, and 2) the modules obtained

from initialization are often suboptimal, limiting their potential for future transfer. For this

reason, once the agent has gained enough experience on the current task, it incorporates

newly discovered knowledge into the existing modules. It is crucial that this accommodation

step does not discard knowledge from earlier tasks, which is not only necessary for solving

those earlier tasks (thereby avoiding catastrophic forgetting) but possibly also for future tasks

(enabling forward transfer). One popular strategy in the supervised setting to incorporate new

knowledge into shared parameters is to train parameters with a mix of new and replay data.

However, while experience replay has been tremendously successful in the supervised setting,

its success in RL has been limited to very short sequences of tasks (Isele and Cosgun, 2018;

Rolnick et al., 2019). One of the challenges of using experience replay in RL is that training

RL policies off-line tends to degrade performance, due to a mismatch between the off-line

data distribution and the data distribution imposed by the updated policy. Consequently,

this dissertation proposed a novel method for experience replay based on recent off-line RL

techniques, designed precisely to avoid this issue. Concretely, at this stage CompRL uses

off-line RL over the replay data from all previous tasks as well as the current task, keeping

the selection over components fixed and modifying only the shared modules. Note that this

is a general solution that applies beyond compositional algorithms to any lifelong method

that includes a stage of incorporating knowledge into a shared repository of knowledge after

online exploration. Section 5.7.10 validates that this drastically improves the performance of

one noncompositional method.

120

5.6.3. Base Online and Off-Line Reinforcement Learning Techniques

The implementation of CompRL used for experiments in Section 5.7 uses proximal policy

optimization (PPO; Schulman et al., 2017) for assimilation via RL exploration and batch-

constrained Q-learning (BCQ; Fujimoto et al., 2019b,a) for accommodation via off-line RL.

BCQ simultaneously trains an actor π to mimic the behavior in the data and a critic Q to

maximize the values of actions that are likely under the actor π. In the lifelong setting, this

latter constraint ensures that the Q-values are not over-estimated for states and actions that

were not observed during the assimilation stage.

One caveat of using PPO and BCQ together in the proposed algorithm is that BCQ requires

training an action-value function Q, whereas PPO trains a state-value function V as the

critic. For compatibility, CompRL uses a modified version of PPO that instead trains a

Q-function and computes V from the learned Q. In the discrete setting, this is done by

assuming a deterministic actor and computing the maximum value from the computed

Q-values: V = maxaQ(s, a). In the continuous setting, the learner instead samples n actions

and computes the average Q-value across all of them to obtain an approximation of V .

One of the primary reasons to choose BCQ as the off-line RL mechanism of CompRL, beside its

conceptual simplicity, was its flexibility to be applied in both discrete- and continuous-action

settings. The following paragraphs provide additional details about the BCQ implementations

used in CompRL. Note that other off-line RL mechanisms could be used in place of BCQ.

Discrete BCQ In the discrete-action setting, BCQ trains an actor and a critic. The actor

trains to imitate the behavior distribution in the data, and the critic trains to compute the Q-

values, constrained to regions of the data distribution with high probability mass. Concretely,

instead of computing Q(s, a) = r + γmaxa′ Q(s′, a′) as dictated by the standard Bellman

equation, BCQ computes Q = r + γmaxa′:π(s,a′)>τ Q(s′, a′), where τ is a threshold below

which actions are considered too unlikely under the data distribution. In the experiments,

the accommodation stage updated the PPO actor π as the behavior cloning actor in BCQ,

121

and the PPO critic Q as the BCQ critic. After this stage, the evaluations of the policy rolled

out actions via Boltzmann sampling of Q over actions above the likelihood threshold τ .

Continuous BCQ The original continuous-action BCQ is substantially more complex,

since the actor should mimic a general distribution over the continuous-valued actions, for

which BCQ uses a variational autoencoder to represent the arbitrary distribution. However, in

the case considered in CompRL, the data is itself generated by a Gaussian actor, and therefore

one can assume that a Gaussian policy can represent the data distribution. Note that, since

the training updates the exploration policy over time, this is merely an approximation.

Therefore, like in the discrete case, the PPO actor π trains to imitate the data distribution.

This choice also permits dropping the perturbation model trained in BCQ to model a

separate actor. BCQ trains two separate Q-functions in a manner similar to clipped double

Q-learning (Fujimoto et al., 2018). The target value is computed by:

r + γ max
a′∼π(s)

λ min
j={1,2}

Qj(s
′, a′) + (1− λ) max

j={1,2}
Qj(s

′, a′) , (5.23)

which is estimated by sampling n actions from the actor π. Subsequent evaluations in the

experiments also sampled actions directly from the actor π.

5.7. Experimental Evaluation

The experiments evaluated the capabilities of the proposed lifelong RL methods. Similar to

the supervised learning experiments of Chapter 4, this chapter divides tests according to the

compositional structure used by the learner. First, the model with linear combinations of

policy parameters trained via LPG-FTW was evaluated on a set of tasks that are not explicitly

compositional. This evaluation demonstrated that LPG-FTW substantially increases the

learning speed and a dramatically reduces catastrophic forgetting. Next, the experiments

tested the model with hard neural module compositions trained via CompRL on a set of

explicitly compositional tasks especially created for this evaluation. This study showed that

these novel tasks are indeed compositional: once the agent has trained a suitable set of

122

components, novel combinations of those components can solve unseen tasks. Moreover, the

experiments revealed that the proposed algorithm can learn these components sequentially

in a lifelong setting, dramatically increasing the learning speed and decreasing forgetting.

Code and training videos for experiments involving LPG-FTW are available at https:

//github.com/Lifelong-ML/LPG-FTW, and code for experiments involving CompRL is

available at https://github.com/Lifelong-ML/Mendez2022ModularLifelongRL.

5.7.1. Evaluation Domains

The evaluation used four different domains to assess the two lifelong RL methods developed

in this dissertation. The first two domains evaluated LPG-FTW on noncompositional tasks

and were taken directly or with minor modifications from existing literature, whereas the

latter two evaluated CompRL on explicitly compositional tasks and were created specifically

for this evaluation to assess the compositional properties of CompRL.

OpenAI Gym MuJoCo Domains

The first experiments evaluated LPG-FTW on simple MuJoCo environments from OpenAI

Gym (Todorov et al., 2012; Brockman et al., 2016). For this, the agent trained on two different

evaluation domains for each of the HalfCheetah, Hopper, and Walker-2D environments: a

gravity domain, where each task corresponded to a random gravity value between 0.5g and

1.5g, and a body-parts domain, where the size and mass of each of four parts of the body

(head, torso, thigh, and leg) were randomly set to values between 0.5× and 1.5× their

nominal values. These choices lead to highly diverse tasks, as demonstrated in Section 5.7.5.

A modified version of the gym-extensions (Henderson et al., 2017) package generated the

tasks, scaling each body part independently to achieve a higher diversity.

The evaluation considered T = 20 tasks for the HalfCheetah and Hopper domains, and

T = 50 for the Walker-2D domains. The agents trained on each task for a fixed number of

iterations before moving on to the next.

123

https://github.com/Lifelong-ML/LPG-FTW
https://github.com/Lifelong-ML/LPG-FTW
https://github.com/Lifelong-ML/Mendez2022ModularLifelongRL

Meta-World Domains

To study the flexibility of the framework, the next evaluation tested LPG-FTW on Meta-

World (Yu et al., 2019), a substantially more challenging benchmark. The tasks involve using

a simulated Sawyer robotic arm to manipulate various objects in diverse ways, and have

been notoriously difficult for state-of-the-art MTL and meta-learning algorithms. Concretely,

LPG-FTW trained on sequential versions of the MT10 benchmark, with T = 10 tasks, and

the MT50 benchmark, using a subset of T = 48 tasks. All Meta-World tasks were simulated

on version 1.5 of the MuJoCo physics simulator (Todorov et al., 2012). The observation

space for each task was six-dimensional, comprising the robot hand and the object locations.

Note that the goal, which was kept fixed for each task, was not given to the agent. For

this reason, the evaluation removed two tasks from MT50 which are incompatible with the

six-dimensional observations—stick pull and stick push—for a total of T = 48 tasks.

Discrete 2-D World

The discrete 2-D world was the first truly compositional set of tasks used for RL experiments

in this dissertation. Each task in the domain consists of an 8× 8 grid of cells populated with

a variety of objects, and is built upon gym-minigrid (Chevalier-Boisvert et al., 2018). The

agent’s goal is to reach a specific target in an environment populated with static objects that

have different effects. The tasks are compositional in three hierarchical levels:

• Agent dynamics The domain contains four different artificially created dynamics,

each corresponding to a permutation of the actions (e.g., the turn_left action moves

the agent forward, turn_right rotates left). For each task, the chosen dynamics

determine the effect of the agent’s actions.

• Static objects Each task contains a chain of static objects, with a single gap cell.

Walls block the agent’s movement; the agent must open a door in the gap cell to move

to the other side. Floor cells have an object indicator, but have no effect on the agent.

124

Food gives a small positive reward if picked up. Finally, lava gives a small negative

reward and terminates the episode.

• Target objects There are four colors of targets; each task involves reaching one color.

There are T = 64 tasks of the form “reach the COLOR target with action permutation N while

interacting with OBJECT.” If the agent has learned to “reach the red target with permutation

0” and “reach the green target with permutation 1”, then it should be able to quickly discover

how to “reach the red target with permutation 1” by recombining the relevant knowledge.

Figure 17 shows example tasks created by sampling one component of each type. The

paragraphs below describe the core elements of the proposed environment and how they vary

according to the task components.

Go to green target interacting
with food with agent 2

Go to blue target interacting
with lava with agent 1

Go to red target interacting
with wall with agent 0

Go to purple target interacting
with floor with agent 3

Figure 17: Visualization of various instantiations of the compositional discrete 2-D tasks.
The highlighted area represents the agent’s field of view.

125

Observation space The learner receives a partially observable view of the 7× 7 window

in front of it, organized as an h× w × c image-like tensor, where h = w = 7 are the height

and width of the agent’s field of view, and c = 7 is the number of channels. Each channel

corresponds to one of wall, floor, food, lava, door, target, and agent. The first four

channels are binary images, with ones at locations populated with the relevant objects. The

door channel contains a zero for any cell without a door or with an open door, and a one

for any cell with a closed door. The target channel has all-zeros except for the locations

of the target, which are populated with an integer indicator of the color between one and

four. Finally, the agent channel has all-zeros except for the location of the agent, which

is populated with an integer indicator of the agent’s orientation (right, down, left, or

up) between one and four. This separation into channels matches the assumptions of the

architecture defined in Section 5.6.1. The agent can observe past all objects except walls

and closed doors, which occlude any objects beyond them.

Action space Every time step, the agent can execute one of six actions: turn_left,

turn_right, move_forward, pick_object, drop_object, and open_door. These discrete

actions are deterministic, such that they always have the intended outcome. However, tasks

have distinct dynamics that permute the ordering of the actions in the following four orders;

for readability, actions whose effect stays constant across permutations are grayed out:

0. turn_left, turn_right, move_forward, pick_object, drop_object, open_door

1. turn_left, turn_right, open_door, pick_object, drop_object, move_forward

2. turn_left, move_forward, turn_right, pick_object, drop_object, open_door

3. turn_left, move_forward, open_door, pick_object, drop_object, turn_right

Reward function The main component of the reward is the original sparse reward function

provided by gym-minigrid, which gives a zero at every time step except at the end of a

successful episode. The environment computes the terminal reward value as Ri = 1−0.9(i/H),

126

where i is the time step at which the agent reaches the target, and H is the horizon of the

environment. In tasks where food is present, the agent gets an additional reward of 0.05 for

every piece of food it picks up with the pick_object action. In contrast, the agent receives

a penalty of −0.05 if it steps on a lava object.

Initial conditions The 8× 8 grid is surrounded by a wall. Each episode sets the initial

state by randomly sampling the locations of all objects in the scene. First, the initialization

places the static object at a horizontal location x in the range [2, w − 2]. All cells i, j such

that i = x are populated with the task’s static object, except for one individual cell at a

random vertical location y : i, j = x, y. Cell x, y is empty in all tasks except those whose

static object is wall, in which case the cell contains a closed door. The agent starts at some

random location not occupied by the static object, and facing randomly in any of the four

possible directions. Finally, the environment places one target object of each of the four

possible colors randomly in any remaining free spaces in the environment.

Episode termination For all tasks, the episode terminates upon reaching the correct

target, or after H = 64 time steps, whichever happens first. The episode immediately

terminates if the agent steps on a lava object.

These 2-D tasks capture the notion of functional composition studied in this dissertation,

and proved to be notoriously difficult for existing lifelong RL methods. This demonstrates

both the difficulty of the problem of knowledge composition and the plausibility of neural

composition as a solution. However, artifices like action permutations and lava obstacles fail

to show the real-world applicability of the proposed problem. Therefore, as a more realistic

example, this dissertation introduced a second domain of different robot arms performing a

variety of manipulation tasks that vary in three hierarchical levels.

127

Robot Manipulation

The primary component of this domain is a set of four popular commercial robotic arms

with seven degrees of freedom (7-DoF): Rethink Robotics’ Sawyer, KUKA’s IIWA, Kinova’s

Gen3, and Franka’s Panda. Each task consists of one robot arm in a continuous state-action

space, with a single object and (optionally) an obstacle. All robots use a general-purpose

gripper by Rethink Robotics with two parallel fingers. The task components are:

• Robots These manipulators have varying kinematic configurations, joint limits, and

torque limits, requiring specialized policies to actuate each of the arms. All dynamics

were simulated in robosuite (Zhu et al., 2020).

• Objects The robot must grasp and lift a can, a milk carton, a cereal box, or a loaf

of bread. Their varying geometry implies that no common strategy can manipulate all

these objects to solve the tasks.

• Obstacles The robot’s workspace may be free (i.e., no obstacle), blocked by a wall

the robot needs to circumvent, or limited by a door frame that the robot must traverse.

Each task is one of the T = 48 combinations of the above elements, just like in the 2-D case.

Intuitively, if the agent has learned to manipulate the milk carton with the IIWA arm and

the cereal box with the Panda arm, then it could recombine knowledge to manipulate the

milk carton with the Panda arm.

Figure 18 shows example tasks created by sampling one component of each type. Chapter 7

extends this evaluation domain into a large-scale benchmark of hundreds of compositionally

related tasks. The following paragraphs provide details of the underlying MDP of tasks

within this domain, and how it varies according to the task components.

Observation space Each time step, the agent receives a rich observation that describes all

elements in the task. The robot arm state comprises a 32-dimensional vector, concatenating

128

Figure 18: Visualization of various instantiations of the compositional robotic tasks.

the sine and cosine of the joint positions, the joint velocities, the end-effector position, the

end-effector orientation in unit quaternions, and the gripper fingers’ positions and velocities.

The target object’s state is a 14-dimensional vector that concatenates the position and

orientation of the object in global coordinates, and the position and orientation of the object

relative to the end-effector. The observation similarly describes the obstacle with its position

and orientation in global and end-effector coordinates. The observation also describes the

goal (i.e., the target height) by its position and orientation in both coordinate frames, as

well as the relative position of the object with respect to the goal. Note that many of these

elements are redundant and in principle unnecessary for solving the task at hand. However,

the initial evaluations found that this combination of observations leads to tasks that are

much more easily learned by the STL agent.

129

Action space The agent’s actions are continuous-valued, eight-dimensional vectors, indi-

cating the change in each of the seven joint positions and the gripper. For reference, this

corresponds to the JOINT_POSITION controller in robosuite.

Reward function The environment provides the agent with dense rewards. At a high

level, the agent receives an increasingly large reward for approaching, grasping, and lifting

the object. In tasks with the wall obstacle, the reward additionally encourages the agent to

lift the object past the wall. Concretely, in tasks with no wall, the reward is given by:

R =


0.1(1− tanh(5d)) if not grasping

0.25 + 0.5(1− tanh(25h)) if grasping and not success

1 if success ,

(5.24)

and in tasks with wall, the reward is given by:

R =



0.05(1− tanh(5dw)) if not past wall

0.05 + 0.05(1− tanh(5d)) if past wall and not grasping

0.25 + 0.5(1− tanh(25h)) if grasping and not success

1 if success ,

(5.25)

where d is the distance from the gripper to the center of the object, h is the vertical distance

between the object and the target height truncated at 0, and dw is the x, z distance from

the gripper to the wall.

Initial conditions The robot arm starts at the center of the left edge of a flat table of

width w = 0.39 and depth d = 0.49. The environment places the obstacle one quarter of the

way from left to right in the table, and at the center. The environment further samples the

object location uniformly at random in the right half of the table, so that the robot must

always surpass the obstacle before reaching the object.

130

Episode termination The episode may only terminate after reaching the task’s horizon

of H = 500 time steps.

5.7.2. Model Architectures

This section describes the model architectures used to represent each learnable function. In

the MuJoCo and Meta-World domains, the architectures were simple linear or neural net

models constructed by linearly combining components from Φ and trained via LPG-FTW.

On the other hand, the learners constructed the architectures for the 2-D world and robotics

domain following the modular structure described in Section 5.6.1.

MuJoCo

For these simple experiments, the policy was a Gaussian with mean linear in the observations

and a trainable standard deviation vector per task. LPG-FTW used k = 5 components in Φ

for all domains except Walker-2D body-parts domain, which in practice required a higher

capacity of k = 10. Additionally, the baseline model leveraged by NPG to compute the

advantage function used a task-specific multilayer perceptron (MLP) with two hidden layers

of 128 units and ReLU activation.

Meta-World

The architecture for these more complex tasks was a Gaussian policy parameterized by a

neural net with two hidden layers of 32 units and tanh activation. LPG-FTW constructed

these two layers by linearly combining components stored in k = 3 components in Φ. Given

the high diversity of the tasks considered in this evaluation, the agent used task-specific

output layers, in order to specialize policies to each individual task. The standard deviation

and baseline for NPG were identical to those used in MuJoCo domains.

131

2-D Domains

The architecture for the discrete 2-D tasks assumes that the underlying graph structure first

processes the static object, then the target object, and finally the agent dynamics. Intuitively,

the agent’s actions require all information about target and static objects, and the agent

module should be closest to the output to actuate the agent. The plan for reaching a target

object requires information about how to interact with the static object. Interacting with

the static object instead could be done without information about the target object.

Static object modules consume as input the five channels corresponding to static objects,

and pass those through one convolutional block of c = 8 channels, kernel size k = 2, ReLU

activation, and max pooling of kernel size k = 2, and another block of c = 16 channels,

kernel size k = 2, and ReLU activation. Subsequent modules, which require incorporating

the outputs of the previous modules, include a preprocessing network that transforms the

module-specific state into a representation compatible with the previous module’s output, and

then concatenate the two representations. The concatenated representation passes through a

post-processing network to compute a representation of the overall state up to that point.

Target object modules preprocess the target object channel with a block with the same

architecture as static object modules, concatenate the preprocessed state with the static

object module’s output, and pass this through a single convolutional block of c = 32 channels,

kernel size k = 2, and ReLU activation. Similarly, agent modules pass the agent channel

through a preprocessing net with the same architecture as the target object module (minus

the concatenation with the static object module output), concatenate the preprocessed state

with the output of the target object module, and pass this through separate MLPs for the

actor and the critic with a single hidden layer of n = 64 hidden units and tanh activation.

Since the domain contains four objects of each type, the model also contains four modules of

each type. The learner then constructs a separate architecture for each task by combining

one module of each type. Figure 19 shows the resulting architecture.

132

State
(one channel per object)

Concatenate

Concatenate

Static object module

Target object module

Agent module

Figure 19: Modular architecture for discrete 2-D tasks. The input factors into elements
corresponding to each task component and passed only to the corresponding type of module.
The output of each module feeds into the next as additional input.

Robotics

After validating empirically that the architecture from the discrete 2-D domain correctly

captured the underlying structure of the tasks, the graph structure for the robotics domain

followed that of the discrete 2-D setting. In particular, the model processes the obstacle

first, the object next, and the robot last. The obstacle module passes the obstacle state

through a single hidden layer of n = 32 hidden units with tanh activation. The object

module preprocesses the object state with another tanh layer of n = 32 nodes, concatenates

the preprocessed state with the output of the obstacle module, and passes this through

another tanh layer with n = 32 units. Finally, the robot module takes the robot and goal

states as input, processes those with two hidden tanh layers of n = 64 hidden units each,

concatenates this with the output of the object module, and passes the output through a

linear output layer. Following standard practice for continuous control with PPO, the agent

133

Concatenate

State

Obstacle
module

Object
module

Robot
module

Concatenate

Figure 20: Modular architecture for robot tasks. Similar to the 2-D case, the input is
decomposed into module-specific components, and the output of each module is used as
input to the next.

uses completely separate networks for the actor and the critic (instead of sharing the early

layers). However, the graph structure is the same for both networks. Moreover, for the

critic, the robot module takes the action as an input along with the robot and goal states.

Figure 20 shows the resulting architecture.

5.7.3. Baselines

The evaluation used the following baselines to validate performance. Each experiment

considered only a subset of them, to ensure compatibility and usefulness of the comparisons.

• STL is the default baseline that does not transfer knowledge across tasks and serves to

study whether agents are achieving forward transfer: the ability to improve the learning

on one task by leveraging knowledge from earlier tasks. All experiments compared

against STL, which trains a separate model for each task via NPG (in MuJoCo and

Meta-World domains) or PPO (in compositional discrete 2-D and robotics domains).

Each such model follows the architecture described above, but uses a single module of

each type. In the first two domains, this corresponds to the standard STL architecture.

However, in compositional domains this architecture is nonstandard, as it does not

process the input observation entirely in the first layer of the network. This choice

ensured a fair comparison, as it yielded substantially better results in initial evaluations.

134

• EWC, described in Chapter 4, failed to work in any of the initial evaluations, and

so the experiment on the compositional robotics domain omitted it. For fairness, in

noncompositional domains EWC used the full Hessian instead of diagonal or Kronecker

approximations, since LPG-FTW also used the full Hessian. On the other hand, for

simplicity, online EWC was used in compositional domains (Schwarz et al., 2018). The

architecture of EWC was the same as of STL, with additional multi-hot indicators of

the ground-truth components in compositional domains. To validate that performance

differences were not due to the higher capacity of compositional methods, a high-capacity

variant of EWC (denoted EWC_h) was used in Meta-World experiments.

• PG-ELLA, described in Section 5.5.3, bears close connections to LPG-FTW, and

therefore experiments in noncompositional settings compared these two methods. PG-

ELLA used exactly the same architecture as LPG-FTW.

• CLEAR is a replay-based method that leverages previous tasks’ trajectories (Rolnick

et al., 2019). However, it only applies to the discrete-action setting, and therefore only

the discrete 2-D evaluations used it. In particular, in order to prevent forgetting, for

every sample collected online and used to compute the assimilation loss, the agent

replays η samples from previous tasks to compute the custom CLEAR loss, which

balances an importance sampling PG objective (V -trace) and an imitation objective.

In the experiments, the agent evenly split replay samples across all previously seen

tasks, and the architecture was the same as used by EWC.

• ER is a simple replay baseline, used in place of CLEAR for continuous-action, non-

compositional domains. ER uses importance sampling over previous tasks’ data to

encourage knowledge retention. It was tested in Meta-World domains and failed to

yield good performance, so it was not considered for remaining evaluations.

• P&C is similar to the proposed methods, separating the training into a forward transfer

stage, where the agent keeps shared parameters fixed, and a consolidation stage, where

135

the agent pushes new knowledge into the shared parameters (Schwarz et al., 2018).

Due to the difficulty of the implementation (and the lack of open-source code), only

explicitly compositional evaluations considered P&C. Unlike CompRL, P&C uses a

monolithic network, making it much harder to find a solution that works across all tasks.

In the experiments, it used a similar architecture to that of EWC for its knowledge base

(KB) and active columns, with additional lateral connections from the KB to the active

column. In the original P&C algorithm, the progress phase trains the active column

online and the compress phase trains the KB column online as well, but imposing

an EWC penalty on the shared parameters. The experiments in this chapter used a

slightly modified version closer to CompRL: the compress phase instead used replay

data from the current task to distill knowledge from the active column into the KB.

By doing this only over the latest portion of the data, this closely matches the P&C

formulation that generates data online with the distribution imposed by the (fixed)

active policy. This also enables P&C to leverage the entirety of the online interactions

for the progress phase, instead of trading off which portion to use for progressing and

which portion to use for compressing.

5.7.4. Hyperparameters

This section describes how the evaluation chose hyperparameters for each algorithm. At

a high level, some search method selected the STL hyperparameters, and then all lifelong

learners, which wrap around STL, used these same hyperparameters. This reduced the search

space over hyperparameters considerably while ensuring that the evaluation was fair.

MuJoCo A manual hyperparameter tuning selected the hyperparameters for NPG by

running an evaluation on the nominal task for each domain (without gravity or body part

modifications). The agent trained with various combinations of the number of iterations,

number of trajectories per iteration, and step size, until the search reached a learning curve

that was fast and reached proficiency. All lifelong learning algorithms used the obtained

hyperparameters. LPG-FTW used typical hyperparameters (regularization parameters

136

µ = λ = 10−5, number of columns of Φ k = 5) and held them fixed through all experiments,

forgoing potential additional benefits from a hyperparameter search. The only exception was

the number of latent components used for the Walker-2D body-parts domain, as it was found

empirically that k = 5 led to saturation of the learning process early on. LPG-FTW used the

simplest setting for the update schedule of Φ, adaptationFrequency = structureUpdates,

which corresponds to only updating the components in Φ once assimilation had completed.

PG-ELLA used the same hyperparameters as used for LPG-FTW, since they are used in

exactly the same way for both methods. Finally, for EWC, the evaluation ran a grid search

over the value of the regularization term, λ, among {1e−7, 1e−6, 1e−5, 1e−4, 1e−3}. For

this, the agent trained on five consecutive tasks for 50 iterations over five trials with different

random seeds. Each domain chose the value of λ independently to maximize the average

performance after training on all tasks. Upon discovering that EWC was struggling in some of

the domains, the evaluation considered various versions of EWC, as described in Appendix C,

modifying the regularization term and selecting whether to share the policy’s variance across

tasks. The only version that worked in all domains was the original EWC penalty with a

shared variance across tasks, so the remainder of the evaluation used only that version. To

make comparisons fair, EWC used the full Hessian instead of the diagonal Hessian proposed

by the authors. Table 11 summarizes the obtained hyperparameters.

Table 11: Summary of optimized hyperparameters used by LPG-FTW and the baselines.

Hyperparam. HC-G HC-BP Ho-G Ho-BP W-G W-B MT10/50

NPG

iterations 50 50 100 100 200 200 200
traj. / iter. 10 10 50 50 50 50 50

step size 0.5 0.5 0.005 0.005 0.05 0.05 0.005
λ (GAE) 0.97 0.97 0.97 0.97 0.97 0.97 0.97
γ (MDP) 0.995 0.995 0.995 0.995 0.995 0.995 0.995

LPG-FTW
λ 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5
µ 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5
k 5 5 5 5 5 10 3

PG-ELLA
λ 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5
µ 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5
k 5 5 5 5 5 10 3

EWC λ 1e−6 1e−6 1e−7 1e−4 1e−7 1e−7 1e−7

137

Meta-World In this case, hyperparameter tuning manually chose the parameters for NPG

on the reach task, which is the easiest task to solve in the benchmark. Once again, all

lifelong learners used these fixed hyperparameters. LPG-FTW and PG-ELLA used typical

values for k, λ, and µ. In particular, they used fewer latent components than in the previous

evaluation (k = 3), since MT10 contains only T = 10 tasks and using more than three

policy factors would give LPG-FTW an unfair advantage over single-model methods. The

evaluation also tested a version of EWC with a higher capacity (EWC_h), with 50 hidden

units for MT10 and 40 for MT50, to ensure that it had access to approximately the same

number of parameters as LPG-FTW. For EWC and EWC_h, the evaluation ran a grid

search for λ in the same way as for MuJoCo experiments. ER used a fixed experience replay

ratio of 50-50, as suggested by Rolnick et al. (2019), and each mini-batch sampled from the

replay buffer contained the same number of trajectories from each previous task. LPG-FTW,

PG-ELLA, and EWC all had access to the full Hessian, and EWC did not to share the

variance across tasks since the outputs of the policies were task-specific. Table 11 summarizes

the obtained hyperparameters.

Discrete 2-D Hyperparameter tuning on STL executed a grid search over the learning rate

(from {1e−6, 3e−6, 1e−5, 3e−5, 1e−4, 3e−4, 1e−3, 3e−3, 1e−2, 3e−2}) and the number of environment

interactions per training step (from {256, 512, 1024, 2048, 4096, 8192}). Since the static

object affects the difficulty of the task, the search considered one task with each static object

(wall, floor, food, and lava) for each hyperparameter combination, and optimized for the

average performance across the four objects. All lifelong agents reused the obtained PPO

hyperparameters. For lifelong agents, the evaluation tuned their main hyperparameter by

training on five tasks over five random seeds. For P&C and EWC, the search was over

the regularization λ in {1e−3, 1e−2, 1e−1, 1e0, 1e1, 1e2, 1e3, 1e4}. For CLEAR, the search

was over the replay ratio η in {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}. Table 12 summarizes the

obtained hyperparameters.

138

Table 12: Summary of optimized hyperparameters used by CompRL and the baselines.

Algorithm Hyperparameter Discrete 2-D world Robotic manipulation

PPO

env. steps 1M 3.6M
env. steps / update 4,096 8,000
learning rate 1e−3 1e−3
mini-batch size 256 8,000
epochs per update 4 80
λ (GAE) 0.95 0.97
γ (MDP) 0.99 0.995
entropy coefficient 0.5 —
Gaussian policy variance — fixed
parameters 1,080,320 1,040,304

Compositional

modules per depth 4 4
rollouts / module comb. 10 10
replay samples / task 100,000 100,000
BCQ epochs 10 100
parameters 86,350 165,970

P&C

λ (EWC) 10 10
γ (EWC) 1 1
replay samples / task 100,000 100,000
distillation epochs 10 100
parameters 70,282 104,384

EWC
λ (EWC) 10,000 —
γ (EWC) 1 —
parameters 18,928 —

CLEAR η 1.5 —
parameters 18,928 —

Robotics Instead of hyperparameter tuning, the tasks were created ensuring that STL

performed well. Given the fixed tasks, the evaluation perturbed key PPO hyperparameters

(e.g., the learning rate and the entropy coefficient) and verified that the changes led to

decreased performance. In particular, this setting used a modified version of Spinning

Up’s (Achiam, 2018) PPO implementation to encourage improved exploration, because initial

experiments with the original implementation suffered from premature convergence.

Each agent used an MLP to represent the mean of a Gaussian policy. Against popular

wisdom, which encourages using linear activations in the final layer, initial analyses yielded

that adding a tanh activation led to substantially improved exploration. The rationale is that

139

simulators typically cap the magnitude of robot actions to emulate physical limits in real

robots. Therefore, if the MLP outputs high-magnitude means for the Gaussian distribution,

the sampled actions are all likely to reach the range limits, regardless of the variance of the

Gaussian. In consequence, the agent could “cheat” existing techniques to avoid premature

convergence (e.g., entropy regularization) by learning a high variance but being deterministic

in practice by saturating the actions. The tanh activation ensures that the actions are

never too large in magnitude, which permits the sampling to induce stochasticity (and,

consequently, exploration).

The second modification was to use a constant variance for the Gaussian policy, instead

of propagating gradients through it. The reason this was necessary is that, with learnable

variance, the agent was finding pathological regions of the optimization landscape that (once

more) cheated existing entropy regularization approaches. Concretely, the agent was inflating

variance along dimensions where actions were inconsequential (e.g., joints that rotate in

directions orthogonal to the motion of the gripper), and reducing variance to a minimum

along critical dimensions. The resulting policy was therefore deterministic along all interesting

dimensions, and so the exploration the agent was engaging in was ineffective. Setting a fixed

variance of σ2 = 1 (log(σ) = 0) for the seven joint actions and σ2 = 1/e (log(σ) = −0.5)

for the gripper action ensured that the robot consistently explored throughout the learning

process and was critical toward enabling learning the compositional robotics tasks.

The PPO hyperparameters were fixed for lifelong training. The one modification that was

required for lifelong compositional training was to downscale the output layers of the policy

and critic networks by a factor of 0.01 whenever the initial policy achieved no success;

this ensured that, if the policy was not close to solving the task, the agent would not be

following a highly (and incorrectly) specialized policy, while still leveraging the compositional

representations at lower layers. The regularization coefficient λ for P&C was tuned by training

on five tasks over three random seeds, varying λ in {1e−3, 1e−2, 1e−1, 1e0, 1e1, 1e2, 1e3, 1e4}.

Table 12 summarizes the hyperparameters used for these robotic manipulation experiments.

140

5.7.5. Empirical Evaluation on OpenAI Gym MuJoCo Domains

The first evaluation presented here tested LPG-FTW on the MuJoCo environments from

OpenAI Gym, varying the gravity or body-part sizes as described in Section 5.7.1, using

linear policies. The evaluation repeated all experiments in this section over five trials, varying

the random seed controlling the parameter initialization and the ordering over tasks.

LPG-FTW

(a) HalfCheetah gravity (b) HalfCheetah body-parts

(c) Hopper gravity (d) Hopper body-parts

(e) Walker-2D gravity (f) Walker-2D body-parts

Figure 21: Average performance during training across all tasks for six MuJoCo domains.
LPG-FTW is consistently faster than STL and PG-ELLA (which by definition learn at the
same pace) in achieving proficiency, and achieves better final performance in five domains
and equivalent performance in the remaining one. EWC is faster and converges to higher
performance than LPG-FTW in some domains, but completely fails to learn in others.
Shaded error bars denote standard errors across five random seeds.

141

Figure 21 shows the average performance over all tasks as a function of the NPG training

iterations. Even though the agents trained on tasks sequentially, the averaged curves serve to

study the ability to accelerate learning: any curve above STL indicates that the corresponding

method achieved forward transfer. LPG-FTW consistently learned faster than STL, and

obtained higher final performance on five out of the six domains. Learning the task-specific

coefficients ψ(t) directly via policy search increased the learning speed of LPG-FTW, whereas

PG-ELLA was limited to the learning speed of STL, as indicated by the shared learning

curves. EWC was faster than LPG-FTW in reaching high-performing policies in four domains,

primarily due to the fact that EWC uses a single shared policy across all tasks, which enables

it to have starting policies with high performance. However, EWC failed to even match the

STL performance in two of the domains. One hypothesis that might explain this failure is

that the tasks in those two domains are highly varied (particularly in the body-parts domains,

since it has four different axes of variation), and the single shared policy was unable to

perform well on all tasks in those domains. Appendix C shows an evaluation with various

versions of EWC attempting (unsuccessfully) to alleviate these issues.

Results in Figure 21 consider only how fast the agent learns a new task using information

from earlier tasks. PG-ELLA and LPG-FTW then perform an update step (Equation 5.6

for LPG-FTW) where they incorporate knowledge from the current task into Φ. The third

bar from the left per each algorithm in Figure 22 shows the average performance after this

step, revealing that LPG-FTW maintained performance, whereas PG-ELLA’s performance

decreased. This is because LPG-FTW ensures that the learner computes the approximate

objective near points in the parameter space that the current basis Φ can generate, by finding

α(t) via a search over the span of Φ. A critical component of lifelong learning algorithms

is their ability to avoid catastrophic forgetting. To assess the capacity of LPG-FTW to

retain knowledge from earlier tasks, the evaluation measured the performance of the policies

obtained from the knowledge base Φ after training on all tasks, without modifying the

ψ(t)’s. The rightmost bar in each algorithm in Figure 22 shows the average final performance

across all tasks. LPG-FTW successfully retained knowledge of all tasks, showing no signs

142

LP
G-
FT
W

(a) HalfCheetah gravity
LP
G-
FT
W

(b) HalfCheetah body-parts

LP
G-
FT
W

(c) Hopper gravity
LP
G-
FT
W

(d) Hopper body-parts

LP
G-
FT
W

(e) Walker-2D gravity
LP
G-
FT
W

(f) Walker-2D body-parts

Figure 22: Average performance at the beginning of training (start), after all training
iterations (tune, equivalent to the final point in Figure 21), after the update step for PG-
ELLA and LPG-FTW (update), and after training on all tasks (final). The update step in
LPG-FTW never hinders performance, and even after training on all tasks the agent maintains
performance. PG-ELLA always performed worse than STL. EWC suffered from catastrophic
forgetting in five domains, in two resulting in degradation below initial performance. Error
bars denote standard errors across five seeds.

of catastrophic forgetting on any of the domains. The PG-ELLA baseline suffered from

forgetting on all domains, and EWC on all but one of the domains. Moreover, the final

performance of LPG-FTW was the best among all baselines on all but one domain.

143

One important question in the study of lifelong RL is how diverse the tasks used for evaluation

are. To measure this in the OpenAI Gym MuJoCo domains, the next experiment compared

the performance on each task using the final policy trained by LPG-FTW on the correct

task and the average performance using the policies trained on all other tasks. Figure 23

shows that the policies do not work well across different tasks, demonstrating that the tasks

are diverse. Moreover, the most highly-varying domains, Hopper and Walker-2D body-parts,

are precisely those for which EWC struggled the most, suffering from catastrophic forgetting,

as shown in Figure 22. This is consistent with the fact that a single policy does not work

across various tasks. In those domains, LPG-FTW reached the performance of STL with a

high speedup while retaining knowledge from early tasks.

Figure 23: Performance with the true policy vs. other policies. Percent gap (∆) indicates
task diversity. Body parts (BP) domains are more diverse than gravity (G) domains, and
Walker-2D (W) and Hopper (Ho) domains are more varied than HalfCheetah (HC) domains.
Error bars denote standard errors across five seeds.

144

5.7.6. Empirical Evaluation on More Challenging Meta-World Domains

Results so far show that LPG-FTW improves performance and completely avoids forgetting

in simple settings. To study the flexibility of the framework to handle more complex RL

tasks, the evaluation tested it on sequential versions of the Meta-World MT10 and MT50

benchmarks (Yu et al., 2019), repeating each experiment with five different random seeds

controlling the parameter initialization and the ordering over tasks.

The top row of Figure 24 shows average learning curves across tasks. LPG-FTW again

was faster in training, showing that the restriction that the agent only train the ψ(t)’s for

each new task does not harm its ability to solve complex, highly diverse problems. The0 25 50 75 100 125 150 175 200
iterations

0.04

0.02

0.00

0.02

0.04
Av

g
re

wa
rd

Metaworld Learning curve

Ours EWC EWC_h ER STL / PG-ELLALPG-FTW

0 25 50 75 100 125 150 175 200
iterations

0.04

0.02

0.00

0.02

0.04
Av

g
re

wa
rd

Metaworld Learning curve

Ours EWC EWC_h ER STL / PG-ELLA

LP
G-
FT
W

(a) Meta-World MT10
LP
G-
FT
W

(b) Meta-World MT50

Figure 24: Performance on the Meta-World benchmark. Top: average performance during
training across all tasks. Bottom: average performance at the beginning of training (start),
after all training iterations (tune), after the update step for PG-ELLA and LPG-FTW
(update), and after all tasks have been trained (final). In this notoriously challenging
benchmark, LPG-FTW still improves the performance of STL and all baselines, and suffers
from no catastrophic forgetting. All lifelong baselines suffer from catastrophic forgetting.
Error bars and shaded regions denote standard errors across five seeds.

145

difference in learning speed was particularly noticeable on MT50, where single-model methods

became saturated. This was the first published display of lifelong transfer on the challenging

Meta-World benchmark. The bottom row of Figure 24 shows that LPG-FTW suffered from a

small amount of forgetting on MT10. However, on MT50, where Φ trained on sufficient tasks

for convergence, LPG-FTW suffered from no forgetting. In contrast, none of the baselines

was capable of accelerating the learning, and they all suffered from dramatic forgetting,

particularly on MT50, when needing to learn more tasks. Adding capacity to EWC did

not substantially alter these results, showing that the ability of LPG-FTW to handle highly

varied tasks does not stem from its higher capacity from using k factors, but instead to the

use of different models for each task by intelligently combining the shared components.

5.7.7. Zero-Shot Transfer to Unseen Discrete 2-D Task Combinations via Multitask Learning

To assess whether the compositional tasks described in Section 5.7.1 exhibit the expected

composition, the agent received a hard-coded graph structure following the formalism of

Section 5.4. This way, the agent knows a priori which modules to use for each task and only

needs to learn the module parameters. The architecture uses four modules of each of three

types, one for each task component (static object, target object, and agent dynamics). Each

task policy contains one module of each type, chained as static object → target object →

agent. Modules are convolutional nets whose inputs are the module-specific state components

and the outputs of the previous modules. Agent modules output both the action and the

Q-values. The agent trained in a batch MTL fashion using PPO, collecting data from all

tasks at each training step and computing the average gradient across tasks to update the

parameters. Since each task uses a single module of each type, gradient updates only affect

the relevant modules to each task.

The agent trained on various possible combinations of discrete 2-D tasks, and the evaluation

compared its performance against two baselines: training a separate STL agent on each

task, and training a single monolithic network across all tasks in the same MTL fashion. To

ensure a fair comparison, the monolithic MTL network received as input a multi-hot encoding

146

0.00 0.25 0.50 0.75 1.00
1M steps per task

0.25

0.50

0.75

av
g

re
tu

rn

MTL MTL Non-modular STL

0

10

20

30

40

50

60

10 20 30 40 50 60
tasks

0.0

0.2

0.4

0.6

0.8

av
g

re
tu

rn

MTL MTL Non-modular

0.00 0.25 0.50 0.75 1.00
1M steps per task

0.25

0.50

0.75
av

g
re

tu
rn

0

10

20

30

40

50

60

(a) Learning curves

10 20 30 40 50 60
tasks

0.0

0.2

0.4

0.6

0.8

av
g

re
tu

rn

(b) Zero-shot generalization

Figure 25: Average returns of STL (trained on T = 64 tasks) and MTL (trained on various
tasks, as indicated by the color bar) on 2-D discrete tasks. (a) The modular architecture
correctly captures the relations across tasks, accelerating learning. Training on more tasks
further improves results. (b) Generalization of pretrained modules to unseen combinations
as a function of the number of training tasks. Modules can be combined in novel ways to
achieve high performance without additional training. Shaded regions and error bars show
standard errors across six seeds.

of the components that constituted each task. The evaluation repeated this experiment

with six different random parameter initialization configurations and samples of training

tasks. Figure 25a shows that the compositional method was substantially faster than the

two alternatives by sharing relevant information across tasks.

These results suggest that the proposed modular architecture accurately captures the relations

across tasks in the form of modules. To verify this, the next experiment evaluated the agent

on tasks it had not encountered during training in a zero-shot manner. To construct the

network for each task, the agent again received the hard-coded graph structure, but it kept

the parameters of the modules fixed after multitask training. Figure 25b shows the high

zero-shot performance of the modular method, revealing that the modules can be combined

in novel ways to solve unseen tasks without any additional training.

5.7.8. Lifelong Discovery of Modules on Discrete 2-D Tasks

The results of Figure 25 encourage envisioning a lifelong learner improving modules over a

sequence of tasks and reusing those modules to learn new tasks faster. This section studies

147

the ability of CompRL to achieve this kind of lifelong composition. This evaluation considered

two instances of CompRL: one in which the agent receives the hard-coded graph structure

(Comp.+Struct.) and one in which the agent receives no information about which tasks share

which components and must therefore discover these relations autonomously via discrete

search (Comp.+Search). Once the agent selects the structure for one particular task, it

collects data for that task via PPO training, starting from the parameters of the selected

modules. Finally, the agent uses this collected data for incorporating knowledge about the

current task into the selected modules via off-line RL with data from the current task and

all tasks that reuse any of those modules to avoid forgetting. To match the assumptions of

CompRL, unless otherwise stated, the initial tasks presented to the agent contain disjoint

sets of components. The evaluation carried out the experiments in this section with six

different random seeds controlling the parameter initialization and the ordering over tasks.

Figure 26a shows the average learning curves of the lifelong agents trained on all T = 64

possible 2-D tasks. Once again, the averaged curves demonstrate that the variants of

CompRL achieve forward transfer, accelerating the learning with respect to STL. Note that

this acceleration occurred despite CompRL using an order of magnitude fewer trainable

parameters than STL (86,350 vs. 1,080,320). Additionally, both CompRL methods improved

the modules over time, as demonstrated by the trend of increasing zero-shot performance as

the agent sees more tasks, shown in Figure 26b. P&C also learned faster than STL, but as

discussed in the following paragraph, P&C catastrophically forgot how to solve earlier tasks.

Other lifelong baselines performed substantially worse than STL, since they are designed to

keep the solutions to later tasks close to those of earlier tasks, which fails in compositional

settings where optimal task policies vary drastically.

In these 2-D tasks, lifelong learners should completely avoid forgetting, since there exist

models (compositional and monolithic) that can learn to solve all possible tasks (see Figure 25).

Figure 26c shows the average performance as each task progressed through various stages: the

beginning (zero-shot) and end (online) of assimilation via online training, the accommodation

148

0.0 0.5 1.0
1M steps per task

0.25

0.50

0.75

av
g

re
tu

rn

Data used for discrete
search in Comp.+Search

Comp.+Search
Comp.+Search-NC

Comp.+Struct.
STL

P&C
CLEAR

EWC

0.0 0.5 1.0
1M steps per task

0.25

0.50

0.75
av

g
re

tu
rn

Data used for discrete
search in Comp.+Search

(a) Learning curves

20 40 60
seen tasks

0.2

0.4

0.6

av
g

ze
ro

-s
ho

t r
et

ur
n

(b) Zero-shot performance over time
Com

p.+

Se
arc

h
Com

p.+

Se
arc

h-N
C
Com

p.+

Str
uct

. ST
L

P&
C

CLEA
R

EW
C

0.0

0.5

av
g

re
tu

rn

Zero-shot
Online

Off-line
Final

Com
p.+

Se
arc

h
Com

p.+

Se
arc

h-N
C
Com

p.+

Str
uct

. ST
L

P&
C

CLEA
R

EW
C

0.0

0.5

av
g

re
tu

rn

(c) Performance at the various stages

Figure 26: Average returns of STL and lifelong agents on T = 64 compositional 2-D discrete
tasks. (a) Compositional methods accelerate the training with respect to STL, demonstrating
forward transfer. (b) As compositional methods train on more tasks, they improve modules,
achieving higher zero-shot performance when combined in novel ways. (c) P&C also achieves
forward transfer, but it forgets how to solve earlier tasks, while compositional methods retain
performance—Comp.+Struct. even achieves backward transfer. Comp.+Search performs
better than baselines that receive multi-hot task descriptors. “Zero-shot” for Comp.+Search
(shaded) is after discrete search, which does require data. Shaded regions and error bars
represent standard errors across six seeds.

of knowledge into the shared parameters (off-line; for Comp. and P&C only), and the

evaluation after training on all tasks (final). CompRL variants were the only ones that

achieved forward transfer without suffering from any forgetting. Moreover, Comp.+Struct.

149

achieved backward transfer : improving the earlier tasks’ performance after training on future

tasks, as indicated by the increase in performance from the off-line to final bars.

To study the flexibility of CompRL, the evaluation also assessed its performance on a random

sequence of tasks, without forcing the initial tasks to be composed of distinct components.

Figure 26 shows that this lack of curriculum (Comp.+Search-NC) did not hinder the forward

or backward transfer of CompRL, since its performance was similar to Comp.+Search.

5.7.9. Lifelong Discovery of Modules on Realistic Robotic Manipulation Tasks

Having validated that CompRL achieves lifelong transfer on the 2-D tasks, an equivalent

evaluation tested the agents on the more complex and realistic robotic manipulation suite.

The architecture similarly chained one module of each type for the obstacle, object, and

robot arm, and each such module was an MLP. The evaluation repeated this experiment over

three trials, varying the random seed controlling the parameter initialization and the ordering

over tasks. In this evaluation, PPO would output overconfident actions when initialized from

the existing modules directly, which limited the agent’s ability to learn proficient policies.
0.0 0.5 1.0

1M steps per task

0.0

0.5

1.0

1.5

2.0

av
g

en
tro

py

Comp.+Search
Comp.+Struct

STL
P&C

Com
p.+

Se
arc

h
Com

p.+

Str
uct ST

L
P&

C
0.0

0.2

0.4

0.6

av
g

su
cc

es
s

Zero-shot
Online

Off-line
Final

0 1 2 3
1M steps per task

0.0

0.2

0.4

0.6

0.8

av
g

su
cc

es
s

Data used for discrete
search in Comp.+Search

(a) Learning curves

Com
p.+

Se
arc

h
Com

p.+

Str
uct ST

L
P&

C
0.00

0.25

0.50

0.75

av
g

su
cc

es
s

(b) Performance at the various stages

Figure 27: Average success of STL and lifelong agents on T = 48 compositional robot
manipulation tasks. (a) Compositional methods again achieve forward transfer. (b) The
off-line stage causes a drop in performance, but further training the modules on future tasks
achieves backward transfer and partially recovers the lost performance. Shaded regions and
error bars represent standard errors across three seeds.

150

Therefore, the experiments used a modified version of PPO which permitted successful

training of all tasks at the cost of often inhibiting zero-shot transfer (see Section 5.7.4). The

learning curves in Figure 27a show that all lifelong agents learned noticeably faster than the

base STL agent, and compositional methods were fastest, despite using an order of magnitude

fewer trainable parameters than STL (165,970 vs. 1,040,304). Figure 27b also shows that

the off-line stage led to a decrease in performance. However, like in the 2-D domain, training

on subsequent tasks led to backward transfer, partially recovering the performance of the

earlier tasks as the agent learned future tasks. As expected, P&C was incapable of retaining

knowledge of past tasks, leading to massive catastrophic forgetting.

5.7.10. Ablative Tests on Compositional Domains

One natural question that arises when evaluating methods with various algorithmic and

architectural building blocks is: which of these constituent parts are crucial for the obtained

performance? This section empirically validates the design choices behind CompRL.

The first study verified that the modules required to solve the discrete 2-D tasks are diverse.

Results from Section 5.7.7 showed that the discrete 2-D tasks are truly compositional: if

the agent discovers a good set of modules, it can recombine them and reuse them to solve

unseen tasks. However, it is possible that some of these components are essentially the same.

For example, perhaps the module for learning to reach the green target could be replaced

with the module to reach the red target. This would severely limit the usefulness of the

evaluations. As a sanity check, the evaluation tested the effect of using the incorrect module

for evaluation on a task, separated by type of module. Figure 28 reveals that using the

incorrect static object modules leads to a small (but noticeable) drop in performance, while

using the incorrect target object or agent module leads to a drastic drop to nearly random

performance. This validates that the modules differ substantially.

The next study analyzed the architecture choice described in Section 5.6.1. A more natural

choice of architecture, which was considered early in the development cycle of CompRL, is

151

10 20 30 40 50 60
tasks

0.0

0.2

0.4

0.6

0.8

av
g

re
tu

rn

No change
Static

Target
Agent

10 20 30 40 50 60
tasks

0.0

0.2

0.4

0.6

0.8

av
g

re
tu

rn

Figure 28: Ablative analysis on the diversity of modules in discrete 2-D tasks. Performance of
the modular MTL agent when constructing the policy with incorrect modules, demonstrating
that modules specialize to solve their assigned subproblem.

a simple module chaining, where the input passes entirely through a first module, whose

output passes to the next module, and so on. This is in contrast to the proposed architecture,

where the input factors into task components and feeds separately into distinct modules. The

next experiment repeated the evaluation of Section 5.7.7 with a purely chained architecture,

and Figure 29 shows the obtained results. This chained architecture cannot generalize

10 20 30 40 50 60
tasks

0.0

0.2

0.4

0.6

0.8

av
g

re
tu

rn

MTL MTL Chain

10 20 30 40 50 60
tasks

0.0

0.2

0.4

0.6

0.8

av
g

re
tu

rn

Figure 29: Ablative analysis on the modular architecture design for discrete 2-D tasks.
Generalization to unseen combinations with the proposed modular architecture (MTL) and
with a standard chained modular architecture (MTL Chain), showing that modules require
far less data to generalize if they are trained on decomposed state representations. Error
bars denote standard errors across six seeds.

152

nearly as quickly as the proposed modified architecture. This is intuitively reasonable;

consider for example the first module, which is in charge of static object detection. In the

chained architecture, this module is further in charge of passing information to subsequent

modules about all remaining task components, whereas the proposed architecture only needs

to focus each module on the relevant component, without distractor features from other

task components. One alternative view of the same problem is that, to achieve zero-shot

generalization, the output of all modules at one depth needs to be compatible with all modules

at the next depth. This requires that the output spaces of all modules are compatible. One

way to encourage this compatibility is to restrict the inputs to the modules to only the

relevant task information, as achieved by the proposed architecture.

To test how CompRL performs if the architecture uses more or fewer modules of each type

than task components, the evaluation repeated the experiments on the 2-D domain with

varying numbers of neural components, using completely random task sequences (i.e., no

curriculum). Figure 30 shows that CompRL is remarkably insensitive to the number of

modules, performing well with a range of choices.
0.0 0.5 1.0

1M steps per task

0.2

0.4

0.6

0.8

av
g

re
tu

rn

3 modules
4 modules*

5 modules
6 modules

STL

3 m
od

ule
s

4 m
od

ule
s*

5 m
od

ule
s

6 m
od

ule
s

ST
L0.00

0.25

0.50

0.75

av
g

re
tu

rn

Zero-shot
Online

Off-line
Final

0.0 0.5 1.0
1M steps per task

0.2

0.4

0.6

0.8

av
g

re
tu

rn

(a) Learning curves

3 m
od

ule
s

4 m
od

ule
s*

5 m
od

ule
s

6 m
od

ule
s

ST
L0.00

0.25

0.50

0.75

av
g

re
tu

rn

(b) Performance at the various stages

Figure 30: Ablative analysis on the number of modules for discrete 2-D tasks. Average
returns of Comp.+Search-NC with varying number of modules. The number of modules has
only minor effects on the overall performance of CompRL. Shaded regions and error bars
represent standard errors across six seeds.
*4 modules is the original (correct) value from Section 5.7.8.

153

0.0 0.5 1.0
1M steps per task

0.25

0.50

0.75

av
g

re
tu

rn

Comp.+Struct.
STL

CLEAR+Comp.
P&C+BRL Replay

Com
p.+

Str
uct

. ST
L

CLEA
R+

Com
p.

P&
C+BRL

Re
pla

y
0.00

0.25

0.50

0.75

av
g

re
tu

rn

Zero-shot
Online

Off-line
Final

0.0 0.5 1.0
1M steps per task

0.25

0.50

0.75
av

g
re

tu
rn

(a) Learning curves

Com
p.+

Str
uct

. ST
L

CLEA
R+

Com
p.

P&
C+BRL

Re
pla

y
0.00

0.25

0.50

0.75

av
g

re
tu

rn

(b) Performance at the various stages

Figure 31: Ablative analyses on the algorithmic design of CompRL on discrete 2-D tasks.
Performance of the proposed modular architecture trained via CLEAR is much lower than
with CompRL, and the proposed off-line RL mechanism to avoid forgetting drastically
improves the performance of P&C, almost entirely preventing forgetting. Shaded regions
and error bars denote standard errors across six seeds.

So far, the experiments have shown that modular architectures enable improved performance

in the compositional tasks. Since all the lifelong baselines in the evaluation use monolithic

architectures, one could think that the improved performance of CompRL might come solely

from the use of a better architecture. To verify that this is not the case, a learner trained the

proposed modular architecture using CLEAR. As shown in Figure 31a, while the performance

of CLEAR indeed improved, it fell substantially short of matching the performance of

CompRL. Since CLEAR uses an objective that closely mimics off-line RL, but does so online

during training of new tasks, this highlights that the advantage of CompRL comes primarily

from the separation of the learning process into assimilation and accommodation stages.

Another major contribution of this dissertation was the use of off-line RL to avoid forgetting.

To analyze the effect of this choice, P&C was trained replacing EWC in its compress stage

with off-line RL. Notably, as shown in Figure 31b, this almost entirely suppressed the effect

of forgetting. Moreover, this led to even-better forward transfer of P&C. This result stresses

the fact that avoiding forgetting is necessary not only for retaining performance of earlier

tasks, but also for accumulating knowledge that better transfers to future tasks.

154

0.0 0.5 1.0
1M steps per task

0.5

1.0

1.5

2.0

av
g

en
tro

py

Comp.+Struct
STL

P&C+BRL Replay

Com
p.+

Str
uct ST

L

P&
C+BRL

Rep
lay

0.00

0.25

0.50

0.75

av
g

su
cc

es
s

Zero-shot
Online

Off-line
Final

0 1 2 3
1M steps per task

0.0

0.2

0.4

0.6

0.8
av

g
su

cc
es

s

(a) Learning curves

Com
p.+

Str
uct ST

L

P&
C+BRL

Rep
lay

0.00

0.25

0.50

0.75

av
g

su
cc

es
s

(b) Performance at the various stages

Figure 32: Ablative analysis on the algorithmic design of CompRL on robotic manipulation
tasks. P&C using off-line RL replay avoids forgetting, but cannot fully incorporate new
knowledge due to the monolithic structure. Shaded regions and error bars denote standard
errors across three seeds.

The evaluation repeated the off-line RL ablative test on the compositional robotic manip-

ulation tasks, yielding that the training of P&C was accelerated beyond that of STL, and

off-line RL avoided forgetting. However, in this harder setting, the monolithic structure was

insufficient to express policies for all tasks and therefore off-line and final performance were

substantially degraded, as shown in Figure 32.

5.8. Summary

This chapter formulated the problem of lifelong compositional RL, presenting a graph

formalism along with intuitive compositional domains, which are extended in Chapter 7. It

then evaluated the flexibility of the framework for lifelong learning of compositional structures

presented in Chapter 3 by instantiating it with two powerful lifelong RL algorithms.

The first proposed method, LPG-FTW, linearly combines model parameters as the compo-

nents, and leverages this simplified structure to apply a closed-form update to components in

the accommodation stage. This choice also enables deriving theoretical proofs that LPG-FTW

converges to the approximate MTL objective, despite operating completely online. Em-

155

pirically, LPG-FTW enables RL agents to quickly learn to solve new tasks by leveraging

knowledge accumulated from earlier tasks and does not suffer from catastrophic forgetting,

and therefore permits learning a large number of tasks in sequence. This first method can be

viewed as an improvement over the popular PG-ELLA algorithm (Bou Ammar et al., 2014),

which had not previously been applicable to highly complex and diverse RL problems like

studied in this dissertation, especially in the evaluation on the Meta-World benchmark.

The second algorithm developed in this chapter, CompRL, learns neural compositional

models that more closely match the problem formulation of compositional learning. The

evaluation demonstrated that CompRL is capable of leveraging accumulated components to

more quickly learn new tasks without forgetting earlier tasks and while enabling backward

transfer. As a core component, CompRL uses off-line RL as a mechanism to avoid forgetting.

This proved to be a strong choice for avoiding forgetting more broadly in lifelong RL methods

with multistage training processes.

Two of the primary limitations of these methods are the reliance on task indicators (t) to

reconstruct individual task policies via the ψ(t)’s, and the assumption that the world is

stationary and tasks are drawn i.i.d. One possible way to address the former challenge is

to assume that each new batch of experiences comes from a new task, as prior work has

done (Nagabandi et al., 2019). However, note that this would require a small amount of

retraining at evaluation time, since the agent would need to discover which task it is currently

facing. To address the latter challenge of nonstationarity, Chapter 6 introduces an extension

of CompRL that specifically handles environments with shifting components.

In the specific case of CompRL, another limitation is its scalability with respect to the number

of modules, requiring to attempt all possible combinations for the discrete search step. While

the experiments showed that this is feasible even on relatively long sequences of T = 64 tasks,

specialized heuristics to reduce the search space would be needed if searching over many

more possible combinations. Additionally, while modular lifelong RL improved performance

in the robotic experiments, this improvement was relatively modest. In particular, it was

156

not possible to combine existing modules for zero-shot transfer. Achieving lifelong zero-shot

compositional generalization in such a complex RL setting remains an open problem.

One of the key contributions of this line of work is reducing the amount of experience required

by RL agents to achieve proficiency at a multitude of tasks. The methods presented here are

some of the first plausible solutions to solving highly diverse sets of RL tasks in a lifelong

setting. Research in this direction that further reduces the amount of experience required to

learn proficient policies would enable RL training on systems where experience is expensive,

such as training real robotic systems or learning policies for medical treatments. In these

settings, training RL policies has been impractical to date, but could potentially have a large

positive impact by discovering policies superior to those conceivable by human experts with

domain knowledge.

157

CHAPTER 6 : Extension of Lifelong Composition to Nonstationary Environments

6.1. Introduction

One key limitation of the approaches presented so far is that they assume that the agent

operates in a stationary environment, where it must perform a variety of tasks, but the tasks

are drawn from a fixed distribution. This implies that the agent must remember how to solve

any of the tasks seen so far, because they are all equally likely under its observed distribution.

However, in practical situations it is often the case that the environment changes over time,

and tasks that were likely at an earlier time are no longer relevant in the present.

This chapter presents a compositional view of the problem of nonstationary lifelong learning,

where individual components of the environment vary over time. Following these composi-

tional assumptions, the chapter presents a variant of the general-purpose framework that

tackles the nonstationary lifelong learning problem. Intuitively, given the separation of the

learning into stages, only the accommodation stage requires accounting for the nonstationarity

in the environment, since this stage combines knowledge about the current task with that of

earlier tasks into the components.

As a proof of concept, this chapter proposes a lifelong RL method that extends CompRL

from Chapter 5 to handle the nonstationary lifelong RL problem. To account for the changes

in the environment, during the adaptation stage the agent performs off-line RL replay only

over previous tasks that are likely under the current task distribution. The chapter discusses

several methods for detecting such tasks, and evaluates these methods on nonstationary

variants of the discrete 2-D tasks of Chapter 5.

6.2. Related Work on Nonstationary Lifelong Learning

Few investigations have considered the nonstationary lifelong learning setting, where not

only the data distribution changes across tasks, but also the task distribution changes over

time. Some works treat the lifelong learning problem itself as nonstationary learning. As

158

opposed to considering a sequence of tasks, these works consider a stream of data, and

the objective of the learner is to learn a model that works well across all seen data. In

practice, experiments to evaluate these approaches still often instantiate nonstationarity via

different tasks, but the task boundaries are hidden from the agent. Typical approaches in the

supervised (Riemer et al., 2019) and reinforcement (Nagabandi et al., 2019) settings include

change-point detection and clustering techniques. However, note that these methods deal

with a single level of distributional change—the change in the data distribution— and do

not consider higher-level changes in the task distribution.

Other formulations assume that the temporal changes are smooth and predictable. Conse-

quently, if the agent learns to predict future changes, then it can adapt its model preemptively

to handle future tasks. One early work provided theoretical performance bounds under two

settings: the tasks are dependent but identically distributed, or the distribution changes over

time in a consistent fashion (Pentina and Lampert, 2015). Another common assumption

is that the distribution is Markovian: the next environment depends only on the current

(and not the previous) environment. Meta-RL works have proposed approaches to learn a

mechanism that predicts the future policy to deal with the modified environment (Al-Shedivat

et al., 2018; Clavera et al., 2019; Xie et al., 2021).

When dealing with nonstationary tasks, it is often desirable to forget irrelevant information

that might be harmful for future learning. Domain adaptation has studied this setting, where

the data distribution changes over time and the environment does not require the agent to

perform well on past data (Kurle et al., 2020; Lao et al., 2020; Kumar et al., 2020). In a

lifelong setting, the agent must still retain relevant information for future transfer and to

perform well on previous tasks that remain relevant. The approaches in this chapter deal

with this issue via compositional learning mechanisms that target the learning to specific

components of the environment that have changed over time.

Recent efforts have attempted to unify approaches by mathematically formulating the

nonstationary learning problem in terms of appropriate performance metrics, which make

159

specific assumptions about the nature of the distribution shifts (Caccia et al., 2020b; Ren

et al., 2021). This chapter considers a complementary problem, whereby the distribution

shift is modular, but the variations in each component are arbitrary. Combining these two

lines, by making assumptions about how each component’s distribution changes over time,

remains open for future work.

6.3. The Compositional Nonstationary Lifelong Learning Problem

Approaches for nonstationary lifelong learning typically assume that the environment changes

over time as a whole. If an earlier task is unlikely under the current distribution, the agent

down-weights the entirety of that task in the objective—or, more extremely, completely

discards the task for any future learning. However, if certain aspects of the environment

remain unchanged over time, it would be desirable to leverage all the knowledge about those

aspects from every previous task to better generalize to future tasks. Similarly, it is possible

that different aspects of the environment vary at different rates or in different patterns (e.g.,

cyclical), making it difficult for monolithic nonstationary learners to track all the changes.

As an illustrative example, consider the compositional suite of robotic manipulation tasks

from Chapter 5. If the agent executes these tasks on physical systems, the robot motors

would likely degrade over time, each at its own distinct rate. Meanwhile, the visual sensors

in charge of detecting the object locations would be affected by cyclical changes in lighting

conditions throughout the day. In this example, object modules for tasks executed in morning

light could leverage object knowledge from all tasks in the past executed in morning light,

regardless of the status of the robot motors. On the other hand, robot modules would

only be able to leverage information of recent tasks where the motors had similar levels of

degradation, but regardless of whether the agent learned the tasks in the morning or at night.

The problem of compositional nonstationary lifelong RL1 closely follows that of compositional

lifelong RL of Chapter 5. The one difference, as illustrated in Figure 33, is that the
1The supervised variant follows trivially from the RL definition. Since the algorithm and evaluation dealt

with the RL setting, the problem definition for the supervised setting was not explicitly included here.

160

State
Spaces

Action
Spaces

,

<latexit sha1_base64="Ev4yn0K1JAkJr7KW0JGcFOWef4c=">AAACNnicbVDLSgMxFM3UV3226tJNsBUqSJkpoi6LblxWsFVoh5LJZGxoMhmSO0oZ/BK3+g/+iht34tZPMG1n4agHAifn3Mu99wSJ4AZc980pLSwuLa+UV9fWNza3KtXtnZ5RqaasS5VQ+jYghgkesy5wEOw20YzIQLCbYHwx9W/umTZcxdcwSZgvyV3MI04JWGlYrdTl0GsMaKjgCMNhfVituU13BvyXeDmpoRyd4bZTGYSKppLFQAUxpu+5CfgZ0cCpYI9rg9SwhNAxuWN9S2MimfGz2eaP+MAqIY6Uti8GPFN/dmREGjORga2UBEbmtzcV//P6KURnfsbjJAUW0/mgKBUYFJ7GgEOuGQUxsYRQze2umI6IJhRsWIUpMhXAtXooXJIFsvhPwkgYShJ7sI3Q+x3YX9JrNb2T5vFVq9Y+z8Msoz20jxrIQ6eojS5RB3URRSl6Qs/oxXl13p0P53NeWnLynl1UgPP1DR1pqoI=</latexit>

m1(·, t)
<latexit sha1_base64="5ezIkreFT0NIcqObOrlN/XWXhss=">AAACNnicbVDLSgMxFM3UV62Ptrp0E2yFClJmiqhLURCXFawK7VAymYyGJpMhuaOUwS9xq//gr7hxJ279BNN2Fo56IHByzr3ce0+QCG7Add+c0tz8wuJSebmysrq2Xq3VN66MSjVlPaqE0jcBMUzwmPWAg2A3iWZEBoJdB6PTiX99z7ThKr6EccJ8SW5jHnFKwErDWrV5NvRaAxoq2MOw2xzWGm7bnQL/JV5OGihHd1h3qoNQ0VSyGKggxvQ9NwE/Ixo4FeyxMkgNSwgdkVvWtzQmkhk/m27+iHesEuJIaftiwFP1Z0dGpDFjGdhKSeDO/PYm4n9eP4XoyM94nKTAYjobFKUCg8KTGHDINaMgxpYQqrndFdM7ogkFG1ZhikwFcK0eCpdkgSz+kzAShpLEHmwj9H4H9pdcddreQXv/otM4PsnDLKMttI1ayEOH6Bidoy7qIYpS9ISe0Yvz6rw7H87nrLTk5D2bqADn6xvW0apb</latexit>

F1(·, t)
<latexit sha1_base64="vO2cyLcj2+PZ3HSPftiPLbqUamE=">AAACNnicbVDLSgMxFM3UV3221aWbYCtUkDJTRF0W3bisYKvQDiWTyWgwmQzJHaUM/RK3+g/+iht34tZPMG1n4agHAifn3Mu99wSJ4AZc980pLSwuLa+UV9fWNza3KtXadt+oVFPWo0oofRMQwwSPWQ84CHaTaEZkINh1cH8+9a8fmDZcxVcwTpgvyW3MI04JWGlUrTTkqN0c0lDBIYaDxqhad1vuDPgv8XJSRzm6o5pTGYaKppLFQAUxZuC5CfgZ0cCpYJO1YWpYQug9uWUDS2MimfGz2eYTvG+VEEdK2xcDnqk/OzIijRnLwFZKAnfmtzcV//MGKUSnfsbjJAUW0/mgKBUYFJ7GgEOuGQUxtoRQze2umN4RTSjYsApTZCqAa/VYuCQLZPGfhJEwlCT2YBuh9zuwv6TfbnnHraPLdr1zlodZRrtoDzWRh05QB12gLuohilL0hJ7Ri/PqvDsfzue8tOTkPTuoAOfrGx82qoM=</latexit>

m2(·, t)
<latexit sha1_base64="v7BxztvKouqFSaUN7Y+pY5yAAPw=">AAACNnicbVDLSgMxFM3UV3221aWbYBUUpMwUUZdFQVxWsLbQDiWTyWhoMhmSO0oZ+iVu9R/8FTfuxK2fYFpn4agHAifn3Mu99wSJ4AZc99Upzc0vLC6Vl1dW19Y3KtXa5o1RqaasQ5VQuhcQwwSPWQc4CNZLNCMyEKwbjM6nfveeacNVfA3jhPmS3MY84pSAlYbVyu7FsLk/oKGCQwwHu8Nq3W24M+C/xMtJHeVoD2tOZRAqmkoWAxXEmL7nJuBnRAOngk1WBqlhCaEjcsv6lsZEMuNns80neM8qIY6Uti8GPFN/dmREGjOWga2UBO7Mb28q/uf1U4hO/YzHSQospt+DolRgUHgaAw65ZhTE2BJCNbe7YnpHNKFgwypMkakArtVD4ZIskMV/EkbCUJLYg22E3u/A/pKbZsM7bhxdNeutszzMMtpGO2gfeegEtdAlaqMOoihFj+gJPTsvzpvz7nx8l5acvGcLFeB8fgHYnqpc</latexit>

F2(·, t)

<latexit sha1_base64="qwtRAtTwLwGSF7w4Jd6c6aROkdY=">AAACNnicbVDLSgMxFM34rPXRVpduglVQkDJTRV0W3bisYB/QlpLJZNpgMhmSO0oZ+iVu9R/8FTfuxK2fYNrOwlYPBE7OuZd77/FjwQ247ruztLyyurae28hvbm3vFIql3aZRiaasQZVQuu0TwwSPWAM4CNaONSPSF6zlP9xM/NYj04ar6B5GMetJMoh4yCkBK/WLhUPZPzvu0kDBKYaTw36x7FbcKfBf4mWkjDLU+yWn0A0UTSSLgApiTMdzY+ilRAOngo3z3cSwmNAHMmAdSyMimeml083H+MgqAQ6Vti8CPFV/d6REGjOSvq2UBIZm0ZuI/3mdBMKrXsqjOAEW0dmgMBEYFJ7EgAOuGQUxsoRQze2umA6JJhRsWHNTZCKAa/U0d0nqy/l/HITCUBLbg22E3mJgf0mzWvEuKud31XLtOgszh/bRATpGHrpENXSL6qiBKErQM3pBr86b8+F8Ol+z0iUn69lDc3C+fwAhA6qE</latexit>

m3(·, t)
<latexit sha1_base64="6ClDVslddXZeXQGPv2CYk+77gws=">AAACNnicbVDLSgMxFM3U97OtLt0EW0FBykwVdVkUxKWCfUBbSiaT0dBkMiR3lDL0S9zqP/grbtyJWz/BtM7CsR4InJxzL/fe48eCG3DdN6cwN7+wuLS8srq2vrFZLJW3WkYlmrImVULpjk8MEzxiTeAgWCfWjEhfsLY/vJj47QemDVfRLYxi1pfkLuIhpwSsNCgVq5eDo/0eDRQcYjioDkoVt+ZOgWeJl5EKynA9KDvFXqBoIlkEVBBjup4bQz8lGjgVbLzaSwyLCR2SO9a1NCKSmX463XyM96wS4FBp+yLAU/V3R0qkMSPp20pJ4N789Sbif143gfCsn/IoToBF9GdQmAgMCk9iwAHXjIIYWUKo5nZXTO+JJhRsWLkpMhHAtXrMXZL6Mv+Pg1AYSmJ7sI3Q+xvYLGnVa95J7fimXmmcZ2Euox20i/aRh05RA12ha9REFCXoCT2jF+fVeXc+nM+f0oKT9WyjHJyvb9prql0=</latexit>

F3(·, t)

<latexit sha1_base64="g1R82/cdo1/nwaymV/LVtrB7LdM=">AAACNnicbVDLSgMxFM3UV3226tJNsAoVpMwUUZdFNy4rWBXaoWQymTY0mQzJHaUM/RK3+g/+iht34tZPMK2zcKoHAifn3Mu99wSJ4AZc980pLSwuLa+UV9fWNza3KtXtnVujUk1Zhyqh9H1ADBM8Zh3gINh9ohmRgWB3wehy6t89MG24im9gnDBfkkHMI04JWKlfrRzI/km9R0MFxxiODvrVmttwZ8B/iZeTGsrR7m87lV6oaCpZDFQQY7qem4CfEQ2cCjZZ66WGJYSOyIB1LY2JZMbPZptP8KFVQhwpbV8MeKb+7siINGYsA1spCQzNvDcV//O6KUTnfsbjJAUW059BUSowKDyNAYdcMwpibAmhmttdMR0STSjYsApTZCqAa/VYuCQLZPGfhJEwlCT2YBuhNx/YX3LbbHinjZPrZq11kYdZRntoH9WRh85QC12hNuogilL0hJ7Ri/PqvDsfzudPacnJe3ZRAc7XNyLQqoU=</latexit>

m4(·, t)
<latexit sha1_base64="Gy0n7k3mXxYDNE7erj0w81Bub7Y=">AAACNnicbVDLSgMxFM3UV3226tJNsBUqSJkpRV0WBXFZwWqhLUMmk6nBZDIkd5Qy+CVu9R/8FTfuxK2fYNrOwloPBE7OuZd77wkSwQ247rtTWFhcWl4prq6tb2xulcrbOzdGpZqyDlVC6W5ADBM8Zh3gIFg30YzIQLDb4P587N8+MG24iq9hlLCBJMOYR5wSsJJfLlUv/GatT0MFRxgOq3654tbdCfA88XJSQTna/rZT6oeKppLFQAUxpue5CQwyooFTwZ7W+qlhCaH3ZMh6lsZEMjPIJps/4QOrhDhS2r4Y8ET93ZERacxIBrZSErgzf72x+J/XSyE6HWQ8TlJgMZ0OilKBQeFxDDjkmlEQI0sI1dzuiukd0YSCDWtmikwFcK0eZy7JAjn7T8JIGEoSe7CN0Psb2Dy5adS943rzqlFpneVhFtEe2kc15KET1EKXqI06iKIUPaMX9Oq8OR/Op/M1LS04ec8umoHz/QPcOKpe</latexit>

F4(·, t)

<latexit sha1_base64="cNWXtpUDnM0otUdCyaZ6kdhJZoA=">AAACNnicbVDLSgMxFM34rPXRVpduglVQkDJTfC2LblxWsA9oS8lkMm0wmQzJHaUM/RK3+g/+iht34tZPMG1nYasHAifn3Mu99/ix4AZc991ZWl5ZXVvPbeQ3t7Z3CsXSbtOoRFPWoEoo3faJYYJHrAEcBGvHmhHpC9byH24mfuuRacNVdA+jmPUkGUQ85JSAlfrFwqHsnx93aaDgFMPJYb9YdivuFPgv8TJSRhnq/ZJT6AaKJpJFQAUxpuO5MfRSooFTwcb5bmJYTOgDGbCOpRGRzPTS6eZjfGSVAIdK2xcBnqq/O1IijRlJ31ZKAkOz6E3E/7xOAuFVL+VRnACL6GxQmAgMCk9iwAHXjIIYWUKo5nZXTIdEEwo2rLkpMhHAtXqauyT15fw/DkJhKIntwTZCbzGwv6RZrXgXlbO7arl2nYWZQ/voAB0jD12iGrpFddRAFCXoGb2gV+fN+XA+na9Z6ZKT9eyhOTjfPySdqoY=</latexit>

m5(·, t)
<latexit sha1_base64="bwsD8eLSy+bd+lrYOyRfpcYHZ6w=">AAACNnicbVDLSgMxFM3U97OtLt0EW0FBykzxtSwK4lLBPqAtJZPJaGgyGZI7Shn6JW71H/wVN+7ErZ9gWmfhWA8ETs65l3vv8WPBDbjum1OYm19YXFpeWV1b39gslspbLaMSTVmTKqF0xyeGCR6xJnAQrBNrRqQvWNsfXkz89gPThqvoFkYx60tyF/GQUwJWGpSK1cvB8X6PBgoOMRxUB6WKW3OnwLPEy0gFZbgelJ1iL1A0kSwCKogxXc+NoZ8SDZwKNl7tJYbFhA7JHetaGhHJTD+dbj7Ge1YJcKi0fRHgqfq7IyXSmJH0baUkcG/+ehPxP6+bQHjWT3kUJ8Ai+jMoTAQGhScx4IBrRkGMLCFUc7srpvdEEwo2rNwUmQjgWj3mLkl9mf/HQSgMJbE92Ebo/Q1slrTqNe+kdnRTrzTOszCX0Q7aRfvIQ6eoga7QNWoiihL0hJ7Ri/PqvDsfzudPacHJerZRDs7XN94Fql8=</latexit>

F5(·, t)

<latexit sha1_base64="bihrEtnNAQjUuMOqWOZnfNn8JoI=">AAACEnicbVBLS8NAGNzUV62vqEcvwSK0UEKioeqt6sVjBdsKSSyb7bZdunmwuxFKyG/w4l/x4kERr568+W/cpDlo68DCMPN9u7PjRZRwYRjfSmlpeWV1rbxe2djc2t5Rd/e6PIwZwh0U0pDdeZBjSgLcEURQfBcxDH2P4p43ucr83gNmnITBrZhG2PXhKCBDgqCQUl+tO/kdNht5bqJbVkM3zxt68yR1fCjGCNLkIr1PalY97atVQzdyaIvELEgVFGj31S9nEKLYx4FAFHJum0Yk3AQyQRDFacWJOY4gmsARtiUNoI+5m+RxUu1IKgNtGDJ5AqHl6u+NBPqcT31PTmZB+byXif95diyGZ25CgigWOECzh4Yx1USoZf1oA8IwEnQqCUSMyKwaGkMGkZAtVmQJ5vyXF0n3WDebunljVVuXRR1lcAAOQQ2Y4BS0wDVogw5A4BE8g1fwpjwpL8q78jEbLSnFzj74A+XzB3qGnBg=</latexit>

A(4)

<latexit sha1_base64="I6IlKl+KlcLHR1qGvogZbqNvv6Y=">AAACEnicbVBLS8NAGNzUV62vqEcvwSK0UEKioeqt6MVjRdsKSSyb7bZdunmwuxFKyG/w4l/x4kERr568+W/cpDlo68DCMPN9u7PjRZRwYRjfSmlpeWV1rbxe2djc2t5Rd/e6PIwZwh0U0pDdeZBjSgLcEURQfBcxDH2P4p43ucz83gNmnITBrZhG2PXhKCBDgqCQUl+tO/kdNht5bqJbVkM3zxt68yR1fCjGCNLkJr1PalY97atVQzdyaIvELEgVFGj31S9nEKLYx4FAFHJum0Yk3AQyQRDFacWJOY4gmsARtiUNoI+5m+RxUu1IKgNtGDJ5AqHl6u+NBPqcT31PTmZB+byXif95diyGZ25CgigWOECzh4Yx1USoZf1oA8IwEnQqCUSMyKwaGkMGkZAtVmQJ5vyXF0n3WDebunltVVsXRR1lcAAOQQ2Y4BS0wBVogw5A4BE8g1fwpjwpL8q78jEbLSnFzj74A+XzB5ZMnCo=</latexit>

S(4)

<latexit sha1_base64="973Bd+L5aqrgZXY73TLmqfFit8E=">AAACEHicbVA7T8MwGHTKq5RXgJElokIUqYqSqtCOFSyMRdCHlITKcd3WqvOQ7SBVUX4CC3+FhQGEWBnZ+Dc4aQZoOcnS6e777PO5ISVcGMa3UlhZXVvfKG6WtrZ3dvfU/YMuDyKGcAcFNGB9F3JMiY87ggiK+yHD0HMp7rnTq9TvPWDGSeDfiVmIHQ+OfTIiCAopDdRTO7vDYmPXifVGs6qf16tGYntQTBCk8W1yH1dqZ8lALRu6kUFbJmZOyiBHe6B+2cMARR72BaKQc8s0QuHEkAmCKE5KdsRxCNEUjrElqQ89zJ04C5NoJ1IZaqOAyeMLLVN/b8TQ43zmuXIyDcoXvVT8z7MiMWo6MfHDSGAfzR8aRVQTgZa2ow0Jw0jQmSQQMSKzamgCGURCdliSJZiLX14m3ZpuXujmTb3cuszrKIIjcAwqwAQN0ALXoA06AIFH8AxewZvypLwo78rHfLSg5DuH4A+Uzx+hepuz</latexit>

S(2)
<latexit sha1_base64="rxYI2+br5O7flNlP8cCBTUpjd68=">AAACEHicbVA7T8MwGHTKq5RXgJElokIUqYqSqtCOBRbGItGHlITKcd3WqvOQ7SBVUX4CC3+FhQGEWBnZ+Dc4aQZoOcnS6e777PO5ISVcGMa3UlhZXVvfKG6WtrZ3dvfU/YMuDyKGcAcFNGB9F3JMiY87ggiK+yHD0HMp7rnT69TvPWDGSeDfiVmIHQ+OfTIiCAopDdRTO7vDYmPXifVGs6qf16tGYntQTBCk8WVyH1dqZ8lALRu6kUFbJmZOyiBHe6B+2cMARR72BaKQc8s0QuHEkAmCKE5KdsRxCNEUjrElqQ89zJ04C5NoJ1IZaqOAyeMLLVN/b8TQ43zmuXIyDcoXvVT8z7MiMWo6MfHDSGAfzR8aRVQTgZa2ow0Jw0jQmSQQMSKzamgCGURCdliSJZiLX14m3ZpuXujmbb3cusrrKIIjcAwqwAQN0AI3oA06AIFH8AxewZvypLwo78rHfLSg5DuH4A+Uzx+FtJuh</latexit>

A(2)

<latexit sha1_base64="5AJgFvhPHcB5mHTCPwzskgohjG0=">AAACDHicbVDLSgMxFM3UV62vqks3wSJUKGUioi6rblxWsA+YGUsmzbShmQdJRijDfIAbf8WNC0Xc+gHu/Bsz01lo64HA4Zxzk5vjRpxJZZrfRmlpeWV1rbxe2djc2t6p7u51ZRgLQjsk5KHou1hSzgLaUUxx2o8Exb7Lac+dXGd+74EKycLgTk0j6vh4FDCPEay0NKjW7PwOS4xcJzEbZgOlto/VmGCeXKb3SR0dpzplNs0ccJGggtRAgfag+mUPQxL7NFCEYyktZEbKSbBQjHCaVuxY0giTCR5RS9MA+1Q6Sb5ICo+0MoReKPQJFMzV3xMJ9qWc+q5OZovKeS8T//OsWHkXTsKCKFY0ILOHvJhDFcKsGThkghLFp5pgIpjeFZIxFpgo3V9Fl4Dmv7xIuidNdNZEt6e11lVRRxkcgENQBwicgxa4AW3QAQQ8gmfwCt6MJ+PFeDc+ZtGSUczsgz8wPn8Ah2qapQ==</latexit>

A(1)
<latexit sha1_base64="vJ0F22azCk01T7kkysxMHUIN1hA=">AAACDHicbVDLSgMxFM3UV62vqks3wSJUKGUioi6LblxWtA+YGUsmzbShmQdJRijDfIAbf8WNC0Xc+gHu/Bsz01lo64HA4Zxzk5vjRpxJZZrfRmlpeWV1rbxe2djc2t6p7u51ZRgLQjsk5KHou1hSzgLaUUxx2o8Exb7Lac+dXGV+74EKycLgTk0j6vh4FDCPEay0NKjW7PwOS4xcJzEbZgOlto/VmGCe3Kb3SR0dpzplNs0ccJGggtRAgfag+mUPQxL7NFCEYyktZEbKSbBQjHCaVuxY0giTCR5RS9MA+1Q6Sb5ICo+0MoReKPQJFMzV3xMJ9qWc+q5OZovKeS8T//OsWHkXTsKCKFY0ILOHvJhDFcKsGThkghLFp5pgIpjeFZIxFpgo3V9Fl4Dmv7xIuidNdNZEN6e11mVRRxkcgENQBwicgxa4Bm3QAQQ8gmfwCt6MJ+PFeDc+ZtGSUczsgz8wPn8AozCatw==</latexit>

S(1)

<latexit sha1_base64="EFfSp1i2tUcIcR74D6xBW0IEMcU=">AAACDHicbVBPS8MwHE39O+e/qUcvwSFMGKNVUY9DLx4nuj/Q1pFm6RaWpiVJhVH6Abz4Vbx4UMSrH8Cb38a060E3HwQe771f8svzIkalMs1vY2FxaXlltbRWXt/Y3Nqu7Ox2ZBgLTNo4ZKHoeUgSRjlpK6oY6UWCoMBjpOuNrzK/+0CEpCG/U5OIuAEacupTjJSW+pWqk99hi6HnJlbdrJupEyA1woglt+l9Ujs5SnXKbJg54DyxClIFBVr9ypczCHEcEK4wQ1LalhkpN0FCUcxIWnZiSSKEx2hIbE05Coh0k3yRFB5qZQD9UOjDFczV3xMJCqScBJ5OZovKWS8T//PsWPkXbkJ5FCvC8fQhP2ZQhTBrBg6oIFixiSYIC6p3hXiEBMJK91fWJVizX54nneOGddawbk6rzcuijhLYBwegBixwDprgGrRAG2DwCJ7BK3gznowX4934mEYXjGJmD/yB8fkDpkCauQ==</latexit>

S(3)

<latexit sha1_base64="riHHNefBe7EAIA+QBIE44DhO8yU=">AAACDHicbVBPS8MwHE39O+e/qUcvwSFMGKNVUY9TLx4nuD/Q1pFm6RaWpiVJhVH6Abz4Vbx4UMSrH8Cb38a060E3HwQe771f8svzIkalMs1vY2FxaXlltbRWXt/Y3Nqu7Ox2ZBgLTNo4ZKHoeUgSRjlpK6oY6UWCoMBjpOuNrzO/+0CEpCG/U5OIuAEacupTjJSW+pWqk99hi6HnJlbdrJupEyA1wogll+l9Ujs5SnXKbJg54DyxClIFBVr9ypczCHEcEK4wQ1LalhkpN0FCUcxIWnZiSSKEx2hIbE05Coh0k3yRFB5qZQD9UOjDFczV3xMJCqScBJ5OZovKWS8T//PsWPkXbkJ5FCvC8fQhP2ZQhTBrBg6oIFixiSYIC6p3hXiEBMJK91fWJVizX54nneOGddawbk+rzauijhLYBwegBixwDprgBrRAG2DwCJ7BK3gznowX4934mEYXjGJmD/yB8fkDinqapw==</latexit>

A(3)

,

Figure 33: Compositional nonstationary RL problem graph. Like in the stationary coun-
terpart, nodes represent state spaces, action spaces, and subproblems. In particular, the
subproblems are time-dependent, inducing nonstationarity in the environment and requiring
the agent to track their changes over time.

subproblems—and consequently, the modules—that constitute the tasks are time dependent.

In particular, the problem assumes that the time dependence is individual to each module,

which permits separately considering their evolution over time.

The goal of the agent is then to not only learn the compositional structures over a lifelong

sequence of tasks, as in the problem considered in Chapter 5, but also to track the changes

in each of the components over time. Ideally, the learner should be able to leverage any

knowledge from previous tasks about the components that are still relevant under the current

distribution of the environment.

6.4. NonstatRL: Nonstationary Lifelong Reinforcement Learning via Composition

Lifelong compositional learning, as described in previous chapters, permits handling this

more challenging nonstationary lifelong learning problem. To demonstrate the feasibility

of discovering functional modules under this setting, this section presents NonstatRL, an

adapted version of CompRL that explicitly deals with nonstationarity.

161

The compositional architecture is a hard modular network, exactly like that described in

Chapter 5. Concretely, the state factors into module-specific state components, which are

passed only to the relevant modules. The modules themselves are chained such that the

output of one acts as (part of) the input to the next.

While much of NonstatRL follows exactly the same process of CompRL for discovering these

modules, with the only differences arising during the accommodation stage, the following

paragraphs describe all stages of the algorithm for consistency and clarity.

Initialization In the same way as CompRL, NonstatRL trains a disjoint set of neural

modules on each of the initial tasks until all modules are initialized.

Assimilation Recall that the purpose of the assimilation stage in the RL setting is two-fold:

1) to find the correct set of components to solve the current task and 2) to explore the space

of solutions to the current task. NonstatRL follows CompRL by splitting the assimilation

stage into two substages. The first substage selects the correct set of modules, either by

manually setting them from domain knowledge or by conducting an exhaustive search over

the possible choices. The second substage performs RL training on a copy of the selected

modules to maximize performance solely on the current task.

Accommodation The accommodation stage updates the shared modules with any relevant

information from the current task. The mechanism developed in Chapter 5 for CompRL

retrains the modules via off-line RL with data from past tasks. In typical (stationary) lifelong

learning scenarios, this enables the agent to perform well on the current task, continue to

perform well on past tasks, and consolidate knowledge to transfer to future tasks. However,

in the nonstationary setting, it is possible that some of the knowledge acquired in the past is

outdated. If the agent trains the modules to simultaneously perform well on the current data

as well as on data from an outdated distribution, current and future performance would be

compromised. Consequently, the agent should select data from previous tasks that remains

relevant under the current distribution. In particular, if the agent is capable of detecting

162

which components of the environment have changed, then all the data from tasks that share

other components with the current task remains valid. Only data from tasks that share the

modified components would need to be appropriately filtered. The key question therefore

becomes how to identify which of the previous tasks’ modules match the present state of the

current task’s modules. This dissertation considered the following three possibilities:

• Oracle In some situations, the agent might know exactly which past modules match

the current state of the world. For example, if the changes in the environment are due to

varying daylight, the agent could use time-stamps to infer this information. Moreover,

evaluating an oracle-based approach permits validating whether the nonstationarity

can be captured compositionally, regardless of the agent’s ability to detect it.

• Loss weighting More generally, the agent must automatically detect changes and

determine which past tasks’ data to leverage. Intuitively, this can be achieved by

measuring how much the current task’s solution departs from previous tasks’ solutions.

One approach is to measure the difference in the loss of each previous task induced by

training on the current task. Specifically, after the agent assimilates the t-th task, it

uses the trained policy π(t) to compute the off-line loss `(t
′)

t over the replay data from

each task Z(t′) : t′ ∈ {1, . . . , t}, and computes the baseline performance on the current

task with a random policy `(t)rand. Then, the agent weights each previous task’s data by

how much its loss has departed from its original value:

∆`(t
′, t) =

`
(t′)
t − `(t

′)
t′

`
(t′)
rand − `

(t′)
t′

wt′ =


1−∆`(t

′, t) if 0 < ∆`(t
′, t) < 1

0 if ∆`(t
′, t) ≥ 1

1 if ∆`(t
′, t) ≤ 0 .

(6.1)

Note that this mechanism can only behave entirely compositionally if a single component

of the environment is changing at a time. Then, if the agent knows which components

163

are candidates for shifting, it can detect how those modules are changing. Otherwise,

if multiple modules could be changing, the loss weighting scheme would not be able to

differentiate between modules within a task. In consequence, it would treat all modules

as varying jointly and behave as a standard monolithic nonstationary approach. Going

back to the robot example, the agent would not be able to distinguish changes in

lighting conditions from motor degradation by just examining the loss, and consequently

would down-weight any previous task whose light or motor components has changed.

In contrast, if only the light component varies over time, the robot could automatically

discover which previous tasks’ lighting conditions match the current task’s via loss

weighting. Moreover, if a task with an outdated light component shares a different

component (e.g., the robot component) with the current task, then data from this task

could still be used. In the experiments, the agent only computed weights for modules

that were changing and that were shared with the current task.

• Representational distance weighting To circumvent this limitation, one alternative

is to instead measure the distance in representational space. This method can trivially

be applied separately to each module of previous tasks, effectively leveraging the

compositionality of the environment changes. Similar to the previous approach, after

the agent assimilates the t-th task, the agent uses the policy π(t) to compute the mean

of the representation of each module i on each task µ(t
′,i)

t , and computes the baseline

representational mean on the current task using a random policy µ(t,i)rand. The agent

then weights the loss for each previous task by how much the representation has shifted

from its original value:

∆µi(t, t
′) =
‖µ(t

′,i)
t − µ(t

′,i)
t′ ‖22

‖µ(t′,i)rand − µ
(t′,i)
t′ ‖22

wt′,i =


1−∆µi(t, t

′) if 0 < ∆µi(t, t
′) < 1

0 if ∆µi(t, t
′) ≥ 1

1 if ∆µi(t, t
′) ≤ 0 .

(6.2)

164

To make comparisons fair, the evaluation also informed the representational-distance

approach of which modules were candidates for changing, and the agent obtained the

overall weight for each task by multiplying the weights for all modules i that were

shared with the current task wt′ =
∏
i∈πt∩πt′

wt′,i (slightly abusing the notation of π).

6.5. Experimental Evaluation

The purpose of this experimental evaluation was to demonstrate that compositionality indeed

permits capturing changes to individual aspects of the environment, improving the overall

performance of lifelong learners in nonstationary settings. In particular, the goal was to

study the benefits of selectively retraining on past tasks based on the estimated shift of their

components shared with the current task. For this, the evaluation tested the approaches

presented in Section 6.4 on a variety of settings with different nonstationarity assumptions.

The evaluation in this section repeated each experiment over six trials, varying the random

seed that controls the parameter initialization and the ordering over tasks.

6.5.1. Nonstationary Evaluation Settings

The evaluation considered three different conditions on the nonstationarity of the environment.

This section describes all such conditions and the rationale behind them.

Cyclical changes A single element of the environment changes cyclically throughout

the agent’s lifetime. This is akin to periodic changes like lighting conditions from day to

night or weather patterns over seasons. The main implication of these types of changes is

that at some point in time, in order to perform well on the current task distribution, the

agent must disregard knowledge about tasks that were learned under different conditions.

However, this knowledge is still useful for future tasks that the agent might encounter once

the distribution reverts to an earlier state. Consequently, it is useful for the agent to keep

all of the data it has encountered in memory (even data that appears irrelevant now) in

case it becomes relevant in the future. The specific experiment conducted under this setting

applied a horizontal perturbation to the agent’s perceived target object locations, and the

165

magnitude and direction of this perturbation cycled from −3 to +3 and back in steps of 1.

For simplicity, the environment applied this change equally to all colors of target objects.

Linear degradation A single element of the environment changes over time, but the

change is progressive instead of cyclical. This is evocative of a robot’s motor power degrading

over time. In this setting, the agent will never be required to perform a task under older

states of the distribution, and therefore in principle it could safely discard data from tasks

that have become obsolete. However, even if the agent keeps the data stored in memory, it

would still be capable of adapting to the up-to-date distribution as long as it does not select

any of the data from the outdated environment. The environment implemented this type

of change as a decrease in the agent’s likelihood of successfully executing a specific action

(turn_left, in this case), and applied it equally to all choices of agent dynamics.

Multiple elements While single-element changes permit analyzing the effects of nonsta-

tionarity and compositionality on lifelong learning agents, many real-world settings exhibit

temporal changes in multiple dimensions simultaneously. In particular, NonstatRL permits

addressing settings in which each element changes in different temporal patterns. As one

example of such situations, the evaluation conducted an experiment where the environment

applied both the cyclical and linear examples above jointly.

6.5.2. Baselines

The experiments compared NonstatRL against two baselines:

• STL, which does not share any knowledge across tasks.

• CompRL, which assumes that nothing about the environment changes over time and

modules can be perfectly reused across all tasks.

Compositional agents received the ground-truth task decomposition, in order to isolate the

problem of nonstationarity from that of discovering the compositional structure. In addition,

the environment informed nonstationary agents of which elements of the environment were

166

0.0 0.5 1.0
1M steps per task

0.2

0.4

0.6

0.8

av
g

re
tu

rn

STL CompRL NonstatRL-oracle NonstatRL-loss NonstatRL-representation

0.0 0.5 1.0
1M steps per task

0.2

0.4

0.6

0.8

av
g

re
tu

rn

(a) Cyclical

0.0 0.5 1.0
1M steps per task

0.2

0.4

0.6

0.8

av
g

re
tu

rn

(b) Linear

0.0 0.5 1.0
1M steps per task

0.2

0.4

0.6

av
g

re
tu

rn

(c) Multiple

Figure 34: Average returns of STL, CompRL, and variants of NonstatRL on T = 64
nonstationary compositional 2-D discrete tasks. All agents are able to transfer knowledge
effectively to accelerate the training with respect to STL, despite the shared components
varying over time. Shaded regions represent standard errors across six seeds.

candidates for changing (e.g., target modules in the case of cyclical changes), and the oracle

knew exactly which previous tasks matched the current task’s distribution.

6.5.3. Results

To assess the usefulness of the evaluation in this chapter, the first relevant question is whether

lifelong agents in this setting can still leverage accumulated knowledge, even if part of that

knowledge may have become outdated. The results of the exploration substage of assimilation,

summarized in Figure 34, demonstrate that even in this nonstationary setting, compositional

algorithms are able to substantially accelerate the learning with respect to STL. Interestingly,

variants of NonstatRL exhibit no noticeable differences in their training performance, and

even the stationary algorithm, CompRL, performs equally well.

However, recall that, during the exploration stage, there is no requirement for the agent to

maintain performance on earlier tasks, because it trains on a copy of the shared parameters.

Therefore, all that Figure 34 shows is that accumulated knowledge is useful for learning the

current task, but says nothing about whether this knowledge can be incorporated into the set

of shared modules. To answer this latter question, Table 13 shows the overall performance

across all currently valid tasks after the agent accommodates knowledge about the current

167

Table 13: Average performance on the currently valid distribution of 2-D discrete tasks.
NonstatRL tracks which tasks are relevant and optimizes performance only on those tasks,
achieving higher performance. Standard errors across six seeds reported after the ±.

Cyclical Linear Multiple
STL 0.735±0.007 0.730±0.005 0.697±0.002

CompRL 0.803±0.007 0.813±0.005 0.760±0.005

NonstatRL-oracle 0.815±0.005 0.822±0.005 0.784±0.006

NonstatRL-loss 0.811±0.008 0.816±0.006 0.775±0.012

NonstatRL-representation 0.815±0.005 0.820±0.006 0.771±0.007

task, averaged over the lifetime of the agent (i.e., over the sequence of tasks). This is a

version of the standard final performance considered in previous chapters, but adapted to

the nonstationary setting by considering only valid tasks and repeating the evaluation at

various points during the training. The results show that algorithms that explicitly account

for nonstationarity all perform better than CompRL. While the differences were small, they

were consistent across nonstationary settings and across trials.

6.6. Summary

This chapter presented NonstatRL, an extended version of the compositional RL method

introduced in Chapter 5, that equips RL agents with the ability to deal with nonstationarity

in the environment. In particular, NonstatRL assumes that individual components of the

environment vary independently of each other, and tracks these variations to leverage only

the most relevant data during off-line RL experience replay. The primary objective of the

empirical evaluation in this chapter was to demonstrate that, if agents are able to target

their learning updates to the individual components of the environment that are changing,

they would be able to attain improved performance on the tasks that are possible under the

current data distribution. Consequently, this chapter introduced a simple suite of approaches

for determining the validity of previous tasks and evaluated them empirically, showing that

modularity indeed improves nonstationary lifelong RL performance.

This assumption of modular changes to the environment is more general than the standard

setting, which assumes that all elements of the environment vary in similar patterns—i.e., the

168

latter case can be recovered as a special case of the former. Moreover, none of the approaches

discussed above make any assumptions about how the components of the task might be

changing over time (e.g., smoothness assumptions), making them applicable to a range of

situations. However, in cases where such assumptions can be made, it would be possible to

combine NonstatRL with existing methods that make specific assumptions about the nature

of the distribution shift.

This dissertation created the NonstatRL extension of CompRL primarily as a proof of

concept. As such, it served the purpose of demonstrating that modular nonstationarity

permits effectively capturing changes in the environment. Future work should develop these

ideas further, constructing realistic evaluation benchmarks for the nonstationary lifelong RL

setting and crafting algorithms that leverage the notion of modular nonstationarity.

169

CHAPTER 7 : CompoSuite: A Compositional Reinforcement Learning Benchmark

7.1. Introduction

Benchmarks have become key drivers of progress in AI and ML research over the last

couple of decades, as they facilitate the development and evaluation of new ideas and foster

reproducible comparisons against existing methods. As a contribution to such advancements,

this chapter presents CompoSuite, a simulated robotic manipulation benchmark for the

evaluation of compositional multitask RL approaches.

CompoSuite follows the motivation of the robotic manipulation domain of Chapter 5, and

substantially extends it by adding a new dimension of task variation: task objectives.

Compared to the previous evaluation domain, this new compositional axis translates into

two key benefits: 1) it leads to combinatorially more tasks, for a total of T = 256, and 2) it

makes each task considerably more complex, by requiring the agent to go far beyond lifting

an object and toward longer-term behaviors. In addition, CompoSuite deliberately balances

the trade-off between difficulty and attainability: the complexity and high diversity of the

tasks ensures that existing compositional and general MTL approaches struggle to discover

and exploit the compositional structure of the tasks, yet these methods do make progress

and exhibit hints of compositional behaviors, as demonstrated empirically.

The chapter begins with a detailed discussion of the design considerations behind CompoSuite,

diving into the details of each task component, the observation and action spaces, and

the reward functions. In particular, the key insight that enables the creation of such a

large benchmark is its compositional construction, which immediately grants CompoSuite

combinatorially many tasks. The discussion then describes a set of benchmarking guidelines

and suggested evaluation settings for future work to leverage, promoting reproducibility. The

second major contribution of this chapter is an empirical evaluation of three representative

existing RL approaches: STL, end-to-end or monolithic MTL, and compositional MTL. As

mentioned above, the results of this evaluation demonstrate that these methods exhibit

170

IIWA
box

no_obstacle
pick-and-place

Jaco
hollow_box
object_door

push

Gen3
plate

goal_wall
trash_can

Panda
dumbbell

object_wall
shelf

Figure 35: Initial conditions of four CompoSuite tasks, containing all elements of each
compositional axis. Robots: IIWA, Jaco, Gen3, and Panda. Objects: box, hollow_box,
plate, and dumbbell. Obstacles: no_obstacle, object_door, goal_wall, object_wall.
Objectives: pick-and-place, push, trash_can, shelf.

certain compositional properties, but fall short from solving CompoSuite. The exposition

then looks toward the future and presents a set of current limitations and possible extensions

of the benchmark. Overall, this chapter opens a variety of questions for future investigation.

7.2. The CompoSuite Benchmark for Compositional Reinforcement Learning

CompoSuite is a benchmark of simulated robotic manipulation tasks explicitly designed to

study the ability of RL algorithms to learn functional decompositions of the solutions to the

tasks, yet more broadly applicable to multitask and lifelong RL. The key idea of CompoSuite

is to build the tasks themselves compositionally, so that 1) it contains combinatorially many

(distinct) tasks, and 2) tasks are explicitly compositionally related. Figure 35 illustrates a

set of sampled tasks, and Appendix E shows all tasks.

7.2.1. Task Design

CompoSuite, built upon robosuite (Zhu et al., 2020), centers on four compositional axes:

robots, objects, obstacles, and objectives. There are four elements of each type, so that

combining them yields a total of T = 256 tasks. Within each axis, the design of the elements

is such that a policy that succeeds at one task is very unlikely to succeed at another task—and

the optimal policy for one task is even less likely to be optimal for another task.

171

All tasks take place in a two-bin environment, with bins of equal sizes across all tasks.

Objects start each episode in the left bin, and the target location is in the right bin. This

standardization encourages the agents to find the commonalities between the tasks. In

addition, the benchmark uses crafted rewards to facilitate learning each individual task.

Task Components

Robots The first axis of CompoSuite uses robot arms with different kinematic configura-

tions, so a policy that works on one robot arm cannot be directly applied to another arm. To

ensure compatibility with existing multitask RL methods, which require the dimensionality

of the observation and action spaces to be compatible across tasks, CompoSuite uses only

7-DoF manipulators. In particular, the four robot manipulators that perform the tasks are:

KUKA’s IIWA, Kinova’s Jaco, Franka’s Panda, and Kinova’s Gen3. These arms vary in sizes,

kinematic configurations, and position and torque limits, leading to semantic discrepancies

between their observations and actions that require the agent to specialize its control policy

for each arm. All arms use the Rethink Robotics two-finger gripper to manipulate objects.

Objects The benchmark next considers four objects of distinct shapes that require different

grasping strategies. The box is a cuboid that can be picked up from the top. The hollow_box

mirrors the shape of an open package, with a size sufficiently large that the gripper cannot

grasp it by both sides like the box, and must instead grip one of its edges. The dumbbell is

placed upright, and its weights are larger than the gripper, and so the manipulator can only

grasp it horizontally by the bar. The plate’s diameter is also greater than the gripper size,

and therefore can only be grasped horizontally by the edge.

Obstacles The third axis of variation in CompoSuite is a set of four obstacles that require

distinct behaviors. The object_wall is a brick wall placed between the robot and the object,

while the object_door is a similarly placed doorway between two brick walls. These two

obstacles require avoiding opposite regions of the space while reaching for the object. The

goal_wall is also a brick wall, but is placed between the left and right bins, blocking the

172

direct path to the goal after grasping the object. Additionally, the benchmark includes tasks

with no_obstacle.

Task objectives The final compositional axis is a set of different task objectives: pick-

and-place an object into the right bin, push the object from the left to the right bin, drop

the object into a trash_can, and place the object on a shelf. The overall trajectory required

to attain each of these objectives is behaviorally distinct.

Thanks to combinatorial explosion, there are 256 possible combinations of these components,

leading to a set of T = 256 highly varied tasks. Each of the tasks requires a fundamentally

unique policy, but the construction of the tasks reveals exactly how they relate to one

another, enabling researchers to extract insights about the kind of compositionality that

deep multitask RL methods exhibit.

Observation and Action Spaces

The observation space factors into the following elements, tied to the task components

described in the previous section:

• Robot observation The proprioceptive portion of the observation includes the robot’s

joint positions, joint velocities, end effector pose, finger positions, and finger velocities.

• Object observation The agent observes both the absolute position and orientation

of the object in world coordinates, as well as its position and orientation with respect to

the robot’s end effector. Note that this observation does not give away any information

that distinguishes objects from one another (e.g., their geometric properties).

• Obstacle observation The agent also observes the absolute and relative positions

and orientations of the obstacles. Similarly, this does not give away what is the free

space of the environment (e.g., object_wall and object_door are always placed in

the same location, but they block off opposite parts of the space).

173

• Goal observation The observation also contains the absolute and relative position

and orientation of the goal, which is fixed at the center of the target region (e.g., the

right bin or the shelf), as well as the relative position of the goal with respect to the

object. However, to simplify the learning of pick-and-place, trash_can, and shelf

tasks, reaching any arbitrary location in the target region solves each task. In contrast,

push tasks do require reaching the location specified in the observation.

• Task observation The agent may also be given access to a multi-hot indicator that

identifies each of the components of the task (i.e., the robot, object, obstacle, and

objective). This can be used as a task descriptor for MTL training.

The action space for each task is eight-dimensional. The first seven dimensions provide target

positions for each robot joint. Under the hood, a proportional-derivative (PD) controller

executes the motor commands that follow the joint positions provided by the agent—this

is directly handled by robosuite and is completely transparent to the agent. The eighth

dimension is a binary action that indicates whether the gripper should be open or closed.

Reward Functions

While CompoSuite supports sparse rewards for successful completion, this leads to an

extremely hard exploration problem. Consequently, to isolate the problem of compositional

MTL, CompoSuite provides a crafted reward that encourages exploration in stages, such

that each stage leads the agent to a state that is closer to task completion.

During the reach stage, the environment rewards the agent for reducing the distance to the

object. This stage terminates once the agent grasps the object, which gives a binary reward.

These two initial stages are common to all objectives. In all tasks except for push, the

environment next rewards the agent for lifting the object up to a given height. In the case of

shelf tasks, the reward then encourages the agent to align the gripper with the horizontal

plane, facing the shelf. The next stage rewards the agent for approaching the goal location

based on the horizontal distance. In pick-and-place tasks, the reward then encourages the

174

Table 14: Reward stages per task objective.

Task Stages
pick-and-place reach → grasp → lift → approach → lower → success
push reach → grasp → approach → success
trash_can reach → grasp → lift → approach → drop → success
shelf reach → grasp → lift → align → approach → success

agent to lower the object down to the bin. In trash_can tasks, the environment instead

rewards the agent for dropping the object while above the trash can with a binary reward.

The final stage is a binary success reward. The pick-and-place tasks succeed if the object

is in the bin and the robot is near the object; this latter constraint differentiates pick-and-

place and trash_can tasks. Solving the push tasks involves placing the object near the goal

location. The agent succeeds on trash_can tasks if the object is inside the trashcan and the

gripper is not. The success criterion for shelf tasks is that the object is on the shelf.

The maximum possible reward is R = 1 and the agent only attains it upon successfully

executing the task. Table 14 summarizes the stages of each task objective, and the following

items include precise formulas for the task objective rewards.

• pick-and-place tasks:

Rreach =0.2(1− tanh(10target_dist))

Rgrasp =


1 if grasping

0 otherwise

Rlift =


0.3 + 0.2(1− tanh(5z_dist_target_height)) if Rgrasp > 0

0 otherwise

Rapproach =


Rlift + 0.2(1− tanh(2goal_xy_dist)) if Rlift > 0.45 & object not above bin

0.5 + 0.2(1− tanh(2goal_xy_dist)) if Rlift > 0.45 & object above bin

0 otherwise

175

Rlower =


0.7 + 0.2(1− tanh(5z_dist_bin)) if object above bin & Rgrasp > 0

0 otherwise

Rsuccess =


1 if object in bin & Rreach > 0.07

0 otherwise

R = max
stage

Rstage (7.1)

• push tasks:

Rreach =0.2(1− tanh(10target_dist))

Rgrasp =


1 if grasping

0 otherwise

Rapproach =


0.3 + 0.4(1− tanh(5goal_xy_dist)) if Rgrasp > 0

0 otherwise

Rsuccess =


1 if goal_xy_dist ≤ 0.03

0 otherwise

R = max
stage

Rstage (7.2)

• trash_can tasks:

Rreach =0.2(1− tanh(10target_dist))

Rgrasp =


1 if grasping & object not in can

0 otherwise

Rlift =


0.3 + 0.2(1− tanh(5z_dist_target_height)) if Rgrasp > 0

0 otherwise

176

Rapproach =


Rlift + 0.2(1− tanh(2goal_xy_dist)) if Rlift > 0.45 & object not above can

0.5 + 0.2(1− tanh(2goal_xy_dist)) if Rlift > 0.45 & object above can

0 otherwise

Rdrop =


0.95 if object above can & Rgrasp = 0

0 otherwise

Rsuccess =


1 if object trash can & gripper not in can

0 otherwise

R = max
stage

Rstage (7.3)

• shelf tasks:

Rreach =0.2(1− tanh(10target_dist))

Rgrasp =


1 if grasping

0 otherwise

Rlift =


0.3 + 0.2(1− tanh(5z_dist_target_height)) if Rgrasp > 0

0 otherwise

Ralign =


0.5 + 0.3(1− tanh(y_axis_orientation)) if object in front of shelf

0 otherwise

Rapproach =


0.8 + 0.1(1− tanh(5y_dist_shelf)) if object in front of shelf & Ralign > 0.6

0 otherwise

Rsuccess =


1 if object in shelf

0 otherwise

R = max
stage

Rstage (7.4)

177

Episode Initialization and Termination

Upon initialization of each new episode, the environment places the graspable object in a

random location of the left bin. Tasks that contain an obstacle restrict the object’s initial

location to the regions of the space that would explicitly require the robot to circumvent

the obstacle. The goal location is at the center of the target region, which is itself at some

fixed location in the right bin, and the robot arm begins at a fixed position with the gripper

facing downward. Figure 35 displays sampled initial conditions.

Each episode terminates after a horizon of H = 500 time steps. In addition, push tasks

terminate if the robot lifts the object more than a set threshold above the table, in order to

avoid success if the robot executes a pick-and-place strategy.

7.2.2. Evaluation Settings

CompoSuite evaluates agents for their training speed and final performance on a set of

training tasks, akin to training sets in supervised STL settings. While this is a measure of

training performance, it is the standard evaluation setting of the majority of works in RL.

After training, the benchmark evaluates agents on a test set of unseen tasks. Both of these

evaluations explore the ability of agents to discover compositional properties of the tasks.

Metrics

Two metrics measure the performance of agents over the training and test tasks. For an

agent evaluated over T tasks, with M evaluation trajectories for each task, each trajectory

of length H, CompoSuite computes the average metrics as follows:

Return The first metric is the standard cumulative returns:

R̄ =
1

TM

T∑
t=0

M∑
j=0

H∑
i=0

R(t)(xi,ui) . (7.5)

178

This is the usual RL evaluation criterion, and directly relates to the optimization objective.

Success The second metric is the success rate, based on each task’s definition of success:

S̄ =
1

TM

T∑
t=0

M∑
j=0

max
i∈[0,H]

1
[
R(t)(xi,ui) = 1

]
, (7.6)

where 1 is the indicator function. Note that a trajectory is successful if at any time, the

agent is in a success state.

Evaluation on Training Tasks

Evaluations first assess the agent’s performance on the tasks that it trains on. An agent that

is capable of extracting the compositional properties of the tasks should be able to achieve

transfer across the tasks. Ideally, this transfer should translate to both faster convergence

in terms of the number of samples required to learn, as well as higher final performance

after convergence. In particular, evaluations in this setting should compare agents against

equivalent STL agents that use the same training mechanism but do so individually on every

task, without any notion of shared knowledge.

Evaluation on Test Tasks

The key property that CompoSuite assesses is the ability of approaches to combine trained

components in novel combinations to handle new tasks. As per Chapter 5, this can take the

following two forms:

Zero-shot generalization with task descriptors If the observation provides the agent

with the multi-hot indicators described in Section 7.2.1, then the agent could (in principle)

solve new, unseen tasks without any training on them. This would be possible only if the

agent learns the compositional structure of the tasks and is able to combine its existing

components into a solution to the new task. Intuitively, after learning 1) the pick-and-

179

place task with the box object avoiding the object_door obstacle using the IIWA arm, and

2) the push task with the plate object avoiding the object_wall obstacle using the Panda

arm, if the agent knows how each component relates to the overall task, it could for example

swap the IIWA and Panda arms and solve the opposite tasks without additional training.

Fast adaptation without task descriptors Alternatively, the benchmark might not

inform the agent of which components make up the current task, and require it to discover

this information through experience. The goal of the agent should then be to discover this

information as rapidly as possible in order to solve the new task with little experience.

Access to State Decomposition

The compositional architecture of Devin et al. (2017) and those introduced in Chapter 5

require knowledge about which components of the observation affect which parts of the

architecture. While this information is readily available in CompoSuite, fair comparisons

require noting whether the agent is given this decomposition of the state. Note that both zero-

shot and fast-adaptation settings could be targeted with or without the state decomposition.

Sample of Training Tasks

Understanding the compositional capabilities of RL algorithms requires a careful study of the

sample of combinations (i.e., tasks) that is provided to the agent for training. CompoSuite

proposes the following evaluation settings:

Uniform sampling The simplest setting samples the training tasks uniformly at random,

and requires the agent to generalize to all possible combinations of the seen components.

The agent therefore must learn to combine its knowledge in different ways after having seen

each component in various combinations.

Restricted sampling This much-harder setting restricts the training to a single task for

one of the components and many tasks for other components—e.g., in CompoSuite\IIWA,

180

the agent sees only one IIWA task and must generalize to all other IIWA tasks. This is akin

to Experiment 3 in the work of Lake and Baroni (2018), which demonstrated that this is an

onerous problem even in the supervised setting. While a complete evaluation would require

various choices of restricted arms, objects, obstacles, and objectives, initial evaluations

could focus on these four proposed settings: CompoSuite\IIWA, CompoSuite\hollow_box,

CompoSuite\object_wall, and CompoSuite\pick-and-place.

Smaller-scale benchmarks While large benchmarks like CompoSuite are appealing for

studying multitask RL at scale, developing ideas in such large task sets is often (unfortunately)

prohibitively time consuming. Given the compositional nature of CompoSuite, it is trivial

to extract smaller-scale benchmarks that maintain the properties of the original, full-scale

benchmark. For example, CompoSuite∩IIWA considers only the T = 64 IIWA tasks. One

interesting property of such reduced benchmarks is that they permit studying the difficulty

of generalization across certain axes (e.g., if an agent can transfer knowledge across objects

but not across robots, then it would perform much better on CompoSuite∩IIWA than on the

full CompoSuite). Future evaluations should evaluate agents on the following smaller-scale

benchmarks: CompoSuite∩IIWA, CompoSuite∩hollow_box, CompoSuite∩no_obstacle, and

CompoSuite∩pick-and-place—the easiest elements along each compositional axis.

7.3. Benchmarking Existing Reinforcement Learning Methods on CompoSuite

The empirical evaluation in this section had two primary objectives. First, to demonstrate

that CompoSuite is a useful evaluation benchmark in terms of: 1) existing algorithms making

progress toward solving the problems, 2) the tasks exhibiting compositional properties, and

3) existing approaches leaving substantial room for improvement in performance. Second, to

provide benchmarking results of existing algorithms for future work to leverage.

At the time of this dissertation, a paper introducing CompoSuite was under double-blind

peer review. Consequently, the anonimized code is available at https://github.com/colla

ssubmission91/CompoSuite-Code, which will eventually redirect to the public version.

181

https://github.com/collassubmission91/CompoSuite-Code
https://github.com/collassubmission91/CompoSuite-Code

7.3.1. Experimental Setting

The underlying RL algorithm used for all evaluations was the modified version of PPO

described in Chapter 5. In particular, recall that the policy used a tanh activation in the

output layer of the network and a constant (fixed) variance. These two modifications were

critical for enabling agents to explore meaningful solutions to the tasks in CompoSuite. The

experiments evaluated three types of agents built upon this base algorithm:

• STL agents that trained on each task individually, without any knowledge-sharing

across tasks. Lack of sharing precludes these agents from generalizing to unseen tasks,

and consequently the evaluation only assessed their performance on the training tasks.

Additionally, the environment withheld the task descriptor from the observation, as it

would appear as a constant to each STL agent.

• MTL agents that trained a shared model for all tasks, using the task descriptor in the

observation to help differentiate between tasks and learn to specialize the policy for

each task. Given the need for the MTL agents to encode multiple policies in a single

model, these agents used a larger capacity than an individual STL agent.

• Compositional agents that constructed a different model for each task from a set

of shared components. The architecture was a variant of the modular network of

Chapter 5 that establishes each policy from a set of modules, with one module for each

robot, object, obstacle, and objective. The relevant state component from Section 7.2.1

constituted the input to each module, and the task descriptor selected the correct

modules. For fairness, the overall number of parameters across modules was equivalent

to that of MTL agents.

The experiments evaluated each agent in three settings: the full CompoSuite, the smaller-scale

CompoSuite∩IIWA, and the restricted CompoSuite\pick-and-place. Each of these settings

gave a subset of the tasks to the agents for training, and evaluated agents for their speed

and final performance over the training tasks. After training, the benchmark additionally

182

Table 15: Summary of optimized hyperparameters used by the baselines.

Hyperparameter STL MTL Compositional Learner
γ 0.99 0.99 0.99
layers 2 2 -
hidden units 64 256 -
steps per task per update 16,000 16,000 16,000
total step per task 10,000,000 10,000,000 10,000,000
PPO clip value 0.2 0.2 0.2
π learning rate 1e−4 1e−4 1e−4

V learning rate 1e−4 1e−4 1e−4

π update iterations 128 128 128
V update iterations 128 128 128
target KL 0.02 0.02 0.02

evaluated the MTL and compositional agents for their ability to solve unseen tasks without

any additional training by leveraging the task descriptors.

7.3.2. Hyperparameters

Table 15 reports the hyperparameters that each agent used for training. Hyperparameter

tuning obtained these values via grid search on a set of tasks using STL, and maintained

those for the MTL and compositional agents.

7.3.3. Compositional Network Architecture

The network architecture for the compositional agent, illustrated in Figure 36, follows a

graph structure similar to that of Chapter 5. The architecture consists of a total of 16 MLP

Concatenate

State

Obstacle
module

Object
module

Concatenate

Objective
module

Concatenate

Robot
module

Figure 36: Modular architecture used for learning compositional policies.

183

modules, each of which maps to one of the components in CompoSuite. Specifically, there are

four obstacle, object, objective, and robot modules, respectively. Each module corresponds to

a level in the graph hierarchy, such that the previous level’s MLP passes its output as input

to the final layer of the MLP of the current level. The architecture first processes the obstacle

observation. Every obstacle module consists of a single-hidden-layer MLP with 32 hidden

units—because this is the first level, there is no additional input other than the obstacle

observation. The second level processes the object observation via two hidden layers of size

32, additionally consuming as input to the second layer the obstacle observation processed

by the corresponding module. The object module feeds into the second layer of the objective

module, which consists of three layers of size 64. Finally, the objective module’s output acts

as an input into the third layer of the robot module, which has three hidden layers of size 64.

In the value function network V , the robot module outputs the estimated value, while in the

policy network π, it outputs the mean of the Gaussian policy.

7.3.4. Evaluation of Baselines on the Full CompoSuite Benchmark

The first experiment evaluated the agents on the main CompoSuite benchmark, uniformly

sampling tasks for training; Figure 37 presents the corresponding learning curves. After

training for 10 million time steps on each task, the STL agents had a success rate of around

40%. When the training set was a small portion of the whole set of tasks, the MTL and

compositional agents only slightly improved upon the STL agents. However, when training

on a larger set of tasks, the compositional agent learned much faster, achieving more than

twice as much success. In contrast, MTL results did not improve with the larger training set.

This suggests that the MTL agent does not appropriately share knowledge across tasks, and

instead separately allocates capacity in the network to different tasks. As it sees more tasks,

it progressively exhausts its capacity. Instead, the compositional agent shares components

appropriately, and additional training tasks improve the agent’s ability to leverage these

commonalities. This demonstrates that CompoSuite tasks are indeed compositionally related,

and that exploiting these relations leads to improved performance.

184

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Compositional MTL STL

0.0 0.2 0.4 0.6 0.8 1.0
Steps per Task 1e7

0

100

200

300

400

500

Re
tu

rn

0.0 0.2 0.4 0.6 0.8 1.0
Steps per Task 1e7

0

100

200

300

400

500

Re
tu

rn
0.0 0.2 0.4 0.6 0.8 1.0

Steps per Task 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

(a) T = 56 tasks

0.0 0.2 0.4 0.6 0.8 1.0
Steps per Task 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

(b) T = 224 tasks

Figure 37: Evaluation on training tasks for the full CompoSuite benchmark. The MTL agent
was not capable of accelerating the learning substantially with respect to the STL agents
according to either metric. The compositional agent, when trained on a larger set of tasks,
performed noticeably better, demonstrating that leveraging the compositional structure of
CompoSuite leads to improved training performance. Y-axes span the attainable ranges, and
shaded regions represent standard errors across three seeds.

After training, the experiment evaluated the agents on the CompoSuite tasks that they did

not train on. Intuitively, an agent that correctly decomposes the tasks should achieve high

performance on these test tasks by adequately recombining its learned components. Results

in Table 16 show that the learners struggled to generalize to unseen tasks when trained on

Table 16: Zero-shot generalization on the full CompoSuite benchmark. Both agents achieved
generalization when trained on many tasks, but fell short from solving the benchmark with
fewer training tasks. Standard errors across three seeds reported after the ±.

T = 56 tasks T = 224 tasks
MTL Compositional MTL Compositional

Return 115.79±18.01 64.26±7.51 199.98±15.69 301.92±6.91

Success 0.18±0.11 0.08±0.02 0.41±0.05 0.88±0.05

185

T = 56 tasks, but performed remarkably well (comparatively to their training performance)

when trained on T = 224 tasks. With the smaller training set, even though the training

performance was similar for both approaches, the compositional agent achieved substantially

worse zero-shot performance. This demonstrates that, while the compositional approach

can indeed capture the compositional properties of the tasks, this requires observing a large

portion of the tasks. One important question is whether the MTL agent automatically learned

compositional knowledge that allowed it to solve unseen tasks. The alternative explanation

would be that the agent instead found similar tasks in the training set and used the policy

for those for generalization. To test this, a simple experiment found the most similar training

task to each test task and used its policy to predict zero-shot performance. Concretely, for

every task Z(t) on which the agent achieved some zero-shot success, its closest policy π(t′)

(t′ 6= t) was the one that performed best on task Z(t); this would have been the best policy to

choose, and so one would expect the performance of policy π(t′) to correlate to that of policy

π(t). However, the coefficients of determination between the policies’ success rates were very

low: R2 = 0.19 and R2 = 0.03 for the MTL and compositional agents, respectively. This

shows that the generalization was unlikely to come from using trained policies for different

tasks, but rather from correctly leveraging the compositional properties of the tasks.

7.3.5. Evaluation of Baselines on the Smaller-Scale CompoSuite∩IIWA Benchmark

The next experiment evaluated the three baseline agents on the reduced CompoSuite∩IIWA

benchmark, in order to 1) propose a computationally cheaper setting to facilitate progress

and 2) shed light on the relative difficulty of generalizing across different CompoSuite axes.

Figure 38 contains the learning curves on the training tasks. The relative performance of

the compositional agent with respect to the STL agents was similar to that obtained after

training on over 200 tasks for the full CompoSuite, demonstrating that the agent is capable

of discovering the compositional structure of this reduced benchmark with far fewer training

tasks. On the other hand, the MTL agent performed noticeably better in this simplified

setting. Two (compatible) hypotheses potentially explain this improvement: 1) there are

186

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Compositional MTL STL

0.0 0.2 0.4 0.6 0.8 1.0
Steps per Task 1e7

0

100

200

300

400

500

Re
tu

rn

0.0 0.2 0.4 0.6 0.8 1.0
Steps per Task 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Figure 38: Evaluation on T = 32 training tasks for the smaller-scale CompoSuite∩IIWA
benchmark. Both the MTL agent and the compositional agent were able to outperform the
STL agents under both metrics. This shows that sharing knowledge across tasks with a
single robot arm is easier than across different robot arms when not explicitly leveraging
compositionality. Y-axes span the attainable ranges, and shaded regions represent standard
errors across three seeds.

Table 17: Zero-shot generalization on the smaller-scale CompoSuite∩IIWA benchmark. Similar
to the full benchmark, the compositional agent struggled to generalize with few tasks, yet
the MTL agent did generalize. Standard errors across three seeds reported after the ±.

MTL Compositional
Return 232.79±17.48 79.85±19.24

Success 0.49±0.06 0.12±0.06

fewer tasks, so the model capacity is not a limiting factor, and 2) it is easier to transfer

knowledge across tasks that use a single robot manipulator, as used by the large majority of

multitask RL works; Section 7.3.7 gives evidence toward this latter hypothesis.

Table 17 presents the zero-shot results on this reduced benchmark. The MTL agent achieved

notably high performance, but the compositional agent was incapable of generalizing, likely

due to the small number of training tasks. Recall that the compositional agent only trains

each module on the subset of tasks that shares that module. Consequently, each parameter

was trained on a small number of tasks, which was insufficient for zero-shot generalization.

7.3.6. Evaluation of Baselines on the Restricted CompoSuite\pick-and-place Benchmark

The evaluation results presented so far consider a relatively simple compositional problem:

the agent trains on multiple combinations of all components, and seeks to generalize to new

187

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Compositional MTL STL

0.0 0.2 0.4 0.6 0.8 1.0
Steps per Task 1e7

0

100

200

300

400

500

Re
tu

rn

0.0 0.2 0.4 0.6 0.8 1.0
Steps per Task 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Figure 39: Evaluation on T = 32 training tasks for the restricted CompoSuite\pick-and-
place benchmark. The training set included a single pick-and-place task, and all other
tasks were from the remaining objectives. Results are nearly identical to those on the full
CompoSuite, as expected—major differences were expected in zero-shot performance. Y-axes
span the attainable ranges, and shaded regions represent standard errors across three seeds.

combinations. These previous results already expose the shortcomings of existing approaches

in the compositional setting. However, future approaches that solve these simple settings

would still fall short from achieving the full spectrum of compositional capabilities. In

particular, agents should ideally learn components that generalize to unseen tasks even

if they only see those components in one single combination. To study this setting, the

next experiment evaluated the three agents on the restricted CompoSuite\pick-and-place

benchmark. Figure 39 shows the learning performance over the training tasks, which include

exactly one pick-and-place task. Performance was close to that on the full benchmark,

because the training distributions are similar: there are 55 combinations of 15 components

(plus one single pick-and-place task), compared to 56 combinations of 16 components.

Table 18 shows that both agents failed to generalize to the unseen pick-and-place tasks in

this restricted setting. The small amount of zero-shot generalization achieved by the MTL

Table 18: Zero-shot generalization on the restricted CompoSuite\pick-and-place benchmark,
only over pick-and-place tasks. Both agents failed at generalizing substantially to the
restricted objective. Standard errors across three seeds reported after the ±.

MTL Compositional
Return 74.61±9.97 16.63±6.71

Success 0.09±0.04 0.01±0.01

188

Table 19: Zero-shot success for the MTL agent on CompoSuite\pick-and-place, separated
by tasks that share (or not) each element with the trained pick-and-place task (e.g., if the
training pick-and-place task used the IIWA arm, IIWA tasks go on the left and non-IIWA
tasks go on the right). Most generalization was on tasks that shared the training robot.
Standard errors across three seeds reported after the ±.

Element Trained Untrained
robot 0.30±0.10 0.03±0.02

object 0.14±0.04 0.08±0.04

obstacle 0.14±0.04 0.08±0.03

agent was almost entirely on tasks with the same robot arm that was used in the single pick-

and-place training task, as shown in Table 19. In contrast, the compositional agent was

completely incapable of generalizing to unseen pick-and-place tasks.

7.3.7. Empirical Analysis of CompoSuite Properties

The following evaluations shifted focus to verifying two important properties of CompoSuite:

that the large majority of tasks are learnable by current RL mechanisms, and that the tasks

are not only compositional, but also highly varied.

Learnability of tasks The combination of elements into the combinatorially many tasks

in CompoSuite opens up the question of whether some of these configurations might lead

to potentially unsolvable tasks for current RL algorithms. For example, there might be

configurations that restrict the physical space in such a way that the robot arm cannot fulfill

a task objective. If CompoSuite tasks were unsolvable by current RL methods, that would

conflate the difficulty of compositional reasoning with the difficulty of solving RL tasks. To

validate that this is not the case, this experiment gave each task a score corresponding to

the performance of the best agent across all those trained so far (taking the maximum across

experiments and random seeds). For any task with a score of 0, experiments so far provide

no evidence that the task is learnable, because no agent solved it to any extent. Figure 40

shows the result of this computation. Only a single task received a score of 0 (place the

plate on the shelf with the Panda arm avoiding the goal_wall), indicating that it may be

unlearnable. This corroborates that almost all tasks are solvable with existing RL methods.

189

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Box Dumbbell Hollowbox Plate

PickPlace Push Shelf Trashcan0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

None

PickPlace Push Shelf Trashcan

ObjectWall

PickPlace Push Shelf Trashcan

ObjectDoor

PickPlace Push Shelf Trashcan

GoalWall

IIW
A

PickPlace Push Shelf Trashcan0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

None

PickPlace Push Shelf Trashcan

ObjectWall

PickPlace Push Shelf Trashcan

ObjectDoor

PickPlace Push Shelf Trashcan

GoalWall

P
an

da

PickPlace Push Shelf Trashcan0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

None

PickPlace Push Shelf Trashcan

ObjectWall

PickPlace Push Shelf Trashcan

ObjectDoor

PickPlace Push Shelf Trashcan

GoalWall

Ja
co

PickPlace Push Shelf Trashcan0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

None

PickPlace Push Shelf Trashcan

ObjectWall

PickPlace Push Shelf Trashcan

ObjectDoor

PickPlace Push Shelf Trashcan

GoalWall

G
en

3

Figure 40: Maximum success rate attained for each task across all trained agents. All tasks
except one were solved at least once.

Diversity of tasks Another valid concern is that it might be possible for the agent to solve

multiple tasks with a single policy if the tasks are very similar, implying that compositional

reasoning is not necessary for generalization. To verify that this is not the case in CompoSuite,

after training the MTL and compositional agents over T = 224 tasks, this evaluation assessed

their performance if they observed the incorrect task descriptor. In particular, for a given task

Z(t), the agent acted on the environment of task Z(t) using the descriptors for all tasks Z(t′)

190

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

Robot Objective Object Obstacle

0 1 2 3
Policy Rank

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s

MTL train

0 1 2 3
Policy Rank

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s

Compositional train

0 1 2 3
Policy Rank

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s

MTL zero-shot

0 1 2 3
Policy Rank

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s

Compositional zero-shot

Figure 41: Performance when providing incorrect task descriptors, with a single changed
component: position 0 corresponds to the correct descriptor, and positions j > 0 correspond
to the j-th ranked descriptors of each type. Using the wrong descriptors leads to poor
performance, confirming the diversity of CompoSuite tasks.

that varied in a single component from Z(t) (i.e., the tasks most similar to Z(t)). Figure 41

shows the result of sorting the performances with these incorrect descriptors separately for

each axis to find the rank of each incorrect component (e.g., the rank-2 robot for task Z(t)

is the robot that achieved the second-best performance when used as the descriptor for

task Z(t)), and averaging the sorted performances. The results demonstrate that using the

incorrect robot, objective, or object descriptor consistently leads to substantially degraded

performance, particularly for the compositional agent; this means that the agent is specialized

to each of the components. Using the incorrect obstacle descriptor has a much smaller impact,

particularly for the MTL agent. This shows that the MTL agent learns policies that are

somewhat agnostic to the obstacles, which is possible for example by avoiding all possible

obstacle regions. Additionally, these results show that varying the robot arm causes the

most drastic drop in performance, demonstrating that solving tasks with varied robots is a

challenging problem, yet existing benchmarks consider tasks with a single robot arm.

7.4. Scope, Limitations, and Extensions

The design of CompoSuite emphasized studying the compositional properties of multitask

RL algorithms. As such, while it can be used to investigate multiple other problems, it is

not intended to cover the spectrum of open questions in multitask RL. This section discusses

limitations and potential extensions to the use of CompoSuite.

191

Reliance on PPO To provide a fair comparison across single-task and multitask learners,

all agents used PPO (Schulman et al., 2017) as the base RL algorithm, built off of the

Spinning Up implementation (Achiam, 2018). While future research can use any base

learning method, only evaluations that use the same PPO implementation could fairly

compare against the benchmarking results presented here.

Input space The input space used in the evaluation is a 94-dimensional, symbolic descrip-

tion of the environment grounded in the system dynamics. However, there is also broad

interest from the robot learning community in RL with richer observations (e.g., visual

inputs). While such an evaluation falls outside the scope of this dissertation, the benchmark

implementation allows users to request a multicamera visual observation instead of the

low-dimensional observation.

Task descriptors Part of the observation space is a multi-hot indicator that describes

the components that make up the current task. While this permits assessing the interesting

property of zero-shot compositional generalization, there are other questions that might

benefit from withholding this information from the agent. As one example, the agent might

only receive a task index that indicates which task it must solve, but not how it relates to

other tasks. Alternatively, the observation could give the agent no indication of the current

task at all and require it to extract this information from data. Note that the symbolic

observation does not contain sufficient information to unequivocally identify the task without

task descriptors, and so the agent would need to extract this information from trajectories

of interaction instead. On the other hand, the images in the visual observations do contain

sufficient information to differentiate the tasks.

Other forms of composition While CompoSuite was designed around functional com-

position as described in Chapter 5, the benchmark can also be used for other forms of

composition. In particular, the standardization of the environments and the use of stage-wise

rewards makes this a useful domain for evaluating skill discovery and sequencing. For

192

example, the agent could learn skills for reaching a location, grasping an object, and lifting,

all of which are useful for multiple CompoSuite tasks. Note that standard representations of

skills would only work for one individual arm.

Lifelong learning Another very natural extension of CompoSuite is to use it in the lifelong

learning setting as defined in Chapter 5. The agent would face CompoSuite tasks one after

the next, and need to perform well on all previously seen tasks. The goal of the agent would

be to learn each new task as quickly as possible by leveraging accumulated knowledge, and

to retain performance on the earlier tasks upon training on new tasks. Given the sequential

nature of lifelong learning, it might be prohibitively expensive to train the agent over the

full variant of CompoSuite, but the smaller-scale variants described in Section 7.2.2 would

be feasible; the experiments of Chapter 5 already used sequences of tasks of similar lengths.

Sim2real transfer Learning a multitude of tasks in simulation is a common strategy used

to transfer policies from simulation to the real world (sim2real). Since CompoSuite uses

simulated versions of four robot arms that are commercially available, it could additionally

be leveraged to study this promising direction.

7.5. Summary

This chapter introduced CompoSuite, a large-scale robotic manipulation benchmark for

studying the novel problem of functionally compositional RL introduced in this dissertation.

CompoSuite builds upon the simpler benchmarks presented in Chapter 5, leveraging the

power of combinatorics to create hundreds of highly diverse tasks and opening the door for the

study of multitask and lifelong RL at scale. In particular, CompoSuite is designed to study

the ability of approaches to discover the decomposition of complex problems into simpler

subproblems whose solutions can be combined to solve the overall task. Once appropriate

components have been found, they could be combined in novel ways to solve new RL problems

that the agent has never trained on.

193

The empirical evaluation assessed the performance of two MTL approaches: a monolithic

agent that uses a single network to solve all tasks, and a modular agent that composes

different policies for each task from a set of shared components. The results on a range

of conditions under CompoSuite demonstrate that these existing methods show promising

compositional properties, but these results also expose that existing methods are far from

solving the problem of compositional RL. Progress in that direction will enable RL approaches

to automatically detect commonalities across diverse problems, leverage these commonalities

to facilitate learning, and eventually handle far more complex tasks than is possible today.

194

CHAPTER 8 : Conclusion

This dissertation presented a thorough investigation of the novel problem of lifelong learning

of functionally compositional knowledge. The central question that this dissertation sought to

answer was how can ML agents learn compositional knowledge structures in a lifelong learning

setting. The key technical contribution toward answering this question was a general-purpose

framework, a sort of algorithm sketch, that permits agents to discover these compositional

structures in a variety of settings. The answer to the fundamental question, derived from

this framework, is that the design of algorithms for lifelong compositional learning should

consider parts of the problem in separate stages.

The two primary stages, named assimilation and accommodation due to their connection

to Piagetian theory, alternate between discovering the best combination of components for

the current task and learning the best instantiation of those components for all seen tasks.

Concretely, in the assimilation stage, the agent should discover the best way to combine its

existing components into a solution to the current task. As examples, the algorithms in this

dissertation use backpropagation, PG training, and discrete optimization as the mechanisms

for tackling this problem. In the accommodation stage, the agent should incorporate any

new knowledge it discovered during training on the new task to improve its accumulated

knowledge. This dissertation experimented with various choices, including regularization,

experience replay, and a closed-form approximate optimization. In particular, this dissertation

developed an experience replay method via off-line RL that replicates the benefits of replay

data from the supervised setting.

In order for the second stage to succeed, it is critical that the agent finds a reasonably good

solution in the first stage. Otherwise, the combination of existing components would be of low

quality and any knowledge accumulated during assimilation would be insufficient for proper

accommodation. This creates the need for a preliminary initialization stage, where the agent

sets up its initial set of components, encouraging them to be reusable across multiple tasks.

195

An extensive empirical evaluation, with various algorithms, benchmarks, and learning

paradigms, consistently yielded that this separation of the learning process into stages

enables substantially improved lifelong learning performance, supporting the thesis of this

dissertation (Section 1.2). This improvement manifested itself in the form of forward transfer,

avoidance of forgetting, backward transfer, and limited growth. In addition, the evaluation

led to the conclusion that compositional lifelong learners can learn highly diverse tasks, which

noncompositional learners systematically fail to achieve.

8.1. Summary of Technical Contributions

Along the way to answer these questions, this dissertation developed a number of technical

contributions, summarized as follows:

1. A formalization of the novel problem of lifelong compositional learning in terms of a

compositional problem graph.

2. A set of nine lifelong learning algorithms for discovering compositional structures in the

supervised setting. Each algorithm combines one structural model configuration from

linear model combinations, soft layer ordering, and soft gating, with one mechanism

for avoiding forgetting, between naïve fine-tuning, EWC, and experience replay.

3. Component dropout, an approach that enables a lifelong learner to automatically detect

when it must incorporate a new module into its model, by approximately training a

version of the model with the new module and a version without the new module.

4. A formalization of the lifelong compositional RL problem in terms of functional

composition, leveraging the graph formalism from the supervised setting.

5. LPG-FTW, an efficient lifelong PG learning algorithm with theoretical guarantees,

and with strong empirical performance on a sequence of T = 48 highly diverse robotic

manipulation tasks.

196

6. CompRL, an algorithm that uses explicitly modular architectures to learn decomposed

solutions to compositional RL tasks. The method performed well on two long sequences

of diverse tasks in discrete- and continuous-action settings, achieving zero-shot, forward,

and backward transfer.

7. Off-line RL replay, a general-purpose mechanism for avoiding forgetting in multistage

lifelong RL approaches, that demonstrably reduces forgetting in compositional and

noncompositional settings.

8. NonstatRL, a simple extension to CompRL that handles nonstationary lifelong se-

quences of tasks, where the variations in the environment occur independently along

multiple dimensions.

9. CompoSuite, a large-scale simulated robotic manipulation benchmark for the study of

compositional, multitask, and lifelong RL.

Despite the high performance of the proposed algorithms, this dissertation did not focus

on the creation of highly optimized methods toward achieving state-of-the-art performance.

Instead, the purpose of these methods was to expose concepts such as multistage training and

compositionality, which will hopefully become accessible to the general ML community. In

particular, the hope was to demonstrate that these intuitively appealing ideas of modularity

and compositionality, with simple training mechanisms, enable lifelong learning agents to

solve task sequences that were previously out of reach.

8.2. Future Directions

This dissertation posed the novel problem of lifelong learning of functionally compositional

knowledge, both in the supervised and the RL settings. As a nascent field, lifelong composi-

tional learning has a range of open questions, which future investigations should tackle. This

(speculative) section elucidates a subset of such questions that are most likely to substantially

impact the broader field of AI.

197

Real-world applications While the evaluations in this dissertation were inspired by

realistic robotic applications, it remains an open question how the proposed approaches

would fare upon deployment on physical robots. More broadly, this is a challenge faced by the

larger research field. Benchmark data sets and RL environments enable fast development and

fair performance comparisons, both of which are useful for accelerating progress. However,

applied research should progress. In particular, lifelong learning has so far been disconnected

from real-world deployments, partly because of the artificial nature of task-based lifelong

learning. Future work tackling realistic applications, ideally involving embodied agents, that

complement fundamental lifelong learning developments would have massive impact.

Task-free lifelong learning As hinted at above, one significant step in the direction

of deployed lifelong learning would be to move away from the task-based lifelong learning

formulation. Some recent works have placed efforts in this direction, but this still remains a

severely underdeveloped area. In particular, it is critical that future instantiations of the

problem do not assume that individual inputs contain sufficient information to determine the

agent’s current objective. This assumption, which most task-agnostic works to date make, is

unfortunately unrealistic. Instead, real-world (embodied) lifelong learning would require the

agent to explore and study the environment over a stream of temporally correlated inputs to

discover its current objective.

Flexible compositionality This dissertation evaluated approaches in two settings: non-

compositional and compositional. Noncompositional evaluations served to demonstrate the

flexibility of the methods, while compositional evaluations served to study the compositional

properties of the algorithms. The real world is neither of these two extremes: it has a

multitude of compositional properties, but many tasks require highly specialized knowledge.

Devising techniques (and corresponding evaluation domains) that explicitly reason about

when compositional or specialized knowledge is required would constitute another significant

step toward deployed lifelong learning.

198

Other forms of composition The approaches in this dissertation all tackle the prob-

lem of functional compositionality. Yet, as discussed extensively in Chapter 2, there are

numerous other forms of composition. Specifically, the RL community has developed a

variety of temporal, representational, logical, and morphological views of the notion of

compositionality. Each of these formulations is promising toward developing agents that

accumulate knowledge and compose it in combinatorially many ways to solve a wide range of

diverse tasks. Intuitively, the high-level idea of separating the lifelong learning process into

initialization, assimilation, and accommodation stages would permit learning these various

forms of composition. Developing concrete instantiations of this intuition could potentially

be highly impactful.

Moving beyond deep learning This final comment, part recommendation for future work

and part reflection, encourages future work to look beyond deep learning in the development

of lifelong and compositional learners. This dissertation leveraged neural net modules as the

main form of compositional structures. The reason for this choice was primarily practical:

neural networks and backpropagation are today the most powerful tools available in ML, and

they permitted abstracting away the many nuances of statistical learning and optimization,

and focus instead on the intuition of knowledge compositionality. Partially-non-deep-learning

portions of this dissertation considered linear classifiers in Chapter 4, as well as linear

policies, closed-form approximate optimization, and discrete search in Chapter 5. Historical

evidence suggests that the tools of the future will be different from (the current version of)

deep learning, and consequently this dissertation encourages future research to not focus

exclusively on deep learning, and develop approaches to lifelong compositional learning that

look outside of deep learning as well.

199

A
P

P
E

N
D

IX
A

:
C

at
eg

or
iz

ed
R

el
at

ed
W

or
ks

on
Li

fe
lo

ng
Le

ar
ni

ng
an

d
C

om
po

si
ti

on
al

Le
ar

ni
ng

Ta
bl
e
20

:
A

ca
te
go

ri
za
ti
on

of
ex
is
ti
ng

w
or
ks

in
to

si
x
ax

es
.
T
he

va
st

m
aj
or
ity

of
w
or
k
on

lif
el
on

g
le
ar
ni
ng

ha
s
no

t
le
ar
ne

d
ex
pl
ic
it
ly

co
m
po

si
ti
on

al
st
ru
ct
ur
es
,w

hi
le

m
os
t
eff

or
ts

on
co
m
po

si
ti
on

al
le
ar
ni
ng

ha
ve

op
er
at
ed

in
th
e
M
T
L
or

ST
L
se
tt
in
gs
.

C
om

p.
ty
pe

L
ife

lo
ng

?
M
ec
ha

ni
sm

St
ru
c.

gi
ve
n

St
ru
c.

ty
pe

D
om

ai
n

R
ef
er
en

ce
s

N
on

e
L
ife

lo
ng

Su
pe

rv
is
ed

N
o

N
on

e
V
is
io
n

K
ir
kp

at
ri
ck

et
al
.(
20
17
),
R
it
te
r
et

al
.(
20
18
),
Ze

nk
e
et

al
.(
20
17
),

C
ha

ud
hr
y
et

al
.
(2
01
8)
,
Se

rr
à
et

al
.
(2
01
8)
,
Y
oo

n
et

al
.
(2
02
0)
,

Ju
ng

et
al
.
(2
02

0)
,
C
ha

et
al
.
(2
02

1)
,
C
ha

ud
hr
y
et

al
.
(2
02

0)
,

Sa
ha

et
al
.
(2
02

1)
,
D
en

g
et

al
.
(2
02

1)
,
D
un

ck
er

et
al
.
(2
02
0)
,

N
gu

ye
n
et

al
.(
20
18
),
A
hn

et
al
.(
20
19
),
Lo

o
et

al
.(
20
21
),
Zh

an
g

et
al
.
(2
02

1)
,
K
um

ar
et

al
.
(2
02

1)
,
L
i
an

d
H
oi
em

(2
01

7)
,
B
en

-

ja
m
in

et
al
.
(2
01

9)
,
T
it
si
as

et
al
.
(2
02

0)
,
P
an

et
al
.
(2
02

0)
,

W
an

g
et

al
.
(2
02

1)
,
C
ha

ud
hr
y
et

al
.
(2
01
9b

),
L
op

ez
-P
az

an
d

R
an

za
to

(2
01

7)
,
C
ha

ud
hr
y
et

al
.
(2
01

9a
),
R
ie
m
er

et
al
.
(2
01

9)
,

G
up

ta
et

al
.
(2
02

0a
),

M
ir
za
de

h
et

al
.
(2
02

1)
,
R
ag

ha
va
n
an

d

B
al
ap

ra
ka
sh

(2
02

1)
,
G
uo

et
al
.
(2
02

0b
),

P
ha

m
et

al
.
(2
02

1b
),

K
no

bl
au

ch
et

al
.
(2
02
0)
,
D
er
ak

hs
ha

ni
et

al
.
(2
02

1)
,
vo

n
O
s-

w
al
d
et

al
.
(2
02

0)
,
H
en

ni
ng

et
al
.
(2
02

1)
,
Sh

in
et

al
.
(2
01

7)
,

Si
ng

h
et

al
.
(2
02

0)
,
Y
oo

n
et

al
.
(2
01

8)
,
H
un

g
et

al
.
(2
01

9)
,

A
de

l
et

al
.
(2
02

0)
,
L
ee

et
al
.
(2
02

1a
),

K
e
et

al
.
(2
02

0)
,
H
ur
-

ta
do

et
al
.
(2
02

1)
,
Y
oo

n
et

al
.
(2
02

1)
,
M
ir
za
de

h
et

al
.
(2
02
0)
,

R
am

as
es
h
et

al
.
(2
02
1)
,
L
ee

et
al
.
(2
02
1b

),
E
hr
et

et
al
.
(2
02
1)
,

Sc
hw

ar
z
et

al
.(

20
18
)

200

C
om

p.
ty
pe

L
ife

lo
ng

?
M
ec
ha

ni
sm

St
ru
c.

gi
ve
n

St
ru
c.

ty
pe

D
om

ai
n

R
ef
er
en

ce
s

N
on

e
L
ife

lo
ng

R
L

N
o

N
on

e
V
is
io
n

K
ir
kp

at
ri
ck

et
al
.(
20
17
),
Ju

ng
et

al
.(
20
20
),
Sc
hw

ar
z
et

al
.(
20
18
),

R
us
u
et

al
.(

20
16
)

N
on

e
L
ife

lo
ng

Su
pe

rv
is
ed

N
o

N
on

e
L
an

gu
ag
e

D
el

C
hi
ar
o
et

al
.
(2
02
0)
,
Su

n
et

al
.
(2
02

0)
,
K
e
et

al
.
(2
02

1)
,

G
up

ta
et

al
.(

20
20
c)

N
on

e
L
ife

lo
ng

U
ns
up

er
vi
se
d

N
o

N
on

e
V
is
io
n

K
um

ar
et

al
.(

20
21
),
R
os
ta
m
i(

20
21
),
V
ar
sh
ne

y
et

al
.(

20
21
)

N
on

e
L
ife

lo
ng

Su
pe

rv
is
ed

Im
pl
ic
it
ly

N
on

e
V
is
io
n

K
ap

oo
r

et
al
.
(2
02

1)
,

vo
n

O
sw

al
d

et
al
.
(2
02

1)
,

B
or
so
s

et
al
.
(2
02

0)
,
Z
en

o
et

al
.
(2
01

8)
,
Z
en

o
et

al
.
(2
02

1)
,
K
ao

et
al
.
(2
02

1)
,
Fr
an

kl
e
an

d
C
ar
bi
n
(2
01

9)
,
C
he

n
et

al
.
(2
02

1)
,

B
uz
ze
ga

et
al
.
(2
02
0)
,
P
ha

m
et

al
.
(2
02

1a
),

T
an

g
an

d
M
at
-

te
so
n

(2
02

1)
,
A
lju

nd
i
et

al
.
(2
01

9b
),

A
lju

nd
i
et

al
.
(2
01

9a
),

C
hr
ys
ak

is
an

d
M
oe
ns

(2
02

0)
,

Ji
n

et
al
.

(2
02

1)
,

C
ac
ci
a

et
al
.
(2
02

0a
),

H
u
et

al
.
(2
01

9)
,
A
lju

nd
i
et

al
.
(2
01

7)
,
Je
rf
el

et
al
.(
20
19
),
Le

e
et

al
.(
20
20
),
Ja
ve
d
an

d
W

hi
te

(2
01
9)
,B

ea
ul
ie
u

et
al
.(

20
20
),
B
an

ay
ee
an

za
de

et
al
.(

20
21
)

N
on

e
L
ife

lo
ng

U
ns
up

er
vi
se
d

Im
pl
ic
it
ly

N
on

e
V
is
io
n

E
go

ro
v
et

al
.
(2
02

1)
,
A
ch
ill
e
et

al
.
(2
01

8)
,
R
ao

et
al
.
(2
01

9)
,

A
yu

b
an

d
W
ag
ne

r
(2
02
1)

N
on

e
L
ife

lo
ng

Su
pe

rv
is
ed

E
xp

lic
it
ly

N
on

e
V
is
io
n

Jo
se
ph

an
d
B
al
as
ub

ra
m
an

ia
n
(2
02

0)
,
Sk

or
ok

ho
do

v
an

d
E
lh
o-

se
in
y
(2
02
1)

N
on

e
L
ife

lo
ng

Su
pe

rv
is
ed

Im
pl
ic
it
ly

N
on

e
L
an

gu
ag
e

de
M
as
so
n
d’
A
ut
um

e
et

al
.(
20
19
)

Fu
nc
ti
on

al
L
ife

lo
ng

Su
pe

rv
is
ed

N
o

A
gg
re
ga
ti
on

V
is
io
n

R
uv

ol
o
an

d
E
at
on

(2
01
3)

N
on

e
L
ife

lo
ng

Su
pe

rv
is
ed

N
o

N
on

e
A
ud

io
E
hr
et

et
al
.(

20
21
)

201

C
om

p.
ty
pe

L
ife

lo
ng

?
M
ec
ha

ni
sm

St
ru
c.

gi
ve
n

St
ru
c.

ty
pe

D
om

ai
n

R
ef
er
en

ce
s

Fu
nc
ti
on

al
M
T
L

Su
pe

rv
is
ed

E
xp

lic
it
ly

G
ra
ph

V
Q
A

A
nd

re
as

et
al
.
(2
01

6)
,
Sa

qu
r
an

d
N
ar
as
im

ha
n
(2
02

0)
,
P
ah

uj
a

et
al
.
(2
01

9)
,
H
u
et

al
.
(2
01

7)
,
Jo

hn
so
n
et

al
.
(2
01

7)
,
G
up

ta

et
al
.
(2
02

0b
),

A
ku

la
et

al
.
(2
02

1)
,
D
’A

m
ar
io

et
al
.
(2
02

1)
,

B
ah

da
na

u
et

al
.(

20
18
)

Fu
nc
ti
on

al
M
T
L

Su
pe

rv
is
ed

E
xp

lic
it
ly

G
ra
ph

T
oy

B
oš
nj
ak

et
al
.
(2
01

7)
,
C
ai

et
al
.
(2
01

7)
,
B
un

el
et

al
.
(2
01

8)
,

P
ie
rr
ot

et
al
.(

20
19

),
A
ga

rw
al
a
et

al
.(

20
21

),
G
ha

zi
et

al
.(

20
19

)

Fu
nc
ti
on

al
M
T
L

Su
pe

rv
is
ed

E
xp

lic
it
ly

G
ra
ph

V
is
io
n

W
u
et

al
.(
20
21
)

Fu
nc
ti
on

al
M
T
L

Su
pe

rv
is
ed

E
xp

lic
it
ly

G
ra
ph

R
ob

ot
ic
s

X
u
et

al
.(
20
18
)

Fu
nc
ti
on

al
M
T
L

Su
pe

rv
is
ed

E
xp

lic
it
ly

G
ra
ph

L
an

gu
ag
e

N
ye

et
al
.(

20
20
),

C
he

n
et

al
.(
20
20
b)

Fu
nc
ti
on

al
M
T
L

Su
pe

rv
is
ed

Im
pl
ic
it
ly

G
ra
ph

V
is
io
n

R
ah

am
an

et
al
.
(2
02
1)
,
C
ha

ng
et

al
.
(2
01

9)
,
R
os
en
ba

um

et
al
.(

20
19
)

Fu
nc
ti
on

al
M
T
L

Su
pe

rv
is
ed

N
o

G
ra
ph

V
is
io
n

R
os
en
ba

um
et

al
.
(2
01

8)
,
R
os
en
ba

um
et

al
.
(2
01
9)
,
M
ey
er
so
n

an
d
M
iik

ku
la
in
en

(2
01

8)
,
M
ey
er
so
n
an

d
M
iik

ku
la
in
en

(2
01

9)
,

C
he

n
et

al
.(

20
20
c)

Fu
nc
ti
on

al
M
T
L

Su
pe

rv
is
ed

Im
pl
ic
it
ly

G
ra
ph

L
an

gu
ag
e

K
ir
sc
h
et

al
.
(2
01

8)
,
R
os
en
ba

um
et

al
.
(2
01

9)
,
L
ak

e
an

d
B
a-

ro
ni

(2
01
8)
,L

ak
e
(2
01
9)
,R

en
et

al
.(
20
20
),
G
or
do

n
et

al
.(
20
20
),

L
iu

et
al
.
(2
02

0)
,
G
uo

et
al
.
(2
02

0a
),

A
ky

ür
ek

et
al
.
(2
02

1)
,

K
ey
se
rs

et
al
.(
20
20
)

Fu
nc
ti
on

al
M
T
L

Su
pe

rv
is
ed

N
o

G
ra
ph

L
an

gu
ag
e

R
os
en
ba

um
et

al
.
(2
01

9)
,
M
ey
er
so
n
an

d
M
iik

ku
la
in
en

(2
01

9)
,

C
he

n
et

al
.(

20
20
c)

Fu
nc
ti
on

al
M
T
L

Su
pe

rv
is
ed

N
o

G
ra
ph

R
ob

ot
ic
s

A
le
t
et

al
.(

20
18
),

A
le
t
et

al
.(
20
19
)

Fu
nc
ti
on

al
L
ife

lo
ng

Su
pe

rv
is
ed

Im
pl
ic
it
ly

C
ha

in
in
g

T
oy

R
ee
d
an

d
de

Fr
ei
ta
s
(2
01
6)

202

C
om

p.
ty
pe

L
ife

lo
ng

?
M
ec
ha

ni
sm

St
ru
c.

gi
ve
n

St
ru
c.

ty
pe

D
om

ai
n

R
ef
er
en

ce
s

Fu
nc
ti
on

al
L
ife

lo
ng

R
L

N
o

C
ha

in
in
g

V
is
io
n

Fe
rn
an

do
et

al
.(

20
17
)

Fu
nc
ti
on

al
L
ife

lo
ng

Su
pe

rv
is
ed

N
o

C
ha

in
in
g

V
is
io
n

Fe
rn
an

do
et

al
.
(2
01

7)
,
L
i
et

al
.
(2
01

9)
,
V
al
ko
v
et

al
.
(2
01

8)
,

V
en

ia
te

ta
l.
(2
02
1)
,R

aj
as
eg
ar
an

et
al
.(
20
19
),
C
he

n
et

al
.(
20
20
a)
,

Q
in

et
al
.(

20
21
)

Fu
nc
ti
on

al
L
ife

lo
ng

Su
pe

rv
is
ed

E
xp

lic
it
ly

C
ha

in
in
g

V
Q
A

K
im

et
al
.(
20
19
)

Fu
nc
ti
on

al
L
ife

lo
ng

Su
pe

rv
is
ed

N
o

C
ha

in
in
g

T
oy

G
au

nt
et

al
.(

20
17
)

Fu
nc
ti
on

al
L
ife

lo
ng

Su
pe

rv
is
ed

Im
pl
ic
it
ly

C
ha

in
in
g

V
is
io
n

O
st
ap

en
ko

et
al
.(
20
21
)

Fu
nc
ti
on

al
L
ife

lo
ng

Su
pe

rv
is
ed

Im
pl
ic
it
ly

G
ra
ph

L
an

gu
ag
e

L
ie

t
al
.(

20
20
b)

Fu
nc
ti
on

al
M
T
L

Su
pe

rv
is
ed

Im
pl
ic
it
ly

A
gg
re
ga
ti
on

V
is
io
n

H
uy

nh
an

d
E
lh
am

ifa
r
(2
02

0)
,
A
tz
m
on

et
al
.
(2
02

0)
,
R
ui
s

et
al
.(

20
21
)

Fu
nc
ti
on

al
ST

L
Su

pe
rv
is
ed

Im
pl
ic
it
ly

G
ra
ph

V
is
io
n

A
nd

re
as

(2
01
9)

Fu
nc
ti
on

al
ST

L
Su

pe
rv
is
ed

Im
pl
ic
it
ly

G
ra
ph

L
an

gu
ag
e

A
nd

re
as

(2
01
9)
,C

so
rd
ás

et
al
.(
20
21
)

Fu
nc
ti
on

al
ST

L
Su

pe
rv
is
ed

E
xp

lic
it
ly

G
ra
ph

V
is
io
n

Sy
lv
ai
n
et

al
.(

20
20
)

N
on

e
L
ife

lo
ng

R
L

Im
pl
ic
it
ly

N
on

e
R
ob

ot
ic
s

K
ap

la
ni
s
et

al
.(
20
19
)

N
on

e
L
ife

lo
ng

R
L

E
xp

lic
it
ly

N
on

e
V
is
io
n

Is
el
e
an

d
C
os
gu

n
(2
01
8)

N
on

e
L
ife

lo
ng

R
L

Im
pl
ic
it
ly

N
on

e
V
is
io
n

R
ol
ni
ck

et
al
.(
20
19
)

Fu
nc
ti
on

al
L
ife

lo
ng

R
L

N
o

A
gg
re
ga
ti
on

R
ob

ot
ic
s

B
ou

A
m
m
ar

et
al
.(

20
14
),

B
ou

A
m
m
ar

et
al
.(

20
15
),

N
ag
ab

an
di

et
al
.(

20
19
)

Fu
nc
ti
on

al
M
T
L

R
L

N
o

A
gg
re
ga
ti
on

R
ob

ot
ic
s

Zh
ao

et
al
.(

20
17
),
Jo

th
im

ur
ug

an
et

al
.(
20
19
)

N
on

e
L
ife

lo
ng

R
L

N
o

N
on

e
R
ob

ot
ic
s

G
ar
ci
a

an
d

T
ho

m
as

(2
01

9)
,
Su

tt
on

et
al
.
(2
01

1)
,
W
oł
cz
yk

et
al
.(

20
21
)

T
em

po
ra
l

L
ife

lo
ng

R
L

N
o

G
ra
ph

R
ob

ot
ic
s

X
u
et

al
.(

20
20
),
L
u
et

al
.(

20
21
)

203

C
om

p.
ty
pe

L
ife

lo
ng

?
M
ec
ha

ni
sm

St
ru
c.

gi
ve
n

St
ru
c.

ty
pe

D
om

ai
n

R
ef
er
en

ce
s

T
em

po
ra
l

ST
L

R
L

E
xp

lic
it
ly

G
ra
ph

T
oy

Su
tt
on

et
al
.(
19
99
b)

T
em

po
ra
l

ST
L

R
L

E
xp

lic
it
ly

G
ra
ph

R
ob

ot
ic
s

L
ee

et
al
.(

20
19
b)

T
em

po
ra
l

ST
L

R
L

N
o

G
ra
ph

V
is
io
n

B
ac
on

et
al
.(
20
17
)

T
em

po
ra
l

M
T
L

R
L

N
o

G
ra
ph

R
ob

ot
ic
s

D
ev
in

et
al
.(
20
19
),

Jo
th
im

ur
ug

an
et

al
.(

20
21
)

T
em

po
ra
l

ST
L

R
L

N
o

G
ra
ph

R
ob

ot
ic
s

P
en

g
et

al
.(

20
19
),

L
ie

t
al
.(
20
21
b)

Fu
nc
ti
on

al
ST

L
R
L

N
o

C
ha

in
in
g

T
oy

D
ay
an

an
d
H
in
to
n
(1
99
3)
,D

ie
tt
er
ic
h
(2
00
0)

Fu
nc
ti
on

al
ST

L
R
L

N
o

C
ha

in
in
g

V
is
io
n

V
ez
hn

ev
et
s
et

al
.(
20
17
)

T
em

po
ra
l

L
ife

lo
ng

R
L

N
o

G
ra
ph

T
oy

B
ru
ns
ki
ll
an

d
L
i(
20
14
)

T
em

po
ra
l

L
ife

lo
ng

R
L

N
o

G
ra
ph

V
is
io
n

T
es
sl
er

et
al
.(
20
17
)

Fu
nc
ti
on

al
L
ife

lo
ng

R
L

N
o

C
ha

in
in
g

T
oy

A
be

le
t
al
.(

20
18
)

Fu
nc
ti
on

al
ST

L
R
L

E
xp

lic
it
ly

A
gg
re
ga
ti
on

R
ob

ot
ic
s

T
od

or
ov

(2
00
9)

Fu
nc
ti
on

al
M
T
L

R
L

E
xp

lic
it
ly

A
gg
re
ga
ti
on

V
is
io
n

B
ar
re
to

et
al
.(

20
18
)

Fu
nc
ti
on

al
M
T
L

R
L

E
xp

lic
it
ly

A
gg
re
ga
ti
on

R
ob

ot
ic
s

H
aa
rn
oj
a
et

al
.(

20
18
)

Fu
nc
ti
on

al
M
T
L

R
L

E
xp

lic
it
ly

A
gg
re
ga
ti
on

T
oy

V
an

N
ie
ke
rk

et
al
.
(2
01

9)
,
C
ol
as

et
al
.
(2
01

9)
,
N
an

gu
e
T
as
se

et
al
.(

20
20
)

Fu
nc
ti
on

al
ST

L
R
L

E
xp

lic
it
ly

A
gg
re
ga
ti
on

V
is
io
n

V
an

Se
ije

n
et

al
.(

20
17
)

Fu
nc
ti
on

al
ST

L
R
L

N
o

A
gg
re
ga
ti
on

V
is
io
n

L
in

et
al
.(
20
19
),

L
in

et
al
.(
20
20
),

M
u
et

al
.(
20
20
)

Fu
nc
ti
on

al
M
T
L

R
L

N
o

C
ha

in
in
g

R
ob

ot
ic
s

D
ev
in

et
al
.(
20
17
),

Y
an

g
et

al
.(

20
20
)

Fu
nc
ti
on

al
ST

L
R
L

N
o

G
ra
ph

V
is
io
n

G
oy
al

et
al
.(

20
21
),
M
it
ta
le

t
al
.(

20
20
)

Fu
nc
ti
on

al
M
T
L

R
L

N
o

G
ra
ph

R
ob

ot
ic
s

P
at
ha

k
et

al
.(

20
19
),
H
ua

ng
et

al
.(

20
20
)

Fu
nc
ti
on

al
ST

L
R
L

N
o

A
gg
re
ga
ti
on

R
ob

ot
ic
s

L
ie

t
al
.(

20
20
a)

Fu
nc
ti
on

al
M
T
L

R
L

N
o

G
ra
ph

T
oy

C
ha

ng
et

al
.(
20
21
)

204

C
om

p.
ty
pe

L
ife

lo
ng

?
M
ec
ha

ni
sm

St
ru
c.

gi
ve
n

St
ru
c.

ty
pe

D
om

ai
n

R
ef
er
en

ce
s

N
on

e
ST

L
Su

pe
rv
is
ed

N
o

N
on

e
V
is
io
n

D
en

g
et

al
.(
20
09
)

N
on

e
ST

L
R
L

N
o

N
on

e
V
is
io
n

B
el
le
m
ar
e
et

al
.(

20
13
),
V
in
ya
ls

et
al
.(

20
17
)

N
on

e
ST

L
R
L

N
o

N
on

e
R
ob

ot
ic
s

B
ro
ck
m
an

et
al
.(
20
16
),

T
un

ya
su
vu

na
ko

ol
et

al
.(

20
20
)

N
on

e
M
T
L

R
L

N
o

N
on

e
R
ob

ot
ic
s

H
en

de
rs
on

et
al
.(

20
17
),

Y
u
et

al
.(

20
19
),
Ja

m
es

et
al
.(

20
20
)

N
on

e
M
T
L

R
L

E
xp

lic
it
ly

N
on

e
T
oy

C
he

va
lie

r-
B
oi
sv
er
t
et

al
.(
20
19
)

N
on

e
L
ife

lo
ng

R
L

N
o

N
on

e
T
oy

N
ek
oe
ie

t
al
.(
20
21
)

Fu
nc
ti
on

al
L
ife

lo
ng

Su
pe

rv
is
ed

E
xp

lic
it
ly

G
ra
ph

T
oy

Si
nh

a
et

al
.(

20
20
)

T
em

po
ra
l

M
T
L

R
L

E
xp

lic
it
ly

G
ra
ph

T
oy

G
ur

et
al
.(

20
21
)

Fu
nc
ti
on

al
M
T
L

R
L

Im
pl
ic
it
ly

G
ra
ph

R
ob

ot
ic
s

A
hm

ed
et

al
.(

20
21
)

205

APPENDIX B : Full Results on Lifelong Compositional Supervised Learning

For completeness, this appendix includes expanded results from Figures 5 and 6, corresponding

to soft layer ordering. Figure 42 is a more detailed version of Figure 5, and shows the

test accuracy immediately after each task was trained and after all tasks had been trained,

separately for each data set. Compositional algorithms conforming to the proposed framework

achieve a better trade-off than others in flexibility and stability, leading to good adaptability

to each task with little forgetting of previous tasks. Similarly, Figure 43 shows learning curves

like those in Figure 6, for each data set. Baselines that train components and structures

jointly all exhibit a decay in the performance of earlier tasks as the learning of future tasks

progresses, whereas methods conforming to the proposed framework do not. Results for soft

gating nets display a similar behavior.

Dyn
. +

 Com
p.

Com
po

siti
on

al
Join

t

No C
om

p.

Dyn
. +

 Com
p.

Com
po

siti
on

al
Join

t

No C
om

p.

Dyn
. +

 Com
p.

Com
po

siti
on

al
Join

t

No C
om

p.

Dyn
. +

 Com
p.

Com
po

siti
on

al
0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

ER EWC VAN FM
Final performance on MNIST

(a) MNIST
Dyn

. +
 Com

p.

Com
po

siti
on

al
Join

t

No C
om

p.

Dyn
. +

 Com
p.

Com
po

siti
on

al
Join

t

No C
om

p.

Dyn
. +

 Com
p.

Com
po

siti
on

al
Join

t

No C
om

p.

Dyn
. +

 Com
p.

Com
po

siti
on

al
0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

ER EWC VAN FM
Final performance on Fashion

(b) Fashion
Dyn

. +
 Com

p.

Com
po

siti
on

al
Join

t

No C
om

p.

Dyn
. +

 Com
p.

Com
po

siti
on

al
Join

t

No C
om

p.

Dyn
. +

 Com
p.

Com
po

siti
on

al
Join

t

No C
om

p.

Dyn
. +

 Com
p.

Com
po

siti
on

al
0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

ER EWC VAN FM
Final performance on CUB

(c) CUB

Dyn
. +

 Com
p.

Com
po

siti
on

al
Join

t

No C
om

p.

Dyn
. +

 Com
p.

Com
po

siti
on

al
Join

t

No C
om

p.

Dyn
. +

 Com
p.

Com
po

siti
on

al
Join

t

No C
om

p.

Dyn
. +

 Com
p.

Com
po

siti
on

al
0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

ER EWC VAN FM
Final performance on CIFAR

(d) CIFAR
Dyn

. +
 Com

p.

Com
po

siti
on

al
Join

t

No C
om

p.

Dyn
. +

 Com
p.

Com
po

siti
on

al
Join

t

No C
om

p.

Dyn
. +

 Com
p.

Com
po

siti
on

al
Join

t

No C
om

p.

Dyn
. +

 Com
p.

Com
po

siti
on

al
0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

ER EWC VAN FM
Final performance on Omniglot

(e) Omniglot

D+C C1.0

1.5

Ga
in

Final average performance

Forward
Final

Figure 42: Soft layer ordering accuracy. Compositional agents outperformed baselines in most
data sets for every adaptation method. Dyn. + comp. agents further improved performance,
leading to these methods being strongest. Error bars denote standard errors across ten seeds.

206

ER Dyn. + Comp. ER Compositional ER Joint ER No Components

MNIST

0 200 400 600
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ERDynamic on MNIST

0 200 400 600
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ERComposable on MNIST

0 200 400 600
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ERNoncomposable on MNIST

0 200 400 600
epochs

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

EROriginal on MNIST

Fashion

0 200 400 600
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ERDynamic on Fashion

0 200 400 600
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ERComposable on Fashion

0 200 400 600
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ERNoncomposable on Fashion

0 200 400 600
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

EROriginal on Fashion

CUB

0 500 1000 1500
epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

ERDynamic on CUB

0 500 1000 1500
epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

ERComposable on CUB

0 500 1000 1500
epochs

0.0

0.2

0.4

0.6

0.8
Ac

cu
ra

cy

ERNoncomposable on CUB

0 500 1000 1500
epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

EROriginal on CUB

CIFAR

0 500 1000 1500
epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

ERDynamic on CIFAR

0 500 1000 1500
epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

ERComposable on CIFAR

0 500 1000 1500
epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

ERNoncomposable on CIFAR

0 500 1000 1500
epochs

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

EROriginal on CIFAR

Omniglot

0 1000 2000 3000 4000
epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

ERDynamic on Omniglot

0 1000 2000 3000 4000
epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

ERComposable on Omniglot

0 1000 2000 3000 4000
epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

ERNoncomposable on Omniglot

0 1000 2000 3000 4000
epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

EROriginal on Omniglot

Figure 43: Smoothed learning curves with soft layer ordering using ER. Compositional
methods did not exhibit decaying performance of early tasks, while joint and no-components
baselines did.

207

APPENDIX C : Additional Results Using EWC for Reinforcement Learning on

OpenAI Gym MuJoCo Domains

The evaluation of Chapter 5 on OpenAI MuJoCo domains considered six different variants of

EWC, by varying two different choices. The first choice was whether to share the variance of

the Gaussian policies across the different tasks. Sharing the variance enables the algorithm

to start from a more deterministic policy, thereby achieving higher initial performance,

at the cost of reducing task-specific exploration. The second choice was the exact form

of the regularization penalty. In the original EWC formulation, the regularization term

applied to the PG objective was −λ
2

∑t−1
t̂=1

∥∥∥θ − α(̂t)
∥∥∥2
H (̂t)

. Huszár (2018) noted that this

does not correspond to the correct Bayesian formulation, and proposed to instead use

−λ
2

∥∥∥θ −α(t−1)
∥∥∥2
H(t−1)

, where α(t−1) and H(t−1) capture all the information from tasks 1

through t − 1 in the Bayesian setting. Beyond these two choices of regularization, the

experiments considered an additional choice where λ is scaled by 1
t−1 in order for the penalty

not to increase linearly with the number of tasks. Hyperparameter tuning independently

obtained the optimal values for each version, as described in Chapter 5.

Table 21 summarizes the results obtained for each variant of EWC. The only version that

consistently learned each task’s policy (tune) was the original EWC regularization with the

variance shared across tasks. This was also the only variant for which the final performance

was never unreasonably low. Therefore, the experiments in Chapter 5 used this version.

208

Table 21: Results with different versions of EWC. The first digit differentiates variants with
shared σ (1) and task-specific σ (2), and the second digit differentiates between Huszár
regularization (1), EWC regularization scaled by 1

t−1 (2), and the original EWC regularization
(3). EWC regularization with σ shared across tasks (boldfaced) was the most consistent, so
this was chosen for the experiments in Section 5.7.5. NaN’s indicate that the learned policies
became unstable, leading to failures in the simulator.

Domain Algorithm Start Tune Final

HC_G

EWC 1, 1 −1245 −2917 −3.97e4
EWC 1, 2 1796 2409 2603
EWC 1, 3 1666 2225 2254
EWC 2, 1 −778 1384 1797
EWC 2, 2 −762 1565 2238
EWC 2, 3 −6.58e5 −7e5 −1.05e7

HC_BP

EWC 1, 1 1029 1748 1522
EWC 1, 2 1132 1769 1588
EWC 1, 3 1077 1716 1571
EWC 2, 1 −892 1308 1521
EWC 2, 2 −1.79e5 −2.16e5 −1.53e6
EWC 2, 3 −1.1e6 −1.01e6 −5.23e6

Ho_G

EWC 1, 1 1301 2252 1522
EWC 1, 2 1339 2322 1836
EWC 1, 3 1434 2488 1732
EWC 2, 1 872 2616 2089
EWC 2, 2 930 2582 1900
EWC 2, 3 939 2520 2029

Ho_BP

EWC 1, 1 613 1508 793
EWC 1, 2 385 920 43
EWC 1, 3 424 936 31
EWC 2, 1 615 2142 1011
EWC 2, 2 620 2119 1120
EWC 2, 3 613 2138 928

W_G

EWC 1, 1 1293 2052 303
EWC 1, 2 −2132 −2181 NaN
EWC 1, 3 2192 3901 2325
EWC 2, 1 −2269 −1915 −2490
EWC 2, 2 −3.12e4 −3.23e4 −1.15e5
EWC 2, 3 −8.98e4 −9.65e4 −1.59e5

W_BP

EWC 1, 1 1237 3055 1382
EWC 1, 2 1148 2800 1306
EWC 1, 3 744 2000 −128
EWC 2, 1 NaN NaN NaN
EWC 2, 2 1027 3687 1416
EWC 2, 3 NaN NaN NaN

209

APPENDIX D : Proofs of Theoretical Guarantees of LPG-FTW

This appendix presents complete proofs for the three results on the convergence of LPG-FTW

described in Chapter 5. First, recall the definitions of the actual objective the agent wants

to optimize:

gt(Φ) =
1

t

t∑
t̂=1

max
ψ(̂t)

[∥∥∥α(̂t) −Φψ(̂t)
∥∥∥2
H (̂t)

+ g(̂t)
>(

Φψ(̂t) −α(̂t)
)
− µ

∥∥∥ψ(̂t)
∥∥∥
1

]
− λ‖Φ‖2F ,

the surrogate objective used for optimizing Φ:

ĝt(Φ) =−λ‖Φ‖2F +
1

t

t∑
t̂=1

ˆ̀
(
Φ,ψ(̂t),α(̂t),H (̂t), g(̂t)

)
,

and the expected objective:

g(Φ) =EH(t),g(t),α(t)

[
max
ψ

ˆ̀
(
Φ,ψ,α(t),H(t), g(t)

)]
,

with ˆ̀(Φ,ψ,α,H, g) = −µ‖ψ‖1 + ‖α−Φψ‖2H + g>(Φψ −α). The convergence results of

LPG-FTW are summarized as: 1) the knowledge base Φt becomes increasingly stable, 2) ĝt,

gt, and g converge to the same value, and 3) Φt converges to a stationary point of g. These

results, given below as Propositions 4, 5, and 6, are based on the following assumptions:

A. The tuples
(
H(t), g(t)

)
are drawn i.i.d. from a distribution with compact support.

B. The sequence
{
α(t)

}∞
t=1

is stationary and φ-mixing.

C. The magnitude of J (t)(0) is bounded by B.

D. For all Φ, H(t), g(t), and α(t), the largest eigenvalue (smallest in magnitude) of

Φ>γH
(t)Φγ is at most −2κ, with κ > 0, where γ is the set of non-zero indices of

ψ(t) = arg maxψ
ˆ̀
(
Φ,ψ,H(t), g(t),α(t)

)
. The non-zero elements of the unique maxi-

mizing ψ(t) are: ψ(t)
γ =

(
Φ>γH

(t)Φγ

)−1(
Φ>
(
H(t)α(t) − g(t)

)
− µ sign

(
ψ(t)

γ

))
.

210

Note that the α(t)’s are not independently obtained, so the proof cannot assume they are

i.i.d. like Ruvolo and Eaton (2013). Therefore, this proof uses a weaker assumption on the

sequence of α(t)’s found by LPG-FTW, which enables using the Donsker theorem (Billingsley,

1968) and the Glivenko-Cantelli theorem (Baklanov, 2006).

Claim 1. ∃ c1, c2, c3 ∈ R such that no element of Φt, ψ(t), and α(t) has magnitude greater

than c1, c2, and c3, respectively, ∀t ∈ {1, . . . ,∞}.

Proof. This proof corroborates the claim by strong induction. In the base case, Φ1 is given

by arg maxε J (1)(ε)− λ‖ε‖22. If ε = 0, the objective becomes J (1)(0), which is bounded by

Assumption C. This implies that if ε grows too large, −λ‖ε‖2 would be too negative, and

then it would not be a maximizer. ψ(1) = 1 per Algorithm 13, and so α(1) = Φ1, which is

bounded.

Then, for t ≤ k, ψ(t) and ε(t) are given by arg maxψ,ε J (t)(Φt−1ψ + ε)− µ‖ψ‖1 − λ‖ε‖22. If

ψ = 0 and ε = 0, this becomes J (t)(0), which is again bounded, and therefore neither ε

nor ψ may grow too large. The bound on α(t) follows by induction, since α(t) = Φt−1ψ
(t).

Moreover, since only the t−th column of Φ is modified by setting it to ε, Φt is also bounded.

For t > k, the same argument applies to ψ(t) and therefore to α(t). Φt is then given by

arg maxΦ−λ‖Φ‖2F + 1
t

∑t
t̂ ‖Φψ(̂t)−α(̂t)‖H (̂t) + g(̂t)

>
(Φψ(̂t)−α(̂t)). If Φt = 0, the objective

for task Z (̂t) becomes α(̂t)>H (̂t)α(̂t) + g(̂t)
>
α(̂t). By Assumption A and strong induction,

this is bounded for all t̂ ≤ t, so if any element of Φ is too large, Φ would not be a maximizer

because of the regularization term. �

Proposition 4. Φt −Φt−1 = O(1t) .

Proof. The first step is to show that ĝt−ĝt−1 is Lipschitz with constant O
(
1
t

)
. For this, note

that ˆ̀ is Lipschitz in Φ with a constant independent of t, since it is a quadratic function

over a compact region with bounded coefficients. Next, compute the difference:

211

ĝt(Φ)− ĝt−1(Φ) =
1

t
ˆ̀
(
Φ,ψ(t),α(t),H(t), g(t)

)
+

1

t

t−1∑
t̂=1

ˆ̀
(
Φ,ψ(̂t),α(̂t),H (̂t), g(̂t)

)

− 1

t− 1

t−1∑
t̂=1

ˆ̀
(
Φ,ψ(̂t),α(̂t),H (̂t), g(̂t)

)

=
1

t
ˆ̀
(
Φ,ψ(t),α(t),H(t), g(t)

)
+

1

t(t− 1)

t−1∑
t̂=1

ˆ̀
(
Φ,ψ(̂t),α(̂t),H (̂t), g(̂t)

)
.

Therefore, ĝt− ĝt−1 has a Lipschitz constant O
(
1
t

)
, since it is the difference of two terms

divided by t: ˆ̀ and an average over t−1 terms, whose Lipschitz constant is bounded by the

largest Lipschitz constant of the terms.

Let ξt be the Lipschitz constant of ĝt − ĝt−1. This gives:

ĝt−1(Φt−1)− ĝt−1(Φt) = ĝt−1(Φt−1)− ĝt(Φt−1) + ĝt(Φt−1)− ĝt(Φt) + ĝt(Φt)− ĝt−1(Φt)

≤ ĝt−1(Φt−1)− ĝt(Φt−1) + ĝt(Φt)− ĝt−1(Φt)

=− (ĝt − ĝt−1)(Φt−1) + (ĝt − ĝt−1)(Φt) ≤ ξt‖Φt −Φt−1‖F .

Moreover, since Φt−1 maximizes ĝt−1 and the `2 regularization term ensures that the

maximum eigenvalue of the Hessian of ĝt−1 is upper-bounded by −2λ, then:

ĝt−1(Φt−1)− ĝt−1(Φt) ≥ λ‖Φt −Φt−1‖2F .

Combining these two inequalities gives:

‖Φt −Φt−1‖F ≤
ξt
λ

= O

(
1

t

)

�

The critical step for adapting the proof from Ruvolo and Eaton (2013) to LPG-FTW is to

introduce the following lemma, which shows the equality of the maximizers of ` and ˆ̀.

Lemma 2. ˆ̀
(
Φt,ψ

(t+1),α(t+1),H(t+1), g(t+1)
)

= maxψ ˆ̀
(
Φt,ψ,α

(t+1),H(t+1), g(t+1)
)

.

212

Proof. Showing this requires the following to hold:

ψ(t+1) = arg max
ψ

`(Φt,ψ) = arg max
ψ

ˆ̀
(
Φt,ψ,α

(t+1),H(t+1), g(t+1)
)
.

First, compute the gradient of `, given by:

∇ψ`(Φt,ψ) =− µ sign(ψ) + Φ>t ∇θJ (t+1)(θ)

∣∣∣∣
θ=Φtψ

.

Since ψ(t+1) is the maximizer of `, then:

∇ψ`(Φt,ψ)

∣∣∣∣
ψ=ψ(t+1)

= −µ sign
(
ψ(t+1)

)
+ Φ>t g

(t+1) = 0 . (D.1)

Now compute the gradient of ˆ̀ and evaluate it at ψ(t+1):

∇ψ ˆ̀
(
Φt,ψ,α

(t+1),H(t+1), g(t+1)
)

= −µ sign
(
ψ(t+1)

)
+ Φtg

(t+1) − 2Φ>t H
(t+1)

(
α(t+1)−Φtψ

)

∇ψ ˆ̀
(
Φt,ψ,α

(t+1),H(t+1), g(t+1)
)∣∣∣∣
ψ=ψ(t+1)

= −µ sign
(
ψ(t+1)

)
+ Φ>t g

(t+1) = 0 ,

since it matches Equation D.1. By Assumption D, ˆ̀ has a unique maximizer ψ(t+1). �

Before stating the next lemma, define:

ψ∗ =β
(
Φ,α(t),H(t), g(t)

)
= arg max

ψ

ˆ̀
(
Φ,ψ,α(t),H(t), g(t)

)
.

Lemma 3.

A. maxψ ˆ̀
(
Φ,ψ,α(t),H(t), g(t)

)
is continuously differentiable in Φ with

∇Φ max
ψ

ˆ̀(Φ,ψ,α(t),H(t), g(t)) =
[
− 2H(t)ψ∗ + g(t)

]
ψ∗> .

213

B. g is continuously differentiable and

∇Φg(Φ) = −2λI + E
[
∇Φ max

ψ

ˆ̀
(
Φ,ψ,α(t),H(t), g(t)

)]
.

C. ∇Φg(Φ) is Lipschitz in the space of latent components Φ that obey Claim 1.

Proof. To prove Part A, apply a corollary to Theorem 4.1 in (Bonnans and Shapiro, 1998).

This corollary states that if ˆ̀ is continuously differentiable in Φ (which it clearly is) and has

a unique maximizer ψ(t) for any α(t), H(t), and g(t) (which is guaranteed by Assumption D),

then ∇Φ minψ ˆ̀
(
Φ,ψ,α(t),H(t), g(t)

)
exists and is equal to ∇Φ

ˆ̀
(
Φ,ψ∗,α(t),H(t), g(t)

)
,

given by
[
− 2H(t)ψ∗ + g(t)

]
ψ∗>. Part B follows since, by Assumption A and Claim 1,

the tuple
(
H(t), g(t),α(t)

)
is drawn from a distribution with compact support.

To prove Part C, first show that β is Lipschitz in Φ with constant independent of α(t), H(t),

and g(t). Part C follows due to the form of the gradient of g with respect to Φ. The function

β is continuous in its arguments since ˆ̀ is continuous and by Assumption D has a unique

maximizer. Next, define ρ
(
Φ,H(t), g(t),α(t), j

)
= l>j

[
2H(t)

(
Φψ∗ −α(t)

)
+ g(t)

]
, where lj

is the j-th column of Φ. The argument of Fuchs (2005) yields the following conditions:

∣∣∣ρ(Φ,H(t), g(t),α(t), j
)∣∣∣ =µ⇐⇒ ψ∗j 6= 0∣∣∣ρ(Φ,H(t), g(t),α(t), j
)∣∣∣ <µ⇐⇒ ψ∗j = 0 . (D.2)

Let γ be the set of indices j such that
∣∣∣ρ(Φ,H(t), g(t),α(t), j

)∣∣∣ = µ. Since ρ is continuous in

Φ,H(t), g(t), and α(t), there must exist an open neighborhood V around
(
Φ,H(t), g(t),α(t)

)
such that for all

(
Φ′,H(t)′, g(t)

′
,α(t)′

)
∈ V and j /∈ γ,

∣∣∣ρ(Φ′,H(t)′, g(t)
′
,α(t)′, j

)∣∣∣ < µ. By

Equation D.2, it follows that β
(
Φ′,H(t)′, g(t)

′
,α(t)′

)
j

= 0, ∀j /∈ γ.

214

Next, define a new objective:

¯̀(Φγ ,ψγ ,α,H, g) =‖α−Φγψγ‖2H + g>(Φγψγ −α)− µ‖ψγ‖1 .

By Assumption D, ¯̀ is strictly concave with a Hessian bounded by −2κ, implying that:

¯̀
(
Φγ , β

(
Φ,α(t),H(t), g(t)

)
γ
,α(t),H(t), g(t)

)
− ¯̀
(
Φγ , β

(
Φ′,α(t)′,H(t)′, g(t)

′)
γ
,α(t),H(t), g(t)

)
≥κ
∥∥∥β(Φ′,α(t)′,H(t)′, g(t)

′)
γ
− β

(
Φ,α(t),H(t), g(t)

)
γ

∥∥∥2
2
. (D.3)

On the other hand, by Assumption A and Claim 1, ¯̀ is Lipschitz in its second argument

with constant e1‖Φγ −Φ′γ‖F + e2‖α−α′‖2 + e3‖H −H ′‖F + e4‖g − g′‖2, where e1–4 are

all constants independent of any of the arguments. Combining this with Equation D.3 gives:

∥∥∥β(Φ′,α(t)′,H(t)′, g(t)
′)− β(Φ,α(t),H(t), g(t)

)∥∥∥ =∥∥∥β(Φ′,α(t)′,H(t)′, g(t)
′)
γ
− β

(
Φ,α(t),H(t), g(t)

)
γ

∥∥∥
≤
e1‖Φγ −Φ′γ‖F + e2

∥∥∥α(t) −α(t)′
∥∥∥
2

κ
+
e3

∥∥∥H(t) −H(t)′
∥∥∥
F

+ e4

∥∥∥g(t) − g(t)′∥∥∥
2

κ
.

Therefore, β is locally Lipschitz. Since the domain of β is compact by Assumption A and

Claim 1, this implies that β is uniformly Lipschitz, and therefore ∇g is Lipschitz as well. �

Proposition 5.

1. ĝt(Φt) converges a.s.

2. gt(Φt)− ĝt(Φt) converges a.s. to 0

3. gt(Φt)− ĝ(Φt) converges a.s. to 0

4. g(Φt) converges a.s.

215

Proof. Begin by defining the stochastic process ut = ĝt(Φ). The outline of the proof is to

show that this process is a quasi-martingale and by a theorem by Fisk (1965), it converges

almost surely.

ut+1 − ut =ĝt+1(Φt+1)− ĝt(Φt) = ĝt+1(Φt+1)− ĝt+1(Φt) + ĝt+1(Φt)− ĝt(Φt)

=(ĝt+1(Φt+1)− ĝt+1(Φt)) +
gt(Φt)− ĝt(Φt)

t+ 1

+
maxψ ˆ̀

(
Φt,ψ,α

(t+1),H(t+1), g(t+1)
)

t+ 1
− gt(Φt)

t+ 1
, (D.4)

which made use of the fact that:

ĝt+1(Φt) =

ˆ̀
(
Φt,ψ

(t+1),α(t+1),H(t+1), g(t+1)
)

t+ 1
+

t

t+ 1
ĝt(Φt)

=
maxψ ˆ̀

(
Φt,ψ,α

(t+1),H(t+1), g(t+1)
)

t+ 1
+

t

t+ 1
ĝt(Φt) ,

where the second equality holds by Lemma 2.

The next step is to show that the sum of positive and negative variations in Equation D.4

are bounded. By an argument similar to a lemma by Bottou (2009), the sum of positive

variations of ut is bounded, since ĝ is upper-bounded by Assumption C. Therefore, it suffices

to show that the sum of negative variations is bounded. The first term on the first line of

Equation D.4 is guaranteed to be positive since Φt+1 maximizes ĝt+1. Additionally, since gt

is always at least as large as ĝt, the second term on the first line is also guaranteed to be

positive. Therefore, this step can focus on the second line.

E[ut+1 − ut | It] ≥
E
[

maxψ ˆ̀
(
Φt,ψ,α

(t+1),H(t+1), g(t+1)
)
| It
]

t+ 1
− gt(Φt)

t+ 1

=
g(Φt)− gt(Φt)

t+ 1
≥ −‖g − gt‖∞

t+ 1
,

where It represents all the α(̂t)’s, H (̂t)’s, and g(̂t)’s up to time t. Hence, showing that∑∞
t=1

‖g−gt‖∞
t+1 <∞ will prove that ut is a quasi-martingale that converges almost surely.

216

To prove this, apply the following corollary of the Donsker theorem (Van der Vaart, 2000):

Let F = {fθ : X 7→ R,θ ∈ Θ} be a set of measurable functions indexed by a
bounded subset Θ of Rd. Suppose that there exists a constant K such that:

|fθ1(x)− fθ2(x)| ≤ K‖θ1 − θ2‖2

for every θ1,θ2 ∈ Θ and x ∈ X . Then, F is P-Donsker and for any f ∈ F , we
define:

Pnf =
1

n

n∑
i=1

f(Xi)

Pf =EX [f(X)]

Gnf =
√
n(Pnf − Pf) .

If Pf2 ≤ δ2 and ‖f‖∞ < B and the random elements are Borel measurable, then:

E[sup
f∈F
|Gnf |] = O(1) .

In order to apply this corollary to this analysis, consider a set of functions F indexed by Φ,

given by fΦ

(
H(t), g(t),α(t)

)
= maxψ ˆ̀

(
Φ,ψ,α(t),H(t), g(t)

)
, whose domain is all possible

tuples
(
H(t), g(t),α(t)

)
. The expected value of f2 is bounded for all f ∈ F since ˆ̀ is

bounded by Claim 1. Second, ‖f‖∞ is bounded given Claim 1 and Assumption A. Finally,

by Assumptions A and B, the corollary applies to the tuples
(
H(t), g(t),α(t)

)
(Billingsley,

1968). Therefore:

E

[
√
t

∥∥∥∥∥
(

1

t

t∑
t̂=1

max
ψ

ˆ̀
(
Φ,ψ,α(̂t),H (̂t), g(̂t)

))
−E

[
max
ψ

ˆ̀
(
Φ,ψ,α(̂t),H (̂t), g(̂t)

)]∥∥∥∥∥
∞

]
= O(1)

=⇒E[‖gt(Φ)− g(Φ)‖∞] = O

(
1√
t

)
.

Therefore, ∃ c3 ∈ R such that E[‖gt − g‖∞] < c3√
t
:

∞∑
t=1

E
[
E[ut+1 − ut | It]−

]
≥
∞∑
t=1

−E[‖gt − g‖∞]

t+ 1
>
∞∑
t=1

− c3
t
3
2

= −O(1) ,

217

where i−=min(i, 0). This shows that the sum of negative variations of ut is bounded, so ut

is a quasi-martingale and thus converges almost surely (Fisk, 1965). This proves Part 1 of

Proposition 5.

Next, show that ut being a quasi-martingale implies the almost sure convergence of the

fourth line of Equation D.4. To see this, note that since ut is a quasi-martingale and the sum

of its positive variations is bounded, and since the term on the fourth line of Equation D.4,
gt(Φt)−ĝt(Φt)

t+1 , is positive, the sum of that term from 1 to infinity must be bounded:

∞∑
t=1

gt(Φt)− ĝt(Φt)

t+ 1
<∞ . (D.5)

To complete the proof of Part 2 of Proposition 5, consider the following lemma: Let an, bn

be two real sequences such that for all n, an ≥ 0, bn ≥ 0,
∑∞

j=1 aj =∞,
∑∞

j=1 ajbj <∞,

∃ K > 0 such that |bn+1 − bn| < Kan. Then, limn→∞ bn = 0. Define the sequences at = 1
t+1

and bt = gt(Φt)− ĝt(Φt); clearly these are both positive sequences and
∑∞

t=1 at =∞. By

Equation D.5,
∑∞

t=1 anbn <∞. Finally, since gt and ĝt are bounded and Lipschitz with

constant independent of t and Φt+1 −Φt = O
(
1
t

)
, all of the assumptions are verified, which

implies that gt − ĝt converges a.s. to 0.

By Part 2 and the Glivenko-Cantelli theorem, limt→∞ ‖g − gt‖∞ = 0, which implies that g

must converge almost surely. By transitivity, limt→∞ g(Φt)− ĝt(Φt) = 0, showing Parts 3

and 4. �

Proposition 6. The distance between Φt and the set of all stationary points of g converges

a.s. to 0.

Proof. First, ∇Φĝt is Lipschitz with a constant independent of t, since the gradient of ĝt is

linear, ψ(t), H(t), g(t), and α(t) are bounded, and the summation in ĝt is normalized by t.

Next, define an arbitrary non-zero matrix U of the same dimensionality as Φ. The fact that

gt upper-bounds ĝt implies that:

218

gt(Φt +U) ≥ĝt(Φt +U) =⇒ lim
t→∞

g(Φt +U) ≥ lim
t→∞

ĝt(Φt +U) ,

which used the fact that limt→∞ gt = limt→∞ g. Let ht > 0 be a sequence of positive real

numbers that converges to 0. Taking the first-order Taylor expansion on both sides of the

inequality and using the fact that ∇g and ∇ĝ are both Lipschitz with constant independent

of t gives:

limt→∞gt(Φt)+Tr
(
htU

>∇gt(Φt)
)
+O(htU) ≥ lim

t→∞
ĝt(Φt)+Tr

(
htU

>∇ĝt(Φt)
)
+O(htU) .

Since limt→∞ g(Φt)− ĝ(Φt) = 0 a.s. and limt→∞ ht = 0:

lim
t→∞

(
1

‖U‖F
U>∇g(Φt)

)
≥ lim

t→∞

(
1

‖U‖F
U>∇ĝ(Φt)

)
.

Since this inequality has to hold for every U , then limt→∞∇g(Φt) = limt→∞∇ĝt(Φt). Since

Φt minimizes ĝt, then ∇ĝt(Φt) = 0. This implies that ∇g(Φt) = 0, which is a sufficient

first-order condition for Φt to be a stationary point of g. �

219

APPENDIX E : Visualization of All CompoSuite Tasks

CompoSuite consists of a total of 256 possible combinations of elements, each representing a

separate task. Figures 44– 47 show each of the different robot arms in action, solving the

diversity of tasks in CompoSuite.

Figure 44: Visualization of the 64 IIWA tasks.

220

Figure 45: Visualization of the 64 Panda tasks.

221

Figure 46: Visualization of the 64 Jaco tasks.

222

Figure 47: Visualization of the 64 Gen3 tasks.

223

BIBLIOGRAPHY

[1] Abel, D., Arumugam, D., Lehnert, L., and Littman, M. (2018). State abstractions for
lifelong reinforcement learning. In Proceedings of the 35th International Conference on
Machine Learning (ICML-18), pages 10–19.

[2] Achiam, J. (2018). Spinning up in deep reinforcement learning. https://github.com/o
penai/spinningup.

[3] Achille, A., Eccles, T., Matthey, L., Burgess, C., Watters, N., Lerchner, A., and Higgins, I.
(2018). Life-long disentangled representation learning with cross-domain latent homologies.
In Advances in Neural Information Processing Systems 31 (NeurIPS-18), pages 9873–9883.

[4] Adel, T., Zhao, H., and Turner, R. E. (2020). Continual learning with adaptive weights
(CLAW). In 8th International Conference on Learning Representations (ICLR-20).

[5] Agarwala, A., Das, A., Juba, B., Panigrahy, R., Sharan, V., Wang, X., and Zhang, Q.
(2021). One network fits all? Modular versus monolithic task formulations in neural
networks. In 9th International Conference on Learning Representations (ICLR-21).

[6] Ahmed, O., Träuble, F., Goyal, A., Neitz, A., Wuthrich, M., Bengio, Y., Schölkopf, B., and
Bauer, S. (2021). CausalWorld: A robotic manipulation benchmark for causal structure and
transfer learning. In 9th International Conference on Learning Representations (ICLR-21).

[7] Ahn, H., Cha, S., Lee, D., and Moon, T. (2019). Uncertainty-based continual learning
with adaptive regularization. In Advances in Neural Information Processing Systems 32
(NeurIPS-19).

[8] Aksan, E., Deselaers, T., Tagliasacchi, A., and Hilliges, O. (2020). CoSE: Compositional
stroke embeddings. In Advances in Neural Information Processing Systems 33 (NeurIPS-
20), pages 10041–10052.

[9] Akula, A., Jampani, V., Changpinyo, S., and Zhu, S.-C. (2021). Robust visual reasoning
via language guided neural module networks. In Advances in Neural Information Processing
Systems 34 (NeurIPS-21).

[10] Akyürek, E., Akyürek, A. F., and Andreas, J. (2021). Learning to recombine and
resample data for compositional generalization. In 9th International Conference on
Learning Representations (ICLR-21).

[11] Al-Shedivat, M., Bansal, T., Burda, Y., Sutskever, I., Mordatch, I., and Abbeel, P. (2018).
Continuous adaptation via meta-learning in nonstationary and competitive environments.
In 6th International Conference on Learning Representations (ICLR-18).

[12] Alet, F., Lozano-Perez, T., and Kaelbling, L. P. (2018). Modular meta-learning. In
Proceedings of the 2nd Conference on Robot Learning (CoRL-18), pages 856–868.

224

https://github.com/openai/spinningup
https://github.com/openai/spinningup

[13] Alet, F., Weng, E., Lozano-Pérez, T., and Kaelbling, L. P. (2019). Neural relational
inference with fast modular meta-learning. In Advances in Neural Information Processing
Systems 32 (NeurIPS-19).

[14] Aljundi, R., Belilovsky, E., Tuytelaars, T., Charlin, L., Caccia, M., Lin, M., and
Page-Caccia, L. (2019a). Online continual learning with maximal interfered retrieval. In
Advances in Neural Information Processing Systems 32 (NeurIPS-19).

[15] Aljundi, R., Chakravarty, P., and Tuytelaars, T. (2017). Expert gate: Lifelong learning
with a network of experts. In Proceedings of the 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR-17), pages 3366–3375.

[16] Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y. (2019b). Gradient based sample
selection for online continual learning. In Advances in Neural Information Processing
Systems 32 (NeurIPS-19).

[17] Andreas, J. (2019). Measuring compositionality in representation learning. In 7th
International Conference on Learning Representations (ICLR-19).

[18] Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. (2016). Neural module networks.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR-16), pages 39–48.

[19] Atzmon, Y., Kreuk, F., Shalit, U., and Chechik, G. (2020). A causal view of compositional
zero-shot recognition. In Advances in Neural Information Processing Systems 33 (NeurIPS-
20), pages 1462–1473.

[20] Ayub, A. and Wagner, A. (2021). EEC: Learning to encode and regenerate images
for continual learning. In 9th International Conference on Learning Representations
(ICLR-21).

[21] Bacon, P.-L., Harb, J., and Precup, D. (2017). The option-critic architecture. In
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17),
pages 1726–1734.

[22] Bahdanau, D., Murty, S., Noukhovitch, M., Nguyen, T. H., de Vries, H., and Courville,
A. (2018). Systematic generalization: What is required and can it be learned? In 6th
International Conference on Learning Representations (ICLR-18).

[23] Baklanov, E. A. (2006). The strong law of large numbers for L-statistics with dependent
data. Siberian Mathematical Journal, 47(6):975–979.

[24] Banayeeanzade, M., Mirzaiezadeh, R., Hasani, H., and Soleymani, M. (2021). Genera-
tive vs. discriminative: Rethinking the meta-continual learning. In Advances in Neural
Information Processing Systems 34 (NeurIPS-21).

[25] Barreto, A., Borsa, D., Quan, J., Schaul, T., Silver, D., Hessel, M., Mankowitz, D.,
Zidek, A., and Munos, R. (2018). Transfer in deep reinforcement learning using successor

225

features and generalised policy improvement. In Proceedings of the 35th International
Conference on Machine Learning (ICML-18), pages 501–510.

[26] Beaulieu, S., Frati, L., Miconi, T., Lehman, J., Stanley, K. O., Clune, J., and Cheney,
N. (2020). Learning to continually learn. In Proceedings of the 24th European Conference
on Artificial Intelligence (ECAI-20), pages 992–1001.

[27] Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research (JAIR), 47:253–279.

[28] Benjamin, A., Rolnick, D., and Kording, K. (2019). Measuring and regularizing networks
in function space. In 7th International Conference on Learning Representations (ICLR-19).

[29] Billingsley, P. (1968). Convergence of probability measures. John Wiley & Sons.

[30] Bonnans, J. F. and Shapiro, A. (1998). Optimization problems with perturbations: A
guided tour. SIAM Review, 40(2):228–264.

[31] Borsos, Z., Mutny, M., and Krause, A. (2020). Coresets via bilevel optimization for
continual learning and streaming. In Advances in Neural Information Processing Systems
33 (NeurIPS-20), pages 14879–14890.

[32] Bošnjak, M., Rocktäschel, T., Naradowsky, J., and Riedel, S. (2017). Programming with
a differentiable Forth interpreter. In Proceedings of the 34th International Conference on
Machine Learning (ICML-17), pages 547–556.

[33] Bottou, L. (2009). On-line learning and stochastic approximations. In Saad, D., editor,
On-line learning in neural networks, chapter 2, pages 9–42. Cambridge University Press.

[34] Bou Ammar, H., Eaton, E., Luna, J. M., and Ruvolo, P. (2015). Autonomous cross-
domain knowledge transfer in lifelong policy gradient reinforcement learning. In Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-15),
pages 3345–3351.

[35] Bou Ammar, H., Eaton, E., Ruvolo, P., and Taylor, M. (2014). Online multi-task
learning for policy gradient methods. In Proceedings of the 31st International Conference
on Machine Learning (ICML-14), pages 1206–1214.

[36] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. (2016). OpenAI gym. arXiv preprint arXiv:1606.01540.

[37] Brunskill, E. and Li, L. (2014). PAC-inspired option discovery in lifelong reinforcement
learning. In Proceedings of the 31st International Conference on Machine Learning (ICML-
14), pages 316–324.

226

[38] Bunel, R., Hausknecht, M., Devlin, J., Singh, R., and Kohli, P. (2018). Leveraging
grammar and reinforcement learning for neural program synthesis. In 6th International
Conference on Learning Representations (ICLR-18).

[39] Buzzega, P., Boschini, M., Porrello, A., Abati, D., and Calderara, S. (2020). Dark
experience for general continual learning: A strong, simple baseline. In Advances in Neural
Information Processing Systems 33 (NeurIPS-20), pages 15920–15930.

[40] Bylard, A., Bonalli, R., and Pavone, M. (2021). Composable geometric motion poli-
cies using multi-task pullback bundle dynamical systems. In 2021 IEEE International
Conference on Robotics and Automation (ICRA-21), pages 7464–7470.

[41] Caccia, L., Belilovsky, E., Caccia, M., and Pineau, J. (2020a). Online learned continual
compression with adaptive quantization modules. In Proceedings of the 37th International
Conference on Machine Learning (ICML-20), pages 1240–1250.

[42] Caccia, M., Rodriguez, P., Ostapenko, O., Normandin, F., Lin, M., Page-Caccia, L.,
Laradji, I. H., Rish, I., Lacoste, A., Vázquez, D., and Charlin, L. (2020b). Online
fast adaptation and knowledge accumulation (OSAKA): A new approach to continual
learning. In Advances in Neural Information Processing Systems 33 (NeurIPS-20), pages
16532–16545.

[43] Cai, J., Shin, R., and Song, D. (2017). Making neural programming architectures
generalize via recursion. In 5th International Conference on Learning Representations
(ICLR-17).

[44] Cha, S., Hsu, H., Hwang, T., Calmon, F., and Moon, T. (2021). CPR: Classifier-
projection regularization for continual learning. In 9th International Conference on
Learning Representations (ICLR-21).

[45] Chang, M., Gupta, A., Levine, S., and Griffiths, T. L. (2019). Automatically compos-
ing representation transformations as a means for generalization. In 7th International
Conference on Learning Representations (ICLR-19).

[46] Chang, M., Kaushik, S., Levine, S., and Griffiths, T. (2021). Modularity in reinforcement
learning via algorithmic independence in credit assignment. In Proceedings of the 38th
International Conference on Machine Learning (ICML-21), pages 1452–1462.

[47] Chaudhry, A., Dokania, P. K., Ajanthan, T., and Torr, P. H. (2018). Riemannian walk
for incremental learning: Understanding forgetting and intransigence. In Proceedings of
the European Conference on Computer Vision (ECCV-18), pages 532–547.

[48] Chaudhry, A., Khan, N., Dokania, P., and Torr, P. (2020). Continual learning in
low-rank orthogonal subspaces. In Advances in Neural Information Processing Systems 33
(NeurIPS-20), pages 9900–9911.

227

[49] Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny, M. (2019a). Efficient lifelong
learning with A-GEM. In 7th International Conference on Learning Representations
(ICLR-19).

[50] Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P. K., Torr, P. H.,
and Ranzato, M. (2019b). On tiny episodic memories in continual learning. arXiv preprint
arXiv:1902.10486.

[51] Chen, H.-J., Cheng, A.-C., Juan, D.-C., Wei, W., and Sun, M. (2020a). Mitigating
forgetting in online continual learning via instance-aware parameterization. In Advances
in Neural Information Processing Systems 33 (NeurIPS-20), pages 17466–17477.

[52] Chen, T., Zhang, Z., Liu, S., Chang, S., and Wang, Z. (2021). Long live the lottery:
The existence of winning tickets in lifelong learning. In 9th International Conference on
Learning Representations (ICLR-21).

[53] Chen, X., Liang, C., Yu, A. W., Song, D., and Zhou, D. (2020b). Compositional
generalization via neural-symbolic stack machines. In Advances in Neural Information
Processing Systems 33 (NeurIPS-20), pages 1690–1701.

[54] Chen, Y., Friesen, A. L., Behbahani, F., Doucet, A., Budden, D., Hoffman, M., and
de Freitas, N. (2020c). Modular meta-learning with shrinkage. In Advances in Neural
Information Processing Systems 33 (NeurIPS-20), pages 2858–2869.

[55] Chen, Z. and Liu, B. (2018). Lifelong machine learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 12(3):1–207.

[56] Cheng, C.-A., Mukadam, M., Issac, J., Birchfield, S., Fox, D., Boots, B., and Ratliff,
N. (2021). RMPflow : A geometric framework for generation of multitask motion policies.
IEEE Transactions on Automation Science and Engineering, 18(3):968–987.

[57] Chevalier-Boisvert, M., Bahdanau, D., Lahlou, S., Willems, L., Saharia, C., Nguyen,
T. H., and Bengio, Y. (2019). BabyAI: First steps towards grounded language learning
with a human in the loop. In 7th International Conference on Learning Representations
(ICLR-19).

[58] Chevalier-Boisvert, M., Willems, L., and Pal, S. (2018). Minimalistic gridworld environ-
ment for OpenAI Gym. https://github.com/maximecb/gym-minigrid.

[59] Chrysakis, A. and Moens, M.-F. (2020). Online continual learning from imbalanced data.
In Proceedings of the 37th International Conference on Machine Learning (ICML-20),
pages 1952–1961.

[60] Clavera, I., Nagabandi, A., Liu, S., Fearing, R. S., Abbeel, P., Levine, S., and Finn, C.
(2019). Learning to adapt in dynamic, real-world environments through meta-reinforcement
learning. In 7th International Conference on Learning Representations (ICLR-19).

228

https://github.com/maximecb/gym-minigrid

[61] Colas, C., Fournier, P., Chetouani, M., Sigaud, O., and Oudeyer, P.-Y. (2019). CURIOUS:
Intrinsically motivated modular multi-goal reinforcement learning. In Proceedings of the
36th International Conference on Machine Learning (ICML-19), pages 1331–1340.

[62] Csordás, R., van Steenkiste, S., and Schmidhuber, J. (2021). Are neural nets modular?
Inspecting functional modularity through differentiable weight masks. In 9th International
Conference on Learning Representations (ICLR-21).

[63] D’Amario, V., Sasaki, T., and Boix, X. (2021). How modular should neural module
networks be for systematic generalization? In Advances in Neural Information Processing
Systems 34 (NeurIPS-21).

[64] Dayan, P. and Hinton, G. E. (1993). Feudal reinforcement learning. In Advances in
Neural Information Processing Systems 6 (NeurIPS-93), pages 271–278.

[65] de Masson d’Autume, C., Ruder, S., Kong, L., and Yogatama, D. (2019). Episodic
memory in lifelong language learning. In Advances in Neural Information Processing
Systems 32 (NeurIPS-19).

[66] Del Chiaro, R., Twardowski, B., Bagdanov, A., and van de Weijer, J. (2020). RATT:
Recurrent attention to transient tasks for continual image captioning. In Advances in
Neural Information Processing Systems 33 (NeurIPS-20), pages 16736–16748.

[67] Deng, D., Chen, G., Hao, J., Wang, Q., and Heng, P.-A. (2021). Flattening sharpness
for dynamic gradient projection memory benefits in continual learning. In Advances in
Neural Information Processing Systems 34 (NeurIPS-21).

[68] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A
large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR-09), pages 248–255.

[69] Derakhshani, M. M., Zhen, X., Shao, L., and Snoek, C. (2021). Kernel continual learning.
In Proceedings of the 38th International Conference on Machine Learning (ICML-21),
pages 2621–2631.

[70] Devin, C., Geng, D., Abbeel, P., Darrell, T., and Levine, S. (2019). Compositional plan
vectors. In Advances in Neural Information Processing Systems 32 (NeurIPS-19).

[71] Devin, C., Gupta, A., Darrell, T., Abbeel, P., and Levine, S. (2017). Learning modular
neural network policies for multi-task and multi-robot transfer. In Proceedings of the 2017
IEEE International Conference on Robotics and Automation (ICRA-17), pages 2169–2176.

[72] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT-19), pages 4171–4186.

229

[73] Dietterich, T. G. (2000). Hierarchical reinforcement learning with the MAXQ value
function decomposition. Journal of Artificial Intelligence Research (JAIR), 13:227–303.

[74] Dor Arad Hudson, L. Z. (2021). Compositional transformers for scene generation. In
Advances in Neural Information Processing Systems 34 (NeurIPS-21).

[75] Doyle, J. (1979). A truth maintenance system. Artificial Intelligence, 12(3):231–272.

[76] Du, Y., Li, S., and Mordatch, I. (2020). Compositional visual generation with energy
based models. In Advances in Neural Information Processing Systems 33 (NeurIPS-20),
pages 6637–6647.

[77] Duncker, L., Driscoll, L., Shenoy, K. V., Sahani, M., and Sussillo, D. (2020). Organizing
recurrent network dynamics by task-computation to enable continual learning. In Advances
in Neural Information Processing Systems 33 (NeurIPS-20), pages 14387–14397.

[78] Egorov, E., Kuzina, A., and Burnaev, E. (2021). BooVAE: Boosting approach for
continual learning of VAE. In Advances in Neural Information Processing Systems 34
(NeurIPS-21).

[79] Ehret, B., Henning, C., Cervera, M., Meulemans, A., von Oswald, J., and Grewe, B. F.
(2021). Continual learning in recurrent neural networks. In 9th International Conference
on Learning Representations (ICLR-21).

[80] Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A. A., Pritzel, A.,
and Wierstra, D. (2017). PathNet: Evolution channels gradient descent in super neural
networks. arXiv preprint arXiv:1701.08734.

[81] Fisk, D. (1965). Quasi-martingales. Transactions of the American Mathematical Society,
120(3):369–389.

[82] Frankle, J. and Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse,
trainable neural networks. In 7th International Conference on Learning Representations
(ICLR-19).

[83] Fuchs, J.-J. (2005). Recovery of exact sparse representations in the presence of bounded
noise. IEEE Transactions on Information Theory, 51(10):3601–3608.

[84] Fujimoto, S., Conti, E., Ghavamzadeh, M., and Pineau, J. (2019a). Benchmarking batch
deep reinforcement learning algorithms. arXiv preprint arXiv:1910.01708.

[85] Fujimoto, S., Meger, D., and Precup, D. (2019b). Off-policy deep reinforcement learning
without exploration. In Proceedings of the 36th International Conference on Machine
Learning (ICML-19), pages 2052–2062.

[86] Fujimoto, S., van Hoof, H., and Meger, D. (2018). Addressing function approximation
error in actor-critic methods. In Proceedings of the 35th International Conference on
Machine Learning (ICML-18), pages 1587–1596.

230

[87] Garcia, F. and Thomas, P. S. (2019). A meta-MDP approach to exploration for
lifelong reinforcement learning. In Advances in Neural Information Processing Systems 32
(NeurIPS-19), pages 5692–5701.

[88] Gatys, L. A., Ecker, A. S., and Bethge, M. (2016). Image style transfer using convolutional
neural networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR-16), pages 2414–2423.

[89] Gaunt, A. L., Brockschmidt, M., Kushman, N., and Tarlow, D. (2017). Differentiable
programs with neural libraries. In Proceedings of the 34th International Conference on
Machine Learning (ICML-17), pages 1213–1222.

[90] Ghazi, B., Panigrahy, R., and Wang, J. (2019). Recursive sketches for modular deep
learning. In Proceedings of the 36th International Conference on Machine Learning (ICML-
19), pages 2211–2220.

[91] Gomez, A. N., Zhang, I., Kamalakara, S. R., Madaan, D., Swersky, K., Gal, Y., and
Hinton, G. E. (2019). Learning sparse networks using targeted dropout. arXiv preprint
arXiv:1905.13678.

[92] Gordon, J., Lopez-Paz, D., Baroni, M., and Bouchacourt, D. (2020). Permutation
equivariant models for compositional generalization in language. In 8th International
Conference on Learning Representations (ICLR-20).

[93] Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine, S., Bengio, Y., and Schölkopf, B.
(2021). Recurrent independent mechanisms. In 9th International Conference on Learning
Representations (ICLR-21).

[94] Gu, S., Holly, E., Lillicrap, T., and Levine, S. (2017). Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In Proceedings of the 2017
IEEE international conference on robotics and automation (ICRA-17), pages 3389–3396.

[95] Guo, Y., Lin, Z., Lou, J.-G., and Zhang, D. (2020a). Hierarchical poset decoding for
compositional generalization in language. In Advances in Neural Information Processing
Systems 33 (NeurIPS-20), pages 6913–6924.

[96] Guo, Y., Liu, M., Yang, T., and Rosing, T. (2020b). Improved schemes for episodic
memory-based lifelong learning. In Advances in Neural Information Processing Systems
33 (NeurIPS-20), pages 1023–1035.

[97] Gupta, G., Yadav, K., and Paull, L. (2020a). Look-ahead meta learning for continual
learning. In Advances in Neural Information Processing Systems 33 (NeurIPS-20), pages
11588–11598.

[98] Gupta, N., Lin, K., Roth, D., Singh, S., and Gardner, M. (2020b). Neural module net-
works for reasoning over text. In 8th International Conference on Learning Representations
(ICLR-20).

231

[99] Gupta, P., Chaudhary, Y., Runkler, T., and Schuetze, H. (2020c). Neural topic modeling
with continual lifelong learning. In Proceedings of the 37th International Conference on
Machine Learning (ICML-20), pages 3907–3917.

[100] Gur, I., Jaques, N., Miao, Y., Choi, J., Tiwari, M., Lee, H., and Faust, A. (2021).
Environment generation for zero-shot compositional reinforcement learning. In Advances
in Neural Information Processing Systems 34 (NeurIPS-21).

[101] Haarnoja, T., Pong, V., Zhou, A., Dalal, M., Abbeel, P., and Levine, S. (2018).
Composable deep reinforcement learning for robotic manipulation. In Proceedings of
the 2018 IEEE International Conference on Robotics and Automation (ICRA-18), pages
6244–6251.

[102] Henderson, P., Chang, W.-D., Shkurti, F., Hansen, J., Meger, D., and Dudek, G.
(2017). Benchmark environments for multitask learning in continuous domains. ICML
Lifelong Learning: A Reinforcement Learning Approach Workshop.

[103] Henning, C., Cervera, M., D’Angelo, F., von Oswald, J., Traber, R., Ehret, B.,
Kobayashi, S., Grewe, B. F., and Sacramento, J. (2021). Posterior meta-replay for continual
learning. In Advances in Neural Information Processing Systems 34 (NeurIPS-21).

[104] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.
(2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580.

[105] Hu, R., Andreas, J., Rohrbach, M., Darrell, T., and Saenko, K. (2017). Learning to
reason: End-to-end module networks for visual question answering. In Proceedings of the
2017 IEEE International Conference on Computer Vision (ICCV-17), pages 804–813.

[106] Hu, W., Lin, Z., Liu, B., Tao, C., Tao, Z., Ma, J., Zhao, D., and Yan, R. (2019).
Overcoming catastrophic forgetting via model adaptation. In 7th International Conference
on Learning Representations (ICLR-19).

[107] Huang, W., Mordatch, I., and Pathak, D. (2020). One policy to control them all:
Shared modular policies for agent-agnostic control. In Proceedings of the 37th International
Conference on Machine Learning (ICML-20), pages 4455–4464.

[108] Hung, C.-Y., Tu, C.-H., Wu, C.-E., Chen, C.-H., Chan, Y.-M., and Chen, C.-S. (2019).
Compacting, picking and growing for unforgetting continual learning. In Advances in
Neural Information Processing Systems 32 (NeurIPS-19).

[109] Hurtado, J., Raymond, A., and Soto, A. (2021). Optimizing reusable knowledge for
continual learning via metalearning. In Advances in Neural Information Processing Systems
34 (NeurIPS-21).

[110] Huszár, F. (2018). Note on the quadratic penalties in elastic weight consolidation.
Proceedings of the National Academy of Sciences (PNAS), pages E2496–E2497.

232

[111] Huynh, D. and Elhamifar, E. (2020). Compositional zero-shot learning via fine-grained
dense feature composition. In Advances in Neural Information Processing Systems 33
(NeurIPS-20), pages 19849–19860.

[112] Isele, D. and Cosgun, A. (2018). Selective experience replay for lifelong learning. In
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18),
pages 3302–3309.

[113] Isele, D., Rostami, M., and Eaton, E. (2016). Using task features for zero-shot
knowledge transfer in lifelong learning. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence (IJCAI-16), pages 1620–1626.

[114] James, S., Ma, Z., Arrojo, D. R., and Davison, A. J. (2020). RLBench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters,
5(2):3019–3026.

[115] Javed, K. and White, M. (2019). Meta-learning representations for continual learning.
In Advances in Neural Information Processing Systems 32 (NeurIPS-19).

[116] Jerfel, G., Grant, E., Griffiths, T., and Heller, K. A. (2019). Reconciling meta-learning
and continual learning with online mixtures of tasks. In Advances in Neural Information
Processing Systems 32 (NeurIPS-19).

[117] Jin, X., Sadhu, A., Du, J., and Ren, X. (2021). Gradient-based editing of memory
examples for online task-free continual learning. In Advances in Neural Information
Processing Systems 34 (NeurIPS-21).

[118] Johnson, J., Hariharan, B., van der Maaten, L., Hoffman, J., Fei-Fei, L., Lawrence Zit-
nick, C., and Girshick, R. (2017). Inferring and executing programs for visual reasoning. In
Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV-17),
pages 2989–2998.

[119] Joseph, K. J. and Balasubramanian, V. N. (2020). Meta-consolidation for continual
learning. In Advances in Neural Information Processing Systems 33 (NeurIPS-20), pages
14374–14386.

[120] Jothimurugan, K., Alur, R., and Bastani, O. (2019). A composable specification
language for reinforcement learning tasks. In Advances in Neural Information Processing
Systems 32 (NeurIPS-19).

[121] Jothimurugan, K., Bansal, S., Bastani, O., and Alur, R. (2021). Compositional
reinforcement learning from logical specifications. In Advances in Neural Information
Processing Systems 34 (NeurIPS-21).

[122] Jung, S., Ahn, H., Cha, S., and Moon, T. (2020). Continual learning with node-
importance based adaptive group sparse regularization. In Advances in Neural Information
Processing Systems 33 (NeurIPS-20), pages 3647–3658.

233

[123] Kakade, S. M. (2002). A natural policy gradient. In Advances in Neural Information
Processing Systems 15 (NeurIPS-02), pages 1531–1538.

[124] Kao, T.-C., Jensen, K., van de Ven, G. M., Bernacchia, A., and Hennequin, G. (2021).
Natural continual learning: Success is a journey, not (just) a destination. In Advances in
Neural Information Processing Systems 34 (NeurIPS-21).

[125] Kaplanis, C., Shanahan, M., and Clopath, C. (2019). Policy consolidation for continual
reinforcement learning. In Proceedings of the 36th International Conference on Machine
Learning (ICML-19), pages 3242–3251.

[126] Kapoor, S., Karaletsos, T., and Bui, T. D. (2021). Variational auto-regressive Gaussian
processes for continual learning. In Proceedings of the 38th International Conference on
Machine Learning (ICML-21), pages 5290–5300.

[127] Ke, Z., Liu, B., and Huang, X. (2020). Continual learning of a mixed sequence of
similar and dissimilar tasks. In Advances in Neural Information Processing Systems 33
(NeurIPS-20), pages 18493–18504.

[128] Ke, Z., Liu, B., Ma, N., Xu, H., and Shu, L. (2021). Achieving forgetting prevention and
knowledge transfer in continual learning. In Advances in Neural Information Processing
Systems 34 (NeurIPS-21).

[129] Keysers, D., Schärli, N., Scales, N., Buisman, H., Furrer, D., Kashubin, S., Momchev,
N., Sinopalnikov, D., Stafiniak, L., Tihon, T., Tsarkov, D., Wang, X., van Zee, M., and
Bousquet, O. (2020). Measuring compositional generalization: A comprehensive method
on realistic data. In 8th International Conference on Learning Representations (ICLR-20).

[130] Kim, S. W., Tapaswi, M., and Fidler, S. (2019). Visual reasoning by progressive module
networks. In 7th International Conference on Learning Representations (ICLR-19).

[131] Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,
Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. (2017). Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences
(PNAS), 114(13):3521–3526.

[132] Kirsch, L., Kunze, J., and Barber, D. (2018). Modular networks: Learning to decompose
neural computation. In Advances in Neural Information Processing Systems 31 (NeurIPS-
18), pages 2408–2418.

[133] Knoblauch, J., Husain, H., and Diethe, T. (2020). Optimal continual learning has
perfect memory and is NP-hard. In Proceedings of the 37th International Conference on
Machine Learning (ICML-20), pages 5327–5337.

[134] Konda, V. R. and Borkar, V. S. (1999). Actor-critic–type learning algorithms for
Markov decision processes. SIAM Journal on control and Optimization, 38(1):94–123.

234

[135] Konidaris, G. and Barto, A. (2009). Skill discovery in continuous reinforcement learning
domains using skill chaining. In Advances in Neural Information Processing Systems 22
(NeurIPS-09).

[136] Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny
images. Technical report, University of Toronto.

[137] Kumar, A., Chatterjee, S., and Rai, P. (2021). Bayesian structural adaptation for
continual learning. In Proceedings of the 38th International Conference on Machine
Learning (ICML-21), pages 5850–5860.

[138] Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S. (2019). Stabilizing off-policy Q-
learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems 32 (NeurIPS-19).

[139] Kumar, A., Ma, T., and Liang, P. (2020). Understanding self-training for gradual
domain adaptation. In Proceedings of the 37th International Conference on Machine
Learning (ICML-20), pages 5468–5479.

[140] Kurle, R., Cseke, B., Klushyn, A., van der Smagt, P., and Günnemann, S. (2020). Con-
tinual learning with Bayesian neural networks for non-stationary data. In 8th International
Conference on Learning Representations (ICLR-20).

[141] Lake, B. and Baroni, M. (2018). Generalization without systematicity: On the
compositional skills of sequence-to-sequence recurrent networks. In Proceedings of the 35th
International Conference on Machine Learning (ICML-18), pages 2873–2882.

[142] Lake, B. M. (2019). Compositional generalization through meta sequence-to-sequence
learning. In Advances in Neural Information Processing Systems 32 (NeurIPS-19).

[143] Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338.

[144] Lao, Q., Jiang, X., Havaei, M., and Bengio, Y. (2020). Continuous domain adaptation
with variational domain-agnostic feature replay. arXiv preprint arXiv:2003.04382.

[145] Laroche, R., Trichelair, P., and Combes, R. T. D. (2019). Safe policy improvement with
baseline bootstrapping. In Proceedings of the 36th International Conference on Machine
Learning (ICML-19), pages 3652–3661.

[146] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[147] Lee, S., Behpour, S., and Eaton, E. (2021a). Sharing less is more: Lifelong learning
in deep networks with selective layer transfer. In Proceedings of the 38th International
Conference on Machine Learning (ICML-21), pages 6065–6075.

235

[148] Lee, S., Goldt, S., and Saxe, A. (2021b). Continual learning in the teacher-student
setup: Impact of task similarity. In Proceedings of the 38th International Conference on
Machine Learning (ICML-21), pages 6109–6119.

[149] Lee, S., Ha, J., Zhang, D., and Kim, G. (2020). A neural Dirichlet process mixture
model for task-free continual learning. In 8th International Conference on Learning
Representations (ICLR-20).

[150] Lee, S., Stokes, J., and Eaton, E. (2019a). Learning shared knowledge for deep lifelong
learning using deconvolutional networks. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence (IJCAI-19), pages 2837–2844.

[151] Lee, Y., Sun, S.-H., Somasundaram, S., Hu, E., and Lim, J. J. (2019b). Composing
complex skills by learning transition policies with proximity reward induction. In 7th
International Conference on Learning Representations (ICLR-19).

[152] Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643.

[153] Li, A., Cheng, C.-A., Rana, M. A., Xie, M., Van Wyk, K., Ratliff, N., and Boots, B.
(2021a). RMP2: A structured composable policy class for robot learning. arXiv preprint
arXiv:2103.05922.

[154] Li, X., Zhou, Y., Wu, T., Socher, R., and Xiong, C. (2019). Learn to grow: A continual
structure learning framework for overcoming catastrophic forgetting. In Proceedings of the
36th International Conference on Machine Learning (ICML-19), pages 3925–3934.

[155] Li, Y., He, H., Wu, J., Katabi, D., and Torralba, A. (2020a). Learning compositional
koopman operators for model-based control. In 8th International Conference on Learning
Representations (ICLR-20).

[156] Li, Y., Wu, Y., Xu, H., Wang, X., and Wu, Y. (2021b). Solving compositional
reinforcement learning problems via task reduction. In 9th International Conference on
Learning Representations (ICLR-21).

[157] Li, Y., Zhao, L., Church, K., and Elhoseiny, M. (2020b). Compositional language
continual learning. In 8th International Conference on Learning Representations (ICLR-
20).

[158] Li, Z. and Hoiem, D. (2017). Learning without forgetting. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 40(12):2935–2947.

[159] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
and Wierstra, D. (2016). Continuous control with deep reinforcement learning. In 4th
International Conference on Learning Representations (ICLR-16).

236

[160] Lin, Z., Yang, D., Zhao, L., Qin, T., Yang, G., and Liu, T.-Y. (2020). RD2: Reward
decomposition with representation disentanglement. In Advances in Neural Information
Processing Systems 33 (NeurIPS-20), pages 11298–11308.

[161] Lin, Z., Zhao, L., Yang, D., Qin, T., Liu, T.-Y., and Yang, G. (2019). Distributional
reward decomposition for reinforcement learning. In Advances in Neural Information
Processing Systems 32 (NeurIPS-19).

[162] Liu, Q., An, S., Lou, J.-G., Chen, B., Lin, Z., Gao, Y., Zhou, B., Zheng, N., and Zhang,
D. (2020). Compositional generalization by learning analytical expressions. In Advances
in Neural Information Processing Systems 33 (NeurIPS-20), pages 11416–11427.

[163] Loo, N., Swaroop, S., and Turner, R. E. (2021). Generalized variational continual
learning. In 9th International Conference on Learning Representations (ICLR-21).

[164] Lopez-Paz, D. and Ranzato, M. (2017). Gradient episodic memory for continual
learning. In Advances in Neural Information Processing Systems 30 (NeurIPS-17), pages
6467–6476.

[165] Lu, K., Grover, A., Abbeel, P., and Mordatch, I. (2021). Reset-free lifelong learning
with skill-space planning. In 9th International Conference on Learning Representations
(ICLR-21).

[166] McCloskey, M. and Cohen, N. J. (1989). Catastrophic interference in connectionist
networks: The sequential learning problem. In Psychology of Learning and Motivation,
volume 24, pages 109–165. Elsevier.

[167] Meyerson, E. and Miikkulainen, R. (2018). Beyond shared hierarchies: Deep multi-
task learning through soft layer ordering. In 6th International Conference on Learning
Representations (ICLR-18).

[168] Meyerson, E. and Miikkulainen, R. (2019). Modular universal reparameterization:
Deep multi-task learning across diverse domains. In Advances in Neural Information
Processing Systems 32 (NeurIPS-19).

[169] Mirzadeh, S. I., Farajtabar, M., Gorur, D., Pascanu, R., and Ghasemzadeh, H. (2021).
Linear mode connectivity in multitask and continual learning. In 9th International
Conference on Learning Representations (ICLR-21).

[170] Mirzadeh, S. I., Farajtabar, M., Pascanu, R., and Ghasemzadeh, H. (2020). Understand-
ing the role of training regimes in continual learning. In Advances in Neural Information
Processing Systems 33 (NeurIPS-20), pages 7308–7320.

[171] Mittal, S., Lamb, A., Goyal, A., Voleti, V., Shanahan, M., Lajoie, G., Mozer, M., and
Bengio, Y. (2020). Learning to combine top-down and bottom-up signals in recurrent
neural networks with attention over modules. In Proceedings of the 37th International
Conference on Machine Learning (ICML-20), pages 6972–6986.

237

[172] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D.,
and Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In
Proceedings of The 33rd International Conference on Machine Learning (ICML-16), pages
1928–1937.

[173] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level
control through deep reinforcement learning. nature, 518(7540):529–533.

[174] Mu, T., Gu, J., Jia, Z., Tang, H., and Su, H. (2020). Refactoring policy for compositional
generalizability using self-supervised object proposals. In Advances in Neural Information
Processing Systems 33 (NeurIPS-20), pages 8883–8894.

[175] Nagabandi, A., Finn, C., and Levine, S. (2019). Deep online learning via meta-learning:
Continual adaptation for model-based RL. In 7th International Conference on Learning
Representations (ICLR-19).

[176] Nangue Tasse, G., James, S., and Rosman, B. (2020). A Boolean task algebra
for reinforcement learning. In Advances in Neural Information Processing Systems 33
(NeurIPS-20), pages 9497–9507.

[177] Nekoei, H., Badrinaaraayanan, A., Courville, A., and Chandar, S. (2021). Continuous
coordination as a realistic scenario for lifelong learning. In Proceedings of the 38th
International Conference on Machine Learning (ICML-21), pages 8016–8024.

[178] Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. (2018). Variational continual
learning. In 6th International Conference on Learning Representations (ICLR-18).

[179] Nye, M., Solar-Lezama, A., Tenenbaum, J., and Lake, B. M. (2020). Learning compo-
sitional rules via neural program synthesis. In Advances in Neural Information Processing
Systems 33 (NeurIPS-20), pages 10832–10842.

[180] OpenAI, Andrychowicz, M., Baker, B., Chociej, M., Józefowicz, R., McGrew, B.,
Pachocki, J., Petron, A., Plappert, M., Powell, G., Ray, A., Schneider, J., Sidor, S.,
Tobin, J., Welinder, P., Weng, L., and Zaremba, W. (2020). Learning dexterous in-hand
manipulation. International Journal of Robotics Research, 39(1):3–20.

[181] Ostapenko, O., Rodriguez, P., Caccia, M., and Charlin, L. (2021). Continual learning
via local module composition. In Advances in Neural Information Processing Systems 34
(NeurIPS-21).

[182] Pahuja, V., Fu, J., Chandar, S., and Pal, C. (2019). Structure learning for neural module
networks. In Proceedings of the Beyond Vision and LANguage: inTEgrating Real-world
kNowledge (LANTERN), pages 1–10. Association for Computational Linguistics.

238

[183] Pan, P., Swaroop, S., Immer, A., Eschenhagen, R., Turner, R., and Khan, M. E. E.
(2020). Continual deep learning by functional regularisation of memorable past. In
Advances in Neural Information Processing Systems 33 (NeurIPS-20), pages 4453–4464.

[184] Pathak, D., Lu, C., Darrell, T., Isola, P., and Efros, A. A. (2019). Learning to control
self-assembling morphologies: A study of generalization via modularity. In Advances in
Neural Information Processing Systems 32 (NeurIPS-19).

[185] Peng, X. B., Chang, M., Zhang, G., Abbeel, P., and Levine, S. (2019). MCP: Learning
composable hierarchical control with multiplicative compositional policies. In Advances in
Neural Information Processing Systems 32 (NeurIPS-19).

[186] Pentina, A. and Lampert, C. H. (2015). Lifelong learning with non-i.i.d. tasks. In
Advances in Neural Information Processing Systems 28 (NeurIPS-15).

[187] Pham, Q., Liu, C., and Hoi, S. (2021a). DualNet: Continual learning, fast and slow.
In Advances in Neural Information Processing Systems 34 (NeurIPS-21).

[188] Pham, Q., Liu, C., Sahoo, D., and HOI, S. (2021b). Contextual transformation networks
for online continual learning. In 9th International Conference on Learning Representations
(ICLR-21).

[189] Piaget, J. (1976). Piaget’s theory. In Inhelder, B., Chipman, H. H., and Zwingmann,
C., editors, Piaget and His School: A Reader in Developmental Psychology, pages 11–23.
Springer, Berlin, Heidelberg.

[190] Pierrot, T., Ligner, G., Reed, S. E., Sigaud, O., Perrin, N., Laterre, A., Kas, D., Beguir,
K., and de Freitas, N. (2019). Learning compositional neural programs with recursive
tree search and planning. In Advances in Neural Information Processing Systems 32
(NeurIPS-19).

[191] Qin, Q., Hu, W., Peng, H., Zhao, D., and Liu, B. (2021). BNS: Building network
structures dynamically for continual learning. In Advances in Neural Information Processing
Systems 34 (NeurIPS-21).

[192] Raghavan, K. and Balaprakash, P. (2021). Formalizing the generalization-forgetting
trade-off in continual learning. In Advances in Neural Information Processing Systems 34
(NeurIPS-21).

[193] Rahaman, N., Goyal, A., Gondal, M. W., Wuthrich, M., Bauer, S., Sharma, Y., Bengio,
Y., and Schölkopf, B. (2021). Spatially structured recurrent modules. In 9th International
Conference on Learning Representations (ICLR-21).

[194] Rajasegaran, J., Hayat, M., Khan, S., Khan, F. S., and Shao, L. (2019). Random path
selection for incremental learning. In Advances in Neural Information Processing Systems
32 (NeurIPS-19), pages 12669–12679.

239

[195] Rajeswaran, A., Lowrey, K., Todorov, E. V., and Kakade, S. M. (2017). Towards
generalization and simplicity in continuous control. In Advances in Neural Information
Processing Systems 30 (NeurIPS-17), pages 6550–6561.

[196] Ramasesh, V. V., Dyer, E., and Raghu, M. (2021). Anatomy of catastrophic forgetting:
Hidden representations and task semantics. In 9th International Conference on Learning
Representations (ICLR-21).

[197] Rao, D., Visin, F., Rusu, A., Pascanu, R., Teh, Y. W., and Hadsell, R. (2019).
Continual unsupervised representation learning. In Advances in Neural Information
Processing Systems 32 (NeurIPS-19), pages 7647–7657.

[198] Reed, S. and de Freitas, N. (2016). Neural programmers-interpreters. In 4th Interna-
tional Conference on Learning Representations (ICLR-16).

[199] Ren, M., Iuzzolino, M. L., Mozer, M. C., and Zemel, R. (2021). Wandering within
a world: Online contextualized few-shot learning. In 9th International Conference on
Learning Representations (ICLR-21).

[200] Ren, Y., Guo, S., Labeau, M., Cohen, S. B., and Kirby, S. (2020). Compositional
languages emerge in a neural iterated learning model. In 8th International Conference on
Learning Representations (ICLR-20).

[201] Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., , and Tesauro, G. (2019).
Learning to learn without forgetting by maximizing transfer and minimizing interference.
In 7th International Conference on Learning Representations (ICLR-19).

[202] Ritter, H., Botev, A., and Barber, D. (2018). Online structured Laplace approximations
for overcoming catastrophic forgetting. In Advances in Neural Information Processing
Systems 31 (NeurIPS-18), pages 3738–3748.

[203] Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., and Wayne, G. (2019). Experience
replay for continual learning. In Advances in Neural Information Processing Systems 32
(NeurIPS-19).

[204] Rosenbaum, C., Cases, I., Riemer, M., and Klinger, T. (2019). Routing networks and the
challenges of modular and compositional computation. arXiv preprint arXiv:1904.12774.

[205] Rosenbaum, C., Klinger, T., and Riemer, M. (2018). Routing networks: Adaptive
selection of non-linear functions for multi-task learning. In 6th International Conference
on Learning Representations (ICLR-18).

[206] Rostami, M. (2021). Lifelong domain adaptation via consolidated internal distribution.
In Advances in Neural Information Processing Systems 34 (NeurIPS-21).

[207] Rostami, M., Isele, D., and Eaton, E. (2020). Using task descriptions in lifelong
machine learning for improved performance and zero-shot transfer. Journal of Artificial
Intelligence Research (JAIR), 67:673–704.

240

[208] Ruis, F., Burghouts, G., and Bucur, D. (2021). Independent prototype propagation
for zero-shot compositionality. In Advances in Neural Information Processing Systems 34
(NeurIPS-21).

[209] Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu,
K., Pascanu, R., and Hadsell, R. (2016). Progressive neural networks. arXiv preprint
arXiv:1606.04671.

[210] Ruvolo, P. and Eaton, E. (2013). ELLA: An efficient lifelong learning algorithm. In
Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages
507–515.

[211] Sacerdoti, E. D. (1974). Planning in a hierarchy of abstraction spaces. Artificial
Intelligence, 5(2):115–135.

[212] Saha, G., Garg, I., and Roy, K. (2021). Gradient projection memory for continual
learning. In 9th International Conference on Learning Representations (ICLR-21).

[213] Saqur, R. and Narasimhan, K. (2020). Multimodal graph networks for compositional
generalization in visual question answering. In Advances in Neural Information Processing
Systems 33 (NeurIPS-20), pages 3070–3081.

[214] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine
Learning (ICML-15), pages 1889–1897.

[215] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347.

[216] Schwarz, J., Czarnecki, W., Luketina, J., Grabska-Barwinska, A., Teh, Y. W., Pascanu,
R., and Hadsell, R. (2018). Progress & compress: A scalable framework for continual
learning. In Proceedings of the 35th International Conference on Machine Learning (ICML-
18), pages 4528–4537.

[217] Serrà, J., Surís, D., Miron, M., and Karatzoglou, A. (2018). Overcoming catastrophic
forgetting with hard attention to the task. In Proceedings of the 35th International
Conference on Machine Learning (ICML-18), pages 4548–4557.

[218] Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., and Dean, J.
(2017). Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
In 5th International Conference on Learning Representations (ICLR-17).

[219] Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Continual learning with deep
generative replay. In Advances in Neural Information Processing Systems 30 (NeurIPS-17),
pages 2990–2999.

241

[220] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489.

[221] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A., et al. (2017). Mastering the game of Go without human
knowledge. Nature, 550(7676):354–359.

[222] Singh, P., Verma, V. K., Mazumder, P., Carin, L., and Rai, P. (2020). Calibrating
CNNs for lifelong learning. In Advances in Neural Information Processing Systems 33
(NeurIPS-20), pages 15579–15590.

[223] Sinha, K., Sodhani, S., Pineau, J., and Hamilton, W. L. (2020). Evaluating logical
generalization in graph neural networks. arXiv preprint arXiv:2003.06560.

[224] Skorokhodov, I. and Elhoseiny, M. (2021). Class normalization for (continual)? gener-
alized zero-shot learning. In 9th International Conference on Learning Representations
(ICLR-21).

[225] Sprechmann, P., Jayakumar, S., Rae, J., Pritzel, A., Badia, A. P., Uria, B., Vinyals, O.,
Hassabis, D., Pascanu, R., and Blundell, C. (2018). Memory-based parameter adaptation.
In 6th International Conference on Learning Representations (ICLR-18).

[226] Sun, F.-K., Ho, C.-H., and Lee, H.-Y. (2020). LAMOL: LAnguage MOdeling for
lifelong language learning. In 8th International Conference on Learning Representations
(ICLR-20).

[227] Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
press.

[228] Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999a). Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems 12 (NeurIPS-00).

[229] Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., and
Precup, D. (2011). Horde: A scalable real-time architecture for learning knowledge from
unsupervised sensorimotor interaction. In Tenth International Conference on Autonomous
Agents and Multiagent Systems (AAMAS-11), pages 761–768.

[230] Sutton, R. S., Precup, D., and Singh, S. (1999b). Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning. Artificial Intelligence,
112(1-2):181–211.

[231] Sylvain, T., Petrini, L., and Hjelm, D. (2020). Locality and compositionality in zero-shot
learning. In 8th International Conference on Learning Representations (ICLR-20).

[232] Tang, B. and Matteson, D. S. (2021). Graph-based continual learning. In 9th Interna-
tional Conference on Learning Representations (ICLR-21).

242

[233] Tessler, C., Givony, S., Zahavy, T., Mankowitz, D., and Mannor, S. (2017). A deep
hierarchical approach to lifelong learning in Minecraft. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI-17).

[234] Thrun, S. (1998). Lifelong learning algorithms. In Learning to learn, pages 181–209.
Springer.

[235] Titsias, M. K., Schwarz, J., de G. Matthews, A. G., Pascanu, R., and Teh, Y. W.
(2020). Functional regularisation for continual learning with Gaussian processes. In 8th
International Conference on Learning Representations (ICLR-20).

[236] Todorov, E. (2009). Compositionality of optimal control laws. Advances in Neural
Information Processing Systems 22 (NeurIPS-09), pages 1856–1864.

[237] Todorov, E., Erez, T., and Tassa, Y. (2012). MuJoCo: A physics engine for model-based
control. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS-12), pages 5026–5033.

[238] Tunyasuvunakool, S., Muldal, A., Doron, Y., Liu, S., Bohez, S., Merel, J., Erez,
T., Lillicrap, T., Heess, N., and Tassa, Y. (2020). dm_control: Software and tasks for
continuous control. Software Impacts, 6.

[239] Valkov, L., Chaudhari, D., Srivastava, A., Sutton, C., and Chaudhuri, S. (2018).
Houdini: Lifelong learning as program synthesis. In Advances in Neural Information
Processing Systems 31 (NeurIPS-18), pages 8687–8698.

[240] van de Ven, G. M., Siegelmann, H. T., and Tolias, A. S. (2020). Brain-inspired replay
for continual learning with artificial neural networks. Nature Communications, 11(1).

[241] van de Ven, G. M. and Tolias, A. S. (2019). Three scenarios for continual learning.
arXiv preprint arXiv:1904.07734.

[242] van der Vaart, A. (2000). Asymptotic statistics, volume 3. Cambridge University Press.

[243] van Niekerk, B., James, S., Earle, A., and Rosman, B. (2019). Composing value
functions in reinforcement learning. In Proceedings of the 36th International Conference
on Machine Learning (ICML-19), pages 6401–6409.

[244] van Seijen, H., Fatemi, M., Romoff, J., Laroche, R., Barnes, T., and Tsang, J. (2017).
Hybrid reward architecture for reinforcement learning. In Advances in Neural Information
Processing Systems 30 (NeurIPS-17).

[245] Varshney, S., Verma, V. K., Srijith, P. K., Carin, L., and Rai, P. (2021). CAM-GAN:
Continual adaptation modules for generative adversarial networks. In Advances in Neural
Information Processing Systems 34 (NeurIPS-21).

243

[246] Veniat, T., Denoyer, L., and Ranzato, M. (2021). Efficient continual learning with
modular networks and task-driven priors. In 9th International Conference on Learning
Representations (ICLR-21).

[247] Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., and
Kavukcuoglu, K. (2017). FeUdal networks for hierarchical reinforcement learning. In
Proceedings of the 34th International Conference on Machine Learning (ICML-17), pages
3540–3549.

[248] Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A. S., Yeo, M.,
Makhzani, A., Küttler, H., Agapiou, J. P., Schrittwieser, J., Quan, J., Gaffney, S., Petersen,
S., Simonyan, K., Schaul, T., van Hasselt, H., Silver, D., Lillicrap, T. P., Calderone, K.,
Keet, P., Brunasso, A., Lawrence, D., Ekermo, A., Repp, J., and Tsing, R. (2017). StarCraft
II: A new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782.

[249] von Oswald, J., Henning, C., Sacramento, J., and Grewe, B. F. (2020). Continual
learning with hypernetworks. In 8th International Conference on Learning Representations
(ICLR-20).

[250] von Oswald, J., Zhao, D., Kobayashi, S., Schug, S., Caccia, M., Zucchet, N., and
Sacramento, J. (2021). Learning where to learn: Gradient sparsity in meta and continual
learning. In Advances in Neural Information Processing Systems 34 (NeurIPS-21).

[251] Wang, L., Zhang, M., Jia, Z., Li, Q., Bao, C., Ma, K., Zhu, J., and Zhong, Y. (2021).
AFEC: Active forgetting of negative transfer in continual learning. In Advances in Neural
Information Processing Systems 34 (NeurIPS-21).

[252] Watkins, C. J. C. H. (1989). Learning from delayed rewards. Ph.D. thesis, King’s
College, Cambridge, United Kingdom.

[253] Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., and Perona, P.
(2010). Caltech-UCSD birds 200. Technical report, California Institute of Technology.

[254] Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8(3):229–256.

[255] Wołczyk, M., Zając, M., Pascanu, R., Kuciński, Ł., and Miłoś, P. (2021). Continual
World: A robotic benchmark for continual reinforcement learning. In Advances in Neural
Information Processing Systems 34 (NeurIPS-21).

[256] Wu, M., Goodman, N., and Ermon, S. (2021). Improving compositionality of neural
networks by decoding representations to inputs. In Advances in Neural Information
Processing Systems 34 (NeurIPS-21).

[257] Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: A novel image dataset
for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.

244

[258] Xie, A., Harrison, J., and Finn, C. (2021). Deep reinforcement learning amidst
continual structured non-stationarity. In Proceedings of the 38th International Conference
on Machine Learning (ICML-21), pages 11393–11403.

[259] Xu, D., Nair, S., Zhu, Y., Gao, J., Garg, A., Fei-Fei, L., and Savarese, S. (2018). Neural
task programming: Learning to generalize across hierarchical tasks. In Proceedings of
the 2018 IEEE International Conference on Robotics and Automation (ICRA-18), pages
3795–3802.

[260] Xu, K., Verma, S., Finn, C., and Levine, S. (2020). Continual learning of control
primitives : Skill discovery via reset-games. In Advances in Neural Information Processing
Systems 33 (NeurIPS-20), pages 4999–5010.

[261] Yang, R., Xu, H., WU, Y., and Wang, X. (2020). Multi-task reinforcement learning
with soft modularization. In Advances in Neural Information Processing Systems 33
(NeurIPS-20), pages 4767–4777.

[262] Yin, H., Yang, P., and Li, P. (2021). Mitigating forgetting in online continual learning
with neuron calibration. In Advances in Neural Information Processing Systems 34
(NeurIPS-21).

[263] Yoon, J., Jeong, W., Lee, G., Yang, E., and Hwang, S. J. (2021). Federated continual
learning with weighted inter-client transfer. In Proceedings of the 38th International
Conference on Machine Learning (ICML-21), pages 12073–12086.

[264] Yoon, J., Kim, S., Yang, E., and Hwang, S. J. (2020). Scalable and order-robust
continual learning with additive parameter decomposition. In 8th International Conference
on Learning Representations (ICLR-20).

[265] Yoon, J., Lee, J., Yang, E., and Hwang, S. J. (2018). Lifelong learning with dynamically
expandable networks. In 6th International Conference on Learning Representations (ICLR-
18).

[266] Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C., and Levine, S. (2019).
Meta-World: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Proceedings of the 3rd Conference on Robot Learning (CoRL-19).

[267] Zaremba, W., Mikolov, T., Joulin, A., and Fergus, R. (2016). Learning simple algorithms
from examples. In Proceedings of the 33rd International Conference on Machine Learning
(ICML-16), pages 421–429.

[268] Zenke, F., Poole, B., and Ganguli, S. (2017). Continual learning through synaptic
intelligence. In Proceedings of the 34th International Conference on Machine Learning
(ICML-17), pages 3987–3995.

[269] Zeno, C., Golan, I., Hoffer, E., and Soudry, D. (2018). Task agnostic continual learning
using online variational Bayes. arXiv preprint arXiv:1803.10123.

245

[270] Zeno, C., Golan, I., Hoffer, E., and Soudry, D. (2021). Task-agnostic continual learning
using online variational Bayes with fixed-point updates. Neural Computation, 33(11):3139–
3177.

[271] Zhang, Q., Fang, J., Meng, Z., Liang, S., and Yilmaz, E. (2021). Variational contin-
ual Bayesian meta-learning. In Advances in Neural Information Processing Systems 34
(NeurIPS-21).

[272] Zhao, C., Hospedales, T. M., Stulp, F., and Sigaud, O. (2017). Tensor based knowledge
transfer across skill categories for robot control. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence (IJCAI-17), pages 3462–3468.

[273] Zhu, Y., Wong, J., Mandlekar, A., and Martín-Martín, R. (2020). robosuite: A
modular simulation framework and benchmark for robot learning. In arXiv preprint
arXiv:2009.12293.

246

	Lifelong Machine Learning Of Functionally Compositional Structures
	Recommended Citation

	Lifelong Machine Learning Of Functionally Compositional Structures
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction
	Motivation
	Thesis Statement
	Fundamental Questions
	Technical Contributions
	Manuscript Structure

	Related Work
	Introduction
	Lifelong or Continual Learning
	Compositional Knowledge
	Lifelong Reinforcement Learning
	Compositional Reinforcement Learning
	Summary

	A General-Purpose Framework for Lifelong Learning of Compositional Structures
	Introduction
	The Lifelong Learning Problem
	The Compositional Learning Problem
	The Lifelong Compositional Learning Framework
	Summary

	Application of Lifelong Composition to Supervised Learning
	Introduction
	Expansion of the Set of Components M via Component Dropout
	Framework Instantiations for the Supervised Setting
	Experimental Evaluation
	Summary

	Application of Lifelong Composition to Reinforcement Learning
	Introduction
	Background on Reinforcement Learning for Continuous State-Action Spaces
	The Lifelong Reinforcement Learning Problem
	The Problem of Lifelong Functional Composition in Reinforcement Learning
	LPG-FTW: Approximate Modular Lifelong Reinforcement Learning via Parameter Factorization
	CompRL: Modular Lifelong Reinforcement Learning via Neural Composition
	Experimental Evaluation
	Summary

	Extension of Lifelong Composition to Nonstationary Environments
	Introduction
	Related Work on Nonstationary Lifelong Learning
	The Compositional Nonstationary Lifelong Learning Problem
	NonstatRL: Nonstationary Lifelong Reinforcement Learning via Composition
	Experimental Evaluation
	Summary

	CompoSuite: A Compositional Reinforcement Learning Benchmark
	Introduction
	The CompoSuite Benchmark for Compositional Reinforcement Learning
	Benchmarking Existing Reinforcement Learning Methods on CompoSuite
	Scope, Limitations, and Extensions
	Summary

	Conclusion
	Summary of Technical Contributions
	Future Directions

	Categorized Related Works on Lifelong Learning and Compositional Learning
	Full Results on Lifelong Compositional Supervised Learning
	Additional Results Using EWC for Reinforcement Learning on OpenAI Gym MuJoCo Domains
	Proofs of Theoretical Guarantees of LPG-FTW
	Visualization of All CompoSuite Tasks
	BIBLIOGRAPHY

