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Praphruetpong (Ben) Athiwaratkun, Ph.D.

Cornell University 2019

We demonstrate the benefits of probabilistic representations due to their expressive-

ness which allows for flexible representations, their ability of capture uncertainty,

and their interpretable geometric structures that are suitable for modeling hierar-

chical data. We show that multimodal densities can be effectively used to represent

words in natural text, capturing possibly multiple meanings and their nuances.

Probability densities also have natural geometric structures which can be used to

represent hierarchies among entities through the concept of encapsulation; that

is, dispersed distributions are generic entities that encompass more specific ones.

We show an effective approach to train such density embeddings by penalizing

order violations which are defined through on asymmetric divergences of probability

densities.
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CHAPTER 1

INTRODUCTION

Learning to represent data in a low-level manifold has long been the goal of

machine learning. In the past decade, deep learning has allowed us to discover

such meaningful representations and has fueled the success of many fields such

as computer vision, natural language processing, to name a few. However, most

representations lack the uncertainty information that can be crucial for modeling

realistic data. For instance, an occluded image of a handwritten digit can turn

out to be many possible numbers. Failing to capture the uncertainty discards

necessary information and leads to inaccurate representation. Recently, there have

been increasing interests in incorporating uncertainty. For instance, Oh et al. [2019]

proposes using a probabilistic representation to encode uncertainty due to occlusion

or blurriness of images and found that modeling uncertainty is key to downstream

tasks. Wan et al. [2018] proposes using Gaussian-mixture based loss function

for image classification, which demonstrates high classification performance and

exhibits more accurate feature distribution. In this thesis, we present the results of

our investigation on modeling words in natural languages with probability densities.

In particular, the density representations allow us to capture nuances and possible

multiplicities of meanings.

Probabilistic representations also allow us to learn geometric structures that

reflect relationships among data. Structured representations help support relational

reasoning among entities and improve generalization through inductive biases.

Knowledge on entities’ relationships also help address explainability as they illu-

minate pieces of the “black boxes” that are most of modern deep learning models.

Explicit modeling of relationships among variables was previously studied in many
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sub-fields of machine learning such as graphical models [Koller and Friedman, 2009],

causal reasoning, etc. For instance, in graphical models, different structures of

conditional independence among random variables specify entities’ relationships

and give rise to various complex joint distributions. Many deep learning approaches,

however, assume minimal generative and relational assumptions; for instance,

discriminative models do not assume the underlying data generation process or

model-free reinforcement learning methods do not attempt to learn environment’s

dynamics. These approaches are powerful but require massive amount of data and

iterations to train in order to learn well, due to the lack of relational inductive

biases [Battaglia et al., 2018]. Recently, there is a resurgence of the “model-based”

approach to help address high sample complexity by encode relationships and

environment dynamics [Chua et al., 2018]. In fact, a recent model by Zambaldi et al.

[2019] introduces relational reasoning over structured representations to achieve

state-of-the-art performance of challenging tasks such as StarCraft II mini-games

where the learning efficiency far exceeds methods that do not incorporate relational

knowledge. This approach is akin to the process human learns: we perform reason-

ing based on relations and understanding of underlying generative processes and

rely less on the bulk of data needed to generalize to unseen concepts. We believe

that structured representations that reflect relations are necessary ingredients to

human-level intelligence. Therefore, we believe it is important to learn building

blocks such as entity relations that can be composed and used to reason about

unseen scenarios.

We argue that probabilistic representations are efficient at learning relationships.

In fact, we show that relationships among entities represented by distributions

can naturally be reflected through encapsulation. Formally, we say that an entity

a entails b, denoted by a � b, if any a belongs to b. A generic entity such as
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‘animal’ is a broad distribution compared to more specific entities that belongs to

the category ‘animal’ such as ‘dog’ and ‘cat’. In this case, ‘dog’ and ‘cat’ entail

‘animal’ and are peaked distributions that are encapsulated by ‘animal’ distribution.

These relationships can emerge through unsupervised training on text corpus where

we provide qualitative and quantitative evidence in Chapter 3. We also learn these

structures explicitly through graph data, which is the subject of Chapter 5.
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CHAPTER 2

BACKGROUND AND RELATED WORK

Probabilistic framework has demonstrated its effectiveness in many applications

including in computer vision [Oh et al., 2019, Wan et al., 2018], natural language

processing [Fortunato et al., 2017a, Gan et al., 2017] and reinforcement learning

[Azizzadenesheli et al., 2018]. In this thesis, we show two main approaches that

use the probabilistic perspective to learn unsupervised word embeddings (Chapter

3 and 4) and representations for hierarchical data (Chapter 5).

The literature of word embeddings has its own rich history. Popular word

embeddings are pioneered by Mikolov et al. [2013a,b] and Pennington et al. [2014]

who propose efficient training to word semantics from a large amount of text data

(summarized in Section 2.1.1). An improved method FastText [Bojanowski et al.,

2016] incorporates character information to increase model’s ability to estimate the

semantics of out-of-vocabulary and rare words [Bojanowski et al., 2016] (Section

2.1.2). Other methods extend beyond single vector representation to learn multiple

meanings for each word by using multi-prototype embeddings (Section 2.1.3). Our

probabilistic model called multimodal word distribution, detailed in Chapter 3 and

its character-level version 4, unify all these approaches with elegant probabilistic

representation that can reflect nuances and possibly multiple meanings.

In Chapter 5, we focus on using probabilistic representation to model hierarchi-

cal data such as graphs and Section 2.2 aims to provide necessary background and

related work. Our work in Chapter 5 proposes a probabilistic method called density

order embeddings (DOE) to effectively model data such as WordNet graph or hier-

archies of a visual-semantic space. Probabilistic representation is a rapidly growing

field, and recent works demonstrate applicability in many areas. For instance, it can
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be used as a recommendation system through link prediction in user-product graph

[Li et al., 2019] or to predict sentence-level textual entailment [Bowman et al., 2015,

Marelli et al., 2014]. We summarize relevant probabilistic methods in the literature

in Section 2.2.2. Besides probabilistic embeddings, modeling hierarchical data are

studied in other nascent fields of hyperbolic embeddings and graph neural networks,

which we outline and draw comparison in Section 2.2.3 and 2.2.4 respectively.

2.1 Word Embeddings

To model language, we must represent words. We can imagine representing every

word with a binary one-hot vector corresponding to a dictionary position. But

such a representation contains no valuable semantic information: distances between

word vectors represent only differences in alphabetic ordering. Modern approaches,

by contrast, learn to map words with similar meanings to nearby points in a vector

space [Mikolov et al., 2013a,b, Pennington et al., 2014], from large datasets such as

Wikipedia. These learned word embeddings have become ubiquitous in predictive

tasks.

We describe multiple approaches to learn such embeddings in the literature,

starting from the traditional word-level embeddings to character-level embeddings,

as well as extensions to multi-sense embeddings. We provide background materials,

Gaussian embeddings, and explain how we extend this previous work to Chapter 3

and 4 connect all these approaches into a unifying framework.
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2.1.1 Word-Level Embeddings

In the past decade, there has been an explosion of interest in word vector represen-

tations. word2vec, arguably the most popular word embedding, uses continuous

bag of words and skip-gram models, in conjunction with negative sampling for

efficient conditional probability estimation [Mikolov et al., 2013a,b]. The objective

is to maximize the likelihood of observing nearby words wc given current word w

in contrast to the likelihood of observing other random words n. The loss we seek

to optimize is:

`(s(w,wc)) +
∑
n∈Nc

`(−s(w, n)) (2.1)

where ` is a logistic loss function `(x) = 1 + e−x, Nc is a set of negative samples

drawn from the vocabulary, and s(x, y) denotes the similarity score between word

x and word y. In this case, s(x, y) is simply the dot product ux · uy where uz is a

vector corresponding to word z.

Other popular approaches use feedforward [Bengio et al., 2003] and recurrent

neural network language models [Collobert and Weston, 2008, Mikolov et al., 2010,

2011b] to predict missing words in sentences, producing hidden layers that can act

as word embeddings that encode semantic information. They employ conditional

probability estimation techniques, including hierarchical softmax [Mikolov et al.,

2011a, Mnih and Hinton, 2008, Morin and Bengio, 2005] and noise contrastive

estimation [Gutmann and Hyvärinen, 2012].

A different approach to learning word embeddings is through factorization of

word co-occurrence matrices such as GloVe embeddings [Pennington et al., 2014].

The matrix factorization approach has been shown to have an implicit connection

with skip-gram and negative sampling [Baer et al., 2018, Landgraf and Bellay, 2017,
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Levy and Goldberg, 2014]. Bayesian matrix factorization where row and columns

are modeled as Gaussians has been explored in Salakhutdinov and Mnih [2008] and

provides a different probabilistic perspective of word embeddings.

2.1.2 Character-Level Embeddings

There are multiple approaches that incorporate character information into embed-

dings. A prominent one, FastText [Bojanowski et al., 2016], learns character

n-gram vector representations and define a word representation as the average of

its character n-gram components as well as its word-level vector. That is,

µw =
1

|NGw|+ 1

(
vw +

∑
g∈NGw

zg

)
(2.2)

where vw is a word-level vector for word w, NGw is a set of character n-grams for

word w and zg is a vector for an n-gram g. The training process is almost identical

to that of word2vec with the same loss function and word sampling process.

We find that such representation results in automatic assignment of semantics to

character n-grams, allowing better representation of rare and unseen words (see

details in Chapter 4.3.5).

This flexibility of character-level embeddings has valuable applications in many

end-tasks such as language modeling [Kim et al., 2016], named entity recognition

[Kuru et al., 2016], and machine translation [Lee et al., 2017, Zhao and Zhang,

2016], where unseen words are frequent and proper handling of these words can

greatly improve the performance. Other character-level embedding methods involve

explicitly splitting words into multiple disjoint subwords through BPE encoding

[Gage, 1994] and learn those subword vectors directly in end tasks [Sennrich et al.,

2016]. Another line of work attempts to learn a method to compose subword
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vectors to a final word vector [Kim et al., 2018] as opposed to simple averaging in

FastText [Bojanowski et al., 2016].

Applications of character-level embeddings is wide-ranging. Many downstream

tasks have adopted character embeddings into their models for improved perfor-

mance on rare words and the ability to generalize to unseen words. FastText, for

example, is a crucial component in a state-of-the-art system such as unsupervised

machine translation [Lample et al., 2017, 2018].

2.1.3 Multi-Sense Embeddings

Recent work has also proposed deterministic embeddings that can capture poly-

semies, for example through a cluster centroid of context vectors [Huang et al.,

2012], or an adapted skip-gram model with an EM algorithm to learn multiple

latent representations per word [Tian et al., 2014]. [Chen et al., 2014] learns word

vectors and sense vectors separately through skip-gram approach [Mikolov et al.,

2013a] and uses WordNet synsets [Miller, 1995] as external knowledge in order

to learn multiple senses. Neelakantan et al. [2014] also extends skip-gram with

multiple prototype embeddings where the number of senses per word is determined

by a non-parametric approach. Liu et al. [2015] learns topical embeddings based on

latent topic models where each word is associated with multiple topics. Another re-

lated work by Nalisnick and Ravi [2015] models embeddings in infinite-dimensional

space where each embedding can gradually represent incremental word sense if

complex meanings are observed.
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2.1.4 Gaussian Embeddings

Vilnis and McCallum [2015] was the first to propose using probability densities as

word embeddings. In particular, each word is modeled as a Gaussian distribution,

where the mean vector represents the semantics and the covariance describes the

uncertainty or nuances in the meanings. These embeddings are trained on a natural

text corpus by maximizing the similarity between words that are in the same

local context of sentences. Given a word w with a true context word cp and a

randomly sampled word cn (negative context), Gaussian embeddings are learned

by minimizing the rank objective in Equation 2.3, which pushes the similarity of

the true context pair E(w, cp) above that of the negative context pair E(w, cn) by

a margin m.

Lm(w, cp, cn) = max(0,m− E(w, cp) + E(w, cn)) (2.3)

The similarity score E(u, v) for words u, v can be either

E(u, v) = −KL(fu, fv) (2.4)

or

E(u, v) = log〈fu, fu〉L2 (2.5)

where fu, fv are the distributions of words u and v, respectively.

The Gaussian word embeddings contain rich semantic information and performs

competitively in many word similarity benchmarks. However, words with multiple

meanings result in overly diffuse probability densities, which inaccurately reflect

the semantic uncertainties. In Chapter 3, we provide details of our multimodal

word distribution model, a method that represents words with Gaussian mixture

probability densities to allow for better estimation of uncertainty and multiple
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meanings. Chapter 4 incorporate character information into the multimodal word

distribution model, which we call probabilistic FastText.

2.2 Modeling Hierarchical Data

In the previous section, we have described approaches for unsupervised word

embeddings which are learned from text corpora. These embeddings exhibit

semantic traits where similar or related words are often close to each other in the

embedding space.

However, there are relationships among words or entities that are not effectively

learned through natural text. In fact, key signals to learn word embeddings are

co-occurrences of words, which can lack certain information. In some cases, specific

words can be replaced by a general word in a similar context, for instance, “I

love cats” or “I love dogs” can be replaced with “I love animals”. Therefore, the

embeddings of “cats” and “dogs” should demonstrate an entailment relationship

with respect to that of “animals”. In the case probabilistic representation, “dogs”

and “cats” become concentrated distributions that are encompassed by a more

dispersed distribution of “animals”, a word that “cats” and “dogs” entail. The

broad distribution of a general word agrees with the distributional informativeness

hypothesis proposed by Santus et al. [2014], which says that a generic word can

occur in more general contexts in place of the specific ones that entail it. However,

certain relationships are not likely to be encountered; for instance, a sentence “I

love mammals” is highly unlikely and therefore the entailment signal between “cats”

and “mammals” do not emerge through unsupervised training. Therefore, it is

important to learn these relationships explicitly through hierarchical data rather
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than text, which is the subject of Chapter 5.

Besides relationships among words, representations of sentences and images

can reflect hierarchical structure where certain entities are abstractions of others

in a visual-semantic space. For instance, an image caption “A dog and a frisbee”

is an abstraction of many images with possible lower-level details such as a dog

jumping to catch a frisbee or a dog sitting with a frisbee (Figure 5.1a). Recent

work by Vendrov et al. [2016] proposes learning such asymmetric relationships with

order embeddings – vector representations of non-negative coordinates with partial

order structure. These embeddings are shown to be effective for word hypernym

classification, image-caption ranking and textual entailment [Vendrov et al., 2016].

Chapter 5 shows that probability distributions are also natural at modeling

hierarchical relationships and proposes effective methods for training. We describe

a background subject of order embeddings in Section 2.2.1, a approach to learn

embeddings of entities equipped with a partial order. Our approach fuses the order

embeddings approach with the probabilistic embeddings, which we call density order

embeddings (DOE) and is described thoroughly in Chapter 5. We describe other

competing probabilistic embeddings in Section 2.2.2 and highlights the difference

and advantages of our DOE model. These embeddings learned can be used directly

on downstream tasks such as word or sentence entailment prediction. They can

also be used as preprocessed embeddings for models such as density regression

networks, described in Section 2.2.2, which take distributions as input and generate

distributions as output. This procedure is akin to how standard neural networks

propagate vectors but instead the DRN model propagates distributions.

We also provide overview of other non-probabilistic methods to model hierar-

chical data, for instance, through hyperbolic embeddings [Nickel and Kiela, 2017,
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2018] which learns the embeddings of entities on skewed hyperbolic space with the

advantages of being efficient on the number of dimensions needed. Hyperbolic neural

networks [Ganea et al., 2018b, Gülçehre et al., 2019] are specialized networks that

take hyperbolic embeddings to perform downstream tasks. We provide overview of

hyperbolic methods in Section 2.2.3.

Other related work includes graph neural networks [Defferrard et al., 2016,

Henaff et al., 2015, Kipf and Welling, 2017, Wu et al., 2019] whose input is the

entire graph object. We give a brief summary in Section 2.2.4.

2.2.1 Order Embeddings and Partial Orders

We describe the concepts of partial orders and vector order embeddings proposed by

Vendrov et al. [2016], which we will later consider in the context of our hierarchical

density order embeddings in Chapter 5.

A partial order over a set of points X is a binary relation � such that for

a, b, c ∈ X, the following properties hold: (1) a � a (reflexivity); (2) if a � b

and b � a then a = b (antisymmetry); and (3) if a � b and b � c then a � c

(transitivity). An example of a partially ordered set is a set of nodes in a tree where

a � b means a is a child node of b. This concept has applications in natural data

such as lexical entailment. For words a and b, a � b means that every instance of

a is an instance of b, or we can say that a entails b. We also say that (a, b) has a

hypernym relationship where a is a hyponym of b and b is a hypernym of a. This

relationship is asymmetric since a � b does not necessarily imply (b � a). For

instance, aircraft � vehicle but it is not true that vehicle � aircraft.

An order-embedding is a function f : (X,�X) → (Y,�Y ) where a �X b if

12



and only if f(a) �Y f(b). Vendrov et al. [2016] proposes to learn the embedding

f on Y = RN
+ where all coordinates are non-negative. Under RN

+ , there exists

a partial order relation called the reversed product order on RN
+ : x � y if and

only if ∀i, xi ≥ yi. That is, a point x entails y if and only if all the coordinate

values of x is higher than y’s. The origin represents the most general entity

at the top of the order hierarchy and the points further away from the origin

become more specific. Figure 5.1b demonstrates the vector order embeddings on

RN
+ . We can see that since insect � animal and animal � organism, we can

infer directly from the embedding that insect � organism (orange line, diagonal

line). To learn the embeddings, Vendrov et al. [2016] proposes a penalty function

E(x, y) = ||max(0, y − x)||2 for a pair x � y which has the property that it is

positive if and only if the order is violated.

Other related work includes Li et al. [2017] which extends Vendrov et al. [2016]

for knowledge representation on data such as ConceptNet [Speer et al., 2016].

Another related work by Hockenmaier and Lai [2017] embeds words and phrases in

a vector space and uses denotational probabilities for textual entailment tasks.

2.2.2 Probabilistic Embeddings

Our work in Chapter 5 is among the first to exploit the geometry of probability

densities to model relationships among data. Another recent work by [Hockenmaier

and Lai, 2017] extends order embeddings [Vendrov et al., 2016] and place probability

measure on the R+ to form entailment cones, and is termed probabilistic order

embeddings (POE). We note that our model uses density objects explicitly to

model entity relationships where POE adapts vector order embeddings and models

entailment through joint densities. However, POE has difficulties modeling negative
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relationships where a pair of entities that do not entail each other but still have

high joint probability. Box lattice models [Vilnis et al., 2018] remedies this problem

by defining probability measures on box lattices instead of infinite entailment cones.

However, sharp edges of box lattices can often inhibit learning due to zero gradients

in case of non-overlapping boxes. Smooth box lattice models [Li et al., 2019]

allows for better training by representing probability densities with convolutions

of box lattices, which give rise to density objects with softer boundaries. We

show comparison in our work in Section 5.3.3 where we perform at least on par or

outperform all methods on a hypernym prediction problem. Related to probabilistic

embeddings are distribution regression networks [Kou et al., 2018a,b] which take a

distribution as input and outputs a distribution.

2.2.3 Hyperbolic Embeddings and Hyperbolic Networks

Hyperbolic embedding methods learn to map entities to points on hyperbolic spaces

instead of the Euclidean space. Proposed models include Poincaré embeddings

[Nickel and Kiela, 2017] which embeds entities onto a Poincare unit ball where the

distance from the center grows to infinity as it gets closer to the edge. Poincare

embeddings are known for its ability to represent large graphs with much smaller

dimensions due to its infinite volume.

Follow-up work by Ganea et al. [2018a] improves empirical results of Poincaré

embeddings through their proposal of theoretically grounded entailment cones.

Another variant of hyperbolic embeddings is the Lorentz model [Nickel and Kiela,

2018] which is shown to be more efficient than using Poincaré embeddings to learn

relationships from large-scale unstructured similar scores. Dhingra et al. [2018]

provides experiments hyperbolic sentence embeddings by learning to construct
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adjacent sentences given the middle sentence, similar to the skip-thought model

[Kiros et al., 2015b].

These hyperbolic embeddings, however, can be suboptimal to use for downstream

tasks with traditional neural networks due to indistinguishability among embeddings

in the normal L2 space which neural networks operate on. That is, distant points on

the hyperbolic space can be very close to each other in the Euclidean space, which

is the representation we store the vectors and weights in typical neural networks.

Hyperbolic neural networks [Ganea et al., 2018b] or its attention-based version

[Gülçehre et al., 2019] are principled models that incorporate the geometry of

hyperbolic spaces and can meaningfully take hyperbolic embeddings as inputs.

2.2.4 Graph Neural Networks

Graph neural networks take different approaches to model hierarchical data com-

pared to probabilistic embeddings or hyperbolic embeddings. As opposed to

learning representations of each vertex on the graph structure, graph neural net-

works attempts to perform the end tasks while taking entire graph objects as inputs

[Defferrard et al., 2016, Henaff et al., 2015, Kipf and Welling, 2017, Wu et al., 2019].

Applications include predicting attributes of molecules, which can be modeled as a

classification problem where inputs are undirected graphs. It can also be used to

predict possible edges in graph data such as social networks.

These graph neural networks take adjacency matrix E and perform end tasks

directly through graph convolution operation. This operation combines the features

of each node’s neighbors and feed it to the next layer, which is similar to the

convolution operator in CNN which combines features of adjoining pixels. As a
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result, these networks are typically called graph convolutional networks (GCN).

They also output nodes’ latent representations which is an alternative approach to

learning embeddings. GCNs have been used for a wide variety of supervised tasks,

both at node-level such as relational reasoning or graph-level such as classification.

GCNs also have applications for generative modeling where the networks, for

instance, generate realistic looking images based on a scene graph input.
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CHAPTER 3

PROBABILISTIC REPRESENTATION FOR WORD EMBEDDINGS

Word embeddings provide point representations of words containing useful semantic

information. We introduce multimodal word distributions formed from Gaussian

mixtures, for multiple word meanings, entailment, and rich uncertainty information.

To learn these distributions, we propose an energy-based max-margin objective.

We show that the resulting approach captures uniquely expressive semantic infor-

mation, and outperforms alternatives, such as word2vec skip-grams, and Gaussian

embeddings, on benchmark datasets such as word similarity and entailment.

3.1 Introduction

Vilnis and McCallum [2015] recently proposed an alternative view (Section 2.1.4),

where words are represented by a whole probability distribution instead of a

deterministic point vector. Specifically, they model each word by a Gaussian

distribution, and learn its mean and covariance matrix from data. This approach

generalizes any deterministic point embedding, which can be fully captured by the

mean vector of the Gaussian distribution. Moreover, the full distribution provides

much richer information than point estimates for characterizing words, representing

probability mass and uncertainty across a set of semantics.

However, since a Gaussian distribution can have only one mode, the learned

uncertainty in this representation can be overly diffuse for words with multiple

distinct meanings (polysemies), in order for the model to assign some density to

any plausible semantics. Moreover, the mean of the Gaussian can be pulled in
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many opposing directions, leading to a biased distribution that centers its mass

mostly around one meaning while leaving the others not well represented.

In this chapter, we propose to represent each word with an expressive multimodal

distribution, for multiple distinct meanings, entailment, heavy tailed uncertainty,

and enhanced interpretability. For example, one mode of the word ‘bank’ could

overlap with distributions for words such as ‘finance’ and ‘money’, and another

mode could overlap with the distributions for ‘river’ and ‘creek’. It is our contention

that such flexibility is critical for both qualitatively learning about the meanings

of words, and for optimal performance on many predictive tasks. We note that

the phenomonon of misrepresentation due to a unimodality constraint has been

observed in other data domain such as images and rectified with a multimodal

density approach as well [Oh et al., 2019].

In particular, we model each word with a mixture of Gaussians (Section 3.2.1).

We learn all the parameters of this mixture model using a maximum margin energy-

based ranking objective [Joachims, 2002, Vilnis and McCallum, 2015] (Section

3.2.3), where the energy function describes the affinity between a pair of words.

For analytic tractability with Gaussian mixtures, we use the inner product between

probability distributions in a Hilbert space, known as the expected likelihood kernel

[Jebara et al., 2004], as our energy function (Section 3.2.4). Additionally, we propose

transformations for numerical stability and initialization 3.2.5, resulting in a robust,

straightforward, and scalable learning procedure, capable of training on a corpus

with billions of words in days. We show that the model is able to automatically

discover multiple meanings for words (Section 3.3.3), and significantly outperform

other alternative methods across several tasks such as word similarity and entailment

(Section 3.3.4, 3.3.5, 3.3.7). We discover that Chen et al. [2015] proposed a similar
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model; however, our setup attains much better results on all evaluation metrics.

We have made code available at http://github.com/benathi/word2gm, where we

implement our model in Tensorflow [Abadi et al., 2015].

3.2 Methodology

In this section, we introduce our Gaussian mixture (GM) model for word represen-

tations, and present a training method to learn the parameters of the Gaussian

mixture. This method uses an energy-based maximum margin objective, where

we wish to maximize the similarity of distributions of nearby words in sentences.

We propose an energy function that compliments the GM model by retaining ana-

lytic tractability. We also provide critical practical details for numerical stability,

hyperparameters, and initialization.

3.2.1 Word Representation

We represent each word w in a dictionary as a Gaussian mixture withK components.

Specifically, the distribution of w, fw, is given by the density

fw(~x) =
K∑
i=1

pw,i N [~x; ~µw,i,Σw,i] (3.1)

=
K∑
i=1

pw,i√
2π|Σw,i|

e−
1
2

(~x−~µw,i)>Σ−1
w,i(~x−~µw,i) ,

where
∑K

i=1 pw,i = 1.

The mean vectors ~µw,i represent the location of the ith component of word

w, and are akin to the point embeddings provided by popular approaches like

19

http://github.com/benathi/word2gm


word2vec. pw,i represents the component probability (mixture weight), and Σw,i is

the component covariance matrix, containing uncertainty information. Our goal

is to learn all of the model parameters ~µw,i, pw,i,Σw,i from a corpus of natural

sentences to extract semantic information of words. Each Gaussian component’s

mean vector of word w can represent one of the word’s distinct meanings. For

instance, one component of a polysemous word such as ‘rock’ should represent

the meaning related to ‘stone’ or ‘pebbles’, whereas another component should

represent the meaning related to music such as ‘jazz’ or ‘pop’. Figure 3.1 illustrates

our word embedding model, and the difference between multimodal and unimodal

representations, for words with multiple meanings.

3.2.2 Skip-Gram

The training objective for learning θ = {~µw,i, pw,i,Σw,i} draws inspiration from the

continuous skip-gram model [Mikolov et al., 2013b], where word embeddings are

trained to maximize the probability of observing a word given another nearby word.

This procedure follows the distributional hypothesis that words occurring in natural

contexts tend to be semantically related. For instance, the words ‘jazz’ and ‘music’

tend to occur near one another more often than ‘jazz’ and ‘cat’; hence, ‘jazz’ and

‘music’ are more likely to be related. The learned word representation contains

useful semantic information and can be used to perform a variety of NLP tasks such

as word similarity analysis, sentiment classification, modelling word analogies, or

as a preprocessed input for complex system such as statistical machine translation.
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Figure 3.1: Top: A Gaussian Mixture embedding, where each component corre-
sponds to a distinct meaning. Each Gaussian component is represented by an
ellipsoid, whose center is specified by the mean vector and contour surface specified
by the covariance matrix, reflecting subtleties in meaning and uncertainty. On the
left, we show examples of Gaussian mixture distributions of words where Gaussian
components are randomly initialized. After training, we see on the right that one
component of the word ‘rock’ is closer to ‘stone’ and ‘basalt’, whereas the other
component is closer to ‘jazz’ and ‘pop’. We also demonstrate the entailment concept
where the distribution of the more general word ‘music’ encapsulates words such as
‘jazz’, ‘rock’, ‘pop’. Bottom: A Gaussian embedding model [Vilnis and McCallum,
2015]. For words with multiple meanings, such as ‘rock’, the variance of the learned
representation becomes unnecessarily large in order to assign some probability to
both meanings. Moreover, the mean vector for such words can be pulled between
two clusters, centering the mass of the distribution on a region which is far from
certain meanings.

3.2.3 Energy-based Max-Margin Objective

Each sample in the objective consists of two pairs of words, (w, c) and (w, c′). w

is sampled from a sentence in a corpus and c is a nearby word within a context

window of length `. For instance, a word w = ‘jazz’ which occurs in the sentence ‘I

listen to jazz music’ has context words (‘I’, ‘listen’, ‘to’ , ‘music’). c′ is a negative

context word (e.g. ‘airplane’) obtained from random sampling.
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The objective is to maximize the energy between words that occur near each

other, w and c, and minimize the energy between w and its negative context c′.

This approach is similar to negative sampling [Mikolov et al., 2013b,c], which

contrasts the dot product between positive context pairs with negative context

pairs. The energy function is a measure of similarity between distributions and will

be discussed in Section 3.2.4.

We use a max-margin ranking objective [Joachims, 2002], used for Gaussian

embeddings in Vilnis and McCallum [2015], which pushes the similarity of a word

and its positive context higher than that of its negative context by a margin m:

Lθ(w, c, c
′) = max(0,m− logEθ(w, c) + logEθ(w, c

′)) (3.2)

This objective can be minimized by mini-batch stochastic gradient descent with

respect to the parameters θ = {~µw,i, pw,i,Σw,i} – the mean vectors, covariance

matrices, and mixture weights – of our multimodal embedding in Eq. (3.1).

Word Sampling We use a word sampling scheme similar to the implementation

in word2vec [Mikolov et al., 2013b,c] to balance the importance of frequent words

and rare words. Frequent words such as ‘the’, ‘a’, ‘to’ are not as meaningful as

relatively less frequent words such as ‘dog’, ‘love’, ‘rock’, and we are often more

interested in learning the semantics of the less frequently observed words. We use

subsampling to improve the performance of learning word vectors [Mikolov et al.,

2013c]. This technique discards word wi with probability P (wi) = 1−
√
t/f(wi),

where f(wi) is the frequency of word wi in the training corpus and t is a frequency

threshold.

To generate negative context words, each word type wi is sampled according

to a distribution Pn(wi) ∝ U(wi)
3/4 which is a distorted version of the unigram
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distribution U(wi) that also serves to diminish the relative importance of frequent

words. Both subsampling and the negative distribution choice are proven effective

in word2vec training [Mikolov et al., 2013c].

3.2.4 Energy Function

For vector representations of words, a usual choice for similarity measure (energy

function) is a dot product between two vectors. Our word representations are

distributions instead of point vectors and therefore need a measure that reflects

not only the point similarity, but also the uncertainty.

Expected Likelihood Kernel

We propose to use the expected likelihood kernel, which is a generalization of an

inner product between vectors to an inner product between distributions [Jebara

et al., 2004]. That is,

E(f, g) =

∫
f(x)g(x) dx = 〈f, g〉L2 (3.3)

where 〈·, ·〉L2 denotes the inner product in Hilbert space L2. We choose this form

of energy since it can be evaluated in a closed form given our choice of probabilistic

embedding in Eq. (3.1).

For Gaussian mixtures f, g representing the words wf , wg, f(x) =∑K
i=1 piN (x; ~µf,i,Σf,i) and g(x) =

∑K
i=1 qiN (x; ~µg,i,Σg,i),

∑K
i=1 pi = 1, and∑K

i=1 qi = 1, we find that the log energy is

logEθ(f, g) = log
K∑
j=1

K∑
i=1

piqje
ξi,j (3.4)
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where

ξi,j ≡ logN (0; ~µf,i − ~µg,j,Σf,i + Σg,j)

= −1

2
log det(Σf,i + Σg,j)−

D

2
log(2π)

−1

2
(~µf,i − ~µg,j)>(Σf,i + Σg,j)

−1(~µf,i − ~µg,j) (3.5)

The derivation is as follows. Let f, g be Gaussian mixture distributions

representing the words wf , wg. That is, f(x) =
∑K

i=1 piN (x;µf,i,Σf,i) and

g(x) =
∑K

i=1 qiN (x;µg,i,Σg,i),
∑K

i=1 pi = 1, and
∑K

i=1 qi = 1. The expected

likelihood kernel is given by

Eθ(f, g) =

∫ ( K∑
i=1

piN (x;µf,i,Σf,i)

)
·(

K∑
j=1

qjN (x;µg,j,Σg,j)

)
dx

=
K∑
i=1

K∑
j=1

piqj

∫
N (x;µf,i,Σf,i) · N (x;µg,j,Σg,j) dx

=
K∑
i=1

K∑
j=1

piqjN (0;µf,i − µg,j,Σf,i + Σg,j)

=
K∑
i=1

K∑
j=1

piqje
ξi,j

where we note that
∫
N (x;µi,Σi)N (x;µj,Σj) dx = N (0, µi − µj,Σi + Σj) [Vilnis

and McCallum, 2015] and we call ξi,j the (log) partial energy, given by equation

3.5. Figure 3.2 demonstrates the partial energies among the Gaussian components

of two words.

Observe that the partial energy term captures the similarity between the ith

meaning of word wf and the jth meaning of word wg. The total energy in Equation

3.4 is the sum of possible pairs of partial energies, weighted accordingly by the

mixture probabilities pi and qj.
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Figure 3.2: The interactions among Gaussian components of word rock and word
pop. The partial energy is the highest for the pair rock:0 (the zeroth component of
rock) and pop:1 (the first component of pop), reflecting the similarity in meanings.

The term −(~µf,i− ~µg,j)>(Σf,i + Σg,j)
−1(~µf,i− ~µg,j) in ξi,j explains the difference

in mean vectors of semantic pair (wf , i) and (wg, j). If the semantic uncertainty

(covariance) for both pairs are low, this term has more importance relative to other

terms due to the inverse covariance scaling. We observe that the loss function Lθ

in Section 3.2.3 attains a low value when Eθ(w, c) is relatively high. High values of

Eθ(w, c) can be achieved when the component means across different words ~µf,i and

~µg,j are close together (e.g., similar point representations). High energy can also be

achieved by large values of Σf,i and Σg,j, which washes out the importance of the

mean vector difference. The term − log det(Σf,i + Σg,j) serves as a regularizer that

prevents the covariances from being pushed too high at the expense of learning a

good mean embedding.

At the beginning of training, ξi,j roughly are on the same scale among all pairs

(i, j)’s. During this time, all components learn the signals from the word occurrences

equally. As training progresses and the semantic representation of each mixture

becomes more clear, there can be one term of ξi,j’s that is predominantly higher

than other terms, giving rise to a semantic pair that is most related.
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Probability Product Kernel

In general, the probability product kernel Kρ(f, g) =
∫
f(x)ρg(x)ρ dx for ρ > 0

between two Gaussians are:

ξρi,j ≡ logKρ(fi, gj)

= (1− 2ρ)
D

2
log(2π)− D

2
log(ρ)

+ log det
[
Σρ−1
f,i Σρ

g,j + Σρ
f,iΣ

ρ−1
g,j

]
−ρ

2
(µf,i − µg,j)(Σf,i + Σg,j)

−1(µf,i − µg,j) (3.6)

For mixture of Gaussians, we have

logEρ
θ (f, g) =

K∑
i=1

K∑
j=1

(piqj)
ρeξ

ρ
i,j (3.7)

Note that for the case where ρ = 1, we recover the expected likelihood kernel in

Section 3.2.4

Other Energy Functions

The negative KL divergence is another sensible choice of energy function, providing

an asymmetric metric between word distributions. However, unlike the expected

likelihood kernel, KL divergence does not have a closed form if the two distributions

are Gaussian mixtures.

3.2.5 Implementation

In this section we discuss practical details for training the proposed model.
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Reduction to Diagonal Covariance

We use a diagonal Σ, in which case inverting the covariance matrix is trivial and

computations are particularly efficient.

Let df ,dg denote the diagonal vectors of Σf ,Σg The expression for ξi,j reduces

to

ξi,j = −1

2

D∑
r=1

log(dpr + dqr)−
1

2

∑[
(µp,i − µq,j) ◦

1

dp + dq
◦ (µp,i − µq,j)

]
(3.8)

where ◦ denotes element-wise multiplication. The spherical case which we use in all

our experiments is similar since we simply replace a vector d with a single value.

Optimization Constraint and Stability

We optimize logd since each component of diagonal vector d is constrained to be

positive. Similarly, we constrain the probability pi to be in [0, 1] and sum to 1 by

optimizing over unconstrained scores si ∈ (−∞,∞) and using a softmax function

to convert the scores to probability pi = esi∑K
j=1 e

sj
.

The loss computation can be numerically unstable if elements of the diagonal

covariances are very small, due to the term log(dfr + dgr) and 1
dq+dp

. Therefore, we

add a small constant ε = 10−4 so that dfr + dgr and dq + dp becomes dfr + dgr + ε and

dq + dp + ε.

In addition, we observe that ξi,j can be very small which would result in eξi,j ≈ 0

up to machine precision. In order to stabilize the computation in eq. 3.4, we

compute its equivalent form

logE(f, g) = ξi′,j′ + log
K∑
j=1

K∑
i=1

piqje
ξi,j−ξi′,j′ (3.9)
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where ξi′,j′ = maxi,j ξi,j.

Model Hyperparameters and Training Details

In the loss function Lθ, we use a margin m = 1 and a batch size of 128. We initialize

the word embeddings with a uniform distribution over [−
√

3
D
,
√

3
D

] so that the

expectation of variance is 1 and the mean is zero [LeCun et al., 1998]. We initialize

each dimension of the diagonal matrix (or a single value for spherical case) with a

constant value v = 0.05. We also initialize the mixture scores si to be 0 so that

the initial probabilities are equal among all K components. We use the threshold

t = 10−5 for negative sampling, which is the recommended value for word2vec

skip-gram on large datasets.

We also use a separate output embeddings in addition to input embeddings,

similar to word2vec implementation [Mikolov et al., 2013b,c]. That is, each word

has two sets of distributions qI and qO, each of which is a Gaussian mixture. For a

given pair of word and context (w, c), we use the input distribution qI for w (input

word) and the output distribution qO for context c (output word). We optimize

the parameters of both qI and qO and use the trained input distributions qI as our

final word representations.

We use mini-batch asynchronous gradient descent with Adagrad [Duchi et al.,

2011] which performs adaptive learning rate for each parameter. We also experiment

with Adam [Kingma and Ba, 2014] which corrects the bias in adaptive gradient

update of Adagrad and is proven very popular for most recent neural network

models. However, we found that it is much slower than Adagrad (≈ 10 times).

This is because the gradient computation of the model is relatively fast, so a

complex gradient update algorithm such as Adam becomes the bottleneck in the
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optimization. Therefore, we choose to use Adagrad which allows us to better scale

to large datasets. We use a linearly decreasing learning rate from 0.05 to 0.00001.

Word Co. Nearest Neighbors

rock 0 basalt:1, boulder:1, boulders:0, stalagmites:0, stalactites:0, rocks:1, sand:0, quartzite:1, bedrock:0
rock 1 rock/:1, ska:0, funk:1, pop-rock:1, punk:1, indie-rock:0, band:0, indie:0, pop:1
bank 0 banks:1, mouth:1, river:1, River:0, confluence:0, waterway:1, downstream:1, upstream:0, dammed:0
bank 1 banks:0, banking:1, banker:0, Banks:1, bankas:1, Citibank:1, Interbank:1, Bankers:0, transactions:1
Apple 0 Strawberry:0, Tomato:1, Raspberry:1, Blackberry:1, Apples:0, Pineapple:1, Grape:1, Lemon:0
Apple 1 Macintosh:1, Mac:1, OS:1, Amiga:0, Compaq:0, Atari:1, PC:1, Windows:0, iMac:0
star 0 stars:0, Quaid:0, starlet:0, Dafoe:0, Stallone:0, Geena:0, Niro:0, Zeta-Jones:1, superstar:0
star 1 stars:1, brightest:0, Milky:0, constellation:1, stellar:0, nebula:1, galactic:1, supernova:1, Ophiuchus:1
cell 0 cellular:0, Nextel:0, 2-line:0, Sprint:0, phones.:1, pda:1, handset:0, handsets:1, pushbuttons:0
cell 1 cytoplasm:0, vesicle:0, cytoplasmic:1, macrophages:0, secreted:1, membrane:0, mitotic:0, endocytosis:1
left 0 After:1, back:0, finally:1, eventually:0, broke:0, joined:1, returned:1, after:1, soon:0
left 1 right-hand:0, hand:0, right:0, left-hand:0, lefthand:0, arrow:0, turn:0, righthand:0, Left:0

Word Nearest Neighbors

rock band, bands, Rock, indie, Stones, breakbeat, punk, electronica, funk
bank banks, banking, trader, trading, Bank, capital, Banco, bankers, cash
Apple Macintosh, Microsoft, Windows, Macs, Lite, Intel, Desktop, WordPerfect, Mac
star stars, stellar, brightest, Stars, Galaxy, Stardust, eclipsing, stars., Star
cell cells, DNA, cellular, cytoplasm, membrane, peptide, macrophages, suppressor, vesicles
left leaving, turned, back, then, After, after, immediately, broke, end

Table 3.1: Nearest neighbors based on cosine similarity between the mean vectors
of Gaussian components for Gaussian mixture embedding (top) (for K = 2) and
Gaussian embedding (bottom). The notation w:i denotes the ith mixture component
of the word w.

3.3 Experiments

We have introduced a model for multi-prototype embeddings, which expressively

captures word meanings with whole probability distributions. We show that our

combination of energy and objective functions, proposed in Section 3.2, enables one

to learn interpretable multimodal distributions through unsupervised training, for

describing words with multiple distinct meanings. By representing multiple distinct

meanings, our model also reduces the unnecessarily large variance of a Gaussian

embedding model, and has improved results on word entailment tasks.

To learn the parameters of the proposed mixture model, we train on a con-
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catenation of two datasets: UKWAC (2.5 billion tokens) and Wackypedia (1 billion

tokens) [Baroni et al., 2009]. We discard words that occur fewer than 100 times in

the corpus, which results in a vocabulary size of 314, 129 words. Our word sampling

scheme, described at the end of Section 3.3.3, is similar to that of word2vec with

one negative context word for each positive context word.

After training, we obtain learned parameters {~µw,i,Σw,i, pi}Ki=1 for each word

w. We treat the mean vector ~µw,i as the embedding of the ith mixture component

with the covariance matrix Σw,i representing its subtlety and uncertainty. We

perform qualitative evaluation to show that our embeddings learn meaningful multi-

prototype representations and compare to existing models using a quantitative

evaluation on word similarity datasets and word entailment.

We name our model as Word to Gaussian Mixture (w2gm) in constrast to

Word to Gaussian (w2g) [Vilnis and McCallum, 2015]. Unless stated otherwise,

w2g refers to our implementation of w2gm model with one mixture component.

3.3.1 Hyperparameters

Unless stated otherwise, we experiment with K = 2 components for the w2gm

model, but we have results and discussion of K = 3 at the end of section 3.3.3. We

primarily consider the spherical case for computational efficiency. We note that

for diagonal or spherical covariances, the energy can be computed very efficiently

since the matrix inversion would simply require O(d) computation instead of O(d3)

for a full matrix. Empirically, we have found diagonal covariance matrices become

roughly spherical after training. Indeed, for these relatively high dimensional

embeddings, there are sufficient degrees of freedom for the mean vectors to be

30



learned such that the covariance matrices need not be asymmetric. Therefore, we

perform all evaluations with spherical covariance models.

Models used for evaluation have dimension D = 50 and use context window

` = 10 unless stated otherwise. We provide additional hyperparameters and training

details in Section (3.2.5).

3.3.2 Similarity Measures

Since our word embeddings contain multiple vectors and uncertainty parameters

per word, we use the following measures that generalizes similarity scores. These

measures pick out the component pair with maximum similarity and therefore

determine the meanings that are most relevant.

Expected Likelihood Kernel

A natural choice for a similarity score is the expected likelihood kernel, an inner

product between distributions, which we discussed in Section 3.2.4. This metric in-

corporates the uncertainty from the covariance matrices in addition to the similarity

between the mean vectors.

Maximum Cosine Similarity

This metric measures the maximum similarity of mean vectors among all pairs

of mixture components between distributions f and g. That is, d(f, g) =

max
i,j=1,...,K

〈µf,i,µg,j〉
||µf,i|| · ||µg,j||

, which corresponds to matching the meanings of f and
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g that are the most similar. For a Gaussian embedding, maximum similarity

reduces to the usual cosine similarity.

Minimum Euclidean Distance

Cosine similarity is popular for evaluating embeddings. However, our training

objective directly involves the Euclidean distance in Eq. (3.5), as opposed to dot

product of vectors such as in word2vec. Therefore, we also consider the Euclidean

metric: d(f, g) = min
i,j=1,...,K

[||µf,i − µg,j||].

3.3.3 Qualitative Evaluation

In Table 3.1, we show examples of polysemous words and their nearest neighbors

in the embedding space to demonstrate that our trained embeddings capture

multiple word senses. For instance, a word such as ‘rock’ that could mean either

‘stone’ or ‘rock music’ should have each of its meanings represented by a distinct

Gaussian component. Our results for a mixture of two Gaussians model confirm

this hypothesis, where we observe that the 0th component of ‘rock’ being related

to (‘basalt’, ‘boulders’) and the 1st component being related to (‘indie’, ‘funk’,

‘hip-hop’). Similarly, the word bank has its 0th component representing the river

bank and the 1st component representing the financial bank.

By contrast, in Table 3.1 (bottom), see that for Gaussian embeddings with

one mixture component, nearest neighbors of polysemous words are predominantly

related to a single meaning. For instance, ‘rock’ mostly has neighbors related

to rock music and ‘bank’ mostly related to the financial bank. The alternative

meanings of these polysemous words are not well represented in the embeddings.
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As a numerical example, the cosine similarity between ‘rock’ and ‘stone’ for the

Gaussian representation of Vilnis and McCallum [2015] is only 0.029, much lower

than the cosine similarity 0.586 between the 0th component of ‘rock’ and ‘stone’ in

our multimodal representation.

In cases where a word only has a single popular meaning, the mixture components

can be fairly close; for instance, one component of ‘stone’ is close to (‘stones’,

‘stonework’, ‘slab’) and the other to (‘carving, ‘relic’, ‘excavated’), which reflects

subtle variations in meanings. In general, the mixture can give properties such as

heavy tails and more interesting unimodal characterizations of uncertainty than

could be described by a single Gaussian.

Embedding Visualization We provide an interactive visualization as part of our

code repository: https://github.com/benathi/word2gm#visualization that al-

lows real-time queries of words’ nearest neighbors (in the embeddings tab) for

K = 1, 2, 3 components. We use a notation similar to that of Table 3.1, where

a token w:i represents the component i of a word w. For instance, if in the

K = 2 link we search for bank:0, we obtain the nearest neighbors such as river:1,

confluence:0, waterway:1, which indicates that the 0th component of ‘bank’ has

the meaning ‘river bank’. On the other hand, searching for bank:1 yields nearby

words such as banking:1, banker:0, ATM:0, indicating that this component is

close to the ‘financial bank’. We also have a visualization of a unimodal (w2g) for

comparison in the K = 1 link.

In addition, the embedding link for our Gaussian mixture model with K = 3

mixture components can learn three distinct meanings. For instance, each of the

three components of ‘cell’ is close to (‘keypad’, ‘digits’), (‘incarcerated’, ‘inmate’)
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Dataset sg* w2g* w2g/mc w2g/el w2g/me w2gm/mc w2gm/el w2gm/me

SL 29.39 32.23 29.35 25.44 25.43 29.31 26.02 27.59
WS 59.89 65.49 71.53 61.51 64.04 73.47 62.85 66.39
WS-S 69.86 76.15 76.70 70.57 72.3 76.73 70.08 73.3
WS-R 53.03 58.96 68.34 54.4 55.43 71.75 57.98 60.13
MEN 70.27 71.31 72.58 67.81 65.53 73.55 68.5 67.7
MC 63.96 70.41 76.48 72.70 80.66 79.08 76.75 80.33
RG 70.01 71 73.30 72.29 72.12 74.51 71.55 73.52
YP 39.34 41.5 41.96 38.38 36.41 45.07 39.18 38.58
MT-287 - - 64.79 57.5 58.31 66.60 57.24 60.61
MT-771 - - 60.86 55.89 54.12 60.82 57.26 56.43
RW - - 28.78 32.34 33.16 28.62 31.64 35.27

Table 3.2: Spearman correlation for word similarity datasets. The models sg, w2g,
w2gm denote word2vec skip-gram, Gaussian embedding, and Gaussian mixture
embedding (K=2). The measures mc, el, me denote maximum cosine similarity,
expected likelihood kernel, and minimum Euclidean distance. For each of w2g and
w2gm, we underline the similarity metric with the best score. For each dataset,
we boldface the score with the best performance across all models. The correlation
scores for sg*, w2g* are taken from Vilnis and McCallum [2015] and correspond
to cosine distance.

or (‘tissue’, ‘antibody’), indicating that the distribution captures the concept of

‘cellphone’, ‘jail cell’, or ‘biological cell’, respectively. Due to the limited number

of words with more than 2 meanings, our model with K = 3 does not generally

offer substantial performance differences to our model with K = 2; hence, we do

not further display K = 3 results for compactness.

3.3.4 Word Similarity

We evaluate our embeddings on several standard word similarity datasets, namely,

SimLex [Hill et al., 2014], WS or WordSim-353, WS-S (similarity), WS-R (re-

latedness) [Finkelstein et al., 2002], MEN [Bruni et al., 2014], MC [Miller and

Charles, 1991], RG [Rubenstein and Goodenough, 1965], YP [Yang and Powers,
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Model ρ× 100
Huang 64.2
Huang* 71.3
MSSG 50d 63.2
MSSG 300d 71.2
w2g 70.9
w2gm 73.5

Table 3.3: Spearman’s correlation (ρ) on WordSim-353 datasets for our Word to
Gaussian Mixture embeddings, as well as the multi-prototype embedding by Huang
et al. [2012] and the MSSG model by Neelakantan et al. [2014]. Huang* is trained
using data with all stop words removed. All models have dimension D = 50 except
for MSSG 300D with D = 300 which is still outperformed by our w2gm model.

2006], MTurk(-287,-771) [Halawi et al., 2012, Radinsky et al., 2011], and RW [Luong

et al., 2013]. Each dataset contains a list of word pairs with a human score of how

related or similar the two words are.

We calculate the Spearman correlation [Spearman, 1904] between the labels and

our scores generated by the embeddings. The Spearman correlation is a rank-based

correlation measure that assesses how well the scores describe the true labels.

The correlation results are shown in Table 3.2 using the scores generated from

the expected likelihood kernel, maximum cosine similarity, and maximum Euclidean

distance.

We show the results of our Gaussian mixture model and compare the performance

with that of word2vec and the original Gaussian embedding by Vilnis and

McCallum [2015]. We note that our model of a unimodal Gaussian embedding

w2g also outperforms the original model, which differs in model hyperparameters

and initialization, for most datasets.

Our multi-prototype model w2gm also performs better than skip-gram or
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Gaussian embedding methods on many datasets, namely, WS, WS-R, MEN, MC,

RG, YP, MT-287, RW. The maximum cosine similarity yields the best performance

on most datasets; however, the minimum Euclidean distance is a better metric for

the datasets MC and RW. These results are consistent for both the single-prototype

and the multi-prototype models.

We also compare out results on WordSim-353 with the multi-prototype embed-

ding method by Huang et al. [2012] and Neelakantan et al. [2014], shown in Table

3.3. We observe that our single-prototype model w2g is competitive compared

to models by Huang et al. [2012], even without using a corpus with stop words

removed. This could be due to the auto-calibration of importance via the covariance

learning which decrease the importance of very frequent words such as ‘the’, ‘to’,

‘a’, etc. Moreover, our multi-prototype model substantially outperforms the model

of Huang et al. [2012] and the MSSG model of Neelakantan et al. [2014] on the

WordSim-353 dataset.

3.3.5 Word Similarity for Polysemous Words

We use the dataset SCWS introduced by Huang et al. [2012], where word pairs are

chosen to have variations in meanings of polysemous and homonymous words.

We compare our method with multiprototype models by Huang [Huang et al.,

2012], Tian [Tian et al., 2014], Chen [Chen et al., 2014], and MSSG model by

[Neelakantan et al., 2014]. We note that Chen model uses an external lexical

source WordNet that gives it an extra advantage.

We use many metrics to calculate the scores for the Spearman correlation.

MaxSim refers to the maximum cosine similarity. AveSim is the average of cosine
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Model Dimension ρ× 100
word2vec skip-gram 50 61.7
Huang-S 50 58.6
w2g 50 64.7
Chen-S 200 64.2
w2g 200 66.2

Huang-M AvgSim 50 62.8
Tian-M MaxSim 50 63.6
w2gm MaxSim 50 62.7
MSSG AvgSim 50 64.2
Chen-M AvgSim 200 66.2
w2gm MaxSim 200 65.5

Table 3.4: Spearman’s correlation ρ on dataset SCWS. We show the results for
single prototype (top) and multi-prototype (bottom). The suffix -(S,M) refers to
single and multiple prototype models, respectively.

similarities with respect to the component probabilities.

In Table 3.4, the model w2g performs the best among all single-prototype models

for either 50 or 200 vector dimensions. Our model w2gm performs competitively

compared to other multi-prototype models. In SCWS, the gain in flexibility in

moving to a probability density approach appears to dominate over the effects

of using a multi-prototype. In most other examples, we see w2gm surpass w2g,

where the multi-prototype structure is just as important for good performance as

the probabilistic representation. Note that other models also use AvgSimC metric

which uses context information which can yield better correlation [Chen et al.,

2014, Huang et al., 2012]. We report the numbers using AvgSim or MaxSim from

the existing models which are more comparable to our performance with MaxSim.
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Model Score Best AP Best F1
w2g (5) cos 73.1 76.4
w2g (5) kl 73.7 76.0

w2gm (5) cos 73.6 76.3
w2gm (5) kl 75.7 77.9

w2g (10) cos 73.0 76.1
w2g (10) kl 74.2 76.1

w2gm (10) cos 72.9 75.6
w2gm (10) kl 74.7 76.3

Table 3.5: Entailment results for models w2g and w2gm with window size 5 and
10 for maximum cosine similarity and the maximum negative KL divergence. We
calculate the best average precision and the best F1 score. In most cases, w2gm
outperforms w2g for describing entailment.

3.3.6 Reduction in Variance of Polysemous Words

One motivation for our Gaussian mixture embedding is to model word uncertainty

more accurately than Gaussian embeddings, which can have overly large variances

for polysemous words (in order to assign some mass to all of the distinct meanings).

We see that our Gaussian mixture model does indeed reduce the variances of each

component for such words. For instance, we observe that the word rock in w2g has

much higher variance per dimension (e−1.8 ≈ 1.65) compared to that of Gaussian

components of rock in w2gm (which has variance of roughly e−2.5 ≈ 0.82). We

also see, in the next section, that w2gm has desirable quantitative behavior for

word entailment.

3.3.7 Word Entailment

We evaluate our embeddings on the word entailment dataset from Baroni et al.

[2012]. The lexical entailment between words is denoted by w1 � w2 which means
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that all instances of w1 are w2. The entailment dataset contains positive pairs such

as aircraft � vehicle and negative pairs such as aircraft 6� insect.

We generate entailment scores of word pairs and find the best threshold, mea-

sured by Average Precision (AP) or F1 score, which identifies negative versus

positive entailment. We use the maximum cosine similarity and the minimum KL

divergence, d(f, g) = min
i,j=1,...,K

KL(f ||g), for entailment scores. The minimum KL

divergence is similar to the maximum cosine similarity, but also incorporates the

embedding uncertainty. In addition, KL divergence is an asymmetric measure,

which is more suitable for certain tasks such as word entailment where a relationship

is unidirectional. For instance, w1 � w2 does not imply w2 � w1. Indeed, aircraft

� vehicle does not imply vehicle � aircraft, since all aircraft are vehicles but not all

vehicles are aircraft. The difference between KL(w1||w2) versus KL(w2||w1) distin-

guishes which word distribution encompasses another distribution, as demonstrated

in Figure 3.1.

Table 3.5 shows the results of our w2gm model versus the Gaussian embedding

model w2g. We observe a trend for both models with window size 5 and 10 that

the KL metric yields improvement (both AP and F1) over cosine similarity. In

addition, w2gm generally outperforms w2g.

The multi-prototype model estimates the meaning uncertainty better since

it is no longer constrained to be unimodal, leading to better characterizations

of entailment. On the other hand, the Gaussian embedding model suffers from

overestimatating variances of polysemous words, which results in less informative

word distributions and reduced entailment scores.
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3.4 Discussion

We introduced a model that represents words with expressive multimodal distri-

butions formed from Gaussian mixtures. To learn the properties of each mixture,

we proposed an analytic energy function for combination with a maximum margin

objective. The resulting embeddings capture different semantics of polysemous

words, uncertainty, and entailment, and also perform favorably on word similarity

benchmarks.

Elsewhere, latent probabilistic representations are proving to be exceptionally

valuable, able to capture nuances such as face angles with variational autoencoders

[Kingma and Welling, 2013] or subtleties in painting strokes with the InfoGAN

[Chen et al., 2016]. Moreover, classically deterministic deep learning architectures

are actively being generalized to probabilistic deep models, for full predictive distri-

butions instead of point estimates, and significantly more expressive representations

[Al-Shedivat et al., 2016, Fortunato et al., 2017b, Gan et al., 2016, Wilson et al.,

2016a,b].

Similarly, probabilistic word embeddings can capture a range of subtle meanings,

and advance the state of the art. Multimodal word distributions naturally represent

our belief that words do not have single precise meanings: indeed, the shape of

a word distribution can express much more semantic information than any point

representation.

In the future, multimodal word distributions could open the doors to a new

suite of applications in language modelling, where whole word distributions are used

as inputs to new probabilistic LSTMs, or in decision functions where uncertainty

matters. As part of this effort, we can explore different metrics between distributions,
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such as KL divergences, which would be a natural choice for order embeddings

that model entailment properties. It would also be informative to explore inference

over the number of components in mixture models for word distributions. Such an

approach could potentially discover an unbounded number of distinct meanings for

words, but also distribute the support of each word distribution to express highly

nuanced meanings. Alternatively, we could imagine a dependent mixture model

where the distributions over words are evolving with time and other covariates.

One could also build new types of supervised language models, constructed to more

fully leverage the rich information provided by word distributions.
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CHAPTER 4

PROBABILISTIC WORD EMBEDDINGS WITH CHARACTER

INFORMATION

We introduce Probabilistic FastText (PFT), a new model for word embed-

dings that can capture multiple word senses, sub-word structure, and uncertainty

information. In particular, we represent each word with a Gaussian mixture density,

where the mean of a mixture component is given by the sum of n-grams. This repre-

sentation allows the model to share statistical strength across sub-word structures

(e.g. Latin roots), producing accurate representations of rare, misspelt, or even

unseen words. Moreover, each component of the mixture can capture a different

word sense. pft outperforms both FastText, which has no probabilistic model,

and dictionary-level probabilistic embeddings, which do not incorporate subword

structures, on several word-similarity benchmarks, including English RareWord and

foreign language datasets. We also achieve state-of-art performance on benchmarks

that measure ability to discern different meanings. Thus, the proposed model is

the first to achieve multi-sense representations while having enriched semantics on

rare words.

4.1 Introduction

Word embeddings introduced thus far such as word2vec, GloVe or word2gm are

dictionary-level embeddings, which rely on a vocabulary lookup table consisting of

words only in the training set. One shortcoming with the above approaches to word

embedding that are based on a predefined dictionary (termed as dictionary-based

embeddings) is their inability to learn representations of rare or out-of-vocabulary

words. To overcome this limitation, character-level word embeddings have been
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proposed. FastText [Bojanowski et al., 2016] is the state-of-the-art character-

level approach to embeddings. Each word is modeled by a sum of vectors, with

each vector representing an n-gram. The benefit of this approach is that the

training process can then share strength across words composed of common roots.

For example, with individual representations for “circum” and “navigation”, we

can construct an informative representation for “circumnavigation”, which would

otherwise appear too infrequently to learn a dictionary-level embedding. In addition

to effectively modelling rare words, character-level embeddings can also represent

slang or misspelled words, such as “dogz”, and can share strength across different

languages that share roots, e.g. Romance languages share latent roots.

pft provides probabilistic character-level representations of words based on

Gaussian mixture representation and FastText subword structure. The resulting

word embeddings are highly expressive, yet straightforward and interpretable, with

simple, efficient, and intuitive training procedures. pft can model rare words,

uncertainty information, hierarchical representations, and multiple word senses. In

particular, we represent each word with a Gaussian or a Gaussian mixture density,

which we name pft-g and pft-gm respectively. Each component of the mixture

can represent different word senses, and the mean vectors of each component

decompose into vectors of n-grams, to capture character-level information. We also

derive an efficient energy-based max-margin training procedure for pft.

We perform comparison with FastText as well as existing density word

embeddings w2g (Gaussian) and w2gm (Gaussian mixture). Our models extract

high-quality semantics based on multiple word-similarity benchmarks, including

the rare word dataset. We obtain an average weighted improvement of 3.7% over

FastText [Bojanowski et al., 2016] and 3.1% over the dictionary-level density-
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based models. We also observe meaningful nearest neighbors, particularly in the

multimodal density case, where each mode captures a distinct meaning. Our

models are also directly portable to foreign languages without any hyperparameter

modification, where we observe strong performance, outperforming FastText

on many foreign word similarity datasets. Our multimodal word representation

can also disentangle meanings, and is able to separate different senses in foreign

polysemies. In particular, our models attain state-of-the-art performance on SCWS,

a benchmark to measure the ability to separate different word meanings, achieving

1.0% improvement over a recent density embedding model w2gm [Athiwaratkun

and Wilson, 2017].

To the best of our knowledge, we are the first to develop multi-sense embeddings

with high semantic quality for rare words. Our code and embeddings are publicly

available.1

4.2 Probabilistic FastText

Probabilistic FastText combines a probabilistic word representation with

the ability to capture subword structure. We describe the probabilistic subword

representation in Section 4.2.1. We describe the loss function as well as other

training steps in Section 4.2.2.

1https://github.com/benathi/multisense-prob-fasttext
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Figure 4.1: (4.1a) a Gaussian component and its subword structure. The bold arrow
represents the final mean vector, estimated from averaging the grey n-gram vectors.
(4.1b) pft-g model: Each Gaussian component’s mean vector is a subword vector.
(4.1c) pft-gm model: For each Gaussian mixture distribution, one component’s
mean vector is estimated by a subword structure whereas other components are
dictionary-based vectors.

4.2.1 Probabilistic Subword Representation

We represent each word with a Gaussian mixture with K Gaussian compo-

nents. That is, a word w is associated with a density function f(x) =∑K
i=1 pw,iN (x; ~µw,i,Σw,i) where {µw,i}Kk=1 are the mean vectors and {Σw,i} are

the covariance matrices, and {pw,i}Kk=1 are the component probabilities which sum

to 1.

The mean vectors of Gaussian components hold much of the semantic information

in density embeddings. While these models are successful based on word similarity

and entailment benchmarks [Athiwaratkun and Wilson, 2017, Vilnis and McCallum,

2015], the mean vectors are often dictionary-level, which can lead to poor semantic

estimates for rare words, or the inability to handle words outside the training

corpus. We propose using subword structures to estimate the mean vectors. We

outline the formulation below.

For word w, we estimate the mean vector µw with the average over n-gram
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vectors and its dictionary-level vector. That is,

µw =
1

|NGw|+ 1

(
vw +

∑
g∈NGw

zg

)
(4.1)

where zg is a vector associated with an n-gram g, vw is the dictionary representation

of word w, and NGw is a set of n-grams of word w. Examples of 3,4-grams for

a word “beautiful”, including the beginning-of-word character ‘〈’ and end-of-word

character ‘〉’, are:

• 3-grams: 〈be, bea, eau, aut, uti, tif, ful, ul〉

• 4-grams: 〈bea, beau .., iful ,ful〉

This structure is similar to that of FastText [Bojanowski et al., 2016]; however,

we note that FastText uses single-prototype deterministic embeddings as well

as a training approach that maximizes the negative log-likelihood, whereas we

use a multi-prototype probabilistic embedding and for training we maximize the

similarity between the words’ probability densities.

Figure 4.1a depicts the subword structure for the mean vector. Figure 4.1b and

4.1c depict our models, Gaussian probabilistic FastText (pft-g) and Gaussian

mixture probabilistic FastText (pft-gm). In the Gaussian case, we represent

each mean vector with a subword estimation. For the Gaussian mixture case,

we represent one Gaussian component’s mean vector with the subword structure

whereas other components’ mean vectors are dictionary-based. This model choice to

use dictionary-based mean vectors for other components is to reduce to constraint

imposed by the subword structure and promote independence for meaning discovery.
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4.2.2 Loss Function

We adopt the loss function and a word sampling scheme as in Section 3.2.3. We use

the energy similar to Section 3.2.4 but made a slight simplification for computational

efficiency outlined below.

In theory, it can be beneficial to have covariance matrices as learnable parameters.

In practice, Athiwaratkun and Wilson [2017] observe that spherical covariances

often perform on par with diagonal covariances with much less computational

resources. Using spherical covariances for each component, we can further simplify

the energy function as follows:

ξi,j = −α
2
· ||µf,i − µg,j||2 , (4.2)

where the hyperparameter α is the scale of the inverse covariance term in Equation

3.5. We note that Equation 4.2 is equivalent to Equation 3.5 up to an additive

constant given that the covariance matrices are spherical and the same for all

components.

4.3 Experiments

We have proposed a probabilistic FastText model which combines the flexibility

of subword structure with the density embedding approach. In this section, we

show that our probabilistic representation with subword mean vectors with the

simplified energy function outperforms many word similarity baselines and provides

disentangled meanings for polysemies.
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First, we describe the training details in Section 4.3.1. We provide qualitative

evaluation in Section 4.3.2, showing meaningful nearest neighbors for the Gaus-

sian embeddings, as well as the ability to capture multiple meanings by Gaussian

mixtures. Our quantitative evaluation in Section 4.3.3 demonstrates strong perfor-

mance against the baseline models FastText [Bojanowski et al., 2016] and the

dictionary-level Gaussian (w2g) [Vilnis and McCallum, 2015] and Gaussian mixture

embeddings in Chapter 3 [Athiwaratkun and Wilson, 2017] (w2gm). We train our

models on foreign language corpuses and show competitive results on foreign word

similarity benchmarks in Section 4.3.4. Finally, we explain the importance of the

n-gram structures for semantic sharing in Section 4.3.5.

4.3.1 Training Details

We train our models on both English and foreign language datasets. For English,

we use the concatenation of ukWac and WackyPedia [Baroni et al., 2009] which

consists of 3.376 billion words. We filter out word types that occur fewer than 5

times which results in a vocabulary size of 2,677,466.

For foreign languages, we demonstrate the training of our model on French,

German, and Italian text corpuses. We note that our model should be applicable

for other languages as well. We use FrWac (French), DeWac (German), ItWac

(Italian) datasets [Baroni et al., 2009] for text corpuses, consisting of 1.634, 1.716

and 1.955 billion words respectively. We use the same threshold, filtering out words

that occur less than 5 times in each corpus. We have dictionary sizes of 1.3, 2.7,

and 1.4 million words for FrWac, DeWac, and ItWac.

We adjust the hyperparameters on the English corpus and use them for foreign
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languages. Note that the adjustable parameters for our models are the loss marginm

in Equation 3.2 and the scale α in Equation 4.2. We search for the optimal hyperpa-

rameters in a grid m ∈ {0.01, 0.1, 1, 10, 100} and α ∈ { 1
5×10−3 ,

1
10−3 ,

1
2×10−4 ,

1
1×10−4}

on our English corpus. The hyperpameter α affects the scale of the loss function;

therefore, we adjust the learning rate appropriately for each α. In particular, the

learning rates used are γ = {10−4, 10−5, 10−6} for the respective α values.

Other fixed hyperparameters include the number of Gaussian componentsK = 2,

the context window length ` = 10 and the subsampling threshold t = 10−5. We use

character n-grams where n = 3, 4, 5, 6 to estimate the mean vectors.

4.3.2 Qualitative Evaluation - Nearest neighbors

We show that our embeddings learn the word semantics well by demonstrating

meaningful nearest neighbors. Table 4.1 shows examples of polysemous words such

as rock, star, and cell.

Word Co. Nearest Neighbors

rock 0 rock:0, rocks:0, rocky:0, mudrock:0, rockscape:0, boulders:0 , coutcrops:0,
rock 1 rock:1, punk:0, punk-rock:0, indie:0, pop-rock:0, pop-punk:0, indie-rock:0, band:1
bank 0 bank:0, banks:0, banker:0, bankers:0, bankcard:0, Citibank:0, debits:0
bank 1 bank:1, banks:1, river:0, riverbank:0, embanking:0, banks:0, confluence:1
star 0 stars:0, stellar:0, nebula:0, starspot:0, stars.:0, stellas:0, constellation:1
star 1 star:1, stars:1, star-star:0, 5-stars:0, movie-star:0, mega-star:0, super-star:0
cell 0 cell:0, cellular:0, acellular:0, lymphocytes:0, T-cells:0, cytes:0, leukocytes:0
cell 1 cell:1, cells:1, cellular:0, cellular-phone:0, cellphone:0, transcellular:0
left 0 left:0, right:1, left-hand:0, right-left:0, left-right-left:0, right-hand:0, leftwards:0
left 1 left:1, leaving:0, leavings:0, remained:0, leave:1, enmained:0, leaving-age:0, sadly-departed:0

Word Nearest Neighbors

rock rock, rock-y, rockn, rock-, rock-funk, rock/, lava-rock, nu-rock, rock-pop, rock/ice, coral-rock
bank bank-, bank/, bank-account, bank., banky, bank-to-bank, banking, Bank, bank/cash, banks.**
star movie-stars, star-planet, G-star, star-dust, big-star, starsailor, 31-star, star-lit, Star, starsign, pop-stars
cell cellular, tumour-cell, in-cell, cell/tumour, 11-cell, T-cell, sperm-cell, 2-cells, Cell-to-cell
left left, left/joined, leaving, left,right, right, left)and, leftsided, lefted, leftside

Table 4.1: Nearest neighbors of pft-gm (top) and pft-g (bottom). The notation
w:i denotes the ith mixture component of the word w.
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Table 4.1 shows the nearest neighbors of polysemous words. We note that

subword embeddings prefer words with overlapping characters as nearest neighbors.

For instance, “rock-y”, “rockn”, and “rock” are both close to the word “rock”. For

the purpose of demonstration, we only show words with meaningful variations and

omit words with small character-based variations previously mentioned. However,

all words shown are in the top-100 nearest words.

We observe the separation in meanings for the multi-component case; for

instance, one component of the word “bank” corresponds to a financial bank

whereas the other component corresponds to a river bank. The single-component

case also has interesting behavior. We observe that the subword embeddings of

polysemous words can represent both meanings. For instance, both “lava-rock” and

“rock-pop” are among the closest words to “rock”.

4.3.3 Word Similarity Evaluation

d 50 300
w2g w2gm pft-g pft-gm FastText w2g w2gm pft-g pft-gm

SL-999 29.35 29.31 27.34 34.13 38.03 38.84 39.62 35.85 39.60
WS-353 71.53 73.47 67.17 71.10 73.88 78.25 79.38 73.75 76.11
MEN-3k 72.58 73.55 70.61 73.90 76.37 78.40 78.76 77.78 79.65
MC-30 76.48 79.08 73.54 79.75 81.20 82.42 84.58 81.90 80.93
RG-65 73.30 74.51 70.43 78.19 79.98 80.34 80.95 77.57 79.81
YP-130 41.96 45.07 37.10 40.91 53.33 46.40 47.12 48.52 54.93
MT-287 64.79 66.60 63.96 67.65 67.93 67.74 69.65 66.41 69.44
MT-771 60.86 60.82 60.40 63.86 66.89 70.10 70.36 67.18 69.68
RW-2k 28.78 28.62 44.05 42.78 48.09 35.49 42.73 50.37 49.36
avg. 42.32 42.76 44.35 46.47 49.28 47.71 49.54 49.86 51.10

Table 4.2: Spearman’s Correlation ρ× 100 on Word Similarity Datasets.

We evaluate our embeddings on several standard word similarity datasets,

namely, SL-999 [Hill et al., 2014], WS-353 [Finkelstein et al., 2002], MEN-3k [Bruni

et al., 2014], MC-30 [Miller and Charles, 1991], RG-65 [Rubenstein and Goodenough,
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1965], YP-130 [Yang and Powers, 2006], MTurk(-287,-771) [Halawi et al., 2012,

Radinsky et al., 2011], and RW-2k [Luong et al., 2013]. Each dataset contains a list

of word pairs with a human score of how related or similar the two words are. We

use the notation dataset-num to denote the number of word pairs num in each

evaluation set. We note that the dataset RW focuses more on infrequent words and

SimLex-999 focuses on the similarity of words rather than relatedness. We also

compare pft-gm with other multi-prototype embeddings in the literature using

SCWS [Huang et al., 2012], a word similarity dataset that is aimed to measure the

ability of embeddings to discern multiple meanings.

We calculate the Spearman correlation [Spearman, 1904] between the labels and

our scores generated by the embeddings. The Spearman correlation is a rank-based

correlation measure that assesses how well the scores describe the true labels. The

scores we use are cosine-similarity scores between the mean vectors. In the case of

Gaussian mixtures, we use the pairwise maximum score:

s(f, g) = max
i∈1,...,K

max
j∈1,...,K

µf,i · µg,j
||µf,i|| · ||µg,j||

. (4.3)

The pair (i, j) that achieves the maximum cosine similarity corresponds to the

Gaussian component pair that is the closest in meanings. Therefore, this similarity

score yields the most related senses of a given word pair. This score reduces to a

cosine similarity in the Gaussian case (K = 1).

Comparison Against Dictionary-Level Density Embeddings and Fast-

Text

We compare our models against the dictionary-level Gaussian and Gaussian mixture

embeddings in Table 4.2, with 50-dimensional and 300-dimensional mean vectors.
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The 50-dimensional results for w2g and w2gm are obtained directly from Chapter

3 [Athiwaratkun and Wilson, 2017]. For comparison, we use the public code2

to train the 300-dimensional w2g and w2gm models and the publicly available

FastText model3.

We calculate Spearman’s correlations for each of the word similarity datasets.

These datasets vary greatly in the number of word pairs; therefore, we mark each

dataset with its size for visibility. For a fair and objective comparison, we calculate

a weighted average of the correlation scores for each model.

Our pft-gm achieves the highest average score among all competing models,

outperforming both FastText and the dictionary-level embeddings w2g and

w2gm. Our unimodal model pft-g also outperforms the dictionary-level counter-

part w2g and FastText. We note that the model w2gm appears quite strong

according to Table 4.2, beating pft-gm on many word similarity datasets. However,

the datasets that w2gm performs better than pft-gm often have small sizes such

as MC-30 or RG-65, where the Spearman’s correlations are more subject to noise.

Overall, pft-gm outperforms w2gm by 3.1% and 8.7% in 300 and 50 dimensional

models. In addition, pft-g and pft-gm also outperform FastText by 1.2% and

3.7% respectively.

Comparison Against Multi-Prototype Models

In Table 4.3, we compare 50 and 300 dimensional pft-gm models against the

multi-prototype embeddings described in Section 2.1.3 and the existing multimodal

density embeddings w2gm. We use the word similarity dataset SCWS [Huang et al.,

2https://github.com/benathi/word2gm
3https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
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Model Dim ρ× 100

Huang AvgSim 50 62.8
Tian MaxSim 50 63.6
w2gm MaxSim 50 62.7
Neelakantan AvgSim 50 64.2
pft-gm MaxSim 50 63.7

Chen-M AvgSim 200 66.2
w2gm MaxSim 200 65.5

Neelakantan AvgSim 300 67.2
w2gm MaxSim 300 66.5
pft-gm MaxSim 300 67.2

Table 4.3: Spearman’s Correlation ρ× 100 on word similarity dataset SCWS.

2012] which contains words with potentially many meanings, and is a benchmark

for distinguishing senses. We use the maximum similarity score (Equation 4.3),

denoted as MaxSim. AveSim denotes the average of the similarity scores, rather

than the maximum.

We outperform the dictionary-based density embeddings w2gm in both 50 and

300 dimensions, demonstrating the benefits of subword information. Our model

achieves state-of-the-art results, similar to that of Neelakantan et al. [2014].

Lang. Evaluation FastText w2g w2gm pft-g pft-gm
fr WS353 38.2 16.73 20.09 41.0 41.3

de
GUR350 70 65.01 69.26 77.6 78.2
GUR65 81 74.94 76.89 81.8 85.2

it
WS353 57.1 56.02 61.09 60.2 62.5
SL-999 29.3 29.44 34.91 29.3 33.7

Table 4.4: Word similarity evaluation on foreign languages.
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4.3.4 Evaluation on Foreign Language Embeddings

We evaluate the foreign-language embeddings on word similarity datasets in respec-

tive languages. We use Italian WordSim353 and Italian SimLex-999 [Leviant

and Reichart, 2015] for Italian models, GUR350 and GUR65 [Gurevych, 2005]

for German models, and French WordSim353 [Finkelstein et al., 2002] for French

models. For datasets GUR350 and GUR65, we use the results reported in the

FastText publication [Bojanowski et al., 2016]. For other datasets, we train

FastText models for comparison using the public code4 on our text corpuses. We

also train dictionary-level models w2g, and w2gm for comparison.

Table 4.4 shows the Spearman’s correlation results of our models. We outperform

FastText on many word similarity benchmarks. Our results are also significantly

better than the dictionary-based models, w2g and w2gm. We hypothesize that

w2g and w2gm can perform better than the current reported results given proper

pre-processing of words due to special characters such as accents.

We investigate the nearest neighbors of polysemies in foreign languages and

also observe clear sense separation. For example, piano in Italian can mean “floor”

or “slow”. These two meanings are reflected in the nearest neighbors where one

component is close to piano-piano, pianod which mean “slowly” whereas the other

component is close to piani (floors), istrutturazione (renovation) or infrastrut-

tre (infrastructure). Table 4.5 shows additional results, demonstrating that the

disentangled semantics can be observed in multiple languages.

4https://github.com/facebookresearch/fastText.git
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Word Meaning Nearest Neighbors

(it) secondo 2nd Secondo (2nd), terzo (3rd) , quinto (5th), primo (first), quarto (4th), ultimo (last)
(it) secondo according to conformit (compliance), attenendosi (following), cui (which), conformemente (accordance with)
(it) porta lead, bring portano (lead), conduce (leads), portano, porter, portando (bring), costringe (forces)
(it) porta door porte (doors), finestrella (window), finestra (window), portone (doorway), serratura (door lock)
(fr) voile veil voiles (veil), voiler (veil), voilent (veil), voilement, foulard (scarf), voils (veils), voilant (veiling)
(fr) voile sail catamaran (catamaran), driveur (driver), nautiques (water), Voile (sail), driveurs (drivers)
(fr) temps weather brouillard (fog), orageuses (stormy), nuageux (cloudy)
(fr) temps time mi-temps (half-time), partiel (partial), Temps (time), annualis (annualized), horaires (schedule)
(fr) voler steal envoler (fly), voleuse (thief), cambrioler (burgle), voleur (thief), violer (violate), picoler (tipple)
(fr) voler fly airs (air), vol (flight), volent (fly), envoler (flying), atterrir (land)

Table 4.5: Nearest neighbors of polysemies based on our foreign language pft-gm
models.

4.3.5 Qualitative Evaluation - Subword Decomposition

One of the motivations for using subword information is the ability to handle out-

of-vocabulary words. Another benefit is the ability to help improve the semantics

of rare words via subword sharing. Due to an observation that text corpuses follow

Zipf’s power law [Zipf, 1949], words at the tail of the occurrence distribution appears

much less frequently. Training these words to have a good semantic representation

is challenging if done at the word level alone. However, an n-gram such as ‘abnorm’

is trained during both occurrences of “abnormal” and “abnormality” in the corpus,

hence further augments both words’s semantics.

Figure 4.2 shows the contribution of n-grams to the final representation. We

filter out to show only the n-grams with the top-5 and bottom-5 similarity scores.

We observe that the final representations of both words align with n-grams “abno”,

“bnor”, “abnorm”, “anbnor”, “<abn”. In fact, both “abnormal” and “abnormality”

share the same top-5 n-grams. Due to the fact that many rare words such as

“autobiographer”, “circumnavigations”, or “hypersensitivity” are composed from

many common sub-words, the n-gram structure can help improve the representation

quality.
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Figure 4.2: Contribution of each n-gram vector to the final representation for word
“abnormal” (top) and “abnormality” (bottom). The x-axis is the cosine similarity
between each n-gram vector z(w)

g and the final vector µw.

4.4 Numbers of Components

It is possible to train our approach with K > 2 mixture components; however,

Athiwaratkun and Wilson [2017] observe that dictionary-level Gaussian mixtures

with K = 3 do not overall improve word similarity results, even though these

mixtures can discover 3 distinct senses for certain words. Indeed, while K > 2 in

principle allows for greater flexibility than K = 2, most words can be very flexibly

modelled with a mixture of two Gaussians, leading to K = 2 representing a good

balance between flexibility and Occam’s razor.

Even for words with single meanings, our pft model with K = 2 often
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learns richer representations than a K = 1 model. For example, the two mixture

components can learn to cluster together to form a more heavy tailed unimodal

distribution which captures a word with one dominant meaning but with close

relationships to a wide range of other words.

In addition, we observe that our model with K components can capture more

than K meanings. For instance, in K = 1 model, the word pairs (“cell”, “jail”) and

(“cell”, “biology”) and (“cell”, “phone”) will all have positive similarity scores based

on K = 1 model. In general, if a word has multiple meanings, these meanings are

usually compressed into the linear substructure of the embeddings [Arora et al.,

2016]. However, the pairs of non-dominant words often have lower similarity scores,

which might not accurately reflect their true similarities.

4.5 Discussion

We have proposed models for probabilistic word representations equipped with

flexible sub-word structures, suitable for rare and out-of-vocabulary words. The pro-

posed probabilistic formulation incorporates uncertainty information and naturally

allows one to uncover multiple meanings with multimodal density representations.

Our models offer better semantic quality, outperforming competing models on

word similarity benchmarks. Moreover, our multimodal density models can provide

interpretable and disentangled representations, and are the first multi-prototype

embeddings that can handle rare words.

Future work includes an investigation into the trade-off between learning full

covariance matrices for each word distribution, computational complexity, and

performance. This direction can potentially have a great impact on tasks where the
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variance information is crucial, such as for hierarchical modeling with probability

distributions [Athiwaratkun and Wilson, 2018].

Other future work involves co-training pft on many languages. Currently,

existing work on multi-lingual embeddings align the word semantics on pre-trained

vectors [Ammar et al., 2016, Conneau et al., 2018, Smith et al., 2017], which can

be suboptimal due to polysemies. We envision that the multi-prototype nature can

help disambiguate words with multiple meanings and facilitate semantic alignment.
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CHAPTER 5

PROBABILISTIC REPRESENTATION FOR HIERARCHICAL

DATA

By representing words with probability densities rather than point vectors, proba-

bilistic word embeddings can capture rich and interpretable semantic information

and uncertainty. The uncertainty information can be particularly meaningful in

capturing entailment relationships – whereby general words such as “entity” corre-

spond to broad distributions that encompass more specific words such as “animal”

or “instrument”. We introduce density order embeddings, which learn hierarchical

representations through encapsulation of probability densities. In particular, we pro-

pose simple yet effective loss functions and distance metrics, as well as graph-based

schemes to select negative samples to better learn hierarchical density represen-

tations. Our approach provides state-of-the-art performance on the WordNet

hypernym relationship prediction task and the challenging HyperLex [Vulić et al.,

2017] lexical entailment dataset – while retaining a rich and interpretable density

representation.

5.1 Introduction

Entailment patterns can be observed from density word embeddings through

unsupervised training based on word contexts [Athiwaratkun and Wilson, 2017,

Vilnis and McCallum, 2015]. In the unsupervised settings, density embeddings are

learned via maximizing the similarity scores between nearby words. In these cases,

the density encapsulation behavior arises due to the word occurrence pattern that

a general word can often substitute more specific words; for instance, the word “tea”
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in a sentence “I like iced tea” can be substituted by “beverages”, yielding another

natural sentence “I like iced beverages”. Therefore, the probability density of a

general concept such as “beverages” tends to have a larger variance than specific

ones such as “tea”, reflecting higher uncertainty in meanings since a general word can

be used in many contexts. However, the information from word occurrences alone

is not sufficient to train meaningful embeddings of some concepts. For instance, it

is fairly common to observe sentences “Look at the cat”, or “Look at the dog”, but

not “Look at the mammal”. Therefore, due to the way we typically express natural

language, it is unlikely that the word “mammal” would be learned as a distribution

that encompasses both “cat” and “dog”, since “mammal” rarely occurs in similar

contexts.

Rather than relying on the information from word occurrences, one can do

supervised training of density embeddings on hierarchical data. In this chapter,

we propose new training methodology to enable effective supervised probabilistic

density embeddings. Despite providing rich and intuitive word representations,

with a natural ability to represent order relationships, probabilistic embeddings

have only been considered in a small number of pioneering works such as Vilnis and

McCallum [2015], and these works are almost exclusively focused on unsupervised

embeddings. Probabilistic Gaussian embeddings trained directly on labeled data

have been briefly considered but perform surprisingly poorly compared to other

competing models [Vendrov et al., 2016, Vulić et al., 2017].

Our work reaches a very different conclusion: probabilistic Gaussian embed-

dings can be highly effective at capturing ordering and are suitable for modeling

hierarchical structures, and can even achieve state-of-the-art results on hypernym

prediction and graded lexical entailment tasks, so long as one uses the right training
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procedures.

In particular, we make the following contributions.

(a) We adopt a new form of loss function for training hierarchical probabilistic

order embeddings.

(b) We introduce the notion of soft probabilistic encapsulation orders and a thresh-

olded divergence-based penalty function, which do not over-penalize words with

a sufficient encapsulation.

(c) We introduce a new graph-based scheme to select negative samples to contrast

the true relationship pairs during training. This approach incorporates hierarchy

information to the negative samples that help facilitate training and has

added benefits over the hierarchy-agnostic sampling schemes previously used in

literature.

(d) We also demonstrate that initializing the right variance scale is highly important

for modeling hierarchical data via distributions, allowing the model to exhibit

meaningful encapsulation orders.

The outline of this chapter is as follows. In Section 2.1.4, we introduce the

background for Gaussian embeddings [Vilnis and McCallum, 2015] and vector order

embeddings [Vendrov et al., 2016]. We describe our training methodology in Section

5.2, where we introduce the notion of soft encapsulation orders (Section 5.2.2) and

explore different divergence measures such as the expected likelihood kernel, KL

divergence, and a family of Rényi alpha divergences (Section 5.2.3). We describe

the experiment details in Section 5.3 and offer a qualitative evaluation of the model

in Section 5.3.4, where we show the visualization of the density encapsulation
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behavior. We show quantitative results on the WordNet Hypernym prediction

task in Section 5.3.3 and a graded entailment dataset HyperLex in Section 5.3.5.

In addition, we conduct experiments to show that our proposed changes to learn

Gaussian embeddings contribute to the increased performance. We demonstrate

(a) the effects of our loss function in Section 5.3.6, (b) soft encapsulation in Section

5.3.6, (c) negative sample selection in Section 5.3.5], and (d) initial variance scale

in Section 5.3.6.

We make our code publicly available.1

A dog and a frisbee

A dog is jumping to catch a frisbee A dog is sitting with a frisbee

dog

A dog in a poolA dog in a house
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Figure 5.1: (a) Captions and images in the visual-semantic hierarchy. (b) Vector
order embedding [Vendrov et al., 2016] where specific entities have higher coor-
dinate values. (c) Density order embedding where specific entities correspond to
concentrated distributions encapsulated in broader distributions of general entities.

5.2 Methodology

In Section 5.2.1, we describe the ideal partial orders that can be induced by density

encapsulation. Note that the concept of partial orders is discussed previously in

Section 2.2.1. Section 5.2.2 describes our training approach that softens the notion

of strict encapsulation with a viable penalty function.

1https://github.com/benathi/density-order-emb
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5.2.1 Strict Encapsulation Partial Orders

A partial order on probability densities can be obtained by the notion of encapsu-

lation. That is, a density f is more specific than a density g if f is encompassed

in g. The degree of encapsulation can vary, which gives rise to multiple order

relations. We define an order relation �η for η ≥ 0 where η indicates the degree of

encapsulation required for one distribution to entail another. More precisely, for

distributions f and g,

f �η g ⇔ {x : f(x) > η} ⊆ {x : g(x) > η}. (5.1)

Note that {x : f(x) > η} is a set where the density f is greater than the threshold

η. The relation in Equation 5.1 says that f entails g if and only if the set of g

contains that of f . In Figure 5.2, we depict two Gaussian distributions with different

mean vectors and covariance matrices. Figure 5.2 (left) shows the density values of

distributions f (narrow, blue) and g (broad, orange) and different threshold levels.

Figure 5.2 (right) shows that different η’s give rise to different partial orders. For

instance, we observe that neither f �η1 g nor g �η1 f but f �η3 g.

⌘1

⌘2

⌘3

⌘1

⌘2

⌘3

Figure 5.2: Strict encapsulation orders induced by different η values.

5.2.2 Soft Encapsulation Orders

A plausible penalty function for the order relation f �η g is a set measure on

{x : f(x) > η} − {x : g(x) > η}. However, this penalty is difficult to evaluate for
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most distributions, including Gaussians. Instead, we use simple penalty functions

based on asymmetric divergence measures between probability densities. Divergence

measures D(·||·) have a property that D(f ||g) = 0 if and only if f = g. Using

D(·||·) to represent order violation is undesirable since the penalty should be 0 if

f 6= g but f � g. Therefore, we propose using a thresholded divergence

dγ(f, g) = max(0, D(f ||g)− γ), (5.2)

which can be zero if f is properly encapsulated in g. We discuss the effectiveness

of using divergence thresholds in Section 5.3.6.

We note that by using dγ(·, ·) as a violation penalty, we no longer have the

strict partial order. In particular, the notion of transitivity in a partial order is

not guaranteed. For instance, if f � g and g � h, our density order embeddings

would yield dγ(f, g) = 0 and dγ(g, h) = 0. However, it is not necessarily the case

that dγ(f, h) = 0 since D(f ||h) can be greater than γ. This is not a drawback

since a high value of D(f ||h) reflects that the hypernym relationship is not direct,

requiring many edges from f to h in the hierarchy. The extent of encapsulation

contains useful entailment information, as demonstrated in Section 5.3.5 where our

model scores highly correlate with the annotated scores of a challenging lexical

entailment dataset and achieves state-of-the-art results.

Another property, antisymmetry, does not strictly hold since if dγ(f, g) = 0

and dγ(g, f) = 0 does not imply f = g. However, in this situation, it is necessary

that f and g overlap significantly if γ is small. Due to the fact that the dγ(·, ·)

does not strictly induce a partial order, we refer to this model as soft density order

embeddings or simply density order embeddings.
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5.2.3 Divergence Measures

Asymmetric Divergence

Kullback-Leibler (KL) Divergence The KL divergence is an asymmetric measure

of the difference between probability distributions. For distributions f and g,

KL(g||f) ≡
∫
g(x) log g(x)

f(x)
dx imposes a high penalty when there is a region of

points x such that the density f(x) is low but g(x) is high. An example of such a

region is the area on the left of f in Figure 5.2. This measure penalizes the situation

where f is a concentrated distribution relative to g; that is, if the distribution f is

encompassed by g, then the KL yields high penalty. For d-dimensional Gaussians

f = Nd(µf ,Σf ) and g = Nd(µg,Σg),

2DKL(f ||g) = log(det(Σg)/det(Σf ))−d+tr(Σ−1
g Σf )+(µf−µg)TΣ−1

g (µf−µg) (5.3)

Rényi α-Divergence is a general family of divergence with varying scale of zero-

forcing penalty [Renyi, 1961]. Equation 5.4 describes the general form of the

α-divergence for α 6= 0, 1 [Liese and Vajda, 1987]. We note that for α→ 0 or 1, we

recover the KL divergence and the reverse KL divergence; that is, limα→1Dα(f ||g) =

KL(f ||g) and limα→0Dα(f ||g) = KL(g||f) [Pardo, 2006]. The α-divergences are

asymmetric for all α’s, except for α = 1/2.

Dα(f ||g) =
1

α(α− 1)
log

(∫
f(x)α

g(x)α−1
dx

)
(5.4)

For two multivariate Gaussians f and g, we can write the Rényi divergence as

[Pardo, 2006]:

2Dα(f ||g) = − 1

α(α− 1)
log

det (αΣg + (1− α)Σf )(
det (Σf )

1−α · det (Σg)
α)+(µf−µg)T (αΣg+(1−α)Σf )

−1(µf−µg).

(5.5)
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The parameter α controls the degree of zero forcing where minimizing Dα(f ||g) for

high α results in f being more concentrated to the region of g with high density.

For low α, f tends to be mass-covering, encompassing regions of g including the low

density regions. Recent work by Li and Turner [2016] demonstrates that different

applications can require different degrees of zero-forcing penalty.

Symmetric Divergence

Expected Likelihood Kernel The expected likelihood kernel (ELK) [Jebara et al.,

2004] is a symmetric measure of affinity, define as K(f, g) = 〈f, g〉H. For two

Gaussians f and g,

2 log〈f, g〉H = − log det(Σf+Σg)−d log(2π)−(µf−µg)T (Σf+Σg)
−1(µf−µg) (5.6)

Since this kernel is a similarity score, we use its negative as our penalty. That is,

DELK(f ||g) = −2 log〈f, g〉H. Intuitively, the asymmetric measures should be more

successful at training density order embeddings. However, a symmetric measure

can result in a correct encapsulation order as well, since a general entity often has

to minimize the penalty with many specific elements and consequently ends up

having a broad distribution to lower the average loss. The expected likelihood

kernel is used to train Gaussian and Gaussian Mixture word embeddings on a large

text corpus [Athiwaratkun and Wilson, 2017, Vilnis and McCallum, 2015] where

the model performs well on the word entailment dataset [Baroni et al., 2012].

5.2.4 Loss Function

To learn our density embeddings, we use a loss function similar to that of Vendrov

et al. [2016]. Minimizing this function (Equation 5.7) is equivalent to minimizing
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the penalty between a true relationship pair (u, v) where u � v, but pushing the

penalty to be above a margin m for the negative example (u′, v′) where u′ 6� v′:

∑
(u,v)∈D

d(u, v) + max{0,m− d(u′, v′)} (5.7)

We note that this loss function is different than the rank-margin loss introduced

in the original Gaussian embeddings (Equation 2.3). Equation 5.7 aims to reduce

the dissimilarity of a true relationship pair d(u, v) with no constraint, unlike in

Equation 2.3, which becomes zero if d(u, v) is above d(u′, v′) by margin m.

5.2.5 Selecting Negative Samples

In many embedding models such as word2vec [Mikolov et al., 2013a] or Gaussian

embeddings [Vilnis and McCallum, 2015], negative samples are often used in the

training procedure to contrast with true samples from the dataset. For flat data such

as words in a text corpus, negative samples are selected randomly from a unigram

distribution. We propose new graph-based methods to select negative samples that

are suitable for hierarchical data, as demonstrated by the improved performance of

our density embeddings. In our experiments, we use various combinations of the

following methods.

Method S1: A simple negative sampling procedure used by Vendrov et al. [2016]

is to replace a true hypernym pair (u, v) with either (u, v′) or (u′, v) where u′, v′

are randomly sampled from a uniform distribution of vertices. Method S2: We use

a negative sample (v, u) if (u, v) is a true relationship pair, to make D(v||u) higher

than D(u||v) in order to distinguish the directionality of density encapsulation.

Method S3: It is important to increase the divergence between neighbor entities

that do not entail each other. Let A(w) denote all descendants of w in the training
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set D, including w itself. We first randomly sample an entity w ∈ D that has at

least 2 descendants and randomly select a descendant u ∈ A(w) − {w}. Then,

we randomly select an entity v ∈ A(w)− A(u) and use the random neighbor pair

(v, u) as a negative sample. Note that we can have u � v, in which case the pair

(v, u) is a reverse relationship. Method S4: Same as S3 except that we sample

v ∈ A(w)− A(u)− {w}, which excludes the possibility of drawing (w, u).

5.3 Experiments

We have introduced density order embeddings (DOE) to model hierarchical data

via encapsulation of probability densities. We propose using a new loss function,

graph-based negative sample selections, and a penalty relaxation to induce soft

partial orders. In this section, we show the effectiveness of our model on WordNet

hypernym prediction and a challenging graded lexical entailment task, where we

achieve state-of-the-art performance.

First, we provide the training details in Section 5.3.1 and describe the hypernym

prediction experiment in 5.3.3. We offers insights into our model with the qualitative

analysis and visualization in Section 5.3.4. We evaluate our model on HyperLex,

a lexical entailment dataset in Section 5.3.5.

5.3.1 Training Details

We have a similar data setup to the experiment by Vendrov et al. [2016] where

we use the transitive closure of WordNet noun hypernym relationships which

contains 82, 115 synsets and 837, 888 hypernym pairs from 84, 427 direct hypernym
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edges. We obtain the data using the WordNet API of NLTK version 3.2.1 [Loper

and Bird, 2002].

The validation set contains 4000 true hypernym relationships as well as 4000

false hypernym relationships where the false hypernym relationships are constructed

from the S1 negative sampling described in Section 5.2.5. The same process applies

for the test set with another set of 4000 true hypernym relationships and 4000 false

hypernym relationships.

We use d-dimensional Gaussian distributions with diagonal covariance matrices.

We use d = 50 as the default dimension and analyze the results using different d’s in

Section 5.3.6. We initialize the mean vectors to have a unit norm and normalize the

mean vectors in the training graph. We initialize the diagonal variance components

to be all equal to β and optimize on the unconstrained space of log(Σ). We discuss

the important effects of the initial variance scale in Section 5.3.6.

We use a minibatch size of 500 true hypernym pairs and use varying number of

negative hypernym pairs, depending on the negative sample combination proposed

in Section 5.2.5. We discuss the results for many selection strategies in Section

5.3.5. We also experiment with multiple divergence measures D(·||·) described

in Section 5.2.3. We use D(·||·) = DKL(·||·) unless stated otherwise. Section

5.3.6 considers the results using the α-divergence family with varying degrees of

zero-forcing parameter α’s. We use the Adam optimizer [Kingma and Ba, 2014]

and train our model for at most 20 epochs. For each energy function, we tune the

hyperparameters on grids. The hyperparameters are the loss margin m, the initial

variance scale β, and the energy threshold γ. We evaluate the results by computing

the penalty on the validation set to find the best threshold for binary classification,

and use this threshold to perform prediction on the test set. Section 5.3.2 describes
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the hyperparameters for all our models.

5.3.2 Model Hyperparameters

In Section 5.3.4, the 2−dimensional Gaussian model is trained with S-1 method

where the number of negative samples is equal to the number of positive samples.

The best hyperparameters for d = 2 model is (m,β, γ) = (100.0, 2× 10−4, 3.0).

In Section 5.3.3, the best hyperparameters (m,β, γ) for each of our model are

as follows: For Gaussian with KL penalty: (2000.0, 5 × 10−5, 500.0), , Gaussian

with reversed KL penalty: (1000.0, 1× 10−4, 1000.0), Gaussian with ELK penalty

(1000, 1× 10−5, 10).

In Section 5.3.5, we use the same hyperparameters as in 5.3.3 with KL penalty,

but a different negative sample combination in order to increase the distinguishability

of divergence scores. For each positive sample in the training set, we use one sample

from each of the methods S1, S2, S4. We note that the model from Section 5.3.3,

using S1 with the KL penalty obtains a Spearman’s correlation of 0.527.

5.3.3 Hypernym Prediction

We show the prediction accuracy results on the test set of WordNet hypernyms

in Table 5.1. We compare our results with vector order-embeddings (VOE) by

Vendrov et al. [2016] (VOE model details are in Section 2.2.1). Another important

baseline is the transitive closure, which requires no learning and classifies if a

held-out edge is a hypernym relationship by determining if it is in the union of

the training edges. word2gauss and word2gauss† are the Gaussian embeddings
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trained using the loss function in Vilnis and McCallum [2015] (Equation 2.3) where

word2gauss is the result reported by Vendrov et al. [2016] and word2gauss† is

the best performance of our replication (see Section 5.3.6 for more details). Our

density order embedding (DOE) outperforms the implementation by Vilnis and

McCallum [2015] significantly; this result highlights the fact that our different

approach for training Gaussian embeddings can be crucial to learning hierarchical

representations.

We observe that the symmetric model (ELK) performs quite well for this

task despite the fact that the symmetric metric cannot capture directionality. In

particular, ELK can accurately detect pairs of concepts with no relationships when

they’re far away in the density space. In addition, for pairs that are related, ELK

can detect pairs that overlap significantly in density space. The lack of directionality

has more pronounced effects in the graded lexical entailment task (Section 5.3.5)

where we observe a high degradation in performance if ELK is used instead of KL.

We find that our method outperforms vector order embeddings (VOE) [Vendrov

et al., 2016]. We also find that DOE is very strong in a 2-dimensional Gaussian

embedding example, trained for the purpose of visualization in Section 5.3.4, despite

only having only 4 parameters: 2 from 2-dimensional µ and another 2 from the

diagonal Σ. The results of DOE using a symmetric measure also outperforms the

baselines on this experiment, but has a slightly lower accuracy than the asymmetric

model.

Figure 5.3 offers an explanation as to why our density order embeddings might

be easier to learn, compared to the vector counterpart. In certain cases such as

fitting a general concept entity to the embedding space, we simply need to adjust

the distribution of entity to be broad enough to encompass all other concepts. In
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Table 5.1: Classification accuracy on hypernym relationship test set from WordNet.

Method Test Accuracy (%)

transitive closure 88.2
word2gauss [Vilnis and McCallum, 2015] 86.6
word2gauss† 88.6
VOE (symmetric) [Vendrov et al., 2016] 84.2
VOE [Vendrov et al., 2016] 90.6
POE [Lai and Hockenmaier, 2017] 91.6
Li et al. [2017] 91.3
Box Embeddings [Li et al., 2019] 92.2
Smoothed Box Embeddings [Li et al., 2019] 92.0

DOE (ELK) 92.1
DOE (KL, reversed) 83.2
DOE (KL) 92.3
DOE (KL, d = 2) 89.2

the vector counterpart, it might be required to shift many points further from the

origin to accommodate entity to reduce cascading order violations.

physical_entity

entity

physical_entity

entity

physical_entity

physical_entity

physical_entity

entity

physical_entity

entity

physical_entity

physical_entity

Figure 5.3: (Left) Adding a concept entity to vector order embedding (Right)
Adding a concept entity to density order embedding

5.3.4 Qualitative Analysis

For qualitative analysis, we additionally train a 2-dimensional Gaussian model for

visualization. Our qualitative analysis shows that the encapsulation behavior can

be observed in the trained model. Figure 5.4 demonstrates the ordering of synsets

in the density space. Each ellipse represents a Gaussian distribution where the

center is given by the mean vector µ and the major and minor axes are given by

the diagonal standard deviations
√

Σ, scaled by 300 for the x axis and 30 for the y
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axis, for visibility.

Most hypernym relationships exhibit encapsulation behavior where the hy-

pernym encompasses the synset that entails it. For instance, the distribution of

whole.n.02 is subsumed in the distribution of physical_entity.n.01. Note that

location.n.01 is not entirely encapsulated by physical_entity.n.01 under this

visualization. However, we can still predict which entity should be the hypernym

among the two since the KL divergence of one given another would be drastically

different. This is because a large part of physical_entity.n.01 has considerable

density at the locations where location.n.01 has very low density. This causes

KL(physical_entity.n.01 || location.n.01) to be very high (5103) relative to

KL(location.n.01 || physical_entity.n.01) (206). Table 5.2 shows the KL values

for all pairs where we note that the numbers are from the full model (d = 50).

Another interesting pair is city.n.01 � location.n.01 where we see the

two distributions have very similar contours and the encapsulation is not as

distinct. In our full model d = 50, the distribution of location.n.01 en-

compasses city.n.01’s, indicated by low KL(city.n.01||location.n.01) but high

KL(location.n.01||city.n.01).

Figure 5.4 (Right) demonstrates the idea that synsets on the top of the hy-

pernym hierarchy usually have higher “volume”. A convenient metric that reflects

this quantity is log det(Σ) for a Gaussian distribution with covariance Σ. We can

see that the synset, physical_entity.n.01, being the hypernym of all the synsets

shown, has the highest log det(Σ) whereas entities that are more specific such as

object.n.01, whole.n.02 and living_thing have decreasingly lower volume.
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physical_entity.n.01

object.n.01

whole.n.02

living_thing.n.01

location.n.01

city.n.01

physical_entity
object
whole

living_thing
location
city

Synset log |Σ|

physical_entity.n.01 -219.7
object.n.01 -224.0
whole.n.02 -233.4
living_thing.n.01 -238.3
location.n.01 -261.8
city.n.01 -261.9

Figure 5.4: [best viewed electronically] (Left) Synsets and their hypernym rela-
tionships from WordNet. (Middle) Visualization of our 2-dimensional Gaussian
order embedding. (Right) The Gaussian “volume” (log detΣ) of the 50-dimensional
Gaussian model.

Table 5.2: KL(column||row). Cells in boldface indicate true WordNet hypernym
relationships (column � row). Our model predicts a synset pair as a hypernym if
the KL less than 1900, where this value is tuned based on the validation set. Most
relationship pairs are correctly predicted except for the underlined cells.

city location living_thing whole object physical_entity

city 0 1025 4999 4673 23673 4639
location 159 0 4324 4122 26121 5103
living_thing 3623 6798 0 1452 2953 5936
whole 3033 6367 66 0 6439 6682
object 138 80 125 77 0 6618
physical_entity 232 206 193 166 152 0

5.3.5 Graded Lexical Entailment

HyperLex is a lexical entailment dataset which has fine-grained human annotated

scores between concept pairs, capturing varying degrees of entailment [Vulić et al.,

2017]. Concept pairs in HyperLex reflect many variants of hypernym relationships,

such as no-rel (no lexical relationship), ant (antonyms), syn (synonyms), cohyp

(sharing a hypernym but not a hypernym of each other), hyp (hypernym), rhyp

(reverse hypernym). We use the noun dataset of HyperLex for evaluation, which

contains 2,163 pairs.

We evaluate our model by comparing our model scores against the annotated
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scores. Obtaining a high correlation on a fine-grained annotated dataset is a

much harder task compared to a binary prediction, since performing well requires

meaningful model scores in order to reflect nuances in hypernymy. We use negative

divergence as our score for hypernymy scale where large values indicate high degrees

of entailment.

We note that the concepts in our trained models are WordNet synsets, where

each synset corresponds to a specific meaning of a word. For instance, pop.n.03

has a definition “a sharp explosive sound as from a gunshot or drawing a cork”

whereas pop.n.04 corresponds to “music of general appeal to teenagers; ...”. For a

given pair of words (u, v), we use the score of the synset pair (s′u, s
′
v) that has the

lowest KL divergence among all the pairs Sn × Sv where Su, Sv are sets of synsets

for words u and v, respectively. More precisely, s(u, v) = −minsu∈Su,sv∈Sv D(su, sv).

This pair selection corresponds to choosing the synset pair that has the highest

degree of entailment. This approach has been used in word embeddings literature

to select most related word pairs [Athiwaratkun and Wilson, 2017]. For word pairs

that are not in the model, we assign the score equal to the median of all scores. We

evaluate our model scores against the human annotated scores using Spearman’s

rank correlation.

Table 5.3 shows HyperLex results of our models DOE-A (asymmetric) and

DOE-S (symmetric) as well as other competing models. The model DOE-A which

uses KL divergence and negative sampling approach S1, S2 and S4 outperforms all

other existing models, achieving state-of-the-art performance for the HyperLex

noun dataset. (See Section 5.3.2 for hyperparameter details) The model DOE-S

which uses expected likelihood kernel attains a lower score of 0.455 compared to

the asymmetric counterpart (DOE-A). This result underscores the importance of
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asymmetric measures which can capture relationship directionality.

We provide a brief summary of competing models: FR scores are based on

concept word frequency ratio [Weeds et al., 2004]. SLQS uses entropy-based

measure to quantify entailment [Santus et al., 2014]. Vis-ID calculates scores

based on visual generality measures [Kiela et al., 2015]. WN-B calculates the

scores based on the shortest path between concepts in WN taxonomy [Miller, 1995].

w2g Guassian embeddings trained using the methodology in Vilnis and McCallum

[2015]. VOE Vector order embeddings [Vendrov et al., 2016]. Euc and Poin

calculate scores based on the Euclidean distance and Poincaré distance of the

trained Poincaré embeddings [Nickel and Kiela, 2017]. HypV integrates skip-gram

to learns hierarchical hypernymy model [Nguyen et al., 2017]. The models FR and

SLQS are based on word occurrences in text corpus, where FR is trained on the

British National Corpus and SLQS is trained on ukWac, WackyPedia [Bailey

and Thompson, 2006, Baroni et al., 2009] and annotated BLESS dataset [Baroni

and Lenci, 2011]. Other models Vis-ID, w2g, VOE, Euc, Poin and ours are

trained on WordNet, with the exception that Vis-ID also uses Google image search

results for visual data. The reported results of FR, SLQS, Vis-ID, WN-B, w2g

and VOE are from Vulić et al. [2017].

We note that an implementation of Gaussian embeddings model (w2g) reported

by Vulić et al. [2017] does not perform well compared to previous benchmarks such

as Vis-ID, FR, SLQS. Our training approach yields the opposite results and

outperforms other highly competitive methods such as Poincaré embeddings and

Hypervec. This result highlights the importance of the training approach, even

if the concept representation of our work and Vilnis and McCallum [2015] both

use Gaussian distributions. In addition, we observe that vector order embeddings
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Table 5.3: Spearman’s correlation for HyperLex nouns.

FR SLQS Vis-ID WN-B w2g VOE Poin HypV DOE-S DOE-A

ρ 0.283 0.229 0.253 0.240 0.192 0.195 0.512 0.540 0.455 0.590

(VOE) do not perform well compared to our model, which we hypothesize is due to

the “soft” orders induced by the divergence penalty that allows our model scores to

more closely reflect hypernymy degrees.

We note another interesting observation that a model trained on a symmetric

divergence (ELK) from Section 5.3.3 can also achieve a high HyperLex correlation

of 0.532 if KL is used to calculate the model scores. This is because the encapsulation

behavior can arise even though the training penalty is symmetric (more explanation

in Section 5.3.3). However, using the symmetric divergence based on ELK results in

poor performance on HyperLex (0.455), which is expected since it cannot capture

the directionality of hypernymy.

We note that another model LEAR obtains an impressive score of 0.686 [Vulić

and Mrkšić, 2014]. However, LEAR use pre-trained word embeddings such as

word2vec or GloVe as a pre-processing step, leveraging a large vocabulary with

rich semantic information. To the best of our knowledge, our model achieves the

highest HyperLex Spearman’s correlation among models without using large-scale

pre-trained embeddings.

Table 5.4 shows the effects of negative sample selection described in Section

5.2.5. We note again that S1 is the technique used in literature [Socher et al., 2013,

Vendrov et al., 2016] and S2, S3, S4 are the new techniques we proposed. The

notation, for instance, k × S1 + S2 corresponds to using k samples from S1 and

1 sample from S2 per each positive sample. We observe that our new selection
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Table 5.4: Spearman’s correlation for HyperLex nouns for different negative
sample schemes.

Negative Samples ρ

1×S1 0.527
2×S1 0.529
5×S1 0.518
10×S1 0.517
1×S1 + S2 0.567
2×S1 + S2 0.567
3×S1 + S2 0.584
5×S1 + S2 0.561
10×S1 + S2 0.550

Negative Samples ρ

1×S1 + S2 + S4 0.590
2×S1 + S2 + S4 0.580
5×S1 + S2 + S4 0.582
1×S1 + S2 + S3 0.570
2×S1 + S2 + S3 0.581
S1 + 0.1×S2 +0.9×S3 0.564
S1 + 0.3×S2 +0.7×S3 0.574
S1 + 0.7×S2 +0.3×S3 0.555
S1 + 0.9×S2 +0.1×S3 0.533

methods offer strong improvement from the range of 0.51− 0.52 (using S1 alone)

to 0.55 or above for most combinations with our new selection schemes.

5.3.6 Ablation Study and Analysis

We emphasize that Gaussian embeddings have been used in the literature, both in

the unsupervised settings where word embeddings are trained with local contexts

from text corpus, and in supervised settings where concept embeddings are trained

to model annotated data such as WordNet. The results in supervised settings

such as modeling WordNet have been reported to compare with competing models

but often have inferior performance [Vendrov et al., 2016, Vulić et al., 2017]. This

chapter reaches the opposite conclusion, showing that a different training approach

using Gaussian representations can achieve state-of-the-art results.
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Divergence Threshold

Consider a relationship f � g where f is a hyponym of g or g is a hypernym of

f . Even though the divergence D(f ||g) can capture the extent of encapsulation,

a density f will have the lowest divergence with respect with g only if f = g. In

addition, if f is a more concentrated distribution that is encompassed by g, D(f ||g)

is minimized when f is at the center of g. However, if there any many hyponyms

f1, f2 of g, the hyponyms can compete to be close to the center, resulting in too

much overlapping between f1 and f2 if the random sampling to penalize negative

pairs is not sufficiently strong. The divergence threshold γ is used such that there

is no longer a penalty once the divergence is below a certain level.

We demonstrate empirically that the threshold γ is important for learning

meaningful Gaussian distributions. We fix the hyperparameters m = 2000 and

β = 5× 10−5, with S1 negative sampling. Figure 5.5 shows that there is an optimal

non-zero threshold and yields the best performance for both WordNet Hypernym

prediction and HyperLex Spearman’s correlation. We observe that using γ = 0 is

detrimental to the performance, especially on HyperLex results.
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Figure 5.5: (a) Spearman’s correlation on HyperLex versus γ (b) Test Prediction
Accuracy versus γ.
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Initial Variance Scale

As opposed to the mean vectors that are randomly initialized, we initialize all

diagonal covariance elements to be the same. Even though the variance can adapt

during training, we find that different initial scales of variance result in drastically

different performance. To demonstrate, in Figure 5.6, we show the best test accuracy

and HyperLex Spearman’s correlation for each initial variance scale, with other

hyperparameters (margin m and threshold γ) tuned for each variance. We use

S1 + S2 + S4 as a negative sampling method. In general, a low variance scale

β increases the scale of the loss and requires higher margin m and threshold γ.

We observe that the best prediction accuracy is obtained when log(β) ≈ −10 or

β = 5× 10−5. The best HyperLex results are obtained when the scales of β are

sufficiently low. The intuition is that low β increases the scale of divergence D(·||·),

which increases the ability to capture relationship nuances.
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Figure 5.6: (a) Spearman’s correlation on HyperLex versus log(β) (b) Test
Prediction Accuracy versus log(β).
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Loss Function

We verify that for this task, our loss function in Equation 5.7 in superior to Equation

2.3 originally proposed by Vilnis and McCallum [2015]. We use the exact same

setup with new negative sample selections and KL divergence thresholding and

compare the two loss functions. Table 5.5 verifies our claim.

Table 5.5: Best results for each loss function for two negative sampling setups: S1
(Left) and S1 + S2 + S4 (Right)

Eq. Test Accuracy HyperLex

5.7 0.923 0.527
2.3 0.886 0.524

Eq. Test Accuracy HyperLex

5.7 0.911 0.590
2.3 0.796 0.489

Dimensionality

Table 5.6 shows the results for many dimensionalities for two negative sample

strategies: S1 and S1 + S2 + S4 .

Table 5.6: Best results for each dimension with negative samples S1 (Left) and S1
+ S2 + S4 (Right)

d Test Accuracy HyperLex

5 0.909 0.437
10 0.919 0.462
20 0.922 0.487
50 0.923 0.527
100 0.924 0.526
200 0.918 0.526

d Test Accuracy HyperLex

5 0.901 0.483
10 0.909 0.526
20 0.914 0.545
50 0.911 0.590
100 0.913 0.573
200 0.910 0.568
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α-divergences

Table 5.7 show the results using models trained and evaluated with D(·||·) = Dα(·||·)

with negative sampling approach S1. Interestingly, we found that α → 1 (KL)

offers the best result for both prediction accuracy and HyperLex. It is possible

that α = 1 is sufficiently asymmetric enough to distinguish hypernym directionality,

but does not have as sharp penalty as in α > 1, which can help learning.
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Figure 5.7: (a) Spearman’s correlation on HyperLex versus α (b) Test Prediction
Accuracy versus α.

5.4 Caption Image Retrieval

We use the task of caption-image retrieval to evaluate the effectiveness of our

density order embedding model. The task entails ranking the matching captions

given a query image (Caption Retrieval) and ranking the matching images given a

query caption (Image Retrieval). The goal is to learn the score function S(c, i) for

caption c and image i to be used for ranking. Traditionally these scores involve

vector features of caption c and image i. We use the density order embedding
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model with the following similarity score S(c, i) = −E(fi(i), fc(c)) where E is a

penalty function described in Section 5.2.3. For the asymmetric measure E (Section

5.2.3), this affinity function implies that we view captions to be above images in

the visual-semantic hierarchy. We use the KL divergence in our experiments.

5.4.1 Related Work

Multimodal learning has received much attention over the past decade. We compare

our results with the following models: MNLM [Kiros et al., 2014], m-RNN [Mao

et al., 2014], DVSA [Karpathy and Li, 2015], STV [Kiros et al., 2015a], FV [Klein

et al., 2015], m-CNN and m-CNNENS [Ma et al., 2015], VQA [Lin and Parikh,

2016], Vector Order-Embedding (VOE) [Vendrov et al., 2016], Representation-

level Fusion (RLF) VQA-aware, RLF VQA-agnostic [Lin and Parikh, 2016].

All prior works learn vector embeddings unlike our approach which uses probability

distributions. Most works except for VOE map images and captions to a symmetric

visual-semantic space, often with cosine similarity. We note that the RLF VQA-

aware uses an external corpus (Visual Question Answering) to help with training

and therefore could not compare directly to our results. However, we include the

number for completeness.

5.4.2 Image and Caption Density Model

For the image density function f(x|i), we use a linear layer (weight W image
µ and bias

bimage
µ ) after a pre-trained CNN to compute mean vector µ(i) and another linear

layer (weight W image
Σ and bias bimage

Σ ) to compute log diag(Σ)(i) given an image i.
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That is,

f(x|i) = N
[
x;µ = W image

µ · CNN(i) + bimage
µ ,Σ = diag(eW

image
Σ ·CNN(i)+bimage

Σ )
]
(5.8)

Our feature extractor, CNN(i) is a 19-layer VGG pretrained on ImageNet [Simonyan

and Zisserman, 2014]. We obtain the image features by feeding 10 of 224 × 224

crops from corners, center, and the horizontal reflection to the VGG network and

average the 4096-dimensional fc7 features. We fix the weights of VGG during

training. This setup is similar to that of Klein et al. [2015] and Vendrov et al. [2016].

Similarly, we use linear layers after Gated Recurrent Unit (GRU) features [Cho

et al., 2014] which is trained jointly with other weights to compute the sentence’s

µ and log diag(Σ).

g(x|i) = N
[
x;µ = W caption

µ ·GRU(i) + bcaption
µ ,Σ = diag(eW

caption
Σ ·GRU(i)+bcaptionΣ )

]
(5.9)

5.4.3 Loss Function

We adopt a pairwise ranking loss used by Karpathy and Li [2015], Kiros et al.

[2014], Socher et al. [2014] with our proposed score function. The first part of the

loss function in Equation 5.10 aims to maximize the score S(c, i) between a true

caption c and the corresponding image i to be above S(c, i′), the score between

caption c and a negative image i′. The second part is similar but aims to push the

score S(c, i) higher than the score S(c′, i) for a negative caption c′:

∑
(c,i)

(∑
c′

max{0, α− S(c, i) + S(c′, i)}+
∑
i′

max{0, α− S(c, i) + S(c, i′)}

)
(5.10)
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5.4.4 Training Details

We use Microsoft COCO dataset for training and evaluation [Lin et al., 2014] which

consists of up to five text captions per image. We use the data setup similar to

Karpathy and Li [2015] where the train, validation, and test splits are 113287,

5000 and 5000 images. We use a minibatch size of 128 random image-caption

pairs. To obtain a negative pair of image-caption for each sample, we use the other

127 contrastive images or texts. We train using the Adam optimizer for 30 to 50

epochs and use the model with the best validation score for test set evaluation.

The dimension of our Gaussian distributions is 1024. We use a word embedding

size of 300 for GRU and the GRU hidden state size of 1024. We also constrain

the mean vector µ to have a unit norm. We perform a grid search for optimal

hyperparameters. The hyperparameters for the best model (DOE) are α = 10.0

and γ = 0.05, α = 10.0 and γ = 0.0 for the DOE-reverse model, and α = 10.0 and

γ = 100 for the DOE-elk model.

5.4.5 Results

Table 5.7 shows the results where our model performs competitively with state-

of-the-art benchmarks. Similar to the hypernym task, our asymmetric measure is

more suitable for caption-image retrieval task, providing better performance than

the symmetric model. This observation agrees with the vector order embedding

counterpart where the asymmetric model performs slightly better than the symmet-

ric one. We also experiment with the reversed order, with images above text in the

hierarchy and observe slightly inferior performance. We include a re-implementation

of the vector order embeddings (VOE-reverse) where also reverse the order which
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Table 5.7: Caption-image retrieval results on Microsoft COCO. The figures reported
are the mean metrics on five-fold splits, where each has 1k test images. For each
metric, the best performing model is in boldface. Our density order embedding
model with text above image in the visual-semantic hierarchy performs near state-
of-the-art. We note that the model RLF VQA-aware† has an extra advantage since
it uses an external dataset from visual question answering. Our mean ranking
performs the best out of all models shown for caption retrieval task. The numbers
from VOE‡ and VOE-symmetric‡ is taken from [Vendrov et al., 2016].

Model Caption Retrieval Image Retrieval
R@1 R@10 Med r Mean r R@1 R@10 Med r Mean r

MNLM 43.4 85.8 2.0 * 31.0 79.9 3 *
m-RNN 41.0 83.5 2.0 * 29.0 77.0 3 *
DVSA 38.4 80.5 1.0 * 27.4 74.8 3 *
STV 33.8 82.1 3.0 * 25.9 74.6 4 *
FV 39.4 80.9 2.0 10.4 25.1 76.6 4 11.1
m-CNN 38.3 81.0 2.0 * 27.4 79.5 3 *
m-CNNENS 42.8 84.1 2.0 * 32.6 82.8 3 *
RLF VQA-agnostic 45.8 86.1 * * 33.6 81.0 * *
RLF VQA-aware† 50.5 89.7 * * 37.0 82.9 * *
VOE‡ 46.7 88.9 2.0 5.7 37.9 85.9 2.0 8.1
VOE-reverse 42.7 87.8 2.0 6.2 34.3 85.0 2.6 7.8
VOE-symmetric‡ 45.4 88.7 2.0 5.8 36.3 85.8 2.0 9.0
DOE 46.7 88.8 2.0 5.6 36.8 84.5 2.2 8.4
DOE-reverse 43.9 87.8 2.0 5.8 36.0 84.8 2.2 8.0
DOE-symmetric 41.3 86.7 2.0 7.0 32.9 82.9 2.2 8.4

shows a similar trend.

5.5 Discussion

Analogous to recent work by Vulić and Mrkšić [2014] which post-processed word

embeddings such as GloVe or word2vec, our future work includes using the

WordNet hierarchy to impose encapsulation orders when training probabilistic

embeddings.

In the future, the distribution approach could also be developed for encoder-

decoder based models for tasks such as caption generation where the encoder
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represents the data as a distribution, containing semantic and visual features with

uncertainty, and passes this distribution to the decoder which maps to text or

images. Such approaches would be reminiscent of variational autoencoders [Kingma

and Welling, 2013], which take samples from the encoder’s distribution.
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CHAPTER 6

CONCLUSION

The goal of this thesis is to demonstrate the effectiveness of probability rep-

resentations for many types of applications such as words and hierarchical data

including taxonomy graphs, sentences and images, . We lay out concrete steps for

future work below.

Disambiguation of Multi-Lingual Embeddings Recent model MUSE by

[Conneau et al., 2018] successfully constructs bi-lingual embeddings based on

independently trained embeddings of two languages. These two embeddings are

aligned through an adversarial loss to match the distributions of vector points.

However, there can be misalignment due to polysemies. For instance, an Italian

word porta can either mean “bring” or “door” but there is no polysemy in English

that captures the two meanings. For embeddings that do not allow for multimodality

such as word2vec or FastText, which MUSE adopts, the trained embeddings

of porta is likely to have nearest neighbors that correspond to one predominant

meaning (this phenomena are seen in Table 3.1 and 4.1). The alignment learning

can be overly constrained and some of the meanings misrepresented.

Disentangled representations such as our pft model can help disambiguate.

Instead of matching vector points, we can match the entire Gaussian mixture distri-

butions and allow of meaning matching through on individual Gaussian components.

Extensions of MUSE such as multilingual embeddings [Alaux et al., 2019, Ammar

et al., 2016, Chen and Cardie, 2018] or multilingual sentence embeddings [Artetxe

and Schwenk, 2018] can also benefit from such disambiguation.
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Downstream Tasks We foresee the use of our embeddings for many important

downstream tasks such as machine translation [Artetxe et al., 2017, Bahdanau

et al., 2014, Lample et al., 2017, 2018, Sutskever et al., 2014]. For instance, in

the training pipeline of a current state-of-the-art unsupervised machine translation

model by Lample et al. [2017], the system pre-trains FastText embeddings on

mono-lingual corpora of two languages and learn bi-lingual embeddings with MUSE

[Conneau et al., 2018]. The bi-lingual embeddings can be further improved by the

method outlined above where we disambiguate bi-lingual polysemies through our

model pft. We can also extend it to multi-lingual embeddings in the case of multi-

lingual translations. In addition, there are advantages to having multimodality in

embeddings which are demonstrated in Chapter 4 through superior scores on word

similarity evaluation. These two components, (1) disambiguation on word alignment

and (2) superior quality through disentangled multimodal representations, can be

key to improve challenging tasks such as neural machine translation further.
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