24 research outputs found

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Self-assured Collective Data Transferring in Vehicular Ad Hoc Networks

    Get PDF
    Vehicular adhoc networks (VANETs) is the present innovation utilizing as a part of vehicles like cars and vans. Vehicles are considered as portable hubs in a MANET to make a versatile system likewise the most imperative applications for VANET is the dispersion of dynamic security messages to enhance wellbeing. In these system the Vehicle-to-vehicle (V2V) correspondences needs more secure transmission of information to the vehicles. The chart hypothesis used to devise the issue of agreeable correspondences planning and decrease the intricacy in the systems. The planning plan to allocate both vehicle-to-framework (V2I) and V2V joins for both single-bounce and double jump interchanges. Vanets are the aftereffect of the imagined Smart Transportation Systems. It permits different vehicles to speak with one another and structure system. Vanet is one application in which specially appointed systems are utilized at their maximum capacity. In vanets vehicles can get to store and course information to each other

    Information-sharing outage-probability analysis of vehicular networks

    No full text
    In vehicular networks, information dissemination/sharing among vehicles is of salient importance. Although diverse mechanisms have been proposed in the existing literature, the related information credibility issues have not been investigated. Against this background, in this paper, we propose a credible information-sharing mechanism capable of ensuring that the vehicles do share genuine road traffic information (RTI). We commence with the outage-probability analysis of information sharing in vehicular networks under both a general scenario and a specific highway scenario. Closed-form expressions are derived for both scenarios, given the specific channel settings. Based on the outage-probability expressions, we formulate the utility of RTI sharing and design an algorithm for promoting the sharing of genuine RTI. To verify our theoretical analysis and the proposed mechanism, we invoke a real-world dataset containing the locations of Beijing taxis to conduct our simulations. Explicitly, our simulation results show that the spatial distribution of the vehicles obeys a Poisson point process (PPP), and our proposed credible RTI sharing mechanism is capable of ensuring that all vehicles indeed do share genuine RTI with each other

    An intelligent intrusion detection system for external communications in autonomous vehicles

    Get PDF
    Advancements in computing, electronics and mechanical systems have resulted in the creation of a new class of vehicles called autonomous vehicles. These vehicles function using sensory input with an on-board computation system. Self-driving vehicles use an ad hoc vehicular network called VANET. The network has ad hoc infrastructure with mobile vehicles that communicate through open wireless channels. This thesis studies the design and implementation of a novel intelligent intrusion detection system which secures the external communication of self-driving vehicles. This thesis makes the following four contributions: It proposes a hybrid intrusion detection system to protect the external communication in self-driving vehicles from potential attacks. This has been achieved using fuzzification and artificial intelligence. The second contribution is the incorporation of the Integrated Circuit Metrics (ICMetrics) for improved security and privacy. By using the ICMetrics, specific device features have been used to create a unique identity for vehicles. Our work is based on using the bias in on board sensory systems to create ICMetrics for self-driving vehicles. The incorporation of fuzzy petri net in autonomous vehicles is the third contribution of the thesis. Simulation results show that the scheme can successfully detect denial-of-service attacks. The design of a clustering based hierarchical detection system has also been presented to detect worm hole and Sybil attacks. The final contribution of this research is an integrated intrusion detection system which detects various attacks by using a central database in BusNet. The proposed schemes have been simulated using the data extracted from trace files. Simulation results have been compared and studied for high levels of detection capability and performance. Analysis shows that the proposed schemes provide high detection rate with a low rate of false alarm. The system can detect various attacks in an optimised way owing to a reduction in the number of features, fuzzification

    Data-centric trust in ephemeral networks

    Get PDF
    New network types require new security concepts. Surprisingly, trust – the ultimate goal of security – has not evolved as much as other concepts. In particular, the traditional notion of building trust in entities seems inadequate in an ephemeral environment where contacts among nodes are often short-lived and non-recurrent. It is actually the trustworthiness of the data that entities generate that matters most in these ephemeral networks. And what makes things more interesting is the continuous "humanization" of devices, by making them reflect more closely their owners' preferences, including the human sense of costs. Hence, in this thesis we study the notion of data-centric trust in an ephemeral network of rational nodes. The definition of a new notion requires specifying the corresponding basis, measures, and raison d'être. In the following chapters, we address these issues. We begin by defining the system and security models of an example ephemeral network, namely a vehicular network. Next, we delve into the subject of revocation in vehicular networks, before creating and analyzing a game-theoretic model of revocation, where the notion of cost-aware devices makes its first appearance in this thesis. This model not only makes possible the comparison of different revocation mechanisms in the literature, but also leads to the design of an optimal solution, the RevoGame protocol. With the security architecture in place, we formally define data-centric trust and compare several mechanisms for evaluating it. Notably, we apply the Dempster-Shafer Theory to cases of high uncertainty. Last but not least, we show that data-centric trust can reduce the privacy loss resulting from the need to establish trust. We first create a model of the trust-privacy tradeoff and then analyze it with game theory, in an environment of privacy-preserving entities. Our analysis shows that proper incentives can achieve this elusive tradeoff

    A Fuzzy-Based Context-Aware Misbehavior Detecting Scheme for Detecting Rogue Nodes in Vehicular Ad Hoc Network

    Get PDF
    A vehicular ad hoc network (VANET) is an emerging technology that improves road safety, traffic efficiency, and passenger comfort. VANETs’ applications rely on co-operativeness among vehicles by periodically sharing their context information, such as position speed and acceleration, among others, at a high rate due to high vehicles mobility. However, rogue nodes, which exploit the co-operativeness feature and share false messages, can disrupt the fundamental operations of any potential application and cause the loss of people’s lives and properties. Unfortunately, most of the current solutions cannot effectively detect rogue nodes due to the continuous context change and the inconsideration of dynamic data uncertainty during the identification. Although there are few context-aware solutions proposed for VANET, most of these solutions are data-centric. A vehicle is considered malicious if it shares false or inaccurate messages. Such a rule is fuzzy and not consistently accurate due to the dynamic uncertainty of the vehicular context, which leads to a poor detection rate. To this end, this study proposed a fuzzy-based context-aware detection model to improve the overall detection performance. A fuzzy inference system is constructed to evaluate the vehicles based on their generated information. The output of the proposed fuzzy inference system is used to build a dynamic context reference based on the proposed fuzzy inference system. Vehicles are classified into either honest or rogue nodes based on the deviation of their evaluation scores calculated using the proposed fuzzy inference system from the context reference. Extensive experiments were carried out to evaluate the proposed model. Results show that the proposed model outperforms the state-of-the-art models. It achieves a 7.88% improvement in the overall performance, while a 16.46% improvement is attained for detection rate compared to the state-of-the-art model. The proposed model can be used to evict the rogue nodes, and thus improve the safety and traffic efficiency of crewed or uncrewed vehicles designed for different environments, land, naval, or air

    A Trust Management Framework for Vehicular Ad Hoc Networks

    Get PDF
    The inception of Vehicular Ad Hoc Networks (VANETs) provides an opportunity for road users and public infrastructure to share information that improves the operation of roads and the driver experience. However, such systems can be vulnerable to malicious external entities and legitimate users. Trust management is used to address attacks from legitimate users in accordance with a user’s trust score. Trust models evaluate messages to assign rewards or punishments. This can be used to influence a driver’s future behaviour or, in extremis, block the driver. With receiver-side schemes, various methods are used to evaluate trust including, reputation computation, neighbour recommendations, and storing historical information. However, they incur overhead and add a delay when deciding whether to accept or reject messages. In this thesis, we propose a novel Tamper-Proof Device (TPD) based trust framework for managing trust of multiple drivers at the sender side vehicle that updates trust, stores, and protects information from malicious tampering. The TPD also regulates, rewards, and punishes each specific driver, as required. Furthermore, the trust score determines the classes of message that a driver can access. Dissemination of feedback is only required when there is an attack (conflicting information). A Road-Side Unit (RSU) rules on a dispute, using either the sum of products of trust and feedback or official vehicle data if available. These “untrue attacks” are resolved by an RSU using collaboration, and then providing a fixed amount of reward and punishment, as appropriate. Repeated attacks are addressed by incremental punishments and potentially driver access-blocking when conditions are met. The lack of sophistication in this fixed RSU assessment scheme is then addressed by a novel fuzzy logic-based RSU approach. This determines a fairer level of reward and punishment based on the severity of incident, driver past behaviour, and RSU confidence. The fuzzy RSU controller assesses judgements in such a way as to encourage drivers to improve their behaviour. Although any driver can lie in any situation, we believe that trustworthy drivers are more likely to remain so, and vice versa. We capture this behaviour in a Markov chain model for the sender and reporter driver behaviours where a driver’s truthfulness is influenced by their trust score and trust state. For each trust state, the driver’s likelihood of lying or honesty is set by a probability distribution which is different for each state. This framework is analysed in Veins using various classes of vehicles under different traffic conditions. Results confirm that the framework operates effectively in the presence of untrue and inconsistent attacks. The correct functioning is confirmed with the system appropriately classifying incidents when clarifier vehicles send truthful feedback. The framework is also evaluated against a centralized reputation scheme and the results demonstrate that it outperforms the reputation approach in terms of reduced communication overhead and shorter response time. Next, we perform a set of experiments to evaluate the performance of the fuzzy assessment in Veins. The fuzzy and fixed RSU assessment schemes are compared, and the results show that the fuzzy scheme provides better overall driver behaviour. The Markov chain driver behaviour model is also examined when changing the initial trust score of all drivers
    corecore