16 research outputs found

    Diverse routing for shared risk resource groups (SRRG) failures in WDM optical networks

    Get PDF
    Failure resilience is one of the desired features of the Internet. Most of the traditional restoration architectures are based on single-failure assumption which is unrealistic. Multiple link failure models, in the form of shared-risk link groups (SRLG\u27s) and shared risk node groups (SRNG\u27s) are becoming critical in survivable optical network design. We classify both these form of failures under a common heading of shared-risk resource groups (SRRG) failures. In our research, we propose graph transformation techniques for tolerating multiple failures arising out of shared resource group (SRRG) failures. Diverse routing in such multi-failure scenario essentially necessitates finding out two paths between a source and a destination that are SRRG disjoint. The generalized diverse routing problem has been proved to be NP-complete. The proposed transformation techniques however provide a polynomial time solution for certain restrictive failure sets. We study how restorability can be achieved for dependent or shared risk link failures and multiple node failures and prove the validity of our approach for different network scenarios

    Two heuristics for calculating a shared risk link group disjoint set of paths of min-sum cost

    Get PDF
    A shared risk link group (SRLG) is a set of links which share a common risk of failure. Routing protocols in Generalized MultiProtocol Label Switching, using distributed SRLG information, can calculate paths avoiding certain SRLGs. For single SRLG failure an end-to-end SRLG-disjoint path pair can be calculated, but to ensure connection in the event of multiple SRLG failures a set with more than two end-to-end SRLG-disjoint paths should be used. Two heuristic, the Conflicting SRLG-Exclusion Min Sum (CoSE-MS) and the Iterative Modified Suurballes’s Heuristic (IMSH), for calculating node and SRLG-disjoint path pairs, which use the Modified Suurballes’s Heuristic, are reviewed and new versions (CoSE-MScd and IMSHd) are proposed, which may improve the number of obtained optimal solutions. Moreover two new heuristics are proposed: kCoSE-MScd and kIMSHd, to calculate a set of k node and SRLG-disjoint paths, seeking to minimize its total cost. To the best of our knowledge these heuristics are a first proposal for seeking a set of k ðk[2Þ node and SRLG-disjoint paths of minimal additive cost. The performance of the proposed heuristics is evaluated using a real network structure, where SRLGs were randomly defined. The number of solutions found, the percentage of optimal solutions and the relative error of the sub-optimal solutions are presented. Also the CPU time for solving the problem in a path computation element is reported

    Routage résilient dans les réseaux SDN

    Get PDF
    International audienceLes réseaux SDN (software-defined networking) permettentàpermettent`permettentà un contrôleur centralisé de décider du routage. Afin d'´ etablir des routes fiables, il est souvent nécessaire de trouver plusieurs chemins dans le réseau ne partageant pas les mêmes ressouresàressoures`ressouresà risque, communément appelé SRLG pour Shared Risk Link Group. Tout en assurant cette fiabilité, l'objectif est aussi de minimiser un coût, qui intègre des indicateurs de congestion ou de latence. Ceprobì eme peutêtrepeutˆpeutêtre modélisé par un programme linéaire en nombres entiers (ILP). Nous proposons ici une méthode efficace pour sa résolution qui utilise une relaxation fractionnaire bien choisie, dont nous montrerons qu'elle m` ene en fait la plupart du tempsàtemps`tempsà une solutionentì ere. La résolution de ceprobì eme relaxé utilise une méthode de génération de colonnes (CG), o` u chaque colonne représente un chemin dans le réseau avec une notion de coût modifié prenant en compte les SRLGs ; les nouvelles colonnes peuventêtrepeuventˆpeuventêtre obtenues par un algorithme efficace de programmation dynamique quí etend les algorithmes classiques de calcul de plus court chemin. Afin de limiter l'explosion combinatoire potentielle, nous présentonsprésentons´présentonségalement une heuristique qui accélére le calcul d'une solution résiliente tout en préservant de très bonnes performances. Les résultats numériques montrent que notre approche donne une solution de très bonne qualité dans un temps de calcul raisonnable sur des instances de réseau réalistes

    Diverse Routing with Star SRLGs

    Get PDF
    International audienceLa notion de groupe de liens partageant un risque (Shared Risk Link Group, SRLG) a été introduite pour modéliser des problèmes de tolérance aux pannes simultanées d'ensembles de liens d'un réseau. Dans ce contexte, le problème du routage diversifié est de trouver un ensemble de chemins SRLG-disjoints entre une paire donnée de noeuds du réseau. Ce problème a été prouvé NP-complet en général et certains cas polynomiaux ont été caractérisés. Nous avons étudié le problème du routage diversifié dans les réseaux satisfaisant la propriété d'étoile. Dans un réseau satisfaisant la propriété d'étoile, un lien peut être affecté par plusieurs SRLGs, mais tous les liens affectés par un même SRLG sont incidents à un même sommet. Nous avons trouvé des contre-exemples à un algorithme polynomial publié pour le calcul de paires de chemins SRLG-disjoints dans les réseaux satisfaisants la propriété d'étoile. Puis, nous avons prouvé que ce problème est en fait NP-difficile. Plus généralement, nous avons montré que le problème du routage diversifié dans les réseaux avec la propriété d'étoile est NP-difficile, APX-difficile, et W[1]-difficile lorsque le paramètre est le nombre de chemins SRLG-disjoints. Enfin, nous avons caractérisé de nouvelles instances polynomiales, en particulier lorsque le degré maximum des sommets est 4, ou lorsque le réseau est acyclique

    Combinatorial optimization in networks with Shared Risk Link Groups

    Get PDF
    International audienceThe notion of Shared Risk Link Groups (SRLG) captures survivability issues when a set of links of a network may fail simultaneously. The theory of survivable network design relies on basic combinatorial objects that are rather easy to compute in the classical graph models: shortest paths, minimum cuts, or pairs of disjoint paths. In the SRLG context, the optimization criterion for these objects is no longer the number of edges they use, but the number of SRLGs involved. Unfortunately, computing these combinatorial objects is NP-hard and hard to approximate with this objective in general. Nevertheless some objects can be computed in polynomial time when the SRLGs satisfy certain structural properties of locality which correspond to practical ones, namely the star property (all links affected by a given SRLG are incident to a unique node) and the span 1 property (the links affected by a given SRLG form a connected component of the network). The star property is defined in a multi-colored model where a link can be affected by several SRLGs while the span property is defined only in a mono-colored model where a link can be affected by at most one SRLG. In this paper, we extend these notions to characterize new cases in which these optimization problems can be solved in polynomial time. We also investigate the computational impact of the transformation from the multi-colored model to the mono-colored one. Experimental results are presented to validate the proposed algorithms and principles

    Designing multi-layer provider networks for circular disc failures

    Get PDF
    We examine the issue of disaster recovery after zonal outages in core networks, especially IP-over-WDM multi-layer networks. In particular, we consider the network design problem for a regional failure of circular area of radius R. Our goal is to design a network that can withstand a randomly located single failure of radius R. To this end, we formulate the problem as a constrained optimization problem whose solution for both IP-over-optical networks and pure ROADM-based networks is proposed. Subsequently, we develop an efficient heuristic based on a divide and conquer strategy that gives acceptable results. We also discuss the role of SDN in design and restoration of such networks. Simulation results are showcased over a core network topology thereby realizing the plausibility of such network design

    Shared Risk Resource Groups and Colored Graph: Polynomial Cases and Transformation Issues

    Get PDF
    In this paper, we characterize polynomial cases for several combinatorial optimization problems in the context of multilayer networks with shared risk resource groups

    Session reliability and capacity allocation in dynamic spectrum access networks.

    Get PDF
    Li, Kin Fai.Thesis (M.Phil.)--Chinese University of Hong Kong, 2008.Includes bibliographical references (leaves 95-99).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.ivChapter 1 --- Introduction / Motivation --- p.1Chapter 2 --- Literature Review --- p.7Chapter 2.1 --- Introduction --- p.7Chapter 2.2 --- Dynamic Spectrum Access Networks --- p.8Chapter 2.3 --- Reliability --- p.10Chapter 2.3.1 --- Reliability in Wireless Networks --- p.10Chapter 2.3.2 --- Reliability in Wireline Networks --- p.11Chapter 2.4 --- Capacity Planning in Wireless Mesh Networks --- p.14Chapter 2.4.1 --- Interference Model --- p.14Chapter 2.4.2 --- Link Capacity Constraint --- p.15Chapter 2.4.3 --- Feasible Path --- p.16Chapter 2.4.4 --- Optimal Capacity Allocation in DSA Net- works and Wireless Mesh Networks --- p.16Chapter 2.5 --- Chapter Summary --- p.18Chapter 3 --- Lifetime Aware Routing without Backup --- p.19Chapter 3.1 --- Introduction --- p.19Chapter 3.2 --- System Model --- p.20Chapter 3.3 --- Lifetime Distribution of a Path without Backup Protection --- p.22Chapter 3.3.1 --- Exact Lifetime Distribution --- p.23Chapter 3.3.2 --- The Chain Approximation --- p.24Chapter 3.4 --- Route Selection without Backup Protection --- p.26Chapter 3.4.1 --- NP-Hardness of Finding Maximum Lifetime Path --- p.26Chapter 3.4.2 --- The Minimum Weight Algorithm --- p.28Chapter 3.4.3 --- Greedy Algorithm --- p.28Chapter 3.4.4 --- GACA - The Greedy Algorithm using the Chain Approximation --- p.32Chapter 3.5 --- Simulation Results --- p.33Chapter 3.5.1 --- Tightness of the Chain Approximation Bound for Vulnerable Area --- p.33Chapter 3.5.2 --- Comparison between Greedy and GACA using Guaranteed Lifetime --- p.36Chapter 3.5.3 --- Factors impacting the performance of GACA --- p.37Chapter 3.6 --- Chapter Summary --- p.43Chapter 4 --- Prolonging Path Lifetime with Backup Channel --- p.44Chapter 4.1 --- Introduction --- p.44Chapter 4.2 --- Non-Shared Backup Protection --- p.45Chapter 4.2.1 --- Lifetime of a Path with Non-Shared Backup --- p.45Chapter 4.2.2 --- Route Selection for paths with Non-Shared Backup --- p.46Chapter 4.3 --- Shared Backup Protection --- p.47Chapter 4.3.1 --- Sharing of Backup Capacity --- p.48Chapter 4.3.2 --- Lifetime of a Path with Shared Backup --- p.48Chapter 4.3.3 --- Route Selection for paths with Shared Backup --- p.50Chapter 4.4 --- Simulation Results --- p.50Chapter 4.4.1 --- Tightness of Failure Probability Upper Bound for Backup Protection --- p.51Chapter 4.4.2 --- Comparison between the Shared Backup and Non Shared Backup schemes --- p.53Chapter 4.5 --- Chapter Summary --- p.54Chapter 5 --- Finding Capacity-Feasible Routes --- p.55Chapter 5.1 --- Introduction --- p.55Chapter 5.2 --- Constructing an Edge graph --- p.56Chapter 5.3 --- Checking Capacity Feasibility under each Protec- tion Scheme --- p.58Chapter 5.3.1 --- No Backup Protection --- p.59Chapter 5.3.2 --- Non-Shared Backup Protection --- p.59Chapter 5.3.3 --- Shared Backup Protection --- p.60Chapter 5.4 --- Chapter Summary --- p.62Chapter 6 --- Performance Evaluations and Adaptive Protec- tion --- p.63Chapter 6.1 --- Introduction --- p.63Chapter 6.2 --- Tradeoffs between Route Selection Algorithms --- p.64Chapter 6.3 --- Adaptive Protection --- p.66Chapter 6.3.1 --- Route Selection for Adaptive Protection --- p.67Chapter 6.3.2 --- Finding a Capacity-Feasible Path for Adaptive Protection --- p.68Chapter 6.4 --- Comparison between No Protection and Adaptive Protection --- p.69Chapter 6.5 --- Chapter Summary --- p.71Chapter 7 --- Restoration Capacity Planning and Channel Assignment --- p.72Chapter 7.1 --- Introduction --- p.72Chapter 7.2 --- System Model --- p.74Chapter 7.2.1 --- Channel Assignment Model --- p.74Chapter 7.2.2 --- Presence of Primary Users --- p.75Chapter 7.2.3 --- Link Flow Rates --- p.76Chapter 7.2.4 --- Problem Formulation --- p.77Chapter 7.3 --- Simulation Results --- p.79Chapter 7.3.1 --- "Comparison between ""Shared Backup"" and “No Restore Plan"" using Guarantee Percentage and Reduced Capacity" --- p.80Chapter 7.3.2 --- Comparison using Traffic Demand Scaling Factor g and Guarantee Fraction p --- p.81Chapter 7.3.3 --- Comparison between Optimal Channel Assignment and Random Channel Assignment --- p.84Chapter 7.4 --- Chapter Summary --- p.86Chapter 8 --- Conclusion and Future Works --- p.87Chapter A --- Proof of Theorem (3.1) in Chapter3 --- p.90Chapter B --- Proof of Theorem (4.1) in Chapter4 --- p.92Bibliography --- p.9

    Mécanismes d'allocation de ressources et fiabilité dans les réseaux coeur de prochaines générations

    Get PDF
    Définitions et concepts de bases -- Éléments de problématique -- Objectifs de recherche -- Principales contributions -- Revue de littérature -- Modèles de services -- Routage avec Qualité de Service -- Ingénierie de traffic -- Contrôle d'admission avec Qualité de Service -- Fiabilité des réseaux -- A novel admission control mechanism in GMPLS- BASED IP over optical networks -- Problem statement -- Numerical results -- Joint routing and admission control problem under statistical delay and jitter constraints in MPLS networks -- Simulation results -- A survivable multicast routing mechanism in WDM optical networks -- Survivable routing under SRLG constraints -- GR-SMRS : Greedy heuristic for survivable multicast routing under SRLG constraints -- simulation results
    corecore