
HAL Id: inria-00175143
https://hal.inria.fr/inria-00175143

Submitted on 26 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shared Risk Resource Groups and Colored Graph:
Polynomial Cases and Transformation Issues

David Coudert, Stéphane Pérennes, Hervé Rivano, Marie-Emilie Voge

To cite this version:
David Coudert, Stéphane Pérennes, Hervé Rivano, Marie-Emilie Voge. Shared Risk Resource Groups
and Colored Graph: Polynomial Cases and Transformation Issues. [Research Report] 2007, pp.17.
�inria-00175143�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50359458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00175143
https://hal.archives-ouvertes.fr

Shared Risk Resource Groups and Colored Graph : Polynomial

Cases and Transformation Issues ∗

David Coudert, Stéphane Perennes, Hervé Rivano, and Marie-Emilie Voge
MASCOTTE Project, INRIA-I3S(CNRS/UNSA)

2004 Route Des Lucioles, B.P. 93 – 06902 Sophia-Antipolis Cedex – France
{name}@sophia.inria.fr

September 26, 2007

Abstract

In this paper, we characterize polynomial cases for several combinatorial optimization prob-
lems in the context of multilayer networks with shared risk resource groups.

Keywords: Reliability, Shared Risk Resource Group, colored graphs, complexity, approx-
imability.

1 Introduction

Since the end of monopolistic national telecommunication operators, no company own a backbone
network from the physical conduits buried underground to the Label Switched Path (LSP) topology
actually carrying data trunks. Transporting a packet on the Internet thus involves many networking
operators renting resources to each other. In this settings, breaking a conduct carrying terabits per
second would lead to the loss of a significant amount of data and have a very strong impact on the
revenue of many economic actors.

These complex interactions between independent actors yields a multilayered structure on the
network: the optical fiber topology of a Wavelength Division Multiplexing (WDM) network is
placed into rented conduits where disjoint fibers might share a conduit; at the application level, an
overlay network, e.g. interconnecting a distributed web services platform, has virtually no guaranty
that two disjoint virtual links are carried by disjoint paths.

In these settings, the design of survivable networks is more challenging than ever. Shared Risk
Resource Group (SRG) has been introduced to capture the concept of a set of resources that would
fail down simultaneously in case of a given network incident [1, 8, 9]: a conduit cut would bring
several fibers down, each of them tearing off many LSPs, and so on, until the overlay network
is broken into several connected components. In such an example, the set of LSPs failing down
simultaneously would belong to the same SRG. The design of the overlay would have been non-
survivable with, even though each layer might appear individually survivable.

∗The research reported in this paper has been partially supported by ANR JC OSERA, European projects IST
FET AEOLUS and COST 293 Graal, and has been done in the context of the CRC CORSO with France Telecom.

1

Survivable network design involves many NP-hard problems, even if considering mono-layer
networks and has fostered deep graph theoretic and approximation algorithmic analysis.On the
other hand, the theory of survivable network relies on basic combinatorial object that are quite
easy to compute in the classic graph models for networks: shortest path, minimum cut, . . .

Shared Risk Resource Groups twist the deal. Since links or nodes that may be arbitrary un-
related can share a common risk, the graph structure of the network is broken which makes it
difficult to compute even basic objects such as path crossing a minimum number of SRGs, or the
minimum number of SRGs that disconnect the network. A graph theoretic approach has been
developed [3]identifying SRG with colors assigned to the edges or vertices of a graph. Approxima-
bility of the underlying combinatorial problems has then been investigated, with a proof of their
deep complexity.

As a consequence of this complexity, many heuristic approaches have been proposed in the
literature. (state of the art heuristics).

In this paper, we address this complexity issue with a complementary view point. Indeed,
practical tests give the intuition that many situation are “not so hard” to solve, where problems
appear to be computable in polynomial time. We believe that a deep and precise analysis of this
polynomial cases may give enough insights and subroutines to solve more efficiently the hard cases.

1.1 Motivations of the paper

The aforesaid optimization problems related to multilayer network survivability are momentous in
the future development of such networks and they have to be solved efficiently. Unfortunately, it
was shown in [] that they are NP-hard and hard to approximate in the general case. However there
are still some hopes since some special cases were shown to be polynomial. As we will show in
section 2 there are other interesting polynomial cases with regard to real networks for the MC-Path
and MC-st-Cut problems. In addition, modeling the multilayer networks with colored graphs as
in [] necessitates a simple, but not without repercussions, transformation from the network to the
model. We detail in section 3 what are exactly these repercussions and take advantage of them
to obtain polynomial cases when it is possible. Furthermore, we touch on an other point which
is worth noting about the colored graph model : if the optimization problems are NP-hard and
hard to approximate for the colored graphs general class, there may still be some hopes for the
specific class of colored graphs obtained from multilayer networks. Indeed we show that there are
colored graphs that cannot be obtained from realistic multilayer networks. Consequently there
may be other polynomial or at least approximable cases, yet unknown, for the problems of interest
depending on specific properties of this subclass of colored graphs.

2 A new polynomial case for MC-Path, MC-st-Cut and MC-Cut

According to previous works, the case when the number of colors of span greater than 1 is bounded
is of great interest : only a few colors have span > 1 in the graphs used to test the solving methods
in the literature. See for example the inevitable networks COST239, NJLATA [2, 4] and NSFNET
[7, 5, 13] or those from [4], [6] and [10].

Therefore in this section we investigate the consequences of this hypothesis on the complexity
of some colored problems. We prove that when the number of colors of span greater than 1 is
bounded the MC-Path and MC-st-Cut problems are polynomial and consequently MC-Cut too.

2

c1

c1

c1 c1

c3

c4

c2

c1c4

c3

c4

c3c2 c2

c2
ts s t

Figure 1: Transformation from G to H.

We also show that unfortunately 2-CDP is still NP-complete.
For both MC-Path and MC-st-Cut, the proof is based on a polynomial size milp formulation

of the problem. These formulations contains rather few binary variables and any solver can find
an optimal solution in a reasonable time provided |C| remains small. However simple they look,
they are not solvable in polynomial time since MC-Path and MC-st-Cut are NP-Hard. In case
the number of colors of span greater than 1 is bounded, we show that only a bounded number of
variables needs to be binary, and by the way, these problems are polynomial.

Theorem 1 When the number of colors of span greater than 1 is bounded the MC-Path, MC-st-Cut
and MC-Cut problems are polynomial.

2.1 Minimum Color Path

For the MC-Path problem, the formulation is a flow like formulation based on a graph H = (VH , EH)
constructed from the colored graph G = (V,E, C) in which we search for a minimum color st-path.
Each vertex of H represents a connected component of some color of C. Two vertices of VH are
joined by an edge of EH if the two associated components have a common vertex in G. Two vertices
s and t are added to VH and an edge of EH connects s (resp. t) to a vertex v of VH if s (resp. t)
belongs to the component represented by v as illustrated on Figure 1.

Trivially, any colored st-path of H is a colored st-path in G and vice versa. Although this
transformation is not usefull to formulate the MC-Path problem as a milp, it is necessary to relax
some binary variables and prove the polynomiality of the problem.

Formulation 1 is based on a slightly modified classical flow formulation : there are no capacities
on the edges and some binary variables are added. To find a path, a single unit of flow is to be
routed in the graph H between s and t. The variable we ≥ 0 represents the flow value on edge
e ∈ EH . The binary variable yc is associated to color c ∈ C, its value is 1 if the flow crosses at least
one vertex corresponding to color c and 0 otherwise. In this formulation δ−(u) is the set of edges
supporting flow entering the vertex u and δ+(u) the set of edges supporting flow leaving vertex u.
The first constraint forces the existence of the flow between s and t and the second one insures that
if a vertex of color c is crossed by the flow, then color c belongs to the colored path computed. The
objective to be minimized is the number of colors crossed by the flow.

3

Formulation 1 (MC-Path)

Minimize
∑

c∈C

yc

s.t.
∑

e∈δ+(u)

we −
∑

e∈δ−(u)

we =

0 if u 6= s, u 6= t

1 if u = s

−1 if u = t

∀u ∈ VH

yc ≥ we ∀c ∈ C, ∀e = {u, v} s.t. u or v ∈ c

we ≥ 0 ∀e ∈ EH

yc ∈ {0, 1} ∀c ∈ C

In the Formulation 1, the variables we need not be integer since even if the flow is divided onto
several paths, they all necessarily use the same optimal set of colors, otherwise we could remove
some colors from the solution and still get a path thanks to the absence of edge capacities.

In addition, we can relax the binary constraint on the variables yc corresponding to colors of
span 1. Assume we obtain an optimal solution in which at least one yc variable is not binary,
this means that the flow is divided onto several paths. These paths are necessarily of same cost
otherwise contradicting the optimality of the solution. We can then arbitrarily chose any one of
these paths to obtain an optimal colored path.

As a consequence, when the number of colors of span greater than 1 is bounded, there remain
only a bounded number of binary variables in our formulation, that can then be solved in polynomial
time. Hence, in this special case, the MC-Path problem is polynomial.

2.2 Minimum Color st-Cut problem

To complete the proof of Theorem 1, we present in this section a MILP formulation and a simple
algorithm producing in polynomial time a minimum colored st-cut.

The following MILP formulation expresses MC-st-Cut as an assignment of potentials to the
vertices of the graph through the non negative fractional variables xu, u ∈ V .

The graph is partitioned into disjoint subsets according to vertex potentials : two vertices u, v

belong to the same subset if and only if they have equal potentials xu = xv.
If two adjacent vertices u and v have distinct potentials, xu 6= xv, then the color c of the edge

connecting them belongs to the colored cut, that is the binary variable yc associated to c is forced
to have value one (line 2).

Line 4 ensures that vertices s and t are disconnected by the colored cut since they are assigned
distinct potentials.

Minimize
∑

c∈C yc

s.t. yc ≥ |xu − xv| ∀c ∈ C, ∀u, v ∈ V adjacent to c

xu ≥ 0 ∀u ∈ V

xs = 0 and xt = 1
yc ∈ {0, 1} ∀c ∈ C

Note that the objective function can be replaced with
∑

c∈C wcyc to handle the weighted case,
when wc ≥ 0 is a weight associated to color c.

4

As in the colored path case, if the number of colors of span greater than 1 is bounded, we relax
the binary constraint on the yc variables associated to colors of span 1. This relaxed MILP can be
solved in polynomial time, and from its solution it is easy to derive an optimal colored st-cut as
follows.

Once the MILP is solved, each vertex of the graph is assigned a potential xu ∈ [0, 1]. Let
p0, p1, . . . , pk be the different potential values existing in the graph such that 0 = p0 < pi < pi+1 <

pk = 1. Then, let i be any integer in {0, . . . , k − 1} and V i
0 = {u|xu ≤ pi} be the set containing

vertices whose potential is not greater than pi. As Lemma 1 states, the st-cut (V i
0 , V − V i

0) is an
optimal colored st-cut.

Lemma 1 Let p0, p1, . . . , pk be the different potential values existing in the graph such that 0 =
p0 < pi < pk = 1 and let V i

0 = {u|xu ≤ pi} for i ∈ {0, . . . , k − 1}. The colored st-cut given by
(V i

0 , V − V i
0) ∀i ∈ {0, . . . , k − 1} is an optimal colored st-cut.

Proof : According to their potential values, the vertices of V can be portioned into several subsets
: let Vi ⊂ V be the set of vertices whose potential equals pi. Note that s ∈ V0 and t ∈ Vk.

The idea of the proof is to iteratively merge the aforesaid subsets Vi by modifying their vertex
potentials until there remain only binary potentials and only two subsets, V0 ∋ s and Vk ∋ t, in the
graph.

More precisely, let i be any integer in {1, . . . , k−1}, we show that the objective value computed
by the MILP is not modified if we either increase the potential pi of Vi up to pi+1 to merge Vi and
Vi+1, or decrease it down to pi−1 to merge Vi and Vi−1.

To prove this we define pc
max and pc

min to be respectively the maximum and minimum potential
values among vertices that are adjacent to color c.

First, for a color c such that pc
max = pc

min, the relaxed variable yc representing the belonging to
the cut of color c equals pc

max − pc
min = 0 : it has already a binary value. Furthermore, all vertices

adjacent to color c have an equal potential value pj = pc
max = pc

min and belong to the same subset
Vj of the partition. Even if their common potential value is modified (case j = i), the vertices still
belong to the same subset after the modification of pi, which has to be in this case either Vi−1 or
Vi+1. We can deduce from this, that when the value of yc reach 0, it can not be modified by any
subset merging.

In addition, note that the only vertices concerned by the modification of pi are indeed the
vertices of potential value pi. Thus, in case both pc

max and pc
min are different from pi, they are not

modified, which implies that yc is not modified either for color c.
Then, the most important part of the proof concerns the colors for which either pc

max = pi or
pc

min = pi. Indeed, the potential of vertices of such colors are necessarily modified at iteration
i, which consequently increases some yc values and decreases some others. Table 1 details these
modifications on the yc for both type of colors and for both modifications of the value pi. For
example, let c be a color such that pc

min = pi. If pi is decreased down to pi−1, yc is increased by
pi − pi−1, while if pi is increased up to pi+1, then yc is decreased by pi+1 − pi. It is worth noting
that in this very later case, after the modification of pi, pc

min = pi+1 since the potential values
p0 < pi < pi+1 ≤ pk are ordered and there is no potential value between pi and pi+1. The same
reasoning applies for colors such that pi = pc

max in case pi is decreased down to pi−1.
What appears in Table 1 is that if there are more colors such that pc

min = pi than such that
pc

max = pi then pi can be increased up to pi+1 without increasing the objective value which can even
be decreased, while in the opposite case, pi can be decreased down to pi−1 with the same effect.

5

pi ← pi−1 pi ← pi+1

pc
min = pi +(pi − pi−1) −(pi+1 − pi)

pc
max = pi −(pi − pi−1) +(pi+1 − pi)

Table 1: Effects of the possible operations on the yc value for relevant colors when pi is modified.

Note however that there must be an equal number of colors on each side since otherwise the
objective value can be decreased by a modification of pi. As a consequence, the binary solution
obtained is strictly better than the mixed one given by the MILP computation whose optimality is
then contradicted. This remark easily extends to the weighted case.

To conclude, for any integer i ∈ {1, . . . , k−1} we can increase or decrease the value pi to merge
Vi with either Vi+1 or Vi−1 without modifying the objective value obtained by the MILP. Then, by
iteratively merging the subset Vj we obtain only binary potential values, binary yc values and two
subsets V0 ∋ s and Vk ∋ t which define a cut and by the way a colored st-cut. Since the cost of this
cut is the same as the cost of the mixed solution given by the MILP it is necessarily an optimal
colored st-cut. In addition the merging rule for Vi, that is either with Vi+1 or Vi−1, implies that
the final subsets V0 and Vk can be directly obtained by the choice of any integer i ∈ {1, . . . k − 1}
such that V0 = {u|xu ≤ pi} and Vk = {u|xu > pi}. Finally there are at most |V | subsets at the
beginning since there are |V | vertices in the graph, which means that the merging process can be
done in polynomial time.

�

In a nut shell, solving the relaxed MILP is polynomial since it contains only a bounded number
of binary variables. Obtaining binary values for the relaxed variables from this solution can also
be done in polynomial time. Consequently the MC-st-Cut problem is solvable in polynomial time
when the number of color of span greater than 1 is bounded.

2.3 2-Color Disjoint Paths

The 2-Color Disjoint Paths problem being a very important issue in multilayer network survivability,
it would be very convenient if it was polynomial too when the number of color of span > 1 is
bounded. Unfortunately as the following theorem states, it is not the case.

Theorem 2 There is a polynomial time reduction from 3SAT to the 2-Color Disjoint Paths prob-
lem. Consequently, finding two color disjoint paths in a colored graph is NP-hard.

Proof : Consider an instance of 3SAT with n variables xi, 1 ≤ i ≤ n, and m clauses Cj , 1 ≤ j ≤ m,
each being a disjunction of at most three literals. The 3SAT problem consists of finding a truth
assignment that satisfies all the m clauses.

From this instance we construct an instance of the 2-Color Disjoint Paths problem as follows.
First let’s define the color set C. It contains a color c1 which one of the two paths will necessarily
use and two colors, pi

jk and pi
kj , for each pair of clauses (Cj , Ck) such that xi belongs to Cj and xi

belongs to Ck. We will add some colors of less interest later.
The colored graph G = (V,E, C) can be divided in two parts, each one connecting the vertices

s ∈ V and t ∈ V . The first part represents the clauses and is thus divided into m sections delimited
by m + 1 vertices u1 = s, u2, . . . , um+1 = t. For each j ∈ {1, . . . ,m} and for each literal xi (resp.

6

c2 c10

x1 x3 x4 x1 x2 x3 x3 x4x1 x2 x3

1p
12

p 1
13

p 1
31

2p
13

p 2
31

p 2
43

2p
34

4p 4p3p
13

p 3
31

p 3
14

p 3
41

p 3
32

p 3
23

p 3
24

p 3
42

c3 c4 c5 c6 c7 c8 c9

1p
12

p 1
13

p 1
21

p 1
21

p 1
31

2p
13

p 2
31

p 2
43

2p
34

3p
13

p 3
14

p 3
31

p 3
32

p 3
23

p 3
24

p 3
42

p 3
41

s t

x2

clause 1 clause 2 clause 3 clause 4

Figure 2: Reduction from 3SAT to 2-Color Disjoint Paths. Only four crossing edges are represented
(color p1

13, p1
31, p3

13 and p3
31).

xi) belonging to Cj there is a path connecting uj to uj+1 containing one edge of each color pi
jk

(resp. pi
kj) such that Ck contains xi (resp. xi). Between each of these edges we insert an edge of

color c1. In addition, this ujuj+1-path has to start and end with color c1 as shown on Figure 2.
The second part of the graph is a kind of path composed of an alternating succession of simple

and multiple edges. This path is long enough to contain a multiple edge for each variable xi and
for each pair of clauses (Cj , Ck) such that xi belongs to Cj and xi belongs to Ck. Such a multiple
edge consists of two parallel edges of color respectively pi

jk and pi
kj . The simple edges all have a

distinct and new color reduced to one edge and the path begins and ends with such simple edges.
The two parts are connected in s and t but also through each color of the pi kind. Indeed, note

that each of these colors has span 2 with exactly one edge in the first part of the graph and one
edge in the second. Since we want these color to be of span 1, we add an edge of color pi

xy between
one extremity of the first occurrence of the color pi

xy and one extremity of its second occurrence.
In the following we refer to such edges as crossing edges.

Now that the colored graph is complete, we can try to find two color disjoint st-paths. The first
remark is that since s and t both have degree two with one edge of color c1 in the first part and
an other edge in the second part of the graph. Thus if there are two color disjoint st-paths, there
is necessarily one (the first path) that begins and ends with color c1 in the first part of the graph,
and an other one (the second path) which begins and ends in the second part.

Then, since the first path has to use color c1 and since each edge of the pi color kind is inserted
between two edges of color c1, the second path can not use any crossing edge in order to go on
in the first part : its progress is immediately blocked by color c1. Consequently, according to the
topology of the second part, the second path has to use all the simple edges of the second part
of the graph and exactly one color from each pair (pi

xy, p
i
yx). This also implies that the first path

cannot use any crossing edge either because then it has to use either a simple edge of the second
part or an other crossing edge of color pi

xy associated to the color pi
yx of the crossing edge it has

used to come in the second part.
Therefore, we have established that if two color disjoint st-paths exist in the graph we have

constructed, one of them is contained in the first part of the graph, and the other in the second

7

part. We now need to prove that if there are two color disjoint st-paths in the graph, there is a
truth assignment satisfying all clauses of the instance of 3SAT.

Assume that the first path uses the subpath corresponding to literal xi (resp. xi) between uj

ans uj+1. Then it uses all the color pi
jk (resp pi

kj) such that xi belongs to Cj and xi belongs to

Ck. This implies that the second path has to uses all the color pi
kj (resp. pi

jk) to reach t and be
color disjoint from the first path. Consequently, the first path cannot use these last colors and thus
cannot use the subpath corresponding to xi (resp. xi) between uk and uk+1 for all the k concerned.

Therefore, when there are two color disjoint st-paths in the graph we can deduce a truth
assignment by setting to true any literal corresponding to a subpath used by the first path between
s and t. From the preceding paragraph we are sure that no variable can be assigned to true (literal
xi true) and false (literal xi true) at the same time. In addition, since the first path has to go
through every section representing a clause, at least one literal per clause is set to true, which
means that all the clauses are satisfied. If some variables are not assigned any value, then they are
not necessary to satisfy any clause, and we can assign them any value without changing the answer
to the 3SAT instance. Consequently, if there are two color disjoint st-paths connecting s and t,
there is a truth assignment satisfying all the clauses of the 3SAT instance.

We now only need to prove that when there is a truth assignment satisfying all the clauses of
the 3SAT instance, there are also two color disjoint st-paths connecting s and t. So we consider a
truth assignment satisfying the instance of 3SAT. We define the first path to be composed of all
the subpaths associated to literal set to true by this assignment. Since the assignment satisfies all
clauses, the path connects s and t. In addition, by construction of the graph, the first path can use
only one color from each pair (pi

jk, p
i
kj), the other color of each pair is then available for the second

path which thus exists and concludes the proof. �

3 Transformation

3.1 What the problem really is

We have learnt from [3] and the previous sections that the span is a determining parameter in the
complexity of MC-Path and MC-st-Cut. When considering the complexity of colored problems we
work with colored graphs as a general class of elements completely disconnected from its origin,
the multilayer networks. In this context the span is known for each graph and cannot be changed
by interverting edges on paths. However, when we are given a multilayer network and a problem
to solve, we first apply a and transformation and then work on a colored graph.

This transformation has already highlighted the role of the span in the complexity and approx-
imability properties of the colored problems. It is also momentous in the solving process since it can
have serious repercussions on the span of colors of the colored graph obtained as shows Figure 3.
Indeed, both Figures 3(b) and 3(c) represents a colored graph obtained with a and transformation
of the multicolored network of Figure 3(a), but the span of all colors is 3 in the graph of Figure 3(b)
while it is only 1 in the graph of Figure 3(c). Consequently, if the graph of Figure 3(b) is used,
the colored problem considered is hard to solve, while it is polynomial if the graph of Figure 3(c)
is chosen.

Therefore, the next step in the study of this and transformation is to find out if it can be done
in such a way to obtain only interesting colored graphs with regard to solving possibilities. In

8

c1

c2

c3 c1

c1c4
c4 c3

c2 c3

c2

c4

(a) Example of multicolored net-
work

c1

c3c2

c2

c3

c4

c1c3

c1
c4

c2

c4

(b) Possible transformation of 3(a),
span 3

c2

c1

c4

c2

c
c c4

c3

cc

c

c

2

3
4

1

31
(c) Possible transformation of 3(a),
span 1

Figure 3: The and transformation of a multicolored network can result in several distinct colored
graphs.

the light of the known polynomial cases, we have studied two questions detailed in the following
sections.

3.2 Maximization problem

The problem of maximizing the number of colors of span 1 (Transformation) takes its interest
from the results of section 2 : it comes down to minimizing the number of colors of span > 1.
It may then be possible to use efficiently the solving method based on the MILP formulation for
MC-Path and MC-st-Cut proposed in section 2.

Problem 1 (Transformation)
Input : A multicolored network R = (VR, ER, C).

Output : A colored graph G = (VG, EG, C) obtained from R through the and trans-
formation, that is by replacing each multicolored edge of ER by a path of
monochromatic edges in G.

Measure : Maximize the number of colors of span 1 in G.

However, the result we detail in this section leaves no hope of solving the problem Transfor-

mation. This complexity and inapproximability result was just touched on in [11].

Theorem 3 There is an approximability preserving reduction from Maximum Set Packing to Trans-

formation.

Proof : Let R be a network constructed from an instance of Maximum Set Packing. This
multicolored network contains a vertex ui for each element ui ∈ U . Each of these vertices is
connected to a same additional vertex v of R by a multicolored edge. R is thus a star (Figure 4).

Each subset cj ∈ C of the Maximum Set Packing instance is identified to a color of the network
R. The set of colors of a multicolored edge vui represents the subcollection of subsets cj ∈ C
containing ui in the Maximum Set Packing instance.

If a subset ck is reduced to a single element uk, a vertex ukbis is added to the network R. This
vertex is connected to v by an edge whose color set is reduced to ck.

9

A subset cj ∈ C is thus represented by its color on the multicolored edges connecting v to each
of the vertices corresponding to one of its elements. And each subset cj ∈ C is represented on at
least two edges.

As a consequence, a color can be of span 1 after transformation only if it is adjacent to v on
every path obtained from a vui edge on which this color is represented. Furthermore, two colors
represented on a same edge cannot be of span 1 simultaneously because only one of them can be
adjacent to v. Hence by construction of R two colors of span 1 after transformation correspond to
two disjoint sets of the Maximum Set Packing instance since they cannot share any edge in R.

Therefore, a set of colors of span 1 in the colored graph obtained after the transformation of
network R corresponds to a subcollection of disjoint sets of C in the instance of Maximum Set
Packing of same size.

In addition, a subcollection of disjoint sets in the instance of Maximum Set Packing induces a
set of colors of same size that can be of span 1 simultaneously in the colored graph obtained from
R. Since the sets are disjoint, the colors that represent them in the network do not share any edge
and can then be all adjacent to v at the same time. �

u2u3

1u

C3

C1 C2

C4

1u

u2
3bisuu3

C4
C1

C1

C3
C4

C2

C2C3

MAXIMUM SET PACKING TRANSFORM

Figure 4: An instance of the Maximum Set Packing problem and a network constructed from it.

Corollary 1 The Transformation problem is NP-Hard and is not approximable within a factor
|C|

1

2
−ε ∀ε > 0 unless P = NP. Furthermore, this problem is not approximable within a factor |C|1−ε

∀ε > 0 unless NP = ZPP.

3.3 Decision problem

In this section we show that deciding whether a multicolored network can be transformed into a
colored graph of span 1 is polynomial. In other words, we are sure to detect in polynomial time
every networks on which almost all colored problems are polynomial.

Theorem 4 There is a polynomial time algorithm that decide whether a multicolored network
R = (VR, ER, C) can give a colored graph of span 1 after a and transformation.

10

The following subsections outline the polynomial time algorithm and prove Theorem 4. The
principle of this algorithm is first to determine for each color independently whether it can be of
span 1. During this first step, the final position of colors on some edges is determined : these
colors can not be of span 1 otherwise. The second step consists in verifying that these necessary,
or forced, positions are not in contradiction between two colors. Each step produces either a proof
that the transformation can not result in a colored graph of span 1 or the forced positions of colors
on edges, that is a colored graph of span 1.

3.3.1 Preliminary remark

If more than two colors sharing an edge are also present on at least one other edge, then they can
not be of span 1 simultaneously since they all need to be put at an extremity of the path replacing
the edge after transformation, but there are only two extremities. It is the case for the edge {u, v}
of the network of Figure 5. The three colors c1, c2 and c4 need to be adjacent to either u or v to
be of span 1, but only two of them can get these places.

c5

c1c6

c5

c6

c2 c7

c4

c1 c2 c3 c4
u v

Figure 5: More than two colors but only two extremities for edge {u, v}.

In addition, a color such as c3 in Figure 5 which is present on a single edge will be of span 1
after transformation whatever happens. Thus we need not consider these colors.

Consequently in the following we consider only networks in which each edge contains at most
two colors.

3.3.2 Definitions and properties on edges

The edges of a multicolored network can be divided into two classes, the fixed edges and the
positionable ones.

The fixed edges are edges containing a single color such as the edges {x, y} and {z, t} of the
network 6 which contain only the color c1. Consequently, these edges are not affected by the
transformation. Their most important property is that whatever the transformation of the network
is, the two extremities of a fixed edge for a color c will belong to the same connected component
with regard to the color c.

The positionable edges are the remaining edges of the network containing two colors each :
the position of the two colors with regard to the two extremities of a positionable edge has to
be determined. Unlike the fixed edges case, if two vertices of the network are connected only
by positionable edges for a given color c, these vertices can not belong to the same connected

11

c1c1 c2c1 y z tx

c1c1 c1 c2y z tx

c1c1 c1c2y z txor

Figure 6: Fixed and positionable edges.

component for color c after the and transformation. Indeed, after the transformation, the color c

is adjacent either to one of these vertices or to the other, but not to both. On Figure 6 the path
obtained from the edge {y, z} illustrate this property of the positionable edges, the color c1 can be
adjacent to y or z but not to both simultaneously.

We can deduce from this property of the positionable edges that if a color contains several fixed
edges, they have to form a connected component since they can not be connected by positionable
edges.

3.3.3 Definitions and properties on colors

A color c is free on an edge e = {u, v} if the position of color c (adjacency to u or v) on edge e has
no incidence on its span. A color can be free on an edge in two cases : when it is present only on
this edge like color c3 of Figure 5 or color c7 on the multiple edge {u, v} of Figure 7, or when the
two extremities of the edge already belong to the same connected component with regard to that
color, like color c2 of Figure 7.

A color is half-free on a multiple edge of the network when it is present only on the edges of a
multiple edge. The multiple edge {u, v} of figure 7 contains three half-free colors : c3, c5 and c6.
Each of these colors can be of span 1 if on all the edges it is adjacent to a same vertex, either u or
v in this network. The multiple edge {u, v} also contains color c4, however it is not half-free since
there is an other edge of color c4 adjacent to u but whose other extremity is not v. Indeed, to be
of span 1, c4 has to be adjacent to u because of this other edge. Note then, that a color cannot
be half-free if it is not present only on edges belonging to a single multiple edge. Consequently,
to check that a color is half-free it is enough to check that the set of vertices to which it can be
adjacent is of size two.

3.3.4 Existence of an algorithm

The existence of a polynomial time algorithm to decide whether a network can be transformed into
a colored graph of span 1 is based on the following points :

Step 1 : deciding independently for each color
First, a color can not be of span 1 if it does not contain a central vertex set, that is either a single

connected set of fixed edges to which each positionable edge is adjacent or, when there is no fixed
edge, a single vertex to which each positionable edge containing the color is adjacent. The necessity
of such kind of central vertex sets is based on the impossibility for a color on a positionable edge to

12

c4

c1

c2

c2c1

c2

c6

c5
c1

c6
c5

c1
c7

c4
c4

c3 c2
c3 c4

c2

v

u

Figure 7: Network with a multiple edge and half-free colors.

be adjacent to both extremities of the edge after the and transformation and thus the impossibility
to make a connection between two distinct components. Determining the central vertex set or that
there is no such set can be done by a simple and polynomial graph searching on the fixed edge
set of the color. In case there is no central vertex set, the graph searching produces at least two
distinct components both containing fixed edges for the color, which proves that this color can by
no means be of span 1.

When a color c has a central vertex set, the position of color c on the positionable edges on
which c is not free is forced. Indeed there is at most one extremity of such edges that can be
adjacent to the central vertex set otherwise the color c would be free on it. Therefore, c can be
of span 1 only if its position after the transformation is adjacent to that vertex set : it is forced.
Once the central vertex set is known, an other graph searching on the positionable edges of the
color either forces all the positions, or find an edge which is not adjacent to the central vertex set.

Consequently it is polynomial to determine whether a color can be of span 1 independently of
the other colors, in addition the process either gives all forced positions or produces a certificate of
the impossibility for the color to be of span 1.

Step 2 : confronting positions of all colors
Trivially, two colors sharing a positionable edge can both be of span 1 only if their respective

forced positions are distinct. If they are not, one of the color can not be of span 1.
An other trivial remark concerns half-free colors on multiple edges. They can be of span 1 only

if the positions left by the (non-free) colors with which they share edges are all adjacent to a same
vertex. Since free colors can be positioned arbitrarily, the decisions about half-free colors need to
take into account only the forced positions. The forced positions of other colors also produce a
certificate of the impossibility for the half-free colors to be of span 1 if it is indeed the case.

Finally, the position of free colors can be assigned.

Conclusion
All these points permit to detect the possible structural impossibilities to be of span 1 of each

color, but also conflicts between two colors by the position assignment they induce. When there
are no conflicts, the knowledge of a central vertex set for a color gives its position on every edge
where it appears. Then the position of all the half-free colors can also be determined and finally

13

the position of free colors.
Finally, a detailed algorithm was proposed in [12] that runs in O(|C||ER|+ |C|

2|ER|+ |ER|).

3.3.5 Algorithm

In this section we detail the different steps of the decision algorithm and give upper bounds on
their time complexity.

The first processing of the network consists simply for each color to check whether it is present
on a single or several edges. Then for each edge, enough colors which are present only on that edge
are removed in order to keep only two colors, except for fixed edges. This processing can be done
in O(|C||ER|) and also permits to detect fixed edges.

A second processing in time O(|C||ER|) permits to detect half-free colors : the idea is simply to
compute for each color the union of the extremities of all edges containing this color. If this set is
reduced to two vertices, then the color is half-free.

The next processing produces the central vertex set for all colors in time O(|C||ER|). For a color
without fixed edges it consists only in computing the intersection of the extremities of all edges
containing this color. Indeed, the central vertex set in this case is a single vertex to which every
positionable edge containing the color is adjacent. For a color with at least one fixed edge, a graph
searching on the fixed edges of the color permits to check the connexity of the central vertex set
and to know which vertices it contains.

Once the central vertex sets are known, another O(|C||ER|) searching forces the position of all
positionable edges.

Finding the positions of half-free colors is a bit more complicated than the previous processings
since it is first necessary to find a color whose position is forced on an edge it shares with an
half-free color (O(|ER|)). The position of the half-free color is then forced too and the process can
be repeated for every half-free colors (at most |C| times).

However, there might be some half-free colors sharing edges only with colors whose position
is not forced yet, for example, other half-free colors or free ones. Therefore, the position of such
half-free colors is not forced by other colors : the algorithm has to force arbitrarily the position
of a randomly chosen color (O(|ER|)). The normal process for half-free colors need then to be
repeated until there remain no half-free colors not forced. and then go on with the normal process
which can thus be repeated at most |C| times since there are at most |C| half-free colors to position
randomly. The processing for the half-free colors can thus be the more time consuming one with
at most O(|C2||ER|) steps.

When the position of positionable and half-free colors is known, forcing the position of free
colors can be done in time O(|ER|).

Finally the algorithm needs only to check that there are no conflict between color positions on
each edges (O(|ER|)).

As a conclusion, identifying positionable and fixed edges, half-free and free colors as well as
central vertex sets can be done in polynomial time by simple graph searching. It is then easy and
still polynomial to force the positions of colors and then check the compatibility of the assigned
positions. The decision problem is therefore polynomial.

14

3.4 Note on the design of heuristic algorithms for the maximisation problem

As was proved in Section 3.2 it is not possible to guaranty anything on the quality of a transfor-
mation in terms of number of colors of span 1. However in this section we identify some interesting
points from the above algorithm description that should be considered in the design of heuristic
algorithm for the Transformation problem.

First, an heuristic algorithm that maximize the number of colors of span 1 need not consider
colors which do not contain a central vertex set since these colors can not be of span 1. Actually,
all the choices that such an algorithm need to make concerns sets of colors that can be of span 1
independently but not simultaneously. It is the case when three colors sharing an edge are also
present on other edges, or when two colors need to be put at the same extremity of an edge they
share, in order to be of span 1.

The starting point for an heuristic algorithm could be to discard all free colors on the involved
edges and all colors that can not be of span 1 independently. Then the main part of the algorithm
is to make choices between colors that can not be of span 1 simultaneously. Since several strategies
are possible to make a decision, several algorithms can be designed from this general frame.

Finally, note that the number of colors that can independently be of span 1 is an upper bound
on the maximum number that can be of span 1 simultaneously.

3.5 Some hope dwells in a subclass of colored graphs

The consequence of Theorem 1 about the Transformation problem is that from a given network
we have no guaranty to find a good colored graph on which the solving method based on the MILP
formulation of Section 2.1 for MC-Path is efficient, even when such a colored graph exists.

The practical resolution of the MC-Path problem is thus compromised since in the general case
MC-Path has been proved hard to approximate within a large factor [3].

However, the study of the transformation from the network to the colored graph is not over
yet and may still bring usefull results from practical and theoretical points of view. Indeed, the
NP-hardness results and inapproximability factors known so far are proved for the general class of
colored graphs, but actually only a subclass of colored graphs can represent multilayer networks.
Figure 8 gives an example of multicolored network which do not represent any multilayer network.

To prove that, let’s try to find an underlying network on which the multicolored network of
Figure 8(a) could be routed. In this network there must be a path of length three joining vertices
A and B since there are three colors on the edge {A, B} of network 8(a).

Therefore the network we search must contain the graph of Figure 8(b). In this graph, all the
vertices have to be distinct, otherwise the routing of the multicolored edge {A, B} of network 8(a)
would not be valid due to the loop it would contain.

There are now six possible color assignments on the three edges as depicted on Figure 8(c).
However, among these assignments, only two are valid : color c3 has to be adjacent to both c1 and
c2, otherwise either {A, C} or {B, C} of the multicolored network have no possible route in the
graph we are constructing.

Finally, we have to place vertex C in at least one of the two remaining graphs. To avoid loops
C has to be distinct from A and B. In the (c1, c3, c2) graph, if C = X then the multicolored edge
{A, C} can not be routed without loops, and if C = Y then it is the edge {B, C} which has no
route. Consequently we have to discard the (c1, c3, c2) graph, and for similar reasons the last graph
too.

15

c1 c2 c3

c3c3

c1 c2

A B

C

(a) A multicolored network

A B
yx

(b) Topology of an eventual underlying
graph for network 8(a)

A B
c1 c2c3 c1 c2 c3A B

A B
c1c2 c3 A B

c1c2c3

A B
c1c2 c3

A B
c1 c2c3

(c) Assignments of colors on graph 8(b)

Figure 8:

To conclude the example, there is no underlying network on which the multicolored network of
Figure 8(a) can be routed : the layout of the colors does not permit it.

Several questions arise from this observation. The most important one concerns the specific
properties of colored graphs representing a network. Knowing these properties, we could then try
to establish the complexity of the colored problems on real, or at least feasible, multilayer networks,
and perhaps find new polynomial cases. From a theoretical point of view the problem of deciding
whether a colored graph represents a feasible network would then be interesting to investigate.

References

[1] A. L. Chiu, J. Strand, and R. Tkach. Issues for routing in the optical layer. IEEE Communi-
cations Magazine, 39(2):81–87, 2001.

[2] H. Choi, S. Subramaniam, and H. Choi. On double-link failure recovery in wdm optical
networks. In IEEE Infocom, pages 808–816, New-York, USA, June 2002.

[3] D. Coudert, P. Datta, S. Perennes, H. Rivano, and M-E. Voge. Shared risk resource group:
Complexity and approximability issues. Parallel Processing Letters, 17(2):169–184, June 2007.

[4] P. Datta and A.K. Somani. Diverse routing for shared risk resource groups (SRRG) failures
in WDM optical networks. In Proceedings of IEEE BroadNets, pages 120– 129, October 2004.

[5] B. Jaumard. Exemples de réseaux.

[6] T. Noronha and C. Ribeiro. Routing and wavelength assignment by partition coloring. Euro-
pean Journal of Operational Research, 171(3):797–810, 2006.

16

[7] M. O’Mahony, D. Simeonidu, A. Yu, and J. Zhou. The design of the european optical network.
IEEE/OSA Journal of Lightwave Technology, 13(5):817–828, 1995.

[8] D. Papadimitriou, F. Poppe, J. Jones, S. Venkatachalam, S. Dharanikota, R. Jain, R. Hartani,
and D. Griffith. Inference of shared risk link groups. IETF Draft, OIF Contribution, OIF
2001-066.

[9] P. Sebos, J. Yates, G. Hjlmtsson, and A. Greenberg. Auto-discovery of shared risk link groups.
In Proceedings of IEEE/OSA OFC, volume 3, pages WDD3–1 – WDD3–3, 2001.

[10] A. Todimala and B. Ramamurthy. Survivable virtual topology routing under shared risk link
groups in wdm networks. In First Annual International Conference on Broadband Networking
(BroadNets ’04), pages 130–139, San Jose, CA, Oct. 2004.

[11] M.-E. Voge. How to transform a multilayer network into a colored graph. In IEEE-LEOS IC-
TON / COST 293 annual conference on GRAphs and ALgorithms in communication networks,
Nottingham, June 2006.

[12] M.-E. Voge. Optimisation des réseaux de télécommunication : Réseaux multiniveaux, Tolérance
aux pannes et Surveillance du trafic. PhD thesis, Ecole doctorale STIC, Université de Nice-
Sophia Antipolis, novembre 2006.

[13] Y. Ye, S. Dixit, and M. Ali. On joint protection/restoration in IP-centric DWDM-based optical
transport networks. IEEE Communications Magazine, pages 174–183, June 2000.

17

