4 research outputs found

    Graphical Reasoning in Compact Closed Categories for Quantum Computation

    Full text link
    Compact closed categories provide a foundational formalism for a variety of important domains, including quantum computation. These categories have a natural visualisation as a form of graphs. We present a formalism for equational reasoning about such graphs and develop this into a generic proof system with a fixed logical kernel for equational reasoning about compact closed categories. Automating this reasoning process is motivated by the slow and error prone nature of manual graph manipulation. A salient feature of our system is that it provides a formal and declarative account of derived results that can include `ellipses'-style notation. We illustrate the framework by instantiating it for a graphical language of quantum computation and show how this can be used to perform symbolic computation.Comment: 21 pages, 9 figures. This is the journal version of the paper published at AIS

    Boundary graph grammars with dynamic edge relabeling

    Get PDF
    AbstractMost NLC-like graph grammars generate node-labeled graphs. As one of the exceptions, eNCE graph grammars generate graphs with edge labels as well. We investigate this type of graph grammar and show that the use of edge labels (together with the NCE feature) is responsible for some new properties. Especially boundary eNCE (B-eNCE) grammars are considered. First, although eNCE grammars have the context-sensitive feature of “blocking edges,” we show that B-eNCE grammars do not. Second, we show the existence of a Chomsky normal form and a Greibach normal form for B-eNCE grammars. Third, the boundary eNCE languages are characterized in terms of regular tree and string languages. Fourth, we prove that the class of (boundary) eNCE languages properly contains the closure of the class of (boundary) NLC languages under node relabelings. Analogous results are shown for linear eNCE grammars

    Symbol–Relation Grammars: A Formalism for Graphical Languages

    Get PDF
    AbstractA common approach to the formal description of pictorial and visual languages makes use of formal grammars and rewriting mechanisms. The present paper is concerned with the formalism of Symbol–Relation Grammars (SR grammars, for short). Each sentence in an SR language is composed of a set of symbol occurrences representing visual elementary objects, which are related through a set of binary relational items. The main feature of SR grammars is the uniform way they use context-free productions to rewrite symbol occurrences as well as relation items. The clearness and uniformity of the derivation process for SR grammars allow the extension of well-established techniques of syntactic and semantic analysis to the case of SR grammars. The paper provides an accurate analysis of the derivation mechanism and the expressive power of the SR formalism. This is necessary to fully exploit the capabilities of the model. The most meaningful features of SR grammars as well as their generative power are compared with those of well-known graph grammar families. In spite of their structural simplicity, variations of SR grammars have a generative power comparable with that of expressive classes of graph grammars, such as the edNCE and the N-edNCE classes
    corecore