
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 40, 307-345 (1990)

Boundary Graph Grammars with
Dynamic Edge Relabeling

J~KXT ENGELFRIET AND GEORGE LEIH*

Department of Computer Science, University of Leiden,
P.O. BOX 9512, 2300 RA Leiden, The Netherlands

AND

EMO WELZL+

F. B. Mathematik, Freie Universitiit Berlin,
Arnimallee 24, 1000 Berlin 33, West-Germany

Received April 21, 1988; revised December 20, 1988

Most NLC-like graph grammars generate node-labeled graphs. As one of the exceptions,
eNCE graph grammars generate graphs with edge labels as well. We investigate this type of
graph grammar and show that the use of edge labels (together with the NCE feature) is
responsible for some new properties. Especially boundary eNCE (B-eNCE) grammars are
considered. First, although eNCE grammars have the context-sensitive feature of “blocking
edges,” we show that B-eNCE grammars do not. Second, we show the existence of a Chomsky
normal form and a Greibach normal form for B-eNCE grammars. Third, the boundary eNCE
languages are characterized in terms of regular tree and string languages. Fourth, we prove
that the class of (boundary) eNCE languages properly contains the closure of the class of
(boundary) NLC languages under node relabelings. Analogous results are shown for linear
eNCE grammars. ‘0 1990 Academic Press, Inc.

INTRODUCTION

Graph grammars provide a mechanism in which local transformations on graphs
can be modelled in a mathematically precise way. This is done by specifying a set
of productions; a production is usually a triple (Hi, H,, Emb), where H1 and Hz
are graphs, and Emb is some embedding mechanism. Such a production can be
applied to a graph H whenever there is an occurrence of H, in H, i.e., a subgraph
of H isomorphic with H,. It is applied by removing this occurrence (and the

* The work of this author was conducted as part of the PRISMA project, a joint effort with Philips
Research, partially supported by the Dutch “Stimuleringsprojectteam informaticaonderzoek” (SPIN).

‘Research associate of: IIG, Institutes for Information Processing, Technical University of Graz,
Austria.

307
0022~0000/90 $3.00

Copyright 0 1990 by Academic Press, Inc.
All rlghfs of reproduction in any form reserved.

308 ENGELFRIET, LEIH, AND WELZL

“dangling” edges) from H, replacing it by H,, and finally using Emb to connect H,
to the remainder of H. Moreover, an application condition can be associated to the
production which determines whether the occurrence of H, in H may be replaced,
depending on the context of this occurrence. For an overview of different types of
graph grammar, see [Nag, EhrNagRoz, EhrNagRozRos].

We are interested in graph grammars which are context-free in the sense that (1)
H, is a single-node graph without edges, and (2) productions have no application
conditions. Moreover, we restrict ourselves to the natural case that (3) the embed-
ding mechanism only establishes edges between nodes in H, and former neighbours
of H, . Graph grammars of this type belong to the NLC family op graph grammars:
NLC, dNLC, eNLC, NCE, etc., where NLC stands for node label controlled, NCE
for neighbourhood controlled embedding, the d for directed, and the e for edge
labeled (see, e.g., [JanRozl-JanRozS], and [JanRozVer]). Here we study an inter-
esting variant that has not got much attention before: the eNCE graph grammars
(see [Kaul, Kau2, Bra, EngLeil, Englei31). The two essential features of this
variant are the following. First (the “e”), eNCE grammars generate undirected
graphs with labeled edges and nodes (in contrast with ordinary NLC grammars
which have no edge labels). These edge labels are manipulated by the grammar in
an essential way, which is why we call it a grammar with dynamic edge relabeling.
Second (the “NCE”), each node in H, can be treated separately by Emb in eNCE
grammars (whereas all nodes in H, with the same label are treated identically in
NLC grammars). These two features are formally expressed by the fact that Emb
consists of tuples (x, A, p, 6), where x is a node in HZ, Is and p are edge labels, and
b is a node label. Such a tuple causes Emb to establish a ,u-labeled edge between
x and y if there was a E,-labeled edge between H, and y, and y has label b.

In this paper and in [EngLeil 1, a companion paper, we claim that the eNCE
grammar has many advantages over other grammars of the NLC family. Results
which one would naturally expect of a type of graph grammar satisfying (1 t(3)
often hold for eNCE and can be proved in a natural way, using the special features
of the model (both the dynamic edge relabeling and the neighbourhood controlled
embedding). In particular, the eNCE grammar is rather insensible to small changes
in the model that one would expect to be harmless. Altogether, eNCE grammars
are easy to work with.

Unfortunately, the eNCE grammar has two properties which make it not as con-
text-free as we would like it to be. First, like the NLC grammar, it is not confluent
(cf. [Cou]): when two (neighbouring) nodes in a graph can be replaced, then the
order in which they are replaced may influence the result. Second, it has the
property of “blocking edges” (cf. [Nag]). To explain this, we have to give some
more details of the eNCE grammar. As usual it has terminal and nonterminal node
labels, but additionally it has final and nonfinal edge labels. Nonterminal nodes
may be replaced, whereas nominal edge labels are meant to contain information to
be used by the embedding relation. A generated graph is in the language of the
grammar if it has terminal nodes and final edges only. A blocking edge is now a
nominal edge that connects two terminal nodes. Thus, graphs containing such an

BOUNDARY GRAPH GRAMMARS 309

edge, and all graphs derivable from it, are not in the language. These blocking
edges therefore function as a kind of application condition: if a blocking edge will
be generated by applying a production rc, then rc should in fact not be applied. This
property can be used to generate “context-sensitive” languages, such as a graph
language consisting of graphs with 2” nodes. The analogous situation in which no
production is applicable to a nonterminal node does not give problems: an eNCE
grammar can easily be reduced (cf. [Jef]), just like a context-free string grammar.

Our main object of investigation in this paper is the class of boundary eNCE (or
B-eNCE) grammars: in such a grammar nonterminal nodes are not allowed to be
adjacent. This boundary restriction guarantees context-freeness in addition to
(l)-(3), in the sense that the two problems mentioned above for arbitrary eNCE
grammars are avoided: boundary grammars are confluent and blocking edges need
not occur. Moreover, it guarantees that only “tree-like” graphs are generated, which
are often easier to handle than arbitrary graphs. The boundary restriction on NLC
grammars is studied in [RozWell, RozWe12, RozWel31, resulting in some nice
properties with respect to, e.g., normal forms, decidability, closure properties, and
complexity of recognition. In our experience the B-eNCE grammar has all these
nice properties too; we show, moreover, some additional results in this paper which
cannot be shown for the boundary NLC grammar. These results suggest that
boundary eNCE grammars are even nicer than boundary NLC grammars, a class
of grammars which is commonly considered to be one of the most promising types
of NLC-like graph grammars.

One of the simplest natural restrictions on graph grammars is linearity: in the
graphs generated by a linear grammar there is at most one nonterminal node. Thus
linear eNCE (or LIN-eNCE) grammars form a natural subclass of the B-eNCE
grammars. Since linear grammars generate “chain-like” graphs, they are even easier
to handle than boundary grammars. In [EngLeil] LIN-eNCE grammars form the
main object of investigation. In this paper we treat linear grammars along with
boundary grammars. As another, less important, special case we consider apex
grammars, first studied in [EngLeiRozl, EngLeiRoz21.

Before discussing the main results of this paper, we want to stress that they
strongly depend on the special features of our model: analogous results are difficult
to obtain (or cannot be obtained) for other graph grammar models. Hence, a
general setup, as in [Jef], cannot be given. We now discuss the three main results
of this paper.

First, there exists a Chomsky normal form and a Greibach normal form for
B-eNCE grammars (and for LIN-eNCE grammars). As far as we know, there is no
other graph grammar model for which such normal forms have been shown. Only
in [Nag], a Chomsky-like normal form has been found, with chain-productions
still allowed, but, in the proof, blocking edges are used. For many other models, in
particular for the boundary NLC grammar, the non-existence of a Chomsky and a
Greibach normal form has been proved ([Well, HabKre, RozWell, EhrMaiRoz]).

Second, B-eNCE languages can be characterized in an elegant way by means of
regular tree and string languages. Each graph in a B-eNCE language can be

310 ENGELFRIET, LEIH, AND WELZL

obtained from a tree in a certain regular tree language by adding edges as follows:
an edge between a node x in the tree and one of its descendants is established
whenever the string of node labels on the path from x to y through the tree is in
a certain regular language. The edges of the tree itself disappear, and a node
relabeling is applied to the nodes. Vice versa, each set of graphs obtained from
regular tree and string languages as described above is a B-eNCE language. This
shows that a B-eNCE graph language is “tree-like”: it consists in fact of “transitively
closed” trees from which some of the edges are deleted. LIN-eNCE languages can
be characterized in terms of regular string languages only, in a similar way.

Third, B-eNCE grammars (generating graphs without edge labels) are more
powerful than B-NLC grammars: we show that B-eNCE properly contains the
closure of B-NLC under node relabelings. The same holds for linear and arbitrary
eNCE and NLC grammars. Apex grammars form an exception here: A-eNCE
grammars have the same power as A-NLC grammars with a node relabeling.

These major results are based on several minor facts which one would “naturally
expect” from a reasonable type of graph grammar, e.g., B-eNCE is closed under
node (and edge) relabelings, chain and n-productions can be removed from
B-eNCE grammars, and (as mentioned before) B-eNCE grammars can do without
blocking edges, These handy results strengthen our opinion that the B-eNCE
grammar is nice to work with.

The paper is organized as follows. The preliminaries can be found in Section 1.
In Section 2, the basic definitions are given, together with some examples. Further-
more, some elementary results are proved which will be used through the whole
paper. In Section 3 we investigate the blocking edge problem. It is shown that
boundary eNCE grammars can do without this feature, whereas general eNCE
grammars cannot. Sections 4, 5, and 6 contain our main results. The Chomsky and
the Greibach normal form results for boundary and linear grammars are
established in Section 4. In Section 5 the Greibach normal form result is used to
derive the characterization results for boundary and linear grammars. A direct
consequence is that LIN-eNCE is closed under edge-complement (but B-eNCE is
not). Section 6 shows that (boundary, linear) eNCE grammars are more powerful
than (boundary, linear) NLC grammars with a relabeling. In the apex case, eNCE
grammars and NLC grammars with a relabeling have the same power.

Finally we wish to mention that the report version of this paper ([EngLeiWel])
contains two additional sections. Section 7 of [EngLeiWel] is concerned with
another generalization of the B-NLC grammars: the partition controlled (PC)
grammars of [We12]. It is shown that PC grammars have the same generating
power as B-eNCE grammars that generate graphs without edge labels. In Section 8
of [EngLeiWel] directed eNCE graph grammars are defined (see also [EngLei
Roz~]), and the existence of a Chomsky-like normal form is shown for directed
eNCE grammars without blocking edges. It is not difficult to see that the obvious
analogous of all results of this paper can also be obtained for directed graphs.

BOUNDARY GRAPH GRAMMARS 311

1. PRELIMINARIES

In this section we discuss some notation and terminology used in this paper. We
assume the reader to be familiar with elementary concepts from formal language
theory [Ber, Sal], and from graph theory [Har]. For a set A, #A denotes the
cardinality of A, and .9(A) is the set of all subsets of A.

An alphabet is a finite set. If C is an alphabet, then E* denotes the set of all
strings over 2. A context-free (string) grammar will be denoted here as a four-tuple
G= (Z, d, P, S), where C is the alphabet of symbols, d EC is the alphabet of
terminals (C-A is the alphabet of nonterminals), P is the set of productions, and
SE Z - A is the initial nonterminal. Productions are of the form X-+ r, with
XE C - A, and 5 EC*. G is called a right-linear grammar if each production in P is
of the form X -+ a Y or X -+ a, with X, YE C - A and a E A. A regular language is a
set of strings that can be generated by a right-linear grammar.

A node- and edge-labeled graph, or just graph, is a system H = (V, E, Z, r, cp),
where V is the finite set of nodes, C is the alphabet of node labels, r is the alphabet
of edge labels, E c {({u, w}, A) 1 u, w E V, u # w, k E I’} is the set of edges, and
cp: V + C is the node labeling function. Thus we ‘consider undirected graphs without
loops; multiple edges between the same pair of nodes are allowed, but they should
be labeled differently. Whenever a graph H is considered, its set of nodes, set of
edges, set of node labels, set of edge labels, and node labeling function will be
denoted by Vn, En, C,, rn, and (PH, respectively. For better readability, an edge
((u, w}, 1) will be d enoted (u, 1, w) or (w, A, u) in the sequel, so (u, A, w) and
(w, 1, u) denote the same edge; 1 is said to be the label of (u, 1, w).

Let H be a graph. If V, = @ then H is called the empty graph and is denoted A.
If V, is a singleton then H is called a singleton graph. A singleton graph H with,
say, V,= {u} and qH(u) = X for some XECH, will also be denoted X. H is called
discrete if E, = 0. If E, = ((u, I., w) 1 u, WE V,, u # w, 1 E I-,}, then H is called
complete. H is called a graph without edge labels in case rH = { *}, where * is a
reserved symbol.

A graph H = (V, E, t; r, cp) is called a graph over C and f. For alphabets C and
r, the set of all graphs over 2 and r is denoted GR,, r. A subset of GR,, r is called
a graph language. We consider graph languages to be the same if they only differ
with respect to the empty graph /i.

Let H and K be graphs over C and C H and K are isomorphic if there is a bijec-
tion h: VH + V, such that E,= {(h(u), 1, h(w)) 1 (u, A, W)E EH} and, for all u E V,,
cp,(h(u)) = qH(u). As usual, isomorphic graphs are often identified, in particular, in
graph languages. It should be clear from the context when isomorphic graphs are
considered the same.

Let H be a graph. For (~1, W)E E,, we say that the edge (u, II, w) is incident with
(or connects) the nodes v and w (and vice versa, u and w are said to be incident with
(u, A, w)); moreover, we say that u and w are neighbours. Furthermore, for u E V,,
the context of u in H is context,(u) = {(a, A)EZ~ x rH) 3w E VH: (w, J., u) E EH,
qH(w) = a}, and the neighbourhood of u in H is neigh,(u) = (w E Vn 1 w and u are

312 ENGELFRIET, LEIH, AND WELZL

neighbours}. H is called connected if there is a path from each node in H to each
other node. A graph language L is connected if each graph in L is connected. A
graph language L is of bounded degree if the number of edges incident with any
node in any graph in L is bounded.

Let H be a graph, and let T/E V,. Then the subgruph of H induced by V is the
graph(V,~,~,,T,,cp),whereE={(v,~,w)EE,Iu,wEI/,~ET,},andcpequals
cp restricted to V. If UE V,, then H- (u} is the subgraph of H induced by
v,- {r).

Let C and d be alphabets. A mapping p: Z -+ A is called a node relabeling. For
a graph H= (V, E, Z, r, cp), p(H) = (V, E, A, r, p 0 cp). For a graph language
L E GR,, r, p(L) = {p(H) 1 HE L). The class of all node relabelings is denoted R.
For a class of graph languages 1, R(X) = {p(L) 1 p E R, L E X). X is closed under
node relabeling if R(X) c X.

Let C be an alphabet, and let a E C. For a string w over C, # .(w) denotes the
number of occurrences of a in w. For a graph H with node labels from C, # ,(H)
denotes the number of nodes in H with label a.

This paper is concerned with undirected graphs, as defined above. However, in
Section 5 we also use directed graphs. A directed graph is a system H =
(V, E, C, r, cp), where V, C, r, and cp are as defined above for a graph, and E, the
set of edges, is a subset of {(u, 2, w) 1 v, w E V, u # w, i E r}. Note that we use
(u, A, w) to stand for a directed edge leading from u to w, whereas earlier in this
section we used (u, A, w) as shorthand for ({ u, w}, A). We hope that this ambiguity
will introduce no confusion.

Let H be a directed graph. For v, w E V,, a (directed) path from v to w is a
sequence of nodes u,, u, with n > 1 such that u, = u, u, = w, and there is an edge
from 0; to u,+i for 1 bi<n- 1.

2. BASIC DEFINITIONS AND RESULTS

In this section the definition of the type of graph grammar we consider in this
paper is given. The definition coincides with the one in [EngLeil 1. As discussed in
the Introduction, these so-called eNCE grammars generate undirected labeled
graphs, and the left-hand sides of the productions consist of a single node. They
have neighbourhood controlled embedding, which means that newly generated
nodes can get connected only to neighbours of the replaced node, and they use
dynamic edge relabeling in the sense that edge labels can be changed during the
embedding process.

As noted also in [EngLeil], these graph grammars have evolved from web
grammars ([RosMil]) in the following way. First, in [JanRozl-JanRoz41, NLC
(i.e., node-label controlled) grammars were introduced. Second, in [JanRozS],
NCE grammars were defined as a generalization of NLC grammars. In NLC
grammars only node labels may be used in the embedding process, whereas in NCE
grammars the nodes themselves are allowed too. There are no edge labels in NLC

BOUNDARY GRAPH GRAMMARS 313

and NCE grammars. Edge labels, together with dynamic edge relabeling, were
introduced in [JanRozVer] for NLC grammars, resulting in eNLC grammars. In
this paper, as in [EngLeil], NCE and eNLC grammars are combined in an
obvious way into the eNCE grammars.

In [Kaul, Kau2, Bra], (directed) graph grammars are studied which are essen-
tially the same as the eNCE grammars of this paper. These graph grammars are
also descended from web grammars, but this time via the graph grammars of
CN4.

We will consider several interesting special cases: the boundary, linear, and apex
eNCE grammars. Boundary NLC grammars are introduced and investigated exten-
sively in [RozWell-RozWel31. There it turns out that they have a lot of nice
properties. We will show that boundary eNCE grammars can certainly compete
with the boundary NLC grammars in that respect. Linear graph grammars are not
very popular in the graph grammar world. Still, we believe that they are interesting
since they are so simple and yet have a quite strong generating power. In
[EngLeil] several results on linear eNCE grammars can be found, to which we
will add some more in this paper. Apex graph grammars were introduced in
[EngLeiRozl] for directed NLC and NCE grammars. Omitting the direction and
adding edge labels results in apex eNCE grammars.

The boundary grammars and the linear grammars are the main object of our
attention. We will try, bit by bit, to convince the reader that boundary and linear
eNCE grammars are really nice grammars to work with.

But first, we give the definition of eNCE graph grammars (cf. [EngLeil]). Note
that, as opposed to [JanRoz5], ail our grammars have singleton left-hand sides in
their productions.

DEFINITION 1. A graph grammar with neighbourhood controlled embedding and
dynamic edge relabeling, for short eNCE grammar, is a system G = (Z, A, f, Q, P, S),
where 2 is the total alphabet of node labels, A c C is the alphabet of terminal node
labels, r is the total alphabet of edge labels, Q z r is the alphabet of final edge
labels, P is the finite set of productions, and SE Z- A is the initial nonterminal. A
production 7~ E P is of the form 7~ = (X, D, B), with XE C- A, DE GR,, r, and
BE V, x r x r x C. B is called the embedding relation of 7~.

TERMINOLOGY. Elements from A are called terminals, elements from C - A are
called nonterminals. For a graph HE GR,, ,-, a node v E VH is called terminal if
qH(v) E A, and nonterminal otherwise. An edge (v, 2, w) E EH (recall that (v, 1, w) is
standing for ({v, w}, A)) is called final if 1 E Q, and nonfinal if ,? E r- 52. For a
production 7t = (X, D, B), X is called the left-hand side of 71 and D is called the
right-hand side of rc. We write lhs(7c) = X, rhs(n) = D, and B(z) = B. If D = A, then
7~ is called a n-production. If V, = (v} and cpD(v) EZ- A, then x is called a chain
production.

We now discuss informally how a production 7~ = (X, D, B) is applied to a non-

314 ENGELFRIET, LEIH, AND WELZL

terminal node u in a graph HE GR, ,-, where (Pa = X. First, v is removed from
H, together with all edges incident with v. Next, D is added to the remainder of H,
in place of u. Finally, D is embedded in the remainder of H by adding edges
between nodes of D and nodes of H - {u) as follows. If x E V, and y E V, - {u},
then an edge is added between x and y labeled p if and only if there was an edge
between u and y labeled 2 in H, and (x, E,, p, q&y)) is in B. Thus, x inherits some
of the edges that connect u to its neighbours, with possibly a different label.
Formally, all of this is defined as follows.

DEFINITION 2. Let G = (C, A, r, Q, P, S) be an eNCE grammar. Let H and K be
graphs over C and f, let v E I’,, and let rc = (X, D, B) E P. We may assume that
V, n V, = @ (otherwise, replace H by an isomorphic copy). Then we write
H* (“, nj K, or just H* K, if qoH(u) = X and K is (isomorphic to) the following
graph :

v,= (V,- {u)bJ VII,

E,= {(X,P,Y)EEN I *~#U, y#u}

UEll

H * K is called a derivation step, and a sequence of such derivation steps is called
a deriuation. As usual, % is the transitive-reflexive closure of 3. A graph
HEGRZ,, such that S 9 H is called a sentential form of G. S(G) denotes the
set of all sentential forms of G. The language generated by G is L(G) =
{HEGR,,, I S% H).

The class of all languages generated by eNCE grammars is denoted eNCE. Two
examples are now given of eNCE grammars. In the first, a language is generated
that is taken from [JanRozVer]. As in that paper (in [JanRozVer, Theorem 51
it is shown that this language is in eNLC, but not in NLC), the example
demonstrates the use of (dynamically changing) edge labels. In this example we also
discuss an elegant graphical specification of the productions, introduced in [Kaul],
which we will use in most of our examples. The second example is taken from
[Jan], where it is shown that the language that is generated is an NCE language.
Hence, this example is not typically eNCE.

EXAMPLE 3. Consider the eNCE grammar G = (_X, A, r, 12, P, S) with C =

{$a}, A=(a), r= {A, *}, Q=(*}, P={x~,Ic~~, where n,=(S,D,B) and

BOUNDARY GRAPH GRAMMARS 315

a
s

* * a a
*

Z6-l

* s

A *a
x

a

FIGURE 1

rc2 = (S, A, 0). The right-hand side of rrl is defined as follows: V, = (x, y, z},
E, = {(x, *, v), (x, *, z), (A&Z)}, CD=& r,=K cp&)=cp,(~)=a, and
cpD(z) = S. Furthermore, B = {(x, *, *, a), (y, A, *, a)}. In Fig. la the graphical
specification of rci is given (since the one for n, is trivial, we do not draw it).
Terminal nodes are circles, nonterminal nodes are boxes. In the upper left corner
of the big box (representing the node that is to be rewritten) the left-hand side of
the production is drawn, and the graph inside the box is the right-hand side of rcr.
The edges that connect nodes inside the box with nodes outside the box represent
the embedding relation. They have two labels: the one outside the box is the “old”
label, and the one inside the box is the “new” label. The fourth component of a
tuple in the embedding relation of rci is placed as label on a node outside the big
box. It is now easy to see that L(G) consists of all “ladders” of the form given in
Fig.lb, of arbitrary length.

EXAMPLE 4. Consider the eNCE grammar G= ({A, B, a}, {a}, (*>, { *}, P, A),
where P consists of the four productions presented in Fig. 2. G generates the set of
all graphs “without edge labels” and with node label a. In fact, G first applies
production pi any number of times, resulting in a complete graph with A-labeled
nodes only (note that the embedding relation of rci contains two tuples). Next, an
edge between two nodes can be removed by applying first rc2 to both nodes, and
then n,. In this way, any edge can be removed from the graph. Finally rrnq is used
to generate a terminal graph.

Notice that, as mentioned in the Introduction, the order of rewriting is important
in eNCE grammars, just as in NLC and NCE grammars. If we first apply, for
example, production rr4 of Example 4 to the graph in Fig. 3a, and next n3, then the
graph in Fig. 3b is obtained. If, on the other hand, we apply first rc3 and next n4
to the same nodes in Fig. 3a, then the graph in Fig. 3c results. Hence, the order of
rewriting influences the result, and so eNCE grammars are not confluent (cf.
[Cou]), a severe disadvantage of eNCE grammars. In NLC grammars, where the
same situation can occur, one way of “solving” this problem is to restrict attention
to the subclass of boundary NLC grammars [RozWel&RozWel3]. In these gram-
mars, nonterminal nodes are never connected by an edge. Therefore, the application

316 ENGELFRIET, LEIH, AND WELZL

A A * *
A s c A * ii3 di A * A B

nl “2

A a A

x 1) *

B
* A * *

L 1 ?!!I A a

n3 “4

FIGURE 2

of a production to a nonterminal node has no influence on the neighbourhood of
other nonterminal nodes. From this it can easily be deduced (cf. [RozWell, Lemma
2.31) that boundary grammars are confluent. In fact, this is a crucial property of
boundary grammars, which enables us to show a number of results for boundary
grammars which cannot be derived for arbitrary eNCE grammars.

Boundary eNCE grammars are defined next, together with linear and apex
grammars.

DEFINITION 5. Let G = (C, A, r, 52, P, S) be an eNCE grammar.

(i) G is a boundary eNCE grammar, for short B-eNCE gramar, if, for every
production (X, D, B) E P, D does not contain edges between nonterminal nodes, i.e.,
if (v, A, w) E E,, then cpD(o) E A or cpD(w) E A.

FIGURE 3

BOUNDARY GRAPH GRAMMARS 317

(ii) G is a linear eNCE grammar, for short LIN-eNCE grammar, if for all
rc E P, rhs(rr) contains at most one nonterminal node.

(iii) G is an apex eNCE grammar, for short A-eNCE grammar, if for every
production rr = (X, D, B) the embedding relation B is a subset of {(x, 1, p, a) E
V,xTxTxCI cpo(x)~d and aed}.

For XE (B, LIN, A}, the class of all languages that can be generated by an
X-eNCE grammar is denoted X-eNCE.

Note that there are no edges between nonterminal nodes in all the sentential
forms of B-eNCE grammars. This property will be used several times in the paper.

The eNCE grammar of Example 3 is clearly linear and apex. Another linear
grammar is given in the following example. Example 7 gives an apex grammar
generating the set of all binary trees. All these grammars are clearly boundary,
whereas the grammar of Example 4 is not.

EXAMPLE 6. Let G= ((S, a}, {a}, (A, *}, { *>, P, S) be an eNCE grammar,
where P is defined in Fig. 4. L(G) contains the graphs H(n) E GR{,), (*) with
V - (x1, H(n) - x,> and EHcn) = ((xi, *, xi) 1 1 <i, j<n: /j--ii >2}, for all n20.
This example also illustrates the use of edge labels; we will show later that L(G) is
not in NCE. Clearly, G is a LIN-eNCE grammar.

EXAMPLE 7. Consider the A-eNCE grammar G = ({S, a}, {a], { *}, { * }, P, S)
with P defined in Fig. 5. L(G) is the set of all binary trees.

In Section 6 eNCE grammars will be compared to NCE graph grammars. Since
these generate graphs without edge labels, we now define eNCE grammars which
only generate such graphs. The reserved edge label * will be used to indicate the
absence of an edge label (cf. Section 1).

DEFINITION 8. Let G = (C, d, r, 0, P, S) be an eNCE grammar.

(i) G is a one-final eNCE, for short e,NCE, grammar if Q = { *}.

(ii) G is an NCE grammar if r=Q= {*}.

S

* *
a a x

*

*

s
h

*
a

I I

FIGURE 4

318 ENGELFRIET, LEIH, AND WELZL

0 a a ‘;’ *

s x 2% a
* *

s s

*
s * r---o a

FIGURE 5

We use e,NCE and NCE to denote the classes of languages that can be generated
by the corresponding grammars. Moreover, it should be clear which classes we
denote by the abbreviations LIN-e,NCE, B-NCE, etc.

Note that e,NCE just consists of all eNCE languages that contain graphs
without edge labels only. Note also that the definition of NCE grammars coincides
with the one from [JanRozS]. Hence, as shown there, NCE =NLC: the class of
NLC languages investigated in [JanRozl-JanRoz41. Note finally that the gram-
mars of Example 4 and Example 7 are NCE grammars, whereas the grammars in
Example 3 and Example 6 are e,NCE.

Now we turn to some basic results on eNCE grammars. From the definitions it
follows that LIN-eNCE G B-eNCE. It can furthermore easily be shown that
A-eNCE E B-eNCE: just remove the edges between nonterminal nodes in the right-
hand sides of the productions of an A-eNCE grammar. Both inclusions are proper.
First, in [EngLeiRozl] it is shown that apex languages are always of bounded
degree, whereas the linear language of Example 6 is not. Second, in [EngLeil,
Theorem 161 it is shown that the set of binary trees of Example 7 cannot be
generated by a linear grammar. These two counterexamples show that LIN-eNCE
and A-eNCE are incomparable subclasses of B-eNCE. In order to prove the
correctness of the inclusion diagram in Fig. 6 (except for N-eNCE, a class of

N-eNCE

I
B-eNCE

LIN-eNCE A-eNCE

FIGURE 6

BOUNDARYGRAPHGRAMMARS 319

languages introduced in the next section), it suffices to show that there is an eNCE
language that is not in B-eNCE. Later on in this section we will see that the
language of Example 4 forms such a language.

Since the result is needed in the rest of this paper, we now prove that eNCE is
closed under node relabeling (the same can easily be achieved for edge relabeling,
but is not needed here). This is the first example of the advantage of grammars with
dynamic edge relabeling over similar models: the class of NCE languages is not
closed under node relabeling (CRozWel2, Theorem 4.11, see also [EngLeiRozl,
JanRozVer]).

THEOREM 9. eNCE is closed under node relabeling.

ProoJ: Let G = (Z, A, r, Sz, P, S) be an eNCE grammar, and let p: A + a be a
node relabeling. It may be assumed that (Z - A) n 2 = 0. We will construct an - - -
eNCE grammar G= (Z, A, r, 52, F, S) such that L(G) = p(L(G)) as follows. First,
let Z = (C-A) u a, and let i== Tu TX A. Second, in order to define the produc-
tions in p, we define the function 6: C x Tx C -+ i= by o(a, 2, b) = J if a, b E A or a,
bEC-A,ando(a,~,b)=a(b,~,a)=(i,b)ifaEC-AandbEA.Weextendpto
C by defining p(a) = a for each a E Z- A. If now P contains the production - -
(X, D, B), then P contains the production (X, D, B), where V, = V,, E, =
{(u, ~(cp,(u)> 1, cpD(w)), w) I (~1, ~1 E Ed, and cpo(u) = p(cp,(v)). Furthermore,
B= {(u, 0(X 1, a), ~(cp,(u), p, a), p(a)) I (4 4 P, a) E B}.

G has almost the same productions as G, only the labels differ. Instead of
terminal label a E A, p(a) is placed on the nodes in the productions of G. To keep
track of the original node label a, G places this a on all the edges incident with this
terminal node and a nonterminal node. The labels of the rest of the edges are not
changed. Now, it will not be difficult to see that L(G) = p(L(G)). 1

It is easily seen that this theorem still holds in the boundary, the apex, and the
linear case. (It also holds in the “nonblocking” case, to be discussed in the next
section.)

The second result we prove in this section concerns chain and A-productions (see
the terminology following Definition 1). The result tells us that B-eNCE grammars
can do without chain and A-productions. In [RozWell] the same has been proved
for B-NLC grammars, but there the proof had to be lengthy. For B-eNCE
grammars the proof is quite simple.

THEOREM 10. Let G = (.Z’, A, r, Q, P, 5’) be a B-eNCE grammar. Then there
exists a B-eNCE grammar G= (2, A, r, Q, P, S) without chain or A-productions
such that L(G) = L(G).

Proof: The proof for A-productions is fully analogous to the proof for context-
free string grammars (see, e.g., [Sal, Part I, Theorem 6.21). So assume that G has
no A-productions. The proof for chain productions is also the same as the one for
context-free string grammars, except that in addition we have to compute the

57 I /40/3-3

320 ENGELFRIET, LEIH, AND WELZL

correct embedding relations. This can be done as follows. If (X, , D, , B,),
(X,,, D,, B,) are chain productions of P, with n 3 0, and if (X, + 1, D, + , , B, + I) is
not a chain production of P, such that Xi+ 1 is the label of the node in Di for
1 6 id n, then P contains the production (X,, D, + , , B) with B = {(x, + , , A, p, a) I
X n+l E VD,+,, for every Odi<n+ 1 there is a ;l,Er such that for all 1 <i<n+ 1,
(xi, Ai_, , Ai, a) E Bi and I = A,, p = &+ 1), where x, denotes the node of Di
(1 Q i6 n). These are all the productions that G contains. It is not difficult to see
that L(G) = L(G), that G contains no chain productions, and that no new
n-productions are introduced. The construction used is not constructive, but, as in
the string case, it can easily be made so. 1

This result also holds for linear and apex eNCE grammars. The result on
n-productions even holds for arbitrary eNCE grammars. Hence, it may be assumed
that the number of nodes in the sentential forms of a derivation of an eNCE
grammar never decreases (though the number of edges may decrease). From this it
can now easily be deduced that eNCE is in NSPACE(n*), where n is the number
of nodes of the considered graph.

The construction in the proof above works because the order in which produc-
tions are applied to a sentential form does not influence the result (see the discus-
sion on confluence just before Definition 5). Therefore, a number of consecutive
chain productions may be simulated in one step. In arbitrary eNCE grammars, to
the contrary, we may not simulate a number of chain productions applied to a non-
terminal node x in one big step, since a production applied in-between to a nonter-
minal neighbour of x might influence the result. In fact, by the general result in
[Well], eNCE grammars do need chain productions to generate certain eNCE
languages. The set of all graphs without edge labels over {u> is an example of such
a language (see Example 4). Thus, there exists no boundary grammar generating
this language, and hence B-eNCE is a proper subclass of eNCE (see Fig. 6).

3. FINAL AND NONFINAL EDGE LABELS

In this section we take a closer look at the definition of eNCE grammars. Since
it differs from the one of NCE grammars [JanRozS] only with respect to the edge
labels, we will mainly be concerned with these edge labels. In particular, an answer
is given to the question “why do we call some of the edge labels final, and the
others nominal?” At first sight, these two names do not seem to be appropriate:
final edges can still be changed in the embedding process (so they may not be
“really final”), and nonfinal edges can be incident with two terminal nodes (so they
can, in fact, be “final”). We would like to consider only graph grammars in which
final and nominal edges do satisfy their intuitive “meaning”:

(i) final edges are ready, i.e., the two nodes incident with such an edge are
both terminal.

BOUNDARY GRAPH GRAMMARS 321

(ii) nominal edges are not yet ready, i.e., at least one of the nodes incident
with such an edge is nonterminal.

In this section we investigate the power of grammars that satisfy these two
demands. It will turn out that eNCE languages can always be generated by gram-
mars that satisfy the first demand, but not always by grammars satisfying the
second. Therefore, a new subclass of the eNCE languages is obtained, generated by
all eNCE grammars satisfying the second demand (and the first). The situation for
boundary (linear, apex) languages is quite different: we show that they can always
be generated by a boundary (linear or apex, respectively) grammar satisfying both
demands. This shows again the usefulness of the boundary restriction,

We first define normalized eNCE grammars, i.e., eNCE grammars that satisfy the
first demand.

DEFINITION 11. Let G = (Z, A, r, 0, P, S) be an eNCE grammar. G is nor-
malized if, for all H such that S 22 H and all (x, L, y) E E,, if A E 9, then (Pi E A
and V,(Y) E A.

We now show that each eNCE language can be generated by a normalized eNCE
grammar.

THEOREM 12. For every L E eNCE there is a normalized eNCE grammar G such
that L = L(G).

Proof: Let G = (C, A, r, 52, P, S) be an eNCE grammar. We will construct a
normalized eNCE grammar G = (2, A, T, Q, p, S) with L(G) = L(G). The obvious
trick is to use for each final edge label ;1 E Sz a new nominal edge label 1. Whenever
G places 1 on an edge incident with a nonterminal node, then G will place X on that
edge instead. Formally, G is defined as follows.

First, let 0=(X1 1~52) be such that QnnT=@, and let i==ruO.
Second. define 6: r + i=- S2 by a(A) = X if 1 E 0, and o(A) = I if 1 E r- 52. If now - -
(X, D, B) is a production in P, then P contains the production (X, D, B), where
&GR,, and B are defined as follows: V, = I’,, E, = {(x, 1, y)~ E,I cpD(x),
cp,(y)~A) u ((-T @), y)l(& 1, Y) E EDT cp&)$A or rp,(y)$A), ‘Pi = (PO,

and B = {(x, a(l), P, a) I (x, 1, P, a) E 4 V,(X) E A, a E A} u {(A a(n), c$,u), a) I
(x, I, ,u, a) E B, qD(x)# A or a$ A}. It is not difficult to check that indeed G is
normalized, and that L(G) = L(G). 1

The construction used in the theorem above clearly preserves the boundary, the
linear, and the apex property. Hence, for each boundary (linear, apex) eNCE
language, there is a normalized boundary (linear, apex, respectively) eNCE
grammar.

Note that, according to the construction used above, we may assume that, for
each production n of a normalized eNCE grammar, if (x, A, p, a)~ B(n) then
II E r- Q, and if p E 52 then ~~,,~(~)(x) E A an d a E A. Thus the embedding relations
of the productions “know” that the grammar is normalized.

322 ENGELFRIET, LEIH, AND WELZL

By Theorem 12, we may always assume that the sentential forms of eNCE gram-
mars have no final edge labels on edges incident with a nonterminal node (in other
words, edges that will be “rewritten” are always nonfinal). But what about the
labels of the edges incident with two terminal nodes? Unfortunately it is not
possible to take care that these labels are always final (i.e., nominal edges are
“really nominal”). There are eNCE languages that can only be generated by graph
grammars that have sentential forms with nominal labels on some of the edges
between terminal nodes. These edges are called blocking edges (see [Nag, p. 38]),
because they prevent the grammar from accepting any graph that can be derived
from such a sentential form. So blocking edges can be used to filter out of the
language some of the graphs with terminal nodes only (see [JanRoz2, Theorem 91
for a closely related filtering mechanism). The next example is meant to give a
better insight in the power of these blocking edges. (We also observe that several
results in Chapter 1 of [Nag] rely on the use of blocking edges.)

EXAMPLE 13. Consider the (normalized) eNCE grammar G = (Z:, A, r, S2, P, S)
with Z= {&A, C,a, b}, A= {a, b}, r= (1, p, *, $}, Q= (*}, and with P contain-
ing the following five productions:

x0=(&& 0), with J',= (x,Y}, ED= {(x,P,Y)}, cp&)=C, and v&)=A.
7cn,=(C,D,B), with V,=(x), ED=@, cp,(x)=C, and B={(x,p,I?,A)} u

{(x,p,S,q) IpEr,qE&p#~orqfA}.
x2 = (C, D, B), as for rc,, except that cpD(x) = b.

TC~=(A,D,B), with V,={x,y}, ED=@, cpD(x)=cp,(y)=A, and B=
{(w,J,p,C) I wQ-7.~)) u {(w,~,$,q) I w~{~,y},~~r,q~~,pZ1orqfC}.

7-c4 = (A, D, B), with V, = {x>, E, = 0, qD(x) = a, and B= {(x, 1, *, b)} u
{(x,p, $, 4) I PET, qE& pfi or q+b}.

This grammar generates the language of all “star’‘-graphs of the form depicted in
Fig. 7a, with a b-node in the middle, and with 2” u-nodes attached to this b-node,
for some n > 0. This can be understood from the following arguments:

(i) Whenever a $-edge is generated by G, then this edge will not disappear
anymore, so eventually it will lead to a blocking edge. Hence, a sentential form with

a

FIGURE 1

BOUNDARY GRAPH GRAMMARS 323

a $-edge cannot lead to a graph in the language. So we only have to consider the
derivations that do not introduce these edges.

(ii) It is easily seen that A-nodes cannot be replaced whenever they are inci-
dent with a p-edge (this means: if such a node is replaced, then a $-edge is intro-
duced). Moreover, when an A-node is connected to a C-node by a l-edge, then only
rcn3 may be used (to replace it by two A-nodes, connected to the C-node by p-edges).
When it is connected to a b-node by a I-edge, then only n4 may be used (to replace
it by an a-node).

(iii) Similarly, a C-node cannot be replaced whenever it is incident with a
l-edge. When it is connected to all A-nodes by a p-edge, then both 71, and rc2 may
be used (replacing it by the same C-node or by a b-node, respectively, and changing
all p’s into 2s).

We will now use an induction argument to show that L(G) is indeed the set of
graphs described above. We state that, after 2” + n derivation steps (with n 2 0), the
derived sentential form either is the graph of Fig. 7a with 2”-’ a-nodes, or is the
graph of Fig. 7b, with 2” A-nodes (or is a graph with a $-edge, but we do not
consider these graphs, see (i)). For n = 0, this is trivially true since no is the only
production we can start with. Assume now that it is true for n. To obtain a deriva-
tion with 2” + * + n + 1 steps, we have to proceed with the graph of Fig. 7b. So, as
the first step of the continuation of the derivation, either 7c1 or n2 has to be applied
to the C-node (this follows from (ii)). First, when x2 is used, then all A-nodes have
to be replaced by production rc4 in the next 2” steps (see again (ii)). Hence, we get
the graph of Fig. 7a with 2” u-nodes. Second, when rcl is used to replace the C-node
(all p’s now become Xs), then all A-nodes have to be replaced by production 7~~ in
the next 2” steps (see (ii) and (iii); each A-node is replaced by two A-nodes, and
the I’s become p’s again), so we get the graph of Fig. 7b with 2.2” = 2”+’ A-nodes.

From the example above it can be seen that blocking edges can be used to
prevent a production from being applied to a node in a sentential form, by the
introduction of a nominal edge that never disappears. In this way, blocking edges
work like application conditions. This is a kind of context-sensitivity we want to
avoid. Therefore we define graph grammars that cannot generate blocking edges,
and thus are much less powerful than eNCE grammars. In particular, the language
of Example 13 cannot be generated by them.

DEFINITION 14. An eNCE grammar G = (2, A, r, 52, P, S) is nonblocking if, for
all H such that S %- H and all (x, A, y) E E,, if cp,Jx) E A and cpH(y) E A, then 1 E Q.

The class of all languages generated by a nonblocking eNCE grammar is denoted
N-eNCE. In [EngLeiRoz2], only nonblocking grammars are used (these grammars
were just called edNCE grammars, where the “d” means that directed graphs are
generated, see also Section 8 of [EngLeiWel]). Note that, trivially, NCE 5
N-eNCE. Note also that N-eNCE is closed under node relabeling (check the proof
of Theorem 9).

324 ENGELFRIET, LEIH, AND WELZL

If we reconsider the construction used to show that each eNCE language can be
generated by a normalized eNCE grammar (Theorem 12), then we see that it
preserves the nonblocking property. Hence we may assume that each nonblocking
grammar is normalized, and so we might (and will) say that the first N inN-eNCE
is standing for “nonblocking” as well as for “normalized.” This means that N-eNCE
grammars form the subclass of eNCE grammars that satisfy demands (i) and (ii)
mentioned at the beginning of this section.

It is easily seen that we can take care that the productions of an N-eNCE
grammar G = (C, A, I’, 52, P, S) “know” that the grammar is nonblocking and
normalized, by requiring that each production rr is such that

(a) whenever (x, 1, p, a) E B(rc), then A E r- Q, and , moreover, p E Q iff both
(Pact&) E A and a E A,

(b) if (x9 P, v) E Erh+) then P E Q iff both (P~~~(~)(x) E A and (P~~~(~)(J) E A.

Thus, requiring (a) and (b) gives us a static definition of an N-eNCE grammar.
This definition will be used too, instead of Definition 14 (and Definition 11).

To show that N-eNCE grammars are less powerful than ordinary eNCE
grammars, we need the following concept.

DEFINITION 15. Let G = (C, A, r, Q, P, S) be an eNCE grammar. Then the
context-free string grammar associated with G is CF(G) = ((Z-A) u {a>,
{a}, p, S), where P consists of all productions X+ w with WE ((C-d)u {a})*,
such that there exists a (X, D, B) E P that satisfies #a(w) = # {xe V, 1 cpD(x) E A),
and, for all YEZ-A, #y(w)= #{xe V, 1 cpD(x)= Y}.

CF(G) simulates G in a certain sense. Whenever a production rc of G generates
i terminal nodes, then a corresponding production rc’ of CF(G) generates i a’s.
Moreover, for each nonterminal node generated by 71, n’ generates the label of this
node. The order in which rc’ generates these symbols is not important. Now the
following lemma (which is similar to Lemma 3.3. of [Jef]) is easy to understand
and prove.

LEMMA 16. For every N-eNCE grammar G, L(CF(G)) = {a* I n = # V, for some
HE L(G)}.

Note that we have explicitly stated this lemma only for N-eNCE grammars. Since
CF(G) only simulates an eNCE grammar G with respect to the node labels, it does
not notice the blocking edges. Thus L(CF(G)) = { un 1 n = # VH for some HE S(G)
that contains no nonterminal nodes}, but the languages of CF(G) and G may not
be related to each other.

Now we are ready to show that N-eNCE grammars are less powerful than eNCE
grammars.

THEOREM 17. N-eNCE is properly included in eNCE.

BOUNDARYGRAPHGRAMMARS 325

Proof: Reconsider the eNCE grammar G of Example 13, and assume that there
is an N-eNCE grammar G such that L(G) = L(G). Then the context-free grammar
CF(G) generates the language {u” 1 k = 2” + 1, n > 0}, according to Lemma 16. But
this is not a context-free language. 1

We have just seen that some eNCE languages cannot be generated without using
blocking edges. However, as shown next, this does not hold for boundary gram-
mars: all B-eNCE languages can be generated by a nonblocking B-eNCE grammar
(the next nice property of boundary grammars!). This is based on the fact that the
context of a node and the embedding relation of a production together decide
whether a blocking edge will be introduced when applying that production to the
node. So, if we take care that productions can only be applied to a node if the
context of that node “permits” it, we can get rid of blocking edges (see Section 1
for the formal definition of context).

In so-called context consistent graph grammars (see [RozWell I), the context of
a node is stored in its label, i.e., if x is a nonterminal node in a sentential form H,
and X is its label, then context,(x) = q(X), for some fixed function q. Since the
neighbours of a nonterminal node in a B-eNCE grammar cannot be rewritten, it
can easily be proved that there is a context consistent B-eNCE grammar for each
B-eNCE language (just add the context to the nonterminal labels, see [RozWell,
Theorem 3.21). For such a grammar, the left-hand side of a production and the
embedding relation of this production together determine whether a blocking edge
will be generated, and so the grammar can be made nonblocking edge will be
generated, and so the grammar can be made nonblocking by just removing such
productions. All this is now stated more formally.

DEFINITION 18. An eNCE grammar G = (Z, A, r, l2, P, S) is context consistent
if there is a function v]: C - A + 9(C x f) such that for every H with S % H and for
every XE VH with qH(x) E Z- A, context,(x) = r](cp,,(x)). The function q satisfying
the above is called the context describing function of G.

LEMMA 19. For every B-eNCE language L there is a context consistent B-eNCE
grammar G such that L = L(G).

Proof: Fully analogous to the ones in [RozWell, EngRoz]. 1

THEOREM 20. For every L E B-eNCE there is a nonblocking B-eNCE grammar G
such that L = L(G).

Proof: Let G = (C, A, r, Q, P, S) be a context consistent B-eNCE grammar, cf.
Lemma 19, and let q: 2 - A -+ 9(A x f) be the context describing function of G.
Now we construct a nonblocking B-eNCE grammar G = (C, A, r, 52, P, S) with
L(G) = L(G) as follows. If II = (X, D, B) is a production in P with the properties

(i) if (x,&y)~E~ with (PEEL and (pD(y)~A, then 1~52, and

(ii) if (x, 4 .D, a) E B with a E A, cpD(x) E A, and (a, 2) E q(X), then p E 0,

then 7~ is a production in P too. m

326 ENGELFRIET, LEIH, ANDWELZL

Three remarks can be made now. First, Lemma 19 and Theorem 20 also hold for
linear and apex eNCE grammars. Thus, we may always assume that linear and
apex grammars are nonblocking. Second, by the discussion following Definition 14,
B-eNCE grammars may be assumed to be nonblocking as well as normalized at the
same time (and similarly for LIN-eNCE and A-eNCE). Third, the theorem above
proves that B-eNCE s N-eNCE. This inclusion is proper: as mentioned at the end
of Section 2, the graph language of Example 4, which clearly is in N-eNCE (even
in NCE), cannot be generated by a boundary eNCE grammar. This proves the
correctness of the inclusion diagram in Fig. 6.

Finally, we would like to mention that we prefer N-eNCE grammars to eNCE
grammars, because they have less context-sensitive aspects, and because final
(nominal) edges are “really final” (“really nominal,” respectively). We also prefer
B-eNCE grammars to N-eNCE grammars because they have even less context-
sensitive aspects (due to confluence).

4. CHOMSKY AND GREIBACH NORMAL FORM

In formal language theory one of the first topics of research has been the search
for normal forms for context-free string grammars. The two most famous results in
this direction are undoubtedly the Chomsky and the Greibach normal form.
A grammar in Chomsky NF, which only has productions of the form A + BC and
A + b (A, B, C nonterminals, b terminal), has the big advantage over ordinary
context-free grammars that the productions are bounded in length. A grammar in
Greibach NF, which only has productions of the form A -+ bB, ... B, (n >O,

A, B,, B, nonterminals, b terminal) is often to prefer over ordinary context-free
grammars since the length of a derivation of a string is known in advance.

It is thus not surprising that one has searched for Chomsky-like and Greibach-
like normal forms in the graph grammar world, unfortunately often without
success. The only positive result we know of can be found in [Nag (see Theorem
1.3.21)], where it is shown that each context-free graph language (in the sense of
[Nag]) can be generated by a graph grammar with at most two nodes in the right-
hand sides of the productions. Negative results can be found in [Well], where it
is shown that some graph languages (which are in NLC, (N-)eNCE, etc.) cannot
be generated without using chain productions. This clearly implies that there exists
no Greibach-like normal form for NLC and (N-)eNCE grammars. In [EhrMaiRoz],
furthermore, it is shown that there does not exist a Chomsky-like normal form
for NLC grammars. Finally, a Chomsky normal form neither exists for boundary
NLC grammars ([RozWell, Corollary SS]), nor for edge replacement systems
([HabKre, Corollary 5.5]).

In this section it is demonstrated that these two normal form results can be
obtained for B-eNCE grammars. First, we define Chomsky and Greibach normal
form for our graph grammars.

DEFINITION 21. Let G = (Z, A, r, Q, P, S) be an eNCE grammar.

BOUNDARY GRAPH GRAMMARS 327

(i) G is in Chomsky normal form if each rc E P is of one of the three forms:
(1) rhs(rc) consists of one node, say x, with q rhs(rr)(~)~d. In this case, z is called
a type-l production. (2) rhs(rc) consists of two nodes, say x and y, with
(Pact&) EA and R~&Y) EX- A. rc is tailed a type-2 production. (3) Like case
(2), but now with cp rhs(rrJ(~) EC - A, too. n is now called a type-3 production.

(ii) G in Greibach normal form if for every rr E P # {x E Vrhscnj 1 quip, E A}
= 1, and 1 d # Vrhs(nJ < 3.

The definition for Greibach NF is the obvious one, while the definition for
Chomsky NF we have chosen seems at first sight a bit strange. The obvious choice
would have been to allow only type-l and type-3 productions, but it is not difficult
to see that boundary grammars with just these productions can only generate
discrete graphs. Nag1 [Nag] uses a similar definition for Chomsky NF, but he calls
these grammars “grammars in normal form.” Note that the difference between
Chomsky NF and Greibach NF is that in Greibach NF type-3 productions have
an additional terminal node.

Now we prove the Chomsky normal form result.

THEOREM 22. For every B-eNCE language L there is a B-eNCE grammar G in
Chomsky NF such that L(G) = L.

Proof Consider a B-eNCE grammar G = (C, A, r, J2, P, S). It may be assumed
that P contains no A-productions (see Theorem 10).

There will be defined now a B-eNCE grammar G = (2, A, i=, Q, p, S) with
L(G) = L(G) such that P only contains type-l, type-2, type-3, and chain produc-
tions. It should be clear that eliminating the chain productions in the way as
indicated in the proof of Theorem 10 turns such a grammar into Chomsky NF.

The definition of G is as follows. First, let r= ,Z u { (q i)) r E P,
1 d i < # Vrhscnj }. Second, let i==Tu (TX {x~ Vrhs(n) 1 XE P}). Next we define the
productions in P. Let z = (A’, D, B) be a production in P, and let xi, x, be a
fixed order of the nodes of V,, such that there is a k, 0 <k <n, with (pD(xi) E A for
1< i<k, and ‘p&xi) EZ- A for k< i<n. Then P contains the production
7c,, = (A’, D,. B,) and, for 1 < i 6 n, the productions rrj = ((n, i), Di, Bi), where - -
Di = (V,, Ei, C, r, cp,) and B, are defined as follows.

Case 1. i=O:

vo = I<,>> where to is a new node, E. = 12/, cpo(So) = (71, 1), and B, =
{(to, 4 (K z), a) I (2, J-, P, a) E B).

Case 2. 1 <idn-1:

Vi= {xi, li}, where ri is a new node,

Ei={(xi, (A xj), 5,) I i<j<n, l~f’, and (x,, A, xj)sE,},

~i(-x,) = PAX,) and qi(5;) = (n, i+ f >,
Bf= Bi(Xi) u Bi(ti), where B,(.x,) = {(Xi, (A, xi), I, a) 1 Acr, aEC}, and Bi(ti)
= {(li,(n,Xj), (4xi),a) I kr, aEZ:, i<j<n).

328 ENGELFRIET, LEIH, AND WELZL

Case 3. i=n:

V, = {xn}, E, = @, cp,(x,) = cpD(x,), and B, = B,(x,), where B,(x,) is as defined in
Case 2, with i = n.

These are all the productions that P contains according to rr.
G simulates G: whenever a production n in P generates n nodes, there are n + 1

productions in P which together generate these nodes. The first of these productions
is the chain production q,: it replaces a node labeled lhs(rr) by a nonterminal node
(called &, above) labeled (rc, 1). The other productions (rci to rc”) generate the
nodes in rhs(rc), one by one in a certain order. This order is such that terminal
nodes are generated before nonterminal nodes. The ith node xi of rhs(n) is
generated by a nonterminal node, called li_ 1 in the construction above, labeled
(n, i), for 1 < i < n. ti_ 1 also generates a new nonterminal node ti, labeled
(rc, i + 1) (if i # n). So, in fact, <,_ 1 eventually generates xi, x,.

An edge incident with a nonterminal node li_, labeled by (rc, i) always has a
label of the form (A, x,), where E, E f, and i<j< n. This label indicates that, later
on, ti_ 1 has to establish an edge labeled A to xj.

A nonterminal node xi has to be generated after a terminal node xj: otherwise,
if i would be smaller than j, and there would be a A-edge between these two nodes
in rhsx(rc), then Ei would contain a (A, xi)-edge between two nonterminal nodes,
which is forbidden in boundary grammars.

This explanation should convince the reader that (? can simulate each derivation
of G. Furthermore, G clearly is a boundary grammar. Therefore, we may assume
that G always applies the n + 1 productions simulating rc in a row, without inter-
ruptions (the order of rewriting is not important). Thus, the simulation of rr is first
finished before we start applying productions to other nodes. If we keep this in
mind, then it is not difficult to see that each derivation in c corresponds to a
derivation in G. Hence, ,?JG) = L(G). 1

In Section 8 of [EngLeiWel] a construction similar to the one above is used to
show that directed N-eNCE languages can be generated by grammars with one or
two nodes in the right-hand sides of the productions. We do not know whether this
also holds for (undirected) N-eNCE languages. As far as eNCE grammars are con-
cerned, however, a similar result can be obtained by using blocking edges (in [Nag,
Theorem 1.3.211 blocking edges are used to prove an analogous result). To see this,
we have to reconsider the proof of Theorem 22. If the grammar G in that proof is
an eNCE grammar (without n-productions), then we can turn G into an eNCE
grammar with L(G) = L(G) and with at most two nodes in the right-hand sides of
the productions by adding a symbol $ to T-Q, adding (for all (A, y) E r and for
all a E C) tuples (to, (A, y), $, a) to B,, and adding all tuples (u, $, $, a) to all B’s.
Clearly, $-edges lead to blocking edges, and hence production zn, may not be
applied to a nonterminal node x as long as there are still (2, y)-edges incident with
x (indicating that some nodes that have to be connected to x, according to the

BOUNDARYGRAPHGRAMMARS 329

right-hand side of the production in which x was generated, are not yet present).
It is left to the reader to write out full details.

Theorem 22 can be used to prove the second main theorem of this section:
the Greibach normal form result for boundary grammars. For linear grammars,
however, we can conclude directly from the previous proof that a Greibach NF
exists (in [EngLeil] such grammars were called “one-linear”).

THEOREM 23. For every L E LIN-eNCE there is a linear eNCE grammar G in
Chomsky NF and in Greibach NF such that L = L(G).

Proof If we apply the proof of the theorem above to a linear eNCE grammar,
then the resulting grammar that generates the same language has just type-l and
type-2 productions (after eliminating again the chain productions). Thus, it is both
in Chomsky NF and in Greibach NF. 1

THEOREM 24. For every B-eNCE language L there is a B-eNCE grammar G in
Greibach NF such that L = L(G).

Proof: Let G = (C, A, r, Sz, P, S) be a B-eNCE grammar in Chomsky normal
form such that L = L(G), according to Theorem 22. The theorem will be proved
now in three steps, In the third step, a B-eNCE grammar G in Greibach NF will
be constructed such that L(G) = L(G). The first and the second step are just techni-
cal: they give us the resources with which G can be built. Note that the only
productions of G that are not yet of the right shape are the type-3 productions.
Therefore we are mainly concerned with them in the rest of this proof.

Step 1. In this step it will be shown that we may assume that G has the
following property:

(*) For every type-3 production 7c = (A’, D, B) E P, the embedding relation is
B= {(v,,l,l,a) 1 VE V,, LEI’, aEd).

This is shown by proving that there exists a B-eNCE grammar G = --
(Z’, A, r, Q, P, S) in Chomsky normal form with property (*), such that
L(G) = L(G). G can be constructed as follows. Let c = A u { (A, OZ) 1 A E 2 - A,
CcGrxrxA}, andlet S=(S,@).

It will be explained first why these new nonterminals are introduced. When G
replaces a node x in a graph H by applying a type-3 production, the two newly
generated nonterminal nodes, say y and z, take over some of the edges incident
with x, and the labels of these edges may be changed. When a corresponding
production of G is applied to x, then y (and z) has to take over unchanged all the
edges incident with x (see (*)). Therefore, G places information in the label of y
that determines how these edges should-have been changed. More precisely, if the
label of y is (A, LX) in the sentential form of i?, then y has label A in the sentential
form of G, and if (A, p, a) E ~1, with 1, p E r and a E A, then an edge labeled 3, inci-
dent with x (and hence also with y in the sentential form of G) and an a-labeled

330 ENGELFRIET, LEIH, AND WELZL

node should be changed into an edge with label p incident with y and that same
a-labeled node to obtain the sentential form of G. This can be repeated iteratively,
when y itself is replaced by a type-3 production.

To take care that nodes and edges get a label as described above, is consists of
three kinds of productions:

(1) If (X, D, B) is a type-3 production in P with V, = { y, z}, cpD(u) =
YE C - A, and cpD(z) = 2 EC - A, then P contains for all LX c f x r x A the produc- - -
tion ((X, a), D, B), where V,= V,,, ED=@, cpa(y)= (Y, p), qlr(z)= (2,~) and
B={(u,~,~,a)Iv~{y,z), LEL’, u~d}; b and y are defined by P={(L,~,a)]
3j~r: (~,~,u)EcI and (~,j,p,a)~B} and ~={(%,p,a)I3fi~r: (,J~&u)Ec(and
(z, L L4 a) E B}.

(2) If (X, D, B) is a type-2 production in P with V, = {y, z}, cpD(y) = b E A,
and cpD(z) = ZE ,E - A, then is contains for all CI L TX f x A the production - -
((X,a),D,B), where V,=V,, Ed=ED, cp&)=b, ~p~(z)=(Z,y) and B=
{(&4 flL, a) I IJE {Y, 4, 4 per’, and, !lji~f:(E.,p,u)~a and (u,&p,a)~B}; y is
here defined by y = { (1, 2, a) 1 ,I E I’, a E A >.

(3) If (X, D, B) is a type-l production in P, then P contains for all - -
acrxrxd the production ((X,a),D,B), where D=D and B=((y,L,p,u)I
y~V,,~,~~E,u~A,3~~f:(~,~,u)~aand(y,~,~,u)~B}.

Step 2. In this second step, we look yet a little bit closer at the type-3 produc-
tions of G. In particular, we are interested in the graphs that can be obtained from
a singleton graph by using type-3 productions only. Therefore, we define for each
AE,X--A the set border(A)= (HEGR,,, I A 4 H by using type-3 productions
only}. Border(A) clearly contains discrete graphs with nonterminal node labels
only. It is furthermore not difficult to find, for each A E C - A, a context-free string
grammar G, with the properties

(i) for every HE border(A) there is a w E L(G,) such that # y(w) = # ,,(H)
for every YEJC-A, and

(ii) for every w E L(G,) there is an HE border(A) such that # ,,(H) = # ,,(w)
for every YEC-A.

The definition of G, is similar to the one for CF(G) in Definition 15. Note that GA
uses the nonterminals of G as its own terminals, so it will be necessary to introduce
new nonterminals for G,. It now follows from Theorem 7.2 of Part I of [Sal]
(a consequence of the well-known Parikh theorem) that there is, for each A E i? - A,
a right-linear string grammar G, = (C,, C - A, P,, QA) such that (i) and (ii) above
hold for G, too, and so border(A) can be seen as a regular language. G, will be
used in the next step.

Step 3. We now combine the results of Step 1 and Step 2. Assume that G has
property (*), according to Step 1. Consider a graph KE S(G), and a nonterminal
node x of K with label A. If we now consecutively apply a number of type-3

BOUNDARY GRAPH GRAMMARS 331

productions to x and the descendants of x, then the net result is that we pick a
discrete graph HE border(d) and plug it into K in place of x in such a way that
each node of H inherits unchanged all the edges that were incident with x in K.
Hence, since this plugging process is so simple, the right-linear string grammar G,
(as defined in Step 2) determines exactly which graphs can be obtained from K by
applying type -3 productions to x and its descendants. After observing this, we are - -
now ready to define a B-eNCE grammar G = (Z, d, r, R, P, S) in Greibach normal
form such that L(G) = L(G), as follows. First, we assume that for all A, BE Z - A
with A # B, x E Z‘, n C, implies that x E ,Z - A (i.e., the sets of nonterminals of G,
and G, are disjoint). Then we define z‘= U (C,-(C-A) 1 AEC-A} uA and
s= Q,. Thus, Z contains the nonterminals of G,, for all A EC-A, and the
terminals of G. The initial nonterminal of Gs is also the initial nonterminal of G.
Finally, H is defined as follows (with A EC - d, Q, Q’ EC, - (C - d), X, YE C - A,
and a~ A):

(i) If Q + XQ’ is a production in P,, and if rr = (X, D, B) is a type-2
production in P, with VD = {x, v}, q,(x) = a and cpD(y) = Y, then P contains the - -
production 71= (Q, D, B), with VD = (x, y, z}, ED = E,, cpo(x) = a, qa(y) = QY,
and cpa(z) = Q’. Furthermore, B = B u {(z, &A, a) 1 A E r, a E A}.

(ii) If Q + XQ’ is a production in P,, and if rc = (X, D, B) is a type-l
production in P, with V, = (x}, and q&x) = a, then P contains the production
il= (Q, D, B), with VD= {x, I}, ED= /21, cpo(x)=u and (pD(z) = Q’. Furthermore,
as in (i), B=Bu {(z, 1, 2, a) 1 ~EI’, and}.

(iii) If Q -+ X is a production in P,, and if x = (X, D, B) is a type-2 produc-
tion in P, defined as in (i), then B contains the production 5 = (Q, D, B), with
VD = V,, ED = E,, cpa(x) = a, and cpo(y) = Qy.

(iv) If Q + X is a production in P,, and if rr = (X, D, B) is a type-l produc-
tion in P, then P contains the production il = (Q, D, B).

A little comment on this construction will be useful now. In (i), for example, G,
is half-way generating the labels of a graph in border(A). At this moment, G does
not generate an X-labeled node, as suggested by G,, but applies a type-2 produc-
tion to this node and generates the right-hand side D, with Q,, the initial nonter-
minal of G ,,, instead of Y as the label of y. Q ,, is used here since G may apply 30
type-3 productions to y and the descendants of y. G, takes care that this can be
done properly. Moreover, G generates a node labeled Q’ that generates the rest of
the graph in border(A). Since (*) of Step 1 holds, the embedding relation B indeed
works correctly.

Hence, these four types of productions simulate the productions of G. With the
explanation given above, it should not be difficult to see that L(G) = L(G) = L. 1

As an example of the use of Greibach NF we mention that it considerably
simplifies recognition algorithms: just one node of the given graph needs to be
recognized at each step of the algorithm (see [EngLei3]).

332 ENGELFRIET, LEIH, AND WELZL

Finally, we want to mention that there is no Chomsky or Greibach NF for
A-eNCE grammars. In fact, when a fixed bound m on the number of nodes in the
right-hand sides of the productions of an A-eNCE grammar is assumed, then only
graphs with nodes of degree O(m’) can be generated (see the proof of Lemma 25
of [EngLeiRozl]). Moreover, an apex grammar with exactly one terminal node in
the right-hand side of each production can only generate graphs without cycles
(whereas the apex language of Example 3 contains cycles).

5. A CHARACTERIZATION OF BOUNDARY AND LINEAR LANGUAGES

The previous section has provided us with a nice normal form for B-eNCE
grammars: the Greibach NF. This normal form will be used in this section to prove
a characterization theorem for B-eNCE languages in terms of regular (string and
tree) languages. It will be shown that a B-eNCE language can be obtained from a
regular tree language by using, for each final edge label A, a regular string language
that tells whether a d-edge has to be established between two nodes in such a tree.
In fact, it t is a tree in this regular tree language, and a,, a,, a, are, in this order,
the labels of a path in t that leads from a node to one of its descendants, then a
IV-edge is established between these two nodes of the tree if a, a2 . a, is a string in
the regular language belonging to E,. More precisely, the characterization theorem
states that L is a B-eNCE language if and only if L is a node relabeling of a graph
language that can be obtained from a regular tree language as explained above.
Using a regular string language instead of the regular tree language, a characteriza-
tion of the LIN-eNCE languages is obtained, entirely in terms of regular string
languages.

Intuitively, the regular tree language is the set of all derivation trees of a B-eNCE
grammar (in Greibach NF). Since, in a boundary grammar, only descendant nodes
can be connected by edges, this gives the above path property. Note that the
Greibach NF ensures that each node in a derivation tree corresponds to exactly one
node in the corresponding graph.

The characterization results of this section may be viewed as generalizations of
similar results in the literature for regular (tree) languages: every regular language
is the “relabeling” of a local regular language (cf. Proposition 1.4.3 of [Ber]), and
every regular tree language is the relabeling of the set of derivation trees of a
context-free grammar [Tha]. In fact, these results can also be used to sharpen our
characterization results: in the discussion above we may assume the regular tree
language to be the set of derivation trees of a context-free grammar and each
regular language to be local.

First we need some definitions, to formalize the concepts explained above.

DEFINITION 25. A ranked alphabet is an alphabet A together with a mapping
rank: A -t{O,1,2,...}.Fork>,O,A,={a~A~rank(a)=k}.ThesetoftreesouerA,
denoted Td, is the smallest subset of A* such that (i) for every (T E A,, r~ is in Td,

BOUNDARYGRAPHGRAMMARS 333

and (ii) for every GE A, with k k 1, and for every t,, tZ, tk E T,, ot, t, ... t, is in
Td. For a set Y, Td [Y] denotes Td u ,,, where the elements of Y are given rank 0.
A language L G A* is called a tree language if L E Td.

If t E Td, then tree(t) is the usual directed graph corresponding to t, without edge
labels and with node labels in A (for the notion of directed graph, see Section 1).
We assume that edges in tree(t) point from the root downwards. Note that the
mapping “tree” is not injective, because tree(t) is unordered. It is left to the reader
to give a formal definition of tree(t).

In a similar way, we can associate a directed graph with each string. If
w = w, ... w, is a string over an alphabet A, with IZ > 0 and wi E A for 1 < i6 n,
then chain(w) is defined as the directed graph H without edge labels with
I’,= {1,2, n}, E,= {(i, *, ’ z+l) 11 <i<rz-1}, and qH(l’)=wi for l<i,<n.
Observe that the edges in E, are directed.

DEFINITION 26. A regular tree grammar is a context-free string grammar
G = (C, A, P, S) such that A is a ranked alphabet and, for every production X-* 5
in P, 5 E Td[Z- A]. G is in normal form if, moreover, 5 E A(C - A)*.

The class of languages that can be generated by a regular tree grammar is
denoted REGT. In [GCcSte, Lemma 11.3.41, it is proved that for every L E REGT
there is a regular tree grammar G in normal form such that L = L(G). From now
on we assume that each regular tree grammar is in normal form.

Next, the process of transforming a regular string or tree language into a graph
language by using a set of regular string languages, as described above, is defined
formalyy.

DEFINITION 27. Let A and Q be alphabets.

(i) Let wed*, and let D = chain(w) be the directed graph D =
(V, E, A, { *>, q). Let, furthermore, K be a mapping from 52 to the class of string
languages over A, i.e., for every 2 ~52, K(1) s A*. Then fat-chain(w, K) is the
(undirected) graph HE GR,, R with V,= V, E,= {(x, il, y)) x, ye V, AEQ: there
is a directed path vi, v2, v, in D, with r > 2, such that v, =x, v, = y, and
cp(ul) (p(v*) ... (P(v,)E K(1)}, and qH= cp. If MG A* is a string language, then
FAT-CHAIN(M, K) is the graph language {fat-chain(w, K)) w E M}.

(ii) Let A be ranked, let t E Td, and let K be as described in (i). Then
fat-tree(t, K) is defined as fat-chain(w, K) in (i), with D = tree(t) instead of
D = chain(w). If M c Td , then FAT-TREE(M, K) = { fat-tree(t, K) (t E M}.

(iii) A graph language L E GR,, R is regular substring defined if there exist an
alphabet 2, a mapping K from Sz to the set of regular string languages over 2, a
regular string language Mc B*, and a node relabeling p: 3 + A such that
L = p(FAT-CHAIN(M, K)). If d is ranked, A4 E Tz is a regular tree language, and
L = p(FAT-TREE(A4, K)) then we say that L is regular path defined.

334 ENGELFRIET, LEIH, AND WELZL

To make the definition above a bit clearer, we give some examples of languages
which are regular path or substring defined.

EXAMPLE 28. First, the language L of Example 3 (the “ladders”) is regular sub-
string defined, for L = p(FAT-CHAIN(M, K)), with regular string languages M and
K(*) over an alphabet 2 = (a, b > and relabeling p: a + {u} defined as follows:
p(a) = p(b) = a, M= (ab)*, and K(*) = {ub, abu, bub}. In Fig. 8 a picture can be
found of fat-chain(w, K), with w = (ub)4; the broken edges belong to chain(w).
Applying p to this graph clearly results in the graph of Fig. lb.

Second, the language L of Example 7 (the binary trees) is regular path defined.
We can take 2 = {a, b}, where d, = (b} and B, = {u}. M is defined by the regular
tree grammar with productions S-+ uSS and S-V b, K(*) = {aa, ub), and p is
defined as above. It is easy to see that L = p(FAT-TREE(M, K)). If K(*) = {a, b} *
instead, then L is the set of all “transitively closed” binary trees.

Third, the language L of Example 6 is again regular substring defined. This time
we can take M= a* and K(*) = uuuu*. Clearly, L = FAT-CHAIN(M, K). If
K(*) = a* instead, then L is the set of all complete graphs without edge labels and
with node label a.

After these examples, we wish to point out a relationship between the notions
“regular path defined” and “regular substring defined”. Let L = p(FAT-TREE(M, K))
as in (iii) of Definition 27, and M = L(G) for some regular tree grammar G in
normal form. Suppose now that G happens to be a right-linear string grammar
(recall from Definition 26 that G is a special kind of context-free string grammar).
Then it easily follows from Definition 27 that L = p(FAT-CHAIN(M, K)), too. On
the other hand, if L = p(FAT-CHAIN(M, K)) and MECTC, for two disjoint
alphabets C, and C,, then each (reduced) right-linear string grammar generating M
is also a regular tree grammar (over the ranked alphabet C, u C,, with rank(u) = 1
if a EC, and rank(u) = 0 if UE C,). In this case, L = p(FAT-TREE(M, K)) too.
Note, however, that this does not work for, e.g., a regular string language M = a*.
Still, it is not difficult to see that if a language is regular substring defined, then it
is also regular path defined; this will also follow from Theorems 31 and 32.

Next the characterization theorem for boundary eNCE languages is proved in
two steps.

LEMMA 29. Let L be a graph language that is regular path defined. Then
L E B-eNCE.

FIGURE 8

336 ENGELFRIET, LEIH, AND WELZL

every 7~ E P. Hence, the rank of a production equals the number of nonterminal
nodes in its right-hand side.

(ii) The definition of A4 by way of a regular tree grammar C = (C, A, P, S)
such that L(G) = M. Let c = (C - A) u J, and s= S. Then P can be defined by
P= {lhs(rt) + nY, Y, . ..Y., 1 ZEP, n=rank(n), Y,, Y, ,..., Y,EC--A: [XE Vrhscnj
implies 3i, 1 < i<n: qrhscnj(x) = Yi] >. H ence, a production in P generates a
terminal z (E P) followed by the labels of all nonterminal nodes of rhs(rc) in
some arbitrary order. The label of the only node in rhs(n) is not generated. This
label will later be placed on the node again by the relabeling p. Hence, in
fact, {tree(t) 1 t E L(G)} is the set of all derivation trees of G as defined in
[EngLeiRozl].

(iii) The definition of K(A) by way of a right-linear grammar G, =
(CA, a, P,, S,) such that L(G,) = K(A), for every A E Q2. To give the definition of GjI,
we need some additional definitions.

First, let rc = (X, D, B) be a production in P, and let x E V, be a nonterminal
node. Then (rc), is defined to be the production (X, D’, B’) such that D’ is the
subgraph of D induced by {x}, and B’ is the subset of B consisting of all tuples
concerning x. So (rc) ~ simulates rc only with respect to this particular nonterminal
node.

Second, let tT and tNT be two different new objects. If now D is a graph
consisting of one terminal node and one nonterminal node, then (D) is the graph
isomorphic to D such that tT and rNT are nodes of (D), and tT has a terminal
label (hence, tNT has a nonterminal label). It is obvious that there is exactly one
graph D’ such that D’ = (D), for each such graph D.

Third, let (GR,,)= {(D) (DEGR,,, is a graph with one terminal node and
one nonterminal node}. It is obvious that (GR,, r) is a finite set.

Now we can define G, itself. Let C, = (GR,, r) u 2 u IS,}, where Sn is a new
symbol. Then P, is defined as follows.

First, for all n E P, and for all subgraphs D of rhs(n) induced by the terminal
node and one of the nonterminal nodes of rhs(n): (1) SI -+ rc(D) is a production
in P,. Second, if 71 E P, then for every (H) E (GR,, [.) and for every nonterminal
node x E vrhsCnJ, P1 contains the production: (2) (H) + n(8), where w is a
graph such that (H) =-(5NT, <n)X) B. If, furthermore, N is a graph such that
(H) *C&T. n) N, and there is a A-edge between the two terminal nodes in N, then
Pi, also contains the production: (3) (H) + IT. These are all the productions in PA.

G, follows a path downwards through a (derivation) tree generated by G
(starting anywhere in the tree, see production (l)), and it reads the labels (i.e.,
productions of G) on this path. It then decides, by only looking at these labels,
whether a A-edge should be added between the first node on this path and the last
one. Gj, can do this by just following the derivation of G that has led to this deriva-
tion tree. In particular, when G, is half-way accepting the string of productions
belonging to the path in consideration, it “remembers” the terminal node that has
been generated by the production on the first node of the path, the nonterminal

BOUNDARYGRAPHGRAMMARS 337

m,vlp +h,+ ;c~ the l.d_ho,A &AC. nf the. fit& ,wc.Amrc.+;nn tbot hoa nr\+ vrx+ hswn c~,.,wn+~A ,l”Ub CllaC 1J LIIC Ib,L-IIa,,u J,Ub “1 CIIC, ,llDC ~I”UUVU”lk LllQL llaa ll”L JbL “b%sII uvvryrvu

so far, and the set of all edges between these two nodes. This information is stored
in the nonterminal of GA. After accepting the next production on this path, the
information can be updated, see production (2). The assumption made at the
beginning of this proof ensures that the information remembered in the nonterminal
of GA is uniquely determined, in the sense that there are not two different paths
leading downwards from a node in the tree labeled by the same productions. When
Gj. finally accepts the last production on the path, it can easily decide whether there
is a I-edge between the terminal node that was generated in the lirst production on
the path and the terminal node that is now generated by this last production.
Depending on this, production (3) is added to P, or not.

(iv) The definition of p. For each n E B = P, p(x) is the label of the terminal
node of rhs(n).

With the four definitions given above, it is not difficult to see that indeed
L = p(FAT-TREE(M, K)). 1

Note that, since G in the proof above is in Greibach NF, the elements in d have
rank ~2.

In order to illustrate the lemma above, we consider the B-eNCE grammar
G=(z, A,r,Q, P,S)withC= {S, Y,Z,a), A=(a), r={& 1,2,3),52={1,2,3},
and with productions zr to rc4 as defined in Fig. 9. Clearly, G is in Greibach NF,
and L(G) is the set of “k-leaved clovers,” for all k 2 1 (where the 4-leaved
clover is drawn in Fig. 10). The regular tree grammar G as defined in the proof
of Lemma 30 has productions S-+ rc, Y, Y-, n2 YZ, Y-+ rc*ZY, Y-t rc3Z, and
Z + zn4. Here the productions of G are the terminals of G, with rank(rc,) = 1,
rank(zn,) = 2, rank(rc,) = 1, and rank(rc,) = 0. Taking K(1) = rc,n:(n, + rrn3), K(2) =
(x2 + n&,5 K(3) = X17#% + r0r4, and p(zi) = a for 1 6 id 4, it is not difficult
to see that p(FAT-TREE(L(G), K)) = L(G). As an example, Fig. 11 shows
fat-tree(rr,rr 2 4 2 4 2 4 3 49 rc x rc rc rr rc rc K); it is clear that applying p to this graph results in
the 4-leaved clover of Fig. 10.

With these two lemmas, we have proved the main theorem of this section.

THEOREM 3 1. For every graph language L, L E B-eNCE if and only if L is regular
path defined.

ProoJ: Immediately from the previous lemmas. 1

As a direct consequence of the proofs of Lemma 29 and 30, we can also show
now that a language is linear if and only if it is regular substring defined.

THEOREM 32. L E LIN-eNCE if and only if L is regular substring defined.

Proof: This theorem follows from the proofs of the previous two lemmas. First,
if in the proof of Lemma 29, G is a right-linear string grammar instead of a regular
tree grammar, then G as defined in that proof is a linear eNCE grammar. Second,

338 ENGELFRIET, LEIH. AND WELZL

S

cl Y

“1

FIGURE 9

FIGURE 10

BOUNDARY GRAPH GRAMMARS 339

FIGURE 11

if G in the proof of Lemma 30 is a linear eNCE grammar in Greibach NF (see
Theorem 23), then i? as defined in that proof is clearly a right-linear string
grammar. 1

In [EngLeiRozl, Section 61, a characterization theorem can be found for
A-dNCE languages, i.e., apex NCE languages consisting of directed graphs without
edge labels, This characterization is also based on a certain operation on the set of
derivation trees of a graph grammar to obtain the language of this grammar. Only
the operation used is quite different: nodes in the tree are replaced by a “cloud” of
nodes (the terminal nodes in the right-hand side of the label of the node in the
tree), and then edges are added between nodes in “neighbouring” clouds, according
to some connection relation. This theorem can easily be adapted for A-eNCE
languages (see [EngLeiRoz2]). We conjecture that a characterization result similar
to Theorems 31 and 32 can also be shown for A-eNCE grammars. In fact, we think
that a graph ianguage is in A-eNCE if and oniy if it is reguiar path defined with
finite sets K(1), for all 1 E 52.

There is as yet no characterization of the class of’(N-)eNCE languages. This is
probably due to the fact that derivation trees for (N-)eNCE grammars do not exist,
since the order of rewriting is important. It may be of interest to consider confluent
N-eNCE grammars (see [Cou]).

340 ENGELFRIET, LEIH, AND WELZL

Thwc. +.xrn z-hca+aetm-ivot;nn thnr\ramo ITLnmmc 21 onrl 1131 anoh1.c. I>L~ tn m.cxn;f.r I‘lU.JV C..” vII~IuYcuIILauL.“II CII~“I”I‘I~ \ III~“ICIII~ JI UllU JA, bU4”IcI UJ L” qJmd.,y
boundary and linear eNCE languages in an elegant direct way, as can be seen from
Example 28. As another illustration of the use of such results we show that
LIN-eNCE is closed under the operation of taking the complement of the edges of
a graph. This result will be used again in the following section.

DEFINITION 33. Let H= (V, E, C, r, cp) be a graph. Then the edge-complement
of H is com(H)=(V,&Z,r,q), where E= {(x,p,y) lx,y~V, peE:x#y,
(x, P, y)# E}. Let L s GR,,. be a graph language. Then corn(L) =
{corn(H) 1 HE L}.

THEOREM 34. If L E LIN-eNCE, then corn(L) E LIN-eNCE.

Proof. Let L c GR,. *. The theorem follows easily from Theorem 32, as follows.
Since L E LIN-eNCE, L = p(FAT-CHAIN(M, K)), for a relabeling p: 2 + A, and
regular string languages M and K(i), for every 2 ESZ. Clearly, corn(L) = p(FAT-
CHAIN(M, Kc)), where K”(1) = 6*-K(n), for every 1 E Q. Thus, since the class of
regular string languages is closed under complement, it follows that corn(L) is a
linear eNCE language too. 1

The reader might already expect that a similar result cannot be obtained for
boundary eNCE languages. Intuitively, this is due to the fact that the complement
of K(1) can establish the complementary I-edges on a path through the (derivation)
tree, but it does not establish the edges between nodes that are on different paths
through this tree. Formally, this can be proved as follows.

THEOREM 35. There exists an L E B-eNCE such that corn(L) # B-eNCE.

Proof Let L be any graph language of bounded degree in B-eNCE but not in
LIN-eNCE. The set of binary trees (Example 7) is an example of such a language,
see [EngLeil]. We will show that corn(L) 4 B-eNCE. Assume, to the contrary, that
G = (,Z’, A, r, Sz, P, S) is a nonblocking B-eNCE grammar without n-productions
such that L(G) = corn(L) (cf. Theorems 20 and 10). We will derive a contradiction
from this. Clearly, from Theorem 32 it follows that corn(L) 4 LIN-eNCE. From
[EngLeil, Theorem 121 it thus follows that G is not “nonterminal bounded,” which
means that there is for each k 2 1 a derivation S % Hk such that Hk contains at
least k nonterminal nodes. But since G contains no n-productions, each of these
nonterminal nodes generates at least one terminal node. Furthermore, since G is
boundary, at least k terminal nodes will be mutually disconnected when the
derivation above finally results in a terminal graph (which is in L(G), for G is
nonblocking). This contradicts the fact that L is of bounded degree. i

The set of binary trees mentioned in the proof above is also an A-eNCE
language. Hence, A-eNCE is not closed under edge-complement either. Finally, we
want to remark that N-eNCE and eNCE are closed under edge-complement (this

BOUNDARYGRAPHGRAMMARS 341

6. COMPARISON WITH NCE GRAMMARS

In this section we look at the restricted versions of eNCE grammars that can
only generate graphs without edge labels (we have called them e,NCE grammars
in Section 2). This enables us to compare our grammars with NCE grammars
[JanRozS]. Recall that N-e,NCE is closed under node relabeling (cf. Theorem 9),
but NCE is not [RozWel2]. Thus, since NCE grammars are a special case of
N-e,NCE grammars, it follows directly that N-e,NCE grammars are more power-
ful than NCE grammars and that the (node) relabelings of NCE languages are also
N-e,NCE languages (this also holds in the boundary, linear, and apex case).
However, we will show the existence of very simple linear e,NCE languages which
are not the relabeling of any NCE language. Hence, (boundary, linear) N-e, NCE
grammars have even more power than (boundary, linear) NCE grammars equiped
with a relabeling. In the apex case, however, it will be shown that e, NCE and NCE
grammars with a relabeling are equally strong (this “explains” the important role
played in [EngLeiRozl] by the class of relabelings of apex NCE languages).

First, we show the result concerning apex grammars.

THEOREM 36. A-e, NCE = R(A-NCE).

Proof: The fact that R(A-NCE) is a subset of A-e,NCE is trivial, since
A-e,NCE is closed under node relabeling, cf. the proof of Theorem 9. We will next
show it the other way around,

Let G=(C,d,r, {*},P,S) b e an A-e,NCE grammar. It may be assumed that
G is nonblocking, cf. Theorem 20. We construct an A-NCE grammar G= - -
(2, A, { *}, { *}, F, S) and a node relabeling p: 6+ A such that p(L(G)) =L(G).
First, define ,Z and d by C= {S} u {(X, u, x) I T-L E P, UE VrhscrrJ, cprhscnj(~) = X},
and J= {(a, v, n) E 2 (a E A}. The new labels will be used to give each node
appearing in the right-hand side of a production a unique label. Then we can
define the productions of P as follows. If p = (X, D, B) is a production in P,
and if (X, u, rc) is a nonterminal in Z-- 2, then P contains the production - -
p=((X, u, x), D, B). Here, DeGRz,iei and B are defined by V, = V,,
ED = {(x, *, y) 1 3il~f: (x, 1, Y)E E,}, qa(x)= (cpD(x), x, p) for all x E V,, and
B= {(x,*,*, (a, w, ~n>)l (a, w, n> E& 31 E r: (w, 1, 0) E Erhs(+ (x, 1, *, a)EB}.
Moreover, if in production p above X equals S, then P contains the production - -
(S, D, B), too.

First, it is necessary to demand that G is nonblocking, for an NCE grammar has
just one edge label *, so it can not simulate G with respect to blocking edges.
Second, in apex grammars, a terminal and a nonterminal node which are connected
by an edge are always generated by the same production, and therefore G can use

342 ENGELF’RIET, LEIH, AND WELZL

By defining the node relabeling p by p((a, U, n)) = a for all (a, u, 7t) E a, we
conclude the construction of this proof. It will not be difficult to check that the
construction is correct. 1

Hence, in the apex case, the one-final eNCE grammars and the NCE grammars
with a relabeling have the same power. It will be shown next that this is not the
case for (boundary, linear) e,NCE grammars and (boundary, linear) NCE gram-
mars with a relabeling. This is done by proving that there is a LIN-e,NCE
language that is not in R(NCE). First, however, we describe a large class of
languages such that none of the languages in this class is in R(NCE). Recall the
definition of edge complement from Section 5.

LEMMA 37. Let L be an infinite language of graphs without edge labels such that
corn(L) is connected and of bounded degree. Then L $ R(NCE).

Proof: Let 2 be an alphabet such that L E GR,, {*). We will suppose, to the
contrary, that there are an NCE grammar G = (Z, A, { *}, { * >, P, S) and a node
relabeling p: A + d such that p(L(G)) = L. From this a contradiction will be
derived, by using a pumping argument. Since L is infinite, it can easily be argued
that G has a recursive nonterminal (just as in the pumping theorem for context-free
string languages, the pumping theorem for NLC graph languages in [JanRozl],
and the vertex pumping lemma in [Jef]; see also the proof of Theorem 2 of
[EngLei2]). So, there exist a nonterminal XE C - A and graphs Hi, H,, and H,
such that

(1) SQL
(2) X-L
(3) XSK,
(4) both H, and H, have a unique nonterminal node, labeled X, and all other

nodes are terminal,

(5) H, has at least one terminal node, and

(6) H, has terminal nodes only.

Hence, there are infinitely many successful derivations, obtained by starting with
derivation (l), applying derivation (2) any number of times, and ending with
derivation (3). By point (5), all these derivations generate different terminal graphs.
The contradiction will now be derived in two steps.

(i) If a terminal node x is generated during the ith application of (2), and a
terminal node y is generated during the jth application of (2), where i < j, then x
and y have to be connected to each other by an edge. Otherwise, since (a copy of)
y is generated in the kth application of (2) for each k > i, and since (2) can

BOUNDARY GRAPH GRAMMARS 343

be r,an&WXt.Wi Qrh;+ror;l.r nfbn tLm= 0QT-3 he ~..h,;tt~f;l,, m~nsr n,vLc th.,t QS.P nnt I"puccIu U‘"lllal.lJ "IIYII) LIIVI\, bLII1 "b UI"ICILLI11J LUUllJ II"UtiLJ ll,UL 41\, ll"L

connected to x, contradicting the fact that corn(L) is of bounded degree.

(ii) Since corn(L) contains connected graphs only, there has to be, for each
i2 1, a terminal node xi generated during the ith application of (2) and a terminal
node yi not generated during the ith application of (2) such that yi is not connected
to xi by an edge. From (i) it follows that this yi has to be generated during (1) or
(3). But since there can be arbitrarily many of these xis, and since H, and H,
contain a fixed number of nodes, there has to be a node y in H1 or H3 that is not
connected to arbitrarily many xI)s. Again, since corn(L) is of bounded degree, this
is a contradiction.

This proves the theorem. Note that we do not have to use the relabeling p at all,
since the whole proof relies fully on the structure of the “underlying” graphs. m

Then we are now ready to show that N-e, NCE, grammars have more power
than NCE grammars with a relabeling. It is proved for boundary and linear
grammars too, in one stroke.

THEOREM 38. R(NCE) is a proper subset of N-e, NCE, R(B-NCE) is a proper
subset of B-e, NCE, and R(LIN-NCE) is a proper subset of LIN-e, NCE.

ProoJ: The inclusions follow from the proof of Theorem 9. The fact that the
inclusions are proper follows from Theorem 34 and Lemma 37. Consider any
language L in LIN-e,NCE which is connected and of bounded degree, e.g., the set
L = FAT-CHAIN(a*, K), with K(*) = {au}. From Lemma 37 it follows that
corn(L) (the graph language of Examples 6 and 28) is not an R(NCE) language.
Since L is a linear language, it follows from Theorem 34 (or from Example 6) that
corn(L) E LIN-e, NCE. This proves the theorem. 1

Note that since the graph language L in the above proof is clearly in NCE, this
shows, in particular, that NCE is not closed under corn, as proved by a different
method in [HofMai] (with the same counterexample).

Per1
[Bra1

LCOUI

[EhrMaiRoz]

[EhrNagRoz]

REFERENCES

J. BERSTEL, “Transductions and Context-free Languages,” Teubner, Stuttgart, 1979.
F. J. BRANDENBURG, On partially ordered graph-grammars, in [EhrNagRozRos],
pp. 99-l 11.
B. COURCELLE, An axiomatic definition of context-free rewriting and its application
to NLC graph grammars, Theoref. Compuf. Sk. 55 (1988) 141-182.
A. EHRENFEUCHT, M. G. MAIN, AND G. ROZENBERG, Restrictions on NLC graph
grammars, Theoret. Comput. Sci. 31 (1984), 211-223.
H. EHRIG, M. NAGL, AND G. ROZENBERG (Eds.), “Graph-Grammars and Their
Application to Computer Science,” Lecture Notes in Computer Science, Vol. 153,
Springer-Verlag, Berlin, 1983.

[EngLeil]

[EngLei2]

[EngLei3]

[EngLeiRozl]

[EngLeiRoz2]

[EngLeiWel]

[EngRoz]

[GttcSte]
[HabKre]

CHarI
[HofMai]

[Jan1

[JanRozl]

[JanRoz2]

[JanRoz3]

[JanRoz4]

[JanRozS]

[JanRozVer]

IJefl

[Kaul]

[Kau2]

P&l
[RosMil]

[RozWell]

[RozWelZ]

[RozWel3]

Grammars and Their Application to Computer Science,” Lecture Notes in Computer
Science, Vol. 291, Springer-Verlag, Berlin, 1987.
J. ENGELFRIET AND G. LEIH, Linear Graph Grammars: Power and Complexity,
Inform. and Computalion 81 (1989), 88-121.
J. ENGELFRIET AND G. LEIH, Nonterminal bounded NLC graph grammars, Theoret.
Comput. Sci. 59 (1988), 309-315.
J. ENGELFRIET AND G. LEIH, “Complexity of Boundary Graph Languages,” Report
88-07, Leiden, March 1988; RAIRO, in press.
J. ENGELFRIET, G. LEIH, AND G. ROZENBERG, Apex graph grammars and attribute
grammars, Acta Iform. 25 (1988), 537-571.
J. ENGELFRIET, G. LEIH, AND G. ROZENBERG, Apex graph grammars, in
[EhrNagRozRos], pp. 167-185.
J. ENGELFRIET, G. LEIH, AND E. WELZL, “Boundary Graph Grammars with Dynamic
Edge Relabeling,” Report 87-30, Leiden, December 1987.
J. ENGELFRIE~ ANU G. ROZENBERG, “A Comparison of Boundary Graph Grammars
and Context-free Hypcrgraph Grammars,” Report 88-06, Leiden, February 1988.
F. GBCSEG AND M. STEINBY, “Tree Automata,” Akademiai Kiado, Budapest, 1984.
A. HABEL AND H.-J. KREOWSKI, Characteristics of graph languages generated by
edge replacement, Theoret. Compuf. Sci. 51 (1987), 81Ll15.
F. HARARY, “Graph Theory,” Addison-Wesley, Reading, MA, 1969.
J. HOFFMANN AND M. G. MAIN, “Results on NLC Grammars with One-Letter
Terminal Alphabets,” Report CU-CS-348-86, Boulder, CO, Sept. 1986.
D. JANSSENS, “Node Label Controlled Graph Grammars,” Ph.D. thesis, University of
Antwerp, 1983.
D. JANSSENS AND G. ROZENBERG, On the structure of node-label-controlled graph
languages, Inform. Sci. 20 (1980), 191-216.
D. JANSSENS AND G. ROZENBERG, Restrictions, extensions, and variations of NLC
grammars, fnform. Sci. 20 (1980), 217-244.
D. JANSSENS AND G. ROZENBERG, A characterization of context-free string languages
by directed node-label controlled graph grammars, Acta Inform. 16 (1981), 63-85.
D. JANSSENS AND G. ROZENBERG, Graph grammars with node-label controlled
rewriting and embedding, in [EhrNagRoz], pp. 186-205.
D. JANSSENS AND G. ROZENBERG, Graph gramars with neighbourhood-controlled
embedding, Theorer. Comput. Sci. 21 (1982), 55-74.
D. JANSSENS, G. ROZENBERG, AND R. VERRAEI)T, On sequential and parallel node-
rewriting graph grammars, Comput. Graphics Image Process. 18 (1982), 279-304.
J. JEFFS, Embedding rule independent theory of graph grammars, in
[EhrNagRozRos], pp. 299-308.
M. KAUL, “Syntaxanalyse von Graphen bei Prlzedenz-Graph-Grammatiken,”
dissertation, Universitlt Osnabriick, 1985.
M. KAUL, Practical applications of precedence graph grammars, in
[EhrNagRozRos], pp. 326342.
M. NAGL, “Graph-grammatiken,” Vieweg, Braunschweig, 1979.
A. ROSENFELD AND D. L. MILGRAM, Web automata and web grammars, Mach. Intell.
7 (1972), 307-324.
G. ROZENBERG AND E. WELZL, Boundary NLC graph grammars-Basic definitions,
normal forms, and complexity, Inform. Control 69 (1986), 136167.
G. ROZENBERG AND E. WELZL; Graph theoretic closure properties of the family of
boundary NLC graph languages, Aria Inform. 23 (1986), 289-309.
G. ROZENBERC, AND E. WELZL, Combinatorial properties of boundary NLC graph
languages, Discrele Appl. Math. 16 (1987), 58-73.

BOUNDARY GRAPH GRAMMARS 345

[SalI
CThal

[Well]

[We121

A. SALOMAA, “Formal Languages,” Academic Press, New York, 1973.
J. W. THATCHER, Characterizing derivation trees of context-free grammars through a
generalization of finite automata theory, .I. Compur. System Sci. 1 (1967), 317-322.
E. WELZL, Encoding graphs by derivations and implications for the theory of
graph grammars, in “Proceedings, 11th ICALP” (J. Paradaens, Ed.), Lecture Notes
in Computer Science, Vol. 172, pp. 503-513, Springer-Verlag, Berlin, 1984.
E. WELZL, Boundary NLC and partition controlled graph grammars, in
[EhrNagRozRos], pp. 593-609.

