10 research outputs found

    Survey on 2D and 3D human pose recovery

    Get PDF
    Human Pose Recovery approaches have been studied in the eld of Computer Vision for the last 40 years. Several approaches have been reported, and signi cant improvements have been obtained in both data representation and model design. However, the problem of Human Pose Recovery in uncontrolled environments is far from being solved. In this paper, we de ne a global taxonomy to group the model based methods and discuss their main advantages and drawbacks.Peer ReviewedPostprint (published version

    3D human pose estimation from depth maps using a deep combination of poses

    Full text link
    Many real-world applications require the estimation of human body joints for higher-level tasks as, for example, human behaviour understanding. In recent years, depth sensors have become a popular approach to obtain three-dimensional information. The depth maps generated by these sensors provide information that can be employed to disambiguate the poses observed in two-dimensional images. This work addresses the problem of 3D human pose estimation from depth maps employing a Deep Learning approach. We propose a model, named Deep Depth Pose (DDP), which receives a depth map containing a person and a set of predefined 3D prototype poses and returns the 3D position of the body joints of the person. In particular, DDP is defined as a ConvNet that computes the specific weights needed to linearly combine the prototypes for the given input. We have thoroughly evaluated DDP on the challenging 'ITOP' and 'UBC3V' datasets, which respectively depict realistic and synthetic samples, defining a new state-of-the-art on them.Comment: Accepted for publication at "Journal of Visual Communication and Image Representation

    Human Pose Estimation from Monocular Images : a Comprehensive Survey

    Get PDF
    Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problema into several modules: feature extraction and description, human body models, and modelin methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used

    A computer vision based ultrasound operator skill evaluation

    Get PDF
    The aim of this thesis is to research inexpensive and automatic methods for analysing sonogra- phers skill level, which reduces cost and improves objectivity. The current approach of teaching physicians to generate good quality ultrasound images is expensive and subjective, also takes significant time and resources, because it requires experienced instructors to guide and assess trainees in person. In this thesis, a distributed data collection system for synchronising and collecting data from multiple different sensors, including Microsoft Kinect 2 and ultrasound machine, was designed. Then hand movements are extracted from ultrasound images with an intensity-based image registration algorithm. The extracted movements data are analysed to find different patterns between novice and expert sonographers. A multi-sensor fusion algorithm is used in this thesis to extend the field of view of Microsoft Kinect 2, as well as overcome the cluttered environments and obstacles in clinics. Hand tracking is performed in the registered large point clouds with a semi-automatic colour-based segmentation algorithm

    Learning Human Poses from Monocular Images

    Get PDF
    In this research, we mainly focus on the problem of estimating the 2D human pose from a monocular image and reconstructing the 3D human pose based on the 2D human pose. Here a 3D pose is the locations of the human joints in the 3D space and a 2D pose is the projection of a 3D pose on an image. Unlike many previous works that explicitly use hand-crafted physiological models, both our 2D pose estimation and 3D pose reconstruction approaches implicitly learn the structure of human body from human pose data. This 3D pose reconstruction is an ill-posed problem without considering any prior knowledge. In this research, we propose a new approach, namely Pose Locality Constrained Representation (PLCR), to constrain the search space for the underlying 3D human pose and use it to improve 3D human pose reconstruction. In this approach, an over-complete pose dictionary is constructed by hierarchically clustering the 3D pose space into many subspaces. Then PLCR utilizes the structure of the over-complete dictionary to constrain the 3D pose solution to a set of highly-related subspaces. Finally, PLCR is combined into the matching-pursuit based algorithm for 3D human-pose reconstruction. The 2D human pose used in 3D pose reconstruction can be manually annotated or automatically estimated from a single image. In this research, we develop a new learning-based 2D human pose estimation approach based on a Dual-Source Deep Convolutional Neural Networks (DS-CNN). The proposed DS-CNN model learns the appearance of each local body part and the relations between parts simultaneously, while most of existing approaches consider them as two separate steps. In our experiments, the proposed DS-CNN model produces superior or comparable performance against the state-of-the-art 2D human-pose estimation approaches based on pose priors learned from hand-crafted models or holistic perspectives. Finally, we use our 2D human pose estimation approach to recognize human attributes by utilizing the strong correspondence between human attributes and human body parts. Then we probe if and when the CNN can find such correspondence by itself on human attribute recognition and bird species recognition. We find that there is direct correlation between the recognition accuracy and the correctness of the correspondence that the CNN finds

    Motion Tracking of Infants in Risk of Cerebral Palsy

    Get PDF
    corecore