273 research outputs found

    12th International Workshop on Termination (WST 2012) : WST 2012, February 19–23, 2012, Obergurgl, Austria / ed. by Georg Moser

    Get PDF
    This volume contains the proceedings of the 12th International Workshop on Termination (WST 2012), to be held February 19–23, 2012 in Obergurgl, Austria. The goal of the Workshop on Termination is to be a venue for presentation and discussion of all topics in and around termination. In this way, the workshop tries to bridge the gaps between different communities interested and active in research in and around termination. The 12th International Workshop on Termination in Obergurgl continues the successful workshops held in St. Andrews (1993), La Bresse (1995), Ede (1997), Dagstuhl (1999), Utrecht (2001), Valencia (2003), Aachen (2004), Seattle (2006), Paris (2007), Leipzig (2009), and Edinburgh (2010). The 12th International Workshop on Termination did welcome contributions on all aspects of termination and complexity analysis. Contributions from the imperative, constraint, functional, and logic programming communities, and papers investigating applications of complexity or termination (for example in program transformation or theorem proving) were particularly welcome. We did receive 18 submissions which all were accepted. Each paper was assigned two reviewers. In addition to these 18 contributed talks, WST 2012, hosts three invited talks by Alexander Krauss, Martin Hofmann, and Fausto Spoto

    Region-based segmentation of 2D and 3D images with tissue-like P systems

    Get PDF
    Membrane Computing is a biologically inspired computational model. Its devices are called P systems and they perform computations by applying a finite set of rules in a synchronous, maximally parallel way. In this paper, we develop a variant of P-system, called tissue-like P system in order to design in this computational setting, a region-based segmentation algorithm of 2D pixel-based and 3D voxel-based digital images. Concretely, we use 4-adjacency neighborhood relation between pixels in 2D and 6-adjacency neighborhood relation between voxel in 3D for segmenting digital images in a constant number of steps. Finally, specific software is used to check the validity of these systems with some simple examples

    Solving complex problems with a bioinspired model

    Get PDF
    Membrane systems are parallel and bioinspired systems which simulate membranes behavior when processing information. As a part of unconventional computing, P-systems are proven to be effective in solvingcomplexproblems. A software technique is presented here that obtain good results when dealing with such problems. The rules application phase is studied and updated accordingly to obtain the desired results. Certain rules are candidate to be eliminated which can make the model improving in terms of time

    Frontiers of Membrane Computing: Open Problems and Research Topics

    Get PDF
    This is a list of open problems and research topics collected after the Twelfth Conference on Membrane Computing, CMC 2012 (Fontainebleau, France (23 - 26 August 2011), meant initially to be a working material for Tenth Brainstorming Week on Membrane Computing, Sevilla, Spain (January 30 - February 3, 2012). The result was circulated in several versions before the brainstorming and then modified according to the discussions held in Sevilla and according to the progresses made during the meeting. In the present form, the list gives an image about key research directions currently active in membrane computing

    Segmenting images with gradient-based edge detection using Membrane Computing

    Get PDF
    In this paper, we present a parallel implementation of a new algorithm for segmenting images with gradient-based edge detection by using techniques from Natural Computing. This bio-inspired parallel algorithm has been implemented in a novel device architecture called CUDA™(Compute Unified Device Architecture). The implementation has been designed via tissue P systems on the framework of Membrane Computing. Some examples and experimental results are also presented.Ministerio de Ciencia e Innovación TIN2008-04487-EMinisterio de Ciencia e Innovación TIN2009–13192Junta de Andalucía P08–TIC-04200Junta de Andalucía P06-TIC-02268Ministerio de Educación y Ciencia MTM2009-12716Universidad del Pais Vasco EHU09/0
    corecore