27,174 research outputs found

    Evolutionary dynamics on any population structure

    Full text link
    Evolution occurs in populations of reproducing individuals. The structure of a biological population affects which traits evolve. Understanding evolutionary game dynamics in structured populations is difficult. Precise results have been absent for a long time, but have recently emerged for special structures where all individuals have the same number of neighbors. But the problem of determining which trait is favored by selection in the natural case where the number of neighbors can vary, has remained open. For arbitrary selection intensity, the problem is in a computational complexity class which suggests there is no efficient algorithm. Whether there exists a simple solution for weak selection was unanswered. Here we provide, surprisingly, a general formula for weak selection that applies to any graph or social network. Our method uses coalescent theory and relies on calculating the meeting times of random walks. We can now evaluate large numbers of diverse and heterogeneous population structures for their propensity to favor cooperation. We can also study how small changes in population structure---graph surgery---affect evolutionary outcomes. We find that cooperation flourishes most in societies that are based on strong pairwise ties.Comment: 68 pages, 10 figure

    High-Dimensional Gaussian Graphical Model Selection: Walk Summability and Local Separation Criterion

    Full text link
    We consider the problem of high-dimensional Gaussian graphical model selection. We identify a set of graphs for which an efficient estimation algorithm exists, and this algorithm is based on thresholding of empirical conditional covariances. Under a set of transparent conditions, we establish structural consistency (or sparsistency) for the proposed algorithm, when the number of samples n=omega(J_{min}^{-2} log p), where p is the number of variables and J_{min} is the minimum (absolute) edge potential of the graphical model. The sufficient conditions for sparsistency are based on the notion of walk-summability of the model and the presence of sparse local vertex separators in the underlying graph. We also derive novel non-asymptotic necessary conditions on the number of samples required for sparsistency

    A Statistical Mechanical Load Balancer for the Web

    Full text link
    The maximum entropy principle from statistical mechanics states that a closed system attains an equilibrium distribution that maximizes its entropy. We first show that for graphs with fixed number of edges one can define a stochastic edge dynamic that can serve as an effective thermalization scheme, and hence, the underlying graphs are expected to attain their maximum-entropy states, which turn out to be Erdos-Renyi (ER) random graphs. We next show that (i) a rate-equation based analysis of node degree distribution does indeed confirm the maximum-entropy principle, and (ii) the edge dynamic can be effectively implemented using short random walks on the underlying graphs, leading to a local algorithm for the generation of ER random graphs. The resulting statistical mechanical system can be adapted to provide a distributed and local (i.e., without any centralized monitoring) mechanism for load balancing, which can have a significant impact in increasing the efficiency and utilization of both the Internet (e.g., efficient web mirroring), and large-scale computing infrastructure (e.g., cluster and grid computing).Comment: 11 Pages, 5 Postscript figures; added references, expanded on protocol discussio

    Representation Learning on Graphs: A Reinforcement Learning Application

    Full text link
    In this work, we study value function approximation in reinforcement learning (RL) problems with high dimensional state or action spaces via a generalized version of representation policy iteration (RPI). We consider the limitations of proto-value functions (PVFs) at accurately approximating the value function in low dimensions and we highlight the importance of features learning for an improved low-dimensional value function approximation. Then, we adopt different representation learning algorithm on graphs to learn the basis functions that best represent the value function. We empirically show that node2vec, an algorithm for scalable feature learning in networks, and the Variational Graph Auto-Encoder constantly outperform the commonly used smooth proto-value functions in low-dimensional feature space

    Equilibria in the Tangle

    Full text link
    We analyse the Tangle --- a DAG-valued stochastic process where new vertices get attached to the graph at Poissonian times, and the attachment's locations are chosen by means of random walks on that graph. These new vertices, also thought of as "transactions", are issued by many players (which are the nodes of the network), independently. The main application of this model is that it is used as a base for the IOTA cryptocurrency system (www.iota.org). We prove existence of "almost symmetric" Nash equilibria for the system where a part of players tries to optimize their attachment strategies. Then, we also present simulations that show that the "selfish" players will nevertheless cooperate with the network by choosing attachment strategies that are similar to the "recommended" one.Comment: 33 pages, 11 figure

    Benchmarking Network Embedding Models for Link Prediction: Are We Making Progress?

    Get PDF
    Network embedding methods map a network's nodes to vectors in an embedding space, in such a way that these representations are useful for estimating some notion of similarity or proximity between pairs of nodes in the network. The quality of these node representations is then showcased through results of downstream prediction tasks. Commonly used benchmark tasks such as link prediction, however, present complex evaluation pipelines and an abundance of design choices. This, together with a lack of standardized evaluation setups can obscure the real progress in the field. In this paper, we aim to shed light on the state-of-the-art of network embedding methods for link prediction and show, using a consistent evaluation pipeline, that only thin progress has been made over the last years. The newly conducted benchmark that we present here, including 17 embedding methods, also shows that many approaches are outperformed even by simple heuristics. Finally, we argue that standardized evaluation tools can repair this situation and boost future progress in this field
    • …
    corecore