1,375 research outputs found

    Middleware and Architecture for Advanced Applications of Cyber-physical Systems

    Get PDF
    In this thesis, we address issues related to middleware, architecture and applications of cyber-physical systems. The first problem we address is the cross-layer design of cyber-physical systems to cope with interactions between the cyber layer and the physical layer in a dynamic environment. We propose a bi-directional middleware that allows the optimal utilization of the common resources for the benefit of either or both the layers in order to obtain overall system performance. The case study of network connectivity preservation in a vehicular formation illustrates how this approach can be applied to a particular situation where the network connectivity drives the application layer. Next we address another aspect of cross-layer impact: the problem that arises when network performance, in this case delay performance, affects control system performance. We propose a two-pronged approach involving a flexible adaptive model identification algorithm with outlier rejection, which in turn uses an adaptive system model to detect and reject outliers, thus shielding the estimation algorithm and thereby improving reliability. We experimentally demonstrate that the outlier rejection approach which intercepts and filters the data, combined with simultaneous model adaptation, can result in improved performance of Model Predictive Control in the vehicular testbed. Then we turn to two advanced applications of cyber-physical systems. First, we address the problem of security of cyber-physical systems. We consider the context of an intelligent transportation system in which a malicious sensor node manipulates the position data of one of the autonomous cars to deviate from a safe trajectory and collide with other cars. In order to secure the safety of such systems where sensor measurements are compromised, we employ the procedure of “dynamic watermarking”. This procedure enables an honest node in the control loop to detect the existence of a malicious node within the feedback loop. We demonstrate in the testbed that dynamic watermarking can indeed protect cars against collisions even in the presence of sensor attacks. The second application of cyber-physical systems that we consider is cyber-manufacturing which is an origami-type laser-based custom manufacturing machine employing folding and cutting of sheet material to manufacture 3D objects. We have developed such a system for use in a laser-based autonomous custom manufacturing machine equipped with real-time sensing and control. The basic elements in the architecture are a laser processing machine, a sensing system to estimate the state of the workpiece, a control system determining control inputs for a laser system based on the estimated data, a robotic arm manipulating the workpiece in the work space, and middleware supporting the communication among the systems. We demonstrate automated 3D laser cutting and bending to fabricate a 3D product as an experimental result. Lastly, we address the problem of traffic management of an unmanned aerial system. In an effort to improve the performance of the traffic management for unmanned aircrafts, we propose a probability-based collision resolution algorithm. The proposed algorithm analyzes the planned trajectories to calculate their collision probabilities, and modifies individual drone starting times to reduce the probability of collision, while attempting to preserve high performance. Our simulation results demonstrate that the proposed algorithm improves the performance of the drone traffic management by guaranteeing high safety with low modification of the starting times

    Diagnosis of an EPS module

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e ComputadoresThis thesis addresses and contextualizes the problem of diagnostic of an Evolvable Production System (EPS). An EPS is a complex and lively entity composed of intelligent modules that interact through bio-inspired mechanisms, to ensure high system availability and seamless reconfiguration. The actual economic situation together with the increasing demand of high quality and low priced customized products imposed a shift in the production policies of enterprises. Shop floors have to become more agile and flexible to accommodate the new production paradigms. Rather than selling products enterprises are establishing a trend of offering services to explore business opportunities. The new production paradigms, potentiated by the advances in Information Technologies (IT), especially in web related standards and technologies as well as the progressive acceptance of the multi-agent systems (MAS) concept and related technologies, envision collections of modules whose individual and collective function adapts and evolves ensuring the fitness and adequacy of the shop floor in tackling profitable but volatile business opportunities. Despite the richness of the interactions and the effort set in modelling them, their potential to favour fault propagation and interference, in these complex environments, has been ignored from a diagnostic point of view. With the increase of distributed and autonomous components that interact in the execution of processes current diagnostic approaches will soon be insufficient. While current system dynamics are complex and to a certain extent unpredictable the adoption of the next generation of approaches and technologies comes at the cost of a yet increased complexity.Whereas most of the research in such distributed industrial systems is focused in the study and establishment of control structures, the problem of diagnosis has been left relatively unattended. There are however significant open challenges in the diagnosis of such modular systems including: understanding fault propagation and ensuring scalability and co-evolution. This work provides an implementation of a state-of-the-art agent-based interaction-oriented architecture compliant with the EPS paradigm that supports the introduction of a new developed diagnostic algorithm that has the ability to cope with the modern manufacturing paradigm challenges and to provide diagnostic analysis that explores the network dimension of multi-agent systems

    Distributed Computation and Reconfiguration in Actively Dynamic Networks

    Get PDF
    In this paper, we study systems of distributed entities that can actively modify their communication network. This gives rise to distributed algorithms that apart from communication can also exploit network reconfiguration in order to carry out a given task. At the same time, the distributed task itself may now require a global reconfiguration from a given initial network Gs to a target network Gf from a family of networks having some good properties, like small diameter. To formally capture costs associated with creating and maintaining connections, we define three reasonable edge-complexity measures: the total edge activations, the maximum activated edges per round, and the maximum activated degree of a node. We give (poly)log(n) time algorithms for the general task of transforming any Gs into a Gf of diameter (poly)log(n), while minimizing the edge-complexity. There is a natural trade-off between time and edge complexity. Our main lower bound shows that Ω(n) total edge activations and Ω(n/log n) activations per round must be paid by any algorithm (even centralized) that achieves an optimum of Θ(log n) rounds. On the positive side, we give three distributed algorithms for our general task. The first runs in O(log n) time, with at most 2n active edges per round, a total of O(n log n) edge activations, a maximum degree n − 1, and a target network of diameter 2. The second achieves bounded degree by paying an additional logarithmic factor in time and in total edge activations. It gives a target network of diameter O(log n) and uses O(n) active edges per round. Our third algorithm shows that if we slightly increase the maximum degree to polylog(n) then we can achieve a running time of o(log2n). This novel model of distributed computation and reconfiguration in actively dynamic networks and the proposed measures of the edge complexity of distributed algorithms, may open new avenues for research in the algorithmic theory of dynamic networks

    Collaborative autonomy in heterogeneous multi-robot systems

    Get PDF
    As autonomous mobile robots become increasingly connected and widely deployed in different domains, managing multiple robots and their interaction is key to the future of ubiquitous autonomous systems. Indeed, robots are not individual entities anymore. Instead, many robots today are deployed as part of larger fleets or in teams. The benefits of multirobot collaboration, specially in heterogeneous groups, are multiple. Significantly higher degrees of situational awareness and understanding of their environment can be achieved when robots with different operational capabilities are deployed together. Examples of this include the Perseverance rover and the Ingenuity helicopter that NASA has deployed in Mars, or the highly heterogeneous robot teams that explored caves and other complex environments during the last DARPA Sub-T competition. This thesis delves into the wide topic of collaborative autonomy in multi-robot systems, encompassing some of the key elements required for achieving robust collaboration: solving collaborative decision-making problems; securing their operation, management and interaction; providing means for autonomous coordination in space and accurate global or relative state estimation; and achieving collaborative situational awareness through distributed perception and cooperative planning. The thesis covers novel formation control algorithms, and new ways to achieve accurate absolute or relative localization within multi-robot systems. It also explores the potential of distributed ledger technologies as an underlying framework to achieve collaborative decision-making in distributed robotic systems. Throughout the thesis, I introduce novel approaches to utilizing cryptographic elements and blockchain technology for securing the operation of autonomous robots, showing that sensor data and mission instructions can be validated in an end-to-end manner. I then shift the focus to localization and coordination, studying ultra-wideband (UWB) radios and their potential. I show how UWB-based ranging and localization can enable aerial robots to operate in GNSS-denied environments, with a study of the constraints and limitations. I also study the potential of UWB-based relative localization between aerial and ground robots for more accurate positioning in areas where GNSS signals degrade. In terms of coordination, I introduce two new algorithms for formation control that require zero to minimal communication, if enough degree of awareness of neighbor robots is available. These algorithms are validated in simulation and real-world experiments. The thesis concludes with the integration of a new approach to cooperative path planning algorithms and UWB-based relative localization for dense scene reconstruction using lidar and vision sensors in ground and aerial robots
    corecore