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ABSTRACT
In this paper, we study systems of distributed entities that can

actively modify their communication network. This gives rise to

distributed algorithms that apart from communication can also

exploit network reconfiguration in order to carry out a given task.

At the same time, the distributed task itself may now require a global

reconfiguration from a given initial network𝐺𝑠 to a target network

𝐺 𝑓 from a family of networks having some good properties, like

small diameter.

To formally capture costs associated with creating and main-

taining connections, we define three reasonable edge-complexity

measures: the total edge activations, the maximum activated edges
per round, and the maximum activated degree of a node. We give

(poly)log(𝑛) time algorithms for the general task of transforming

any 𝐺𝑠 into a 𝐺 𝑓 of diameter (poly)log(𝑛), while minimizing the

edge-complexity.

There is a natural trade-off between time and edge complexity.

Our main lower bound shows that Ω(𝑛) total edge activations and
Ω(𝑛/log𝑛) activations per round must be paid by any algorithm

(even centralized) that achieves an optimum of Θ(log𝑛) rounds.
On the positive side, we give three distributed algorithms for our

general task. The first runs in𝑂 (log𝑛) time, with at most 2𝑛 active

edges per round, a total of 𝑂 (𝑛 log𝑛) edge activations, a maxi-

mum degree 𝑛 − 1, and a target network of diameter 2. The second

achieves bounded degree by paying an additional logarithmic factor

in time and in total edge activations. It gives a target network of

diameter 𝑂 (log𝑛) and uses 𝑂 (𝑛) active edges per round. Our third
algorithm shows that if we slightly increase the maximum degree

to polylog(𝑛) then we can achieve a running time of 𝑜 (log2 𝑛).
This novel model of distributed computation and reconfiguration

in actively dynamic networks and the proposed measures of the
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edge complexity of distributed algorithms, may open new avenues

for research in the algorithmic theory of dynamic networks.
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1 INTRODUCTION
1.1 Dynamic Networks
The algorithmic theory of dynamic networks is a relatively new area

of research, concerned with studying the algorithmic and structural

properties of networked systems whose structure changes with

time.

One way to classify dynamic networks is based on who controls
the network dynamics. In passively dynamic networks the changes

are external to the algorithm, in the sense that the algorithm has no

control over them. Such dynamics are usuallymodeled by sequences

of events determined by an adversary scheduler. This is for example

the case when the computing entities must operate in a dynamic

environment, such as when being carried by a set of transportation

units. In other applications, the entities can actively control the

dynamics of their network, as is the case in mobile or reconfigurable

robotics and peer to peer networks. Hybrid cases or cases of partial
control are less studied (cf. [14] for a relevant study).

Another level of classification comes from who controls the al-
gorithm. This gives rise to two main families of models. One is

the fully centralized, in which a central controller has global view

of the system. In case of active network dynamics, the centralized

algorithm typically designs a dynamic network by exploiting its full

knowledge about the system in a way that aims to optimize some

given objective function. If network dynamics are passive then

the goal is typically to achieve some global computation task, like

foremost journeys or dissemination, which may either be possible

to compute offline under full information about the evolution of the

network or required to compute online under limited or no knowl-

edge about the future network structure. Similar objectives hold

for the fully distributed case, in which every node in the network
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is an independent computing entity, like an automaton or Turing

machine, typically equipped with computation and communication

capabilities, and in the case of active dynamics, with the additional

capability to locally modify the network structure, like activating a

connection to a new neighbor or eliminating an existing connection.
One may also consider partial distributed control, in which only 𝑘

out of 𝑛 nodes are occupied by computing entities, but again not

much is known about this family of models.

1.2 An Actively Dynamic Distributed Model
In this paper, we consider an actively dynamic and fully distributed
system. In particular, there are 𝑛 computing entities starting from

an initial connected network drawn from a family of initial networks.

The entities are typically equipped with unique IDs, can compute lo-

cally, can communicate with neighboring entities, and can activate

connections to new neighbors locally or eliminate some of their

existing connections. All these take place in lock step through a

standard synchronous message passing model, extended to include

the additional operations of edge activations and deactivations

within each round.

The goal is, generally speaking, to program all the entities with

a distributed algorithm that can transform the initial network 𝐺𝑠

into a target network 𝐺 𝑓 from a family of target networks. The idea

is that starting from a 𝐺𝑠 not necessarily having a good property,

like small diameter, the algorithm will be able to “efficiently” reach

a𝐺 𝑓 satisfying the property. This gives rise to two main objectives,

which in some cases it might be possible to satisfy at the same time.

One is to transform a given 𝐺𝑠 into a desired target 𝐺 𝑓 and the

other is to exploit some good properties of 𝐺 𝑓 in order to more

efficiently solve a distributed task, like computation of a global

function through information dissemination.

Even when edge activations are extremely local, meaning that an

edge𝑢𝑣 can only be activated if there exists a node𝑤 such that both

𝑢𝑤 and𝑤𝑣 are already active, there is a straightforward algorithmic

strategy that can successfully carry out most of the above tasks. In

every round, all nodes activate all of their possible new connections,

which corresponds to each node 𝑢 connecting with all nodes 𝑣𝑖 that

were at distance 2 from 𝑢 in the beginning of the current round.

By a simple induction, it can be shown that in any round 𝑟 the

neighborhood of every node has size at least 2
𝑟
, which implies

that a spanning clique 𝐾𝑛 is formed in 𝑂 (log𝑛) rounds. Such a

clique can then be used for global computations, like electing the

maximum id as a leader, or for transforming into any desired target

network 𝐺 𝑓 through eliminating the edges in 𝐸 (𝐾𝑛) \ 𝐸 (𝐺 𝑓 ). All
these can be performed within a single additional round.

Even though sublinear global computation and network-to-net-

work transformations are in principle possible through the clique
formation strategy described above, this algorithmic strategy still

has a number of properties which would make it impractical for

real distributed systems. As already highlighted in the literature of

dynamic networks, activating and maintaining a connection does

not come for free and is associated with a cost that the network

designer has to pay for. Even if we uniformly charge 1 for every such

active connection, the clique formation incurs a cost of Θ(𝑛2) total
edge activations in the worst case and always produces instances

(e.g., when 𝐾𝑛 is formed) with as many as Θ(𝑛2) active edges in
which all nodes have degree Θ(𝑛).

Our goal in this work is to formally define such cost measures

associated with the structure of the dynamic network and to give

improved algorithmic strategies that maintain the time-efficiency of

clique formation, while substantially improving the edge complex-

ity as defined by thosemeasures. In particular, we aim at minimizing

the edge complexity, given the constraint of (poly)logarithmic run-

ning time. Observe at this point that without any restriction on the

running time, a standard distributed dissemination solely through

message passing over the initial network, would solve global com-

putation without the need to activate any edges. However, linear

running times are considered insufficient for our purposes (even

when the goal is to solve traditional distributed tasks). Moreover,

strategies that do not modify the input network cannot be useful

for achieving network-to-network transformations.

1.3 Contribution
We define three cost measures associated with the edge complexity

of our algorithms. One is the total number of edge activations that
the algorithm performed during its course, the second one is the

maximum number of activated edges in any round by the algorithm,

and the third one is the maximum activated degree of a node in any
round, where the maximum activated degree of a node is defined

only by the edges that have been activated by the algorithm.

Our ultimate goal in this paper is to give (poly)logarithmic time
algorithms which, starting from any connected network 𝐺𝑠 , trans-

form𝐺𝑠 into a𝐺 𝑓 of (poly)logarithmic diameter and at the same time

elect a unique leader. Such algorithms can then be composed with

any algorithm𝐵 that assumes an initial network of (poly)logarithmic

diameter and has access to a unique leader and unique ids. In case

of a static network algorithm 𝐵, this for example yields (poly)log-

arithmic time information dissemination and computation of any

global function on inputs. In case of an actively dynamic network

algorithm 𝐵, it gives (poly)logarithmic time transformation into any

target network from a given family which depends on restrictions

related to the edge complexity.

We restrict our focus on deterministic algorithms, that is, the

computational entities do not have access to any random choices.

Moreover, our algorithms never break the connectivity of the net-

work of active edges as this would result in components that could

never be reconnected based on the permissible edge activations.

Temporary disconnections within a round may be permitted but

can always be avoided by first activating all new edges and then

deactivating any edges for the current round.

To appreciate the difficulty in solving the above problem while

optimizing the edge complexity, assume for a moment, a network

as simple as a spanning line𝑢0𝑢1 · · ·𝑢𝑛−1 with a pre-elected unique

leader on one of its endpoints, say 𝑢0. If we had global view of

the system, then we would proceed in log𝑛 phases as follows. In

every phase 𝑖 , we would start from𝑢0 and activate edges by making

hops of length 2 over the edges activated in the previous phase,

thus, activating the edges 𝑢0𝑢2𝑖 , 𝑢2𝑖𝑢2·2𝑖 , 𝑢2·2𝑖𝑢3·2𝑖 , . . . in the cur-

rent phase. This would give an edge for every 2
𝑖
consecutive nodes

in phase 𝑖 and a total of 𝑂 (𝑛) edge activations. The diameter of the

resulting network and the number of phases are both logarithmic
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in 𝑛. Observe now that this basic construction essentially requires

to determine which half of the nodes that activated an edge in the

previous phase will be the ones to activate in the current phase.

But all these nodes are bound to behave identically given an order-

equivalence of received ids in their local history and there is no

obvious way to exploit the pre-elected leader at 𝑢0 for symmetry

breaking, as its initial distance from many of them is asymptotically

equal to the original diameter of the network, that is, Θ(𝑛). What

this example reveals, is an inherent trade-off between time and edge

activations stemming from the inability of the distributed entities

to break symmetry locally and, thus, fast. Intuitively, breaking sym-

metry takes time and, if left unbroken, costs many edge activations

every time one of the nodes decides to activate.

The difficulties that we just highlighted are formally captured

by our lower bounds presented in Section 6. In particular, we first

prove that Ω(log𝑛) is a lower bound on time following from an

upper bound of 2 on the distance of new connections and the Θ(𝑛)
worst-case diameter of the initial network. Then we give an Ω(𝑛)
lower bound on total edge activations and Ω(𝑛/log𝑛) activations
per round for any centralized algorithm that achieves an optimal

Θ(log𝑛) time. Our main lower bound is a total of Ω(𝑛 log𝑛) total
edge activations that any logarithmic time distributed algorithm

must pay. This is in contrast to the Θ(𝑛) total edges that would be

sufficient for a centralized algorithm and is due to the distributed

nature of the systems under consideration.

We begin our algorithmic constructions with some basic algo-

rithms for special types of initial and target networks, which will

then be used as core components in our general algorithms. These

are discussed in Section 2.3. One of these algorithms transforms any

rooted tree into a star and the other transforms an oriented span-

ning line into a complete binary tree. Both operate in𝑂 (log𝑛) time,

have a linear number of active edges per round and an optimal total

of 𝑂 (𝑛 log𝑛) edge activations. The latter algorithm additionally

maintains a maximum degree of at most 3 throughout its course,

while the degree of the former is linear.

We then proceed to our main positive results. In particular, we

give three algorithms for transforming any initial connected net-

work𝐺𝑠 into a network𝐺 𝑓 of (poly)logarithmic diameter and at the

same time electing a unique leader. Each of these algorithms makes

a different contribution to the time vs edge complexity trade-off.

All of our main algorithms are built upon the following general

strategy. For each of them, we define a different gadget network
and the algorithms are developed in such a way that they always

satisfy the following invariants.In any round of an execution, the

network is the union of committees being such gadget networks of

varying sizes and some additional edges including the initial edges

and other edges used to join the committees. Initially, every node

forms its own committee and the algorithms progressively merge

pairs or larger groups of committees based on the rule that the com-

mittee with the greater id dominates. If properly performed, this

ensures that eventually only one committee remains, namely, the

committee of the node 𝑢𝑚𝑎𝑥 with maximum id in the network. The

diameter of all our gadgets is (poly)logarithmic in their size, which

facilitates quick merging and ensures that the final committee of

𝑢𝑚𝑎𝑥 satisfies the (poly)log(𝑛) diameter requirement for𝐺 𝑓 . The

algorithms also ensure that, by the time the committee of 𝑢𝑚𝑎𝑥 is

the unique remaining committee, 𝑢𝑚𝑎𝑥 is the unique leader elected.

Our algorithms must achieve (poly)logarithmic time and they do

so by satisfying the invariant that winning committees always grow

exponentially fast. This growth is asynchronous in our algorithms

for the following reason. In a typical configuration (of a phase) the

graph of mergings forms a spanning forest 𝐹 of committees such

that any tree 𝑇 in 𝐹 is rooted at the committee that will eventually

consume all committees in 𝑉 (𝑇 ). Given that those trees may have

different sizes (even up to 𝑉 (𝑇 ) = Θ(𝑛)), the winning times of

different committees may be different, but we can still show that

their amortized growth is exponential.

Our first algorithm, called GraphToStar and presented in Section

3, uses a star network as a gadget. Its running time is 𝑂 (log𝑛) and
it uses at most 2𝑛 active edges per round and an optimal total of

𝑂 (𝑛 log𝑛) edge activations. The target network 𝐺 𝑓 that it outputs

is a spanning star, thus, achieving a final diameter of 2.

Our second algorithm, called GraphToWreath and presented in

Section 4, uses as a gadget a graph we call a wreath which is the

union of a ring and a complete binary tree spanning the ring. The

main improvement compared to GraphToStar is that it maintains a

bounded maximum degree throughout its course (given a bounded-

degree𝐺𝑠 ). It does this at the cost of increasing the running time to

𝑂 (log2 𝑛) and the number of total edge activations to 𝑂 (𝑛 log2 𝑛).
The active edges per round remain 𝑂 (𝑛). The target network 𝐺 𝑓

that it outputs is a spanning complete binary tree (after deleting the

original edges and the spanning ring), thus, the algorithm achieves

a final diameter of 𝑂 (log𝑛).
Our third algorithm, called GraphToThinWreath and presented

in Section 5, shows that if we slightly increase the maximum degree

to polylog(𝑛) thenwe can achieve a running time of 𝑜 (log2 𝑛) (more

precisely, 𝑂 (log2 𝑛/log log𝑘 𝑛), for some constant 𝑘 ≥ 1).

If our model can be compared to models from the area of over-

lay networks construction (see Section 1.4 for a discussion on this

matter), then GraphToWreath is, to the best of our knowledge, the

first deterministic bounded-degree 𝑂 (log2 𝑛)-time algorithm and

GraphToThinWreath is the first deterministic polylog(𝑛)-degree
𝑜 (log2 𝑛)-time algorithm for the problem of transforming any con-

nected 𝐺𝑠 into a polylog(𝑛) diameter 𝐺 𝑓 .

1.4 Related Work
Temporal Graphs. The algorithmic study of temporal graphs was

initiated by Berman [9] and Kempe et al. [16], who studied a spe-

cial case of temporal graphs in which every edge can be available

at most once. The problem of designing a cost-efficient temporal

graph satisfying some given connectivity properties was introduced

in [19]. The design task was carried out by an offline centralized

algorithm starting from an empty edge set. Subsequent work [12],

motivated by epidemiology applications, considered the central-

ized algorithmic problem of re-designing a given temporal graph

through edge deletions in order to end up with a temporal graph

with bounded temporal reachability, thus keeping the spread of

a disease to a minimum. Our work is related to the temporal net-

work (re-)design problem but our model is fully distributed, allows

for both edge activations and deletions, and our families of target

networks are different than those considered in the above papers.

Distributed Computation in Passively Dynamic Networks.
Probably the first authors to consider distributed computation in
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passively dynamic networks were Angluin et al. [4–6]. Their pop-
ulation protocol model, considered originally the computational

power of a population of 𝑛 finite automata which interact in pairs

passively either under an eventual fairness condition or under a

uniform random scheduling assumption. A variant of population

protocols in which the automata can additionally create or destroy

connections between them was introduced in [20, 23]. It was shown

that in that model, called network constructors, complex spanning

networks can be created efficiently despite the computational weak-

ness of individual entities. The closest to our approach from this

area is [24], in which the authors showed how to transform any

connected initial network into a spanning line which can then be

exploited to achieve global computation on input values and ter-

mination. The main difference though is that in all these models

pairwise interactions are chosen asynchronously by a scheduler,

and connections can be created between any pair of nodes during

their interaction independently of the current network structure

and the distance between them.

Other papers [17, 21, 25] have studied distributed computation in

worst-case dynamic networks using a traditional message-passing

model and typically operating through local broadcast in the current

neighborhood. Our communication model is closer to those models

but network dynamics there are always passive and their main

goal has been to revisit the complexity of classical distributed tasks

under a worst-case adversarial network.

Construction of Overlay Networks. There is a rich literature

on the distributed construction of overlay networks. A typical as-

sumption is that there is an overlay (active) edge from a node 𝑢 to a

node 𝑣 in a given round iff 𝑢 has obtained 𝑣 ’s id through a message.

Without further restrictions, the overlay in round 𝑟 would always

correspond to the union of 𝑟 consecutive transitive extensions start-

ing from the original edge set. The main restriction imposed in

the relevant literature is a polylogarithmic (in bits) communication

capacity per node per round, which also implies that in every round

𝑂 (log𝑛) new overlay connections per node are permitted.

Our model and results, even though different in motivation, in

the complexity measures considered, and in the restrictions we

impose, appear to have similarities with some of the developments

in this area. Unlike our work, where our complexity measures

are motivated by the cost of creating and maintaining physical or

virtual connections, the algorithmic challenges in overlay networks

are mainly due to restricting the communication capacity of each

node per round to a polylogarithmic total number of bits.

Research in this area started with seminal papers such as Chord

of Stoica et al. [27] and the Skip graphs of Aspnes and Shah [7].

Probably the first authors to have considered the problem of con-

structing an overlay network of logarithmic diameter were Angluin

et al. [3]. Their algorithm is randomized with𝑂 ((𝑑 +𝑊 ) log𝑛) run-
ning time w.h.p., where𝑊 is the maximum size of a unique id. Then

Aspnes and Wu [8] gave a randomized 𝑂 (log𝑛) time algorithm for

the special case in which the initial network has outdegree 1.

To the best of our knowledge, the only previous deterministic

algorithm for the problem is the one by Gmyr et al. [14]. Our algo-
rithmic strategies appear to have some similarities to their “Overlay

Construction Algorithm”, which in their work is used as a subrou-

tine for monitoring properties of a passively dynamic network.

Unlike our model, their model is hybrid in the sense that algo-

rithms have partial control over the connections of an otherwise

passively dynamic network. Due to using different complexity mea-

sures and restrictions it is not totally clear to us yet whether a direct

comparison between them would be fair. Still, we give some first

observations. Their algorithm has the same time complexity, i.e.,

𝑂 (log2 𝑛), with our GraphToWreath algorithm, while our Graph-

ToStar algorithm achieves 𝑂 (log𝑛) and our GraphToThinWreath

𝑜 (log2 𝑛). Their overlays appear to maintain Θ(𝑛 log𝑛) active con-
nections per round, while our algorithms maintain 𝑂 (𝑛). Their
maximum active degree is polylogarithmic, the same as Graph-

ToThinWreath, while GraphToStar uses linear and GraphToWreath

always bounded by a constant. Their model restricts the communi-

cation capacity of every node to a polylogarithmic number of bits

per round, whereas we do not restrict communication.

A very recent work by Götte et al. [15] has improved the up-

per bound of [3] to𝑂 (log3/2 𝑛), w.h.p. It is a randomized algorithm

which uses a core deterministic procedure that has some similarities

to our algorithmic strategy of maintaining and merging committees

(called “supernodes” there) whose size increases exponentially fast.

Their model keeps the polylogarithmic restriction on communica-

tion and the polylogarithmic maximum degree.

Scheideler and Setzer [26] recently studied the (centralized) com-

putational complexity of computing the optimum graph transfor-

mation and gave NP-hardness results and a constant-factor approx-
imation algorithm for the problem.

Programmable Matter. There is a growing interest in studying

the algorithmic foundations of systems that can change their phys-

ical properties through local reconfigurations [1, 2, 11, 13, 22]. A

prominent such property is changing their shape. Typical examples

of systems in this area are reconfigurable robotics, swarm robot-

ics, and self-assembly systems [10, 18]. In most of these settings,

modification of structure can be represented as a dynamic network,

usually called shape, with additional geometric restrictions com-

ing from the shape and the local reconfiguration mechanism of

the entities. The goal is to transform a given initial shape into a

desired target shape through a sequence of valid local moves. Our

network transformation problem can be viewed as a non-geometric

abstraction of these geometric transformation problems. Apart from

being motivated by this area, we also hope that the abstract algo-

rithmic principles of network reconfiguration might promote our

understanding of the geometrically constrained cases.

2 PRELIMINARIES
2.1 The Model
An actively dynamic network is modeled in this work by a temporal

graph𝐷 = (𝑉 , 𝐸), where𝑉 is a static set of 𝑛 nodes and 𝐸 ⊆
(𝑉
2

)
×N

is a set of undirected time-edges. In particular, 𝐸 (𝑖) = {𝑒 : (𝑒, 𝑖) ∈ 𝐸}
is the set of all edges that are active in the temporal graph at the

beginning of round 𝑖 . Since V is static, 𝐸 (𝑖) can be used to define a

snapshot of the temporal graph at round 𝑖 , which is the static graph

𝐷 (𝑖) = (𝑉 , 𝐸 (𝑖)).
The temporal graph 𝐷 of an execution is generated by local

operations performed by the nodes of the network, starting from

an initial graph𝐺𝑠 = 𝐷 (1). Throughout this paper, 𝐺𝑠 is assumed

to be connected. A node𝑢 can activate an edge with node 𝑣 in round
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𝑖 , if 𝑢𝑣 ∉ 𝐸 (𝑖) and there exists a node𝑤 such that both 𝑢𝑤 and𝑤𝑣

are active at the beginning of round 𝑖 . A node 𝑢 can deactivate an
edge with node 𝑣 in round 𝑖 , provided that 𝑢𝑣 ∈ 𝐸 (𝑖). An active

edge remains active indefinitely unless a node who is incident to

that edge deactivates it. There is at most one active edge between

any pair of nodes, that is multiple edges are not allowed. If a node

attempts to activate an edge which is already active, the action has

no effect and the edge remains active; similarly for deactivating

inactive edges. Moreover, if a node 𝑢 decides to activate an edge

with a node 𝑣 in round 𝑖 and 𝑣 decides to activate an edge with 𝑢 in

the same round, then only one edge is activated between them. In

case 𝑢 and 𝑣 disagree on their decision about edge 𝑢𝑣 , then their

actions have no effect on 𝑢𝑣 . We define 𝐸𝑎𝑐 (𝑖) as the set of all edges
that were activated in round 𝑖 and 𝐸𝑑𝑎𝑐 (𝑖) as the set of all edges that
were deactivated in round 𝑖 . Then 𝐸 (𝑖+1) = (𝐸 (𝑖)∪𝐸𝑎𝑐 (𝑖))\𝐸𝑑𝑎𝑐 (𝑖).

We define set 𝑁 𝑖
1
(𝑢) of node 𝑢, where 𝑣 ∈ 𝑁 𝑖

1
(𝑢) iff 𝑢𝑣 ∈ 𝐸 (𝑖)

which means that set 𝑁 𝑖
1
(𝑢) contains the neighbors of node 𝑢 in

round 𝑖 . Additionally, set 𝑁 𝑖
2
(𝑢) of node 𝑢, where 𝑤 ∈ 𝑁 𝑖

2
(𝑢) iff

there exists 𝑣 ∈ 𝑉 s.t. 𝑣 ∈ 𝑁 𝑖
1
(𝑢) and 𝑣 ∈ 𝑁 𝑖

1
(𝑤) and 𝑤 ∉ 𝑁 𝑖

1
(𝑢).

That is, set𝑁 𝑖
2
(𝑢) of node𝑢 in round 𝑖 contains the nodes at distance

2 which we will refer to as potential neighbors. We will omit the 𝑖

index for rounds, when clear from context.

Each node 𝑢 ∈ 𝑉 is identical to every other node 𝑣 but for the

unique identifier (UID) that each node possesses. Each node 𝑢 starts

with a UID that is drawn from a namespaceU. The maximum id

is represented by 𝑂 (log𝑛) bits. An algorithm is called comparison
based if it manipulates the UIDs of the network using comparison

operations (<, >,=) only. All of the algorithms and lower bounds

presented in this paper are comparison based.

The nodes represent agents equipped with computation, com-

munication, and edge-modification capabilities and they operating

in synchronous rounds. In each round all agents perform the fol-

lowing actions in sequence and in lock step: Send messages to their

neighbors, Receive messages from their neighbors, Activate edges

with potential neighbors, Deactivate edges with neighbors, Update

their local state.

We note that a node may choose to send a different message

to different neighbors in a round and that the time needed for

internal computations is assumed throughout to be 𝑂 (1). We do

not impose any restriction on the size of the local memory of the

agents, still the space complexity of our algorithms is within a

reasonable polynomial in 𝑛.

2.2 Problem Definitions and Performance
Measures

In this paper, we are mainly interested in the following problems.

Leader Election. Every node 𝑢 in graph 𝐷 = (𝑉 , 𝐸) has a vari-
able 𝑠𝑡𝑎𝑡𝑢𝑠𝑢 that can be set to a value in {Follower, Leader}. An
algorithm 𝐴 solves leader election if the algorithm has terminated

and exactly one node has its status set to Leader while all other

nodes have their status set to Follower.

TokenDissemination.Given an initial graph𝐷 = (𝑉 , 𝐸)where
each node 𝑢 ∈ 𝑉 starts with some unique piece of information (to-

ken), every node 𝑢 ∈ 𝑉 must terminate while having received that

unique piece of information from every other node 𝑣 ∈ 𝑉 \ {𝑢}.

W.l.o.g. we will consider that unique information to be the UID of

each node throughout the paper.

Depth-𝑑 Tree. Given any initial graph 𝐺𝑠 from a given family,

the distributed algorithm must reconfigure the graph into a target

graph 𝐺 𝑓 , such that 𝐺 𝑓 is a rooted tree of depth 𝑑 with a unique

leader elected at the root.

Apart from studying the running time of our algorithms, mea-

sured as their worst-case number of rounds to carry out a given

task, we also introduce the following edge complexity measures.

Total Edge Activations. The total number of edge activations

of an algorithm is given by

∑𝑇
𝑖=1 |𝐸𝑎𝑐 (𝑖) |, where 𝑇 is the running

time of the algorithm.

Maximum Activated Edges. It is defined as max𝑖∈[𝑇 ] |𝐸 (𝑖) \
𝐸 (1) |, that is, equal to the maximum number of active edges of a

round, disregarding the edges of the initial network.

MaximumActivatedDegree.Themaximumdegree of a round,

if we again only consider the edges that have been activated by

the algorithm. Let 𝑑𝑒𝑔(𝐺) denote the degree of a graph𝐺 . Then, for-
mally, themaximum activated degree is equal tomax𝑖∈[𝑇 ] 𝑑𝑒𝑔(𝐷 (𝑖)\
𝐷 (1)), where the graph difference is defined through the difference

of their edge sets.

In this paper, instead of measuring the maximum activated de-

gree we will focus on preserving the maximum degree of input

networks from specific families. For example, one of our algorithms

solves the Depth-𝑑 Tree problem on any input network and, if the

input network has bounded degree, then it guarantees that the

degree in any round is also bounded.

2.3 Basic Subroutines
We will now provide algorithms that transform initial graphs into

graphs with small diameter and which will be used as subroutines

in our general algorithms. The first called TreeToStar transforms

any initial rooted tree graph into a spanning star in 𝑂 (log𝑛) time

with 𝑂 (𝑛 log𝑛) total edge activations and 𝑂 (𝑛) active edges per
round, provided that the nodes have a sense of orientation on the

tree. In every round, each node activates an edge with the potential

neighbor that is its grandparent and deactivates the edge with its

parent. This process keeps being repeated by each node until they

activate an edge with the root of the tree.

Proposition 2.1. Let 𝑇 be any tree rooted at 𝑢0 of depth 𝑑 . If the
nodes have a sense of orientation on the tree, then algorithm TreeToStar
transforms T into a spanning star centered at 𝑢0 in ⌈log𝑑⌉ ≤ log𝑛

rounds. TreeToStar has at most 2𝑛 − 3 active edges per round.

Our next algorithm called LineToCompleteBinaryTree trans-

forms any line into a binary tree in 𝑂 (log𝑛) time with 𝑂 (𝑛 log𝑛)
total edge activations, with 𝑂 (𝑛) active edges per round and the

degree of each node is at most 4, provided that the nodes have a

common sense of orientation.

In each round, each node activates an edge with its grandparent

and afterwards it deactivates its edge with its parent. This process

keeps being repeated by each node until they activate an edge with

the root of the tree or if their grandparent has 2 children.

Proposition 2.2. Let 𝑇 be any line rooted at 𝑢0 of diameter 𝑑 .
If the nodes have a sense of orientation on the line, then algorithm
LineToCompleteBinaryTree transforms T into a binary tree centered
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at 𝑢0 in ⌈log𝑑⌉ ≤ log𝑛 time. LineToCompleteBinaryTree has at
most 2𝑛 − 3 active edges per round, 𝑛 log𝑛 total edge activations and
bounded degree equal to 3.

2.4 General Strategy for Depth-𝑑 Tree
All algorithms developed in this paper solve the Depth-𝑑 Tree

problem starting from any initial network 𝐺𝑠 from a given family.

Our aim is to always achieve this in (poly)logarithmic time while

minimizing some of the edge-complexity parameters. There is a

natural trade-off between time and edge complexity and each of

our algorithms makes a different contribution to this trade-off. In

particular, by paying for linear degree, our first algorithm manages

to be optimal in all other parameters. If we instead insist on bounded

degree, then our second algorithm shows that we can still solve

Depth-𝑑 Tree within an additional𝑂 (log𝑛) factor both in time and

total edge activations. Finally, if the bound on the degree is slightly

relaxed to (poly)log(𝑛), our third algorithm achieves 𝑜 (log2 𝑛) time.

All three algorithms are built upon the same general strategy

that we now describe. For each of them we choose an appropriate

gadget network, which has the properties of being “close” to the

target network 𝐺 𝑓 to be constructed and of facilitating efficient

growth. For example, the 𝐺 𝑓 of our first algorithm is a spanning

star and the chosen gadget is a star graph, while the 𝐺 𝑓 of our

second algorithm is a complete binary tree and the chosen gadget

is the union of a ring and a complete binary tree spanning that ring

(called a wreath).
Our algorithms satisfy the following properties. The nodes are

always partitioned into committees, where each committee is in-

ternally organized according to the corresponding gadget network

of the algorithm and has a unique leader, which is the node with

maximum id in that committee. Initially, every node forms its own

trivial committee and committees increase their size by competing

with nearby committees. In particular, committees select and, if

possible, merge with the maximum-id committee in their neighbor-

hood. Prior to merging, such selections may give rise to pairs of

committees, in which case merging is immediate, but also to rooted

trees of committees where all selections are oriented towards the

root and merging has to be deferred. In the latter case, the win-

ning committee will eventually be the root of the tree, at which

point all other committees of the tree will have merged to it. In

all cases, merging must be done in such a way that the gadget-

like internal structure of the winning committee is preserved. This

growth guarantees that eventually there will be a single committee

spanning the network. At that point, the leader of that committee

(which is always the node with maximum id in the network) is an

elected unique leader. Moreover, the gadget-like internal structure

of that committee can be quickly transformed into the desired tar-

get network, due to the by-design close distance between them. For

example, in the algorithm forming a star no further modification is

required, while in the algorithm forming a complete binary tree, a

ring is eliminated from a wreath so that only the tree remains.

Our algorithms are designed to operate in asynchronous phases,

with the guarantee that in every phase pairs of committees merge

and trees of committees halve their depth. This can be used to show

that in all our algorithms a single committee will remain within

𝑂 (log𝑛) phases. Each phase lasts a number of rounds which is

within a constant factor of the maximum diameter of a committee

involved in it, which is in turn upper bounded by the diameter of the

final spanning committee. The latter is always equal to the diameter

of the chosen gadget as a function of its size. The total time is then

given by the product of the number of phases and the diameter of

the chosen gadget. For example, in our first algorithm the gadget

is a star and the running time (in rounds) is 𝑂 (1) ·𝑂 (log𝑛), in our

second algorithm the gadget is a wreath of diameter 𝑂 (log𝑛) and
the running time is 𝑂 (log𝑛) · 𝑂 (log𝑛) = 𝑂 (log2 𝑛), while in our

third algorithm the gadget is a modified wreath, called ThinWreath,

of diameter 𝑜 (log𝑛) and the running time is 𝑜 (log𝑛) ·𝑂 (log𝑛) =
𝑜 (log2 𝑛). Given that every node activates at most one edge per

round, the total number of edge activations of our algorithms is

within a linear factor of their running time.

3 AN EDGE OPTIMAL ALGORITHM FOR
GENERAL GRAPHS

Our first algorithm, called GraphToStar, solves the Depth-𝑑 Tree

problem, for𝑑 = 1. In particular, by using a star gadget it transforms

any initial graph𝐺𝑠 into a target spanning star graph 𝐺 𝑓 . Its run-

ning time is 𝑂 (log𝑛) and it uses an optimal number of 𝑂 (𝑛 log𝑛)
total edge activations and 𝑂 (𝑛) active edges per round. Optimality

is established by matching lower bounds, presented in Section 6.

Algorithm GraphToStar

Each committee 𝐶 (𝑢) is a star graph where the center node 𝑢

is the leader of the committee and all other nodes are followers.

The leader node of each committee is the node with the greatest

UID in that committee. The UID of each committee is defined by

the UID of that committee’s leader. The winning committee in the

final graph, denoted 𝐶 (𝑢𝑚𝑎𝑥 ), is the one with the greatest UID in

the initial graph. Every node starts as a leader and forms its own

committee as a single node. The original edges of 𝐺𝑠 are assumed

to be maintained until the last round of the algorithm and the nodes

can always distinguish them. The algorithm proceeds in phases,

where in every phase each committee 𝐶 (𝑢) executes in one of the

following modes, always executing in selection mode in phase 1.

• Selection: If 𝐶 (𝑢) has a neighboring committee 𝐶 (𝑧) such
that 𝑈 𝐼𝐷𝑧 > 𝑈 𝐼𝐷𝑢 and 𝐶 (𝑧) is not in pulling mode, then,
from its neighboring committees not in pulling mode, 𝐶 (𝑢)
selects the one with the greatest UID; call the latter 𝐶 (𝑣). It
does this, by 𝑢 first activating an edge 𝑒1 with a potential

neighbor in𝐶 (𝑣). Then𝑢 activates an edgewith 𝑣 , deactivates
the previous edge 𝑒1, and 𝐶 (𝑢) enters either the merging or

pulling mode. In particular, if 𝐶 (𝑣) did not select, then 𝐶 (𝑢)
and 𝐶 (𝑣) form a pair and 𝐶 (𝑢) enters the merging mode.

If on the other hand 𝐶 (𝑣) selected some 𝐶 (𝑤), then 𝐶 (𝑢)
enters the pulling mode. Otherwise, 𝐶 (𝑢) did not select. If

𝐶 (𝑢) was selected then it enters the waiting mode, else it

remains in the selection mode. If 𝐶 (𝑢) has no neighboring
committees, then it enters the termination mode.

• Merging:Given that in the previous phase the leader of𝐶 (𝑢)
activated an edge with the leader of𝐶 (𝑣), each follower 𝑥 in

𝐶 (𝑢) activates the edge 𝑥𝑣 and deactivates the edge 𝑥𝑢. The

result is that 𝐶 (𝑢) and 𝐶 (𝑣) have merged into committee

𝐶 (𝑣), which remains a star rooted at 𝑣 now spanning all
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nodes in𝑉 (𝐶 (𝑢)) ∪𝑉 (𝐶 (𝑣)). Therefore,𝐶 (𝑢) does not exist
any more.

• Pulling: Given that in the previous phase the leader of𝐶 (𝑢)
activated an edge with the leader of 𝐶 (𝑣) and the leader of

𝐶 (𝑣) activated an edge with the leader of 𝐶 (𝑤), 𝑢 activates

𝑢𝑤 , deactivates 𝑢𝑣 , and 𝐶 (𝑢) remains in pulling mode. If,

instead, the leader of 𝐶 (𝑣) did not activate in the previous

phase, then 𝐶 (𝑢) enters the merging mode.

• Waiting: If 𝐶 (𝑢) has no neighboring committees, 𝐶 (𝑢) en-
ters the termination mode. If in the previous phase no com-

mittee𝐶 (𝑣) activated an edge with𝑢, then𝐶 (𝑢) enters the se-
lection mode. Otherwise 𝐶 (𝑢) remains in the waiting mode.

• Termination:𝐶 (𝑢) deactivates every edge in𝐸 (𝐺𝑠 )\𝐸 (𝐶 (𝑢)).
In particular, each follower 𝑥 in 𝐶 (𝑢) deactivates all active
edges incident to it but 𝑥𝑢.

Correctness

Lemma 3.1. Algorithm GraphToStar solves Depth-1 Tree.

Proof. It suffices to prove that in any execution of the algorithm,

one committee eventually enters the termination mode and that

this committee can only be 𝐶 (𝑢𝑚𝑎𝑥 ). If this holds, then by the end

of the termination phase 𝐶 (𝑢𝑚𝑎𝑥 ) forms a spanning star rooted at

𝑢𝑚𝑎𝑥 and 𝑢𝑚𝑎𝑥 is the unique leader of the network. This satisfies

all requirements of Depth-1 Tree.

A committee dies (stops existing) only when it merges with

another committee by entering the merging mode. First observe

that there is always at least one alive committee. This is 𝐶 (𝑢𝑚𝑎𝑥 ),
because entering the merging mode would contradict maximality

of 𝑢𝑚𝑎𝑥 . We will prove that any other committee eventually dies or

grows, which due to the finiteness of 𝑛 will imply that eventually

𝐶 (𝑢𝑚𝑎𝑥 ) will be the only alive committee.

In any phase, but the last one which is a termination phase, it

holds that every alive committee 𝐶 (𝑢) is in one of the selection,

merging, pulling, and waiting modes. If 𝐶 (𝑢) is in the merging

mode, then by the end of the current phase it will have died by

merging with another committee 𝐶 (𝑣). It, thus, remains to argue

about committees in the selection, pulling, and waiting modes.

We first argue about committees in the pulling mode. Denote

their set by C𝑝 . Observe that, in any given phase, the committees

in pulling mode form a forest 𝐹 , where each 𝐶 (𝑢) ∈ C𝑝 belongs

to a tree 𝑇 of 𝐹 . Any such tree executes the TreeToStar algorithm

(from Section 2.3) on committees and satisfies the invariant that its

root committee 𝐶𝑟 is always in the waiting mode and 𝐶𝑟 ’s children

are in the merging mode. In every phase, 𝐶𝑟 ’s children merge with

𝐶𝑟 and their children become the new children of 𝐶𝑟 and enter the

merging mode. It follows that all non-root committees in 𝑇 will

eventually merge with 𝐶𝑟 . Thus, all committees in pulling mode

eventually die.

It remains to argue about committees in the selection andwaiting

modes. We start from the waiting mode. Any committee 𝐶 (𝑢) in
waiting mode is a root of either a tree in the forest 𝐹 or of a star of

committees in which all leaf-committees are merging with𝐶 (𝑢). In
both cases, 𝐶 (𝑢) eventually exits the waiting mode and enters the

selection mode. This happens as soon as all other committees in its

tree or star have merged to it, thus 𝐶 (𝑢) has grown upon its exit.

Now, a committee 𝐶 (𝑢) in the selection mode can enter any

other mode. As argued above, if it enters the merging or pulling

modes it will eventually die and if it enters the waiting mode it will

eventually grow. Thus, it suffices to consider the case in which it

remains in the selection mode indefinitely. This can only happen if

all current and future neighboring committees of 𝐶 (𝑢), including
the ones to eventually replace neighbors in pulling mode, have

an id smaller than 𝑈 𝐼𝐷𝑢 . But each of these must have selected a

neighboring 𝐶 (𝑤), such that 𝑈 𝐼𝐷𝑤 > 𝑈 𝐼𝐷𝑢 , otherwise it would

have selected 𝐶 (𝑢). Any such selection, results in 𝐶 (𝑤) (or a 𝑧,
such that 𝑈 𝐼𝐷𝑧 > 𝑈 𝐼𝐷𝑤 in case 𝑤 belongs to a tree) becoming a

neighbor of𝐶 (𝑢), thus contradicting the indefinite local maximality

of𝑈 𝐼𝐷𝑢 . □

Time Complexity
Let us move on to proving the time complexity of our algorithm.

At the beginning, we are going to ignore the number of rounds

within a phase, andwe are just going to study themaximum number

of phases before a single committee is left. We define 𝑆 (𝐶 (𝑢𝑠 )) to
be the size of committee 𝐶 (𝑢) in phase 𝑠 .

Lemma 3.2. Consider committee 𝐶 (𝑣) that is in waiting mode
between phases 𝑠 and 𝑠 + 𝑗 . If the size of every committee in phase 𝑠 is
at least 2𝑘 , then the size of committee𝐶 (𝑣) once it enters the selection
mode in phase 𝑠 + 𝑗 + 1 is at least 2𝑘+𝑗 .

Proof. Any committee 𝐶 (𝑢) in waiting mode is a root of (i)

either a tree in the forest 𝐹 or (ii) a star of committees in which all

leaf-committees are merging with 𝐶 (𝑢).
For case (i): root committee 𝐶 (𝑢) is always in waiting mode

and 𝐶 (𝑢)’s children are in merging mode. In every phase, 𝐶 (𝑢)’s
children merge with 𝐶 (𝑢) and their children become the new chil-

dren of 𝐶 (𝑢) and enter the merging mode. It follows that all non-

root committees in the tree will eventually merge with 𝐶 (𝑢) in
some phase 𝑗 . Note that due to the nature of the pulling mode,

in each phase the children of 𝐶 (𝑢) are doubled. This is true be-

cause the pulling mode is simulating the TreeToStar algorithm on

committees. Recall that we assumed that the size of every com-

mittee is 𝑆 (𝐶 (𝑣𝑠 )) ≥ 2
𝑘
in phase 𝑠 . Then in each phase 𝑠 + 𝑖 ,

where 0 < 𝑖 ≤ 𝑗 , the size of the root committee is 𝑆 (𝐶 (𝑢𝑠+log 𝑖 )) =
𝑆 (𝐶 (𝑢𝑠 ))+2 ·𝑆 (𝐶 (𝑣𝑠 ))+4 ·𝑆 (𝐶 (𝑣𝑠 ))+ . . .+2log(𝑖−1) ·𝑆 (𝐶 (𝑣𝑠 )) = 2

𝑘+𝑖
.

For case (ii): root committee𝐶 (𝑢𝑠 ) is in waiting mode and has at

least one leaf committee in phase 𝑠 . After the leaf committee merges

in 1 phase, committee 𝐶 (𝑢𝑠+1) has size 𝑆 (𝐶 (𝑢𝑠+1)) ≥ 𝑆 (𝐶 (𝑢𝑠 )) +
𝑆 (𝐶 (𝑢𝑠 )) = 2

𝑘 + 2
𝑘 = 2

𝑘+1 . □

Lemma 3.3. If committee 𝐶 (𝑢) stays in the selection mode for
𝑝 ≥ 4 consecutive phases, then 𝐶 (𝑢) has a neighboring committee
𝐶 (𝑣) ∈ C𝑝 that belongs to a tree 𝑇 for at least 𝑝 phases.

Proof. Let us assume that committee𝐶 (𝑢) stays in the selection

mode for 𝑝 ≥ 4 consecutive phases while having a neighbor 𝐶 (𝑣)
that does not belong to tree 𝑇 . If 𝐶 (𝑣) does not belong to a tree in

phase 𝑘 , then it cannot be in pulling mode. If 𝐶 (𝑣) is in selection

mode in phase 𝑘 and 𝐶 (𝑣) does not select 𝐶 (𝑢) and 𝐶 (𝑢) does not
select𝐶 (𝑣), then𝐶 (𝑣) has a neighbor𝐶 (𝑤) where𝑈 𝐼𝐷𝑤 > 𝑈 𝐼𝐷𝑣 >

𝑈 𝐼𝐷𝑢 and𝐶 (𝑣) selected𝐶 (𝑤). Then𝐶 (𝑣) enters the merging mode

in phase 𝑘 +1 and gets merged with𝐶 (𝑤). In phase 𝑘 +2 committee

𝐶 (𝑤) becomes a neighbor of 𝐶 (𝑣) and 𝐶 (𝑤) enters the selection
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mode. Therefore𝐶 (𝑣) would select𝐶 (𝑤) in phase 𝑘 + 2 and exit the
selection mode. Thus, a contradiction. If 𝐶 (𝑣) is in waiting mode

in phase 𝑘 , it cannot be the root of a tree, and is the root of a star.

Therefore in phase 𝑘 + 1 it will enter the selection mode and based

on the analysis of the previous paragraph, in phase 𝑘 + 3 𝐶 (𝑢) will
exit the selection mode. Thus, a contradiction. □

Lemma 3.4. Let us assume that the minimum size of a committee
in phase 𝑠 is 2𝑘 . If committee 𝐶 (𝑢) stays in the selection mode from
phase 𝑠 to phase 𝑠 + 𝑝 where 𝑝 ≥ 4 consecutive phases, then in phase
𝑠 + 𝑝 + 1 it will select or get selected by a committee 𝐶 (𝑣) of size
2
𝑘+𝑝−4.

Proof. From Lemma 3.3 it follows that, since 𝐶 (𝑢) is in the

selection mode for at least 4 phases, there exists a neighbor 𝐶 (𝑣)
that belongs to a tree 𝑇 with. Since 𝐶 (𝑢) exits the selection mode

in phase 𝑠 + 𝑝 , it either selects committee𝐶 (𝑤) that the root of tree
𝑇 or𝐶 (𝑤) selects𝐶 (𝑣). Since𝐶 (𝑢) was in the selection phase for 𝑝

phases, committee𝐶 (𝑤) was on a tree of depth at least 𝑝 − 3. From

Lemma 3.2 it follows that the size of 𝐶 (𝑤) is 2𝑘+𝑝−3. □

Lemma 3.5. Assume that the minimum size of every committee in
phase 𝑠 is 2𝑘 and that every committee will have exited the selection
mode in phase 𝑠 + 𝑝 at least once. The size of all winning committees
in phase 𝑝 + 1 is at least 2𝑘+𝑝−4.

Proof. Trivially, if 𝑝 ≤ 4 the winning committee has size at

least 2
𝑘+1

in phase 𝑝 + 1 since it has merged with at least one other

committee. From Lemma 3.4 it follows that if 𝑝 ≥ 4 the winning

committee between 𝐶 (𝑤) and 𝐶 (𝑢) will have size at least 2𝑘+𝑝−3
in phase 𝑠 + 𝑝 + 1. □

Lemma 3.6. After𝑂 (log𝑛) phases, there is only a single committee
left in the graph.

Lemma 3.7. Each phase consists of at most 2 rounds.

Edge Complexity
It is very simple to prove the edge complexity for the algorithm.

Note that in each round 𝑖 each node activates at most 1 edge. Fur-

thermore, if a node had activated an edge 𝑢 in round 𝑖 , and it

activates another edge 𝑣 in round 𝑖 + 1, then it deactivates edge 𝑢.

Therefore, each node cannot have more than 2 active edges that it

has activated itself at any time and since we have 𝑛 nodes in the

network, there can ever be at most 2𝑛 active edges per round.

Theorem 3.8. For any initial connected graph 𝐺𝑠 , the Graph-

ToStar algorithm solves the Depth-1 Tree problem in 𝑂 (log𝑛) time
with at most 𝑂 (𝑛 log𝑛) total edge activations and 𝑂 (𝑛) active edges
per round.

4 MINIMIZING THE MAXIMUM DEGREE ON
GENERAL GRAPHS

In this section we will create an algorithm that minimizes the maxi-

mum activated degree to a constant but has𝑂 (log2 𝑛) running time

and 𝑂 (𝑛 log2 𝑛) total edges activations.
For this algorithm, our committees must have at least Ω(log𝑛)

diameter in order to have a constant degree and therefore merging

two different committees in constant time while keeping a spe-

cific structure proves to be complicated. The new gadget of our

committees is going to be a graph we call wreath. A wreath graph

is a graph that has both a ring subgraph and a complete binary

tree subgraph. We are going to use the edges of the ring subgraph

to merge committees and the binary tree subgraph to exchange

information between the nodes of the graph. First, let us define the

structure of the wreath graph.

Definition 4.1 (Wreath graphs). A graph 𝐷 = (𝑉 , 𝐸) belongs to
the class of wreath graphs if it has two subgraphs 𝐷𝑟 = (𝑉 , 𝐸𝑟 )
and 𝐷𝑏 = (𝑉 , 𝐸𝑏 ), where 𝐷𝑟 = (𝑉 , 𝐸𝑟 ) belongs to the class of ring
graphs, 𝐷𝑏 = (𝑉 , 𝐸𝑏 ) belongs to the class of complete binary tree

graphs, and 𝐸 = 𝐸𝑟 ∪ 𝐸𝑏 .

The 𝑂 (log𝑛) diameter that the wreath graph possesses, will

allow the leaders of committees 𝐶 (𝑢) to communicate with neigh-

boring committees𝐶 (𝑣) in𝑂 (log𝑛) time. Additionally, the merging

phase of each pair of committees will require only 𝑂 (log𝑛) time.

The algorithm is almost identical to the GraphToStar as far as the

high level strategy is concerned. Committees select neighboring

committees and merge with them. The main difference is that when

a tree with root𝑤 is formed, we cannot use the pulling mode since

this would increase the degree significantly. Instead the committees

on each tree merge in a single ring that includes all committees in

𝑂 (1) time (ring merging mode). After this,𝑤 deactivates one of its

incident edges in order to create a line subgraph. Once this happens,

each node on the ring executes an asynchronous version of the

LineToCompleteBinaryTree subroutine in 𝑂 (log𝑛) time using the

orientation of the new ring, where root 𝑤 is the root of the line.

Once the subroutine is finished, the complete binary tree subgraph

of the wreath graph is ready. Therefore we have managed to merge

a tree graph of multiple committees into a single committee.

Algorithm GraphToWreath
The structure of each committee/node is the same as the Graph-

ToStar algorithm apart from the fact that each committee C(u) is a

Wreath graph. Our algorithm proceeds in phases, where in every

phase each committee𝐶 (𝑢) executes in one of the following modes,

always executing in selection mode in phase 1.

• Selection: If 𝐶 (𝑢) has a neighboring committee 𝐶 (𝑧) such
that𝑈 𝐼𝐷𝑧 > 𝑈 𝐼𝐷𝑢 and 𝐶 (𝑧) is not in Ring Merging mode or
Tree Merging mode then, from its neighboring committees

not in ring merging or tree merging mode, 𝐶 (𝑢) selects the
onewith the greatest UID; call the latter𝐶 (𝑣). If𝐶 (𝑢) selected
𝐶 (𝑣) or 𝐶 (𝑢) was selected, 𝐶 (𝑢) enters the Ring Merging

mode. If 𝐶 (𝑢) did not select anyone and it was not selected

by anyone, it stays in the selection mode. If 𝐶 (𝑢) has no
neighboring committees, 𝐶 (𝑢) enters the termination mode.

• Ring Merging: Given that in the previous phase, 𝐶 (𝑢) se-
lected𝐶 (𝑣), committee𝐶 (𝑢) merges its ring component with

the ring component of 𝐶 (𝑣) by the following method: Let

𝑘 ∈ 𝐶 (𝑢) and 𝑙 ∈ 𝐶 (𝑣), such that edge 𝑘𝑙 is active. 𝑘 acti-

vates an edge with the clockwise neighbor of 𝑙 , call it 𝑙1, and

𝑙 activates an edge with the clockwise neighbor of 𝑘 , call

it 𝑘1. Then they deactivate edges 𝑘𝑘1, 𝑙𝑙1, and 𝑘𝑙 . The two

rings have now merged into a single ring.

Given that in the previous phase,𝐶 (𝑢) was selected by𝐶 (𝑘),
committee 𝐶 (𝑘) merges its ring component with the ring

component of 𝐶 (𝑢). 𝐶 (𝑢) enters the tree merging mode.
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• Tree Merging: Every node 𝑥 in𝐶 (𝑢) executes one round of
an asynchronous version of the LineToCompleteBinaryTree

algorithm, which extends the LineToCompleteBinaryTree

algorithm with extra wait states. If there exists node 𝑥 that

has not terminated the asynchronous LineToCompleteBina-

ryTree algorithm,𝐶 (𝑢) stays in the Tree Merging mode. If all

nodes 𝑥 have terminated the asynchronous LineToComplete-

BinaryTree algorithm, all nodes 𝑥 have now merged with

committee 𝐶 ′(𝑢) whose leader is the root of the complete

binary tree and 𝐶 ′(𝑢) enters the selection mode. 𝐶 (𝑢) does
not exist anymore.

• Termination: Each follower 𝑥 in 𝐶 (𝑢) deactivates every
edge apart from the edges that define the spanning complete

binary tree subgraph.

Note here that we omit the communication steps for clarity and

we claim that any communication performed between neighboring

committees can be completed in𝑂 (log𝑛) rounds since the diameter

of each committee is at most 𝑂 (log𝑛).

Theorem 4.2. For any initial connected graph with constant de-
gree, the GraphToWreath algorithm solves Depth-log𝑛 Tree in𝑂 (log2 𝑛)
time with 𝑂 (𝑛 log2 𝑛) total edge activations, 𝑂 (𝑛) active edges per
round and 𝑂 (1) maximum activated degree.

5 TRADING THE DEGREE FOR TIME
For our new algorithm, we are going to try to have𝑂 ( log𝑛

log log𝑛
) time

for the merging but we are going to allow the maximum degree

to reach 𝑂 (log2 𝑛). This requires a new graph for our committees

where the diameter of the shape is 𝑂 ( log𝑛

log log𝑛
), so that the com-

munication within the committees is 𝑂 ( log𝑛

log log𝑛
) and a new way

to merge the committees in 𝑂 ( log𝑛

log log𝑛
). We also have to make the

assumption that all nodes know the size of the initial graph.

Our new graph is very similar to the Wreath graph and we call

it ThinWreath. The main difference is that instead of having a com-

plete binary tree component, it has a complete polylogarithmic

degree tree component with diameter𝑂 ( log𝑛

log log𝑛
) and polylogarith-

mic degree. The 𝑂 ( log𝑛

log log𝑛
) diameter that the ThinWreath graph

possesses, will allow the leaders of committees 𝐶 (𝑢) to communi-

cate with neighboring committees 𝐶 (𝑣) in 𝑂 ( log𝑛

log log𝑛
) time.

Algorithm GraphToThinWreath
The structure of each committee/node is the same as the Graph-

ToStar algorithm, apart from the fact that each committee𝐶 (𝑢) is a
ThinWreath graph. We also have to assume that the nodes know the

size of the initial graph. Our algorithm proceeds in phases, where in

every phase each committee 𝐶 (𝑢) executes in one of the following

modes, always executing in selection mode in phase 1.

• Selection: If 𝐶 (𝑢) has a neighboring committee 𝐶 (𝑧) such
that 𝑈 𝐼𝐷𝑧 > 𝑈 𝐼𝐷𝑢 and 𝐶 (𝑧) is in selection mode, then,

𝐶 (𝑢) selects its neighboring committee with the greatest

UID; call the latter 𝐶 (𝑣). If 𝐶 (𝑢) was selected, 𝐶 (𝑢) enters
the Matchmaker mode. If 𝐶 (𝑢) was not selected and 𝐶 (𝑢)
selected𝐶 (𝑣),𝐶 (𝑢) enters theMatched mode. If𝐶 (𝑢) did not
select anyone and it was not selected by anyone, it stays in

the selection mode. If 𝐶 (𝑢) has no neighboring committees,

it enters the termination mode.

• Matchmaker: If committees 𝐶 (𝑘) had selected 𝐶 (𝑢) in the

previous phase, committee 𝐶 (𝑢) matches committees 𝐶 (𝑘)
in pairs. If the number of committees𝐶 (𝑘) that selected𝐶 (𝑢)
is odd, one committee is matched with𝐶 (𝑢).𝐶 (𝑢) enters the
Matched mode.

• Matched: If committee 𝐶 (𝑢) selected committee 𝐶 (𝑣) in
the last selection phase, committee 𝐶 (𝑢) learns with which

committee it has been matched. Committee 𝐶 (𝑢) enters the
Ring Merging mode.

• Ring Merging: Given that in the previous phase, 𝐶 (𝑢) was
matched with 𝐶 (𝑣), committee 𝐶 (𝑢) merges its ring compo-

nent with the ring component of 𝐶 (𝑣) where the winning
committee is 𝐶 (𝑢) if𝑈 𝐼𝐷𝑢 > 𝑈 𝐼𝐷𝑣 and vice versa. Commit-

tee 𝐶 (𝑢) enters the Leader Merging mode.

• Leader Merging: Given that in the previous phase commit-

tee𝐶 (𝑢) lost to committee𝐶 (𝑘), the leader of𝐶 (𝑢) activates
an edge with the leader of 𝐶 (𝑘). If committee 𝐶 (𝑘) has lost
to some other committee 𝐶 (𝑙) in the previous phase, 𝐶 (𝑢)
enters the Tree Merging mode. If 𝐶 (𝑢) did not lose to any

other committee,𝐶 (𝑢) enters the Tree Merging mode where

𝑢 is the root.

• Tree Merging: The leader of 𝐶 (𝑢) executes one round of

the asynchronous LineToCompletePolylogarithmicTree al-

gorithm, which is similar to the asynchronous LineToCom-

pleteBinaryTree algorithm with a termination criterion of

log𝑛 children instead of 2. If there exists node 𝑥 that has not

terminated the asynchronous LineToCompletePolylogarith-

micTree algorithm, 𝐶 (𝑢) stays in the Tree Merging mode. If

all nodes 𝑥 have terminated the asynchronous LineToCom-

pletePolylogarithmicTree algorithm, all nodes 𝑥 have now

merged with committee 𝐶 ′(𝑢) whose leader 𝑢 ′ is the root
of the complete polylogarithmic tree and 𝐶 ′(𝑢) enters the
selection mode. Committee 𝐶 (𝑢) does not exist anymore.

• Termination: Each follower 𝑥 in 𝐶 (𝑢) deactivates every
edge apart from the edges that define the spanning complete

polylogarithmic tree subgraph.

Theorem 5.1. For any initial connected graph with polylogarith-
mic degree, the GraphToThinWreath algorithm solves Depth-log𝑛

Tree in𝑂 ( log
2 𝑛

log log𝑛
) time with𝑂 (𝑛 log2 𝑛) total edge activations,𝑂 (𝑛)

active edges per round and 𝑂 (1) maximum activated degree.

6 LOWER BOUNDS FOR THE DEPTH-log𝑛
TREE PROBLEM

Lemma 6.1. If the initial graph 𝐺𝑠 is a spanning line, any cen-
tralized transformation strategy requires Ω(log𝑛) rounds to solve
Depth-log𝑛 Tree.

Lemma 6.2. Any centralized transformation strategy that solves
Depth-log𝑛 Tree in 𝑂 (log𝑛) rounds, requires Ω(𝑛) edge activations
and Ω(𝑛/log𝑛) edge activations per round.

On the positive side:

Theorem 6.3. There is a centralized transformation strategy that,
for any initial graph 𝐷 = (𝑉 , 𝐸), solves Depth-log𝑛 Tree in 𝑂 (log𝑛)
rounds, with Θ(𝑛) total edge activations.
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We are now going to show that there is a difference in the min-

imum total edge activations required for solving the Depth-log𝑛

Tree problem between the centralized and the distributed case.

Theorem 6.4. Any distributed algorithm that solves the Depth-
log𝑛 Tree problem in 𝑂 (log𝑛) time, requires Ω(𝑛 log𝑛) total edge
activations.

7 CONCLUSION AND OPEN PROBLEMS
In this work we considered a distributed model for actively dynamic

networks. The model can achieve global distributed computation

and network reconfiguration in (poly)logarithmic time, but trivial

solutions incur an impractical cost, which is related to the creation

and maintenance of edges in the dynamic network generated by the

algorithm. We defined natural cost measures associated with the

edge complexity of actively dynamic algorithms. It turns out that

there is a natural trade-off between the time and edge complexity

of algorithms. By focusing on the apparently representative task of

transforming any initial network from a given family into a target

network of (poly)logarithmic diameter, which can then be exploited

for global computation or further reconfiguration, we obtained

non-trivial insight into this trade-off.

Our model is inspired by recent developments in the algorithmic

theory of dynamic networks and in the theory of reconfigurable

robotics. Still, it turns out to be very close to the interesting area

of overlay network construction. It is not clear yet what is the

formal relationship between the polylogarithmic restriction on

communication in overlay networks and our efforts to minimize

the total number of edge activations in our algorithms. This remains

an interesting question for future research.

There is also a number of technical questions specific to our

model and the obtained results. We do not know yet what are the

ultimate lower bounds on time for different restrictions on the max-

imum degree. For maximum degree bounded by a constant our best

upper bound is𝑂 (log2 𝑛) and if bounded by (poly)log(𝑛) this drops
slightly by an 𝑂 (log log𝑛) factor. Can any of these be improved to

𝑂 (log𝑛), that is, matching the Ω(log𝑛) lower bound on time? It

would also be valuable to investigate randomized algorithms for the

same problems, like those already developed in overlay networks.

Finally, there are many variants of the proposed model and com-

plexity measures that would make sense and might give rise into

further interesting questions and developments. Such variants in-

clude anonymous distributed entities which are possibly restricted

to treat their neighbors identically even w.r.t. actions (e.g., through

local broadcast) and alternative potential neighborhoods, e.g., acti-

vating edges at larger distances.
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