138 research outputs found

    Grid Recognition: Classical and Parameterized Computational Perspectives

    Get PDF
    Grid graphs, and, more generally, k×rk\times r grid graphs, form one of the most basic classes of geometric graphs. Over the past few decades, a large body of works studied the (in)tractability of various computational problems on grid graphs, which often yield substantially faster algorithms than general graphs. Unfortunately, the recognition of a grid graph is particularly hard -- it was shown to be NP-hard even on trees of pathwidth 3 already in 1987. Yet, in this paper, we provide several positive results in this regard in the framework of parameterized complexity (additionally, we present new and complementary hardness results). Specifically, our contribution is threefold. First, we show that the problem is fixed-parameter tractable (FPT) parameterized by k+mcck+\mathsf {mcc} where mcc\mathsf{mcc} is the maximum size of a connected component of GG. This also implies that the problem is FPT parameterized by td+k\mathtt{td}+k where td\mathtt{td} is the treedepth of GG (to be compared with the hardness for pathwidth 2 where k=3k=3). Further, we derive as a corollary that strip packing is FPT with respect to the height of the strip plus the maximum of the dimensions of the packed rectangles, which was previously only known to be in XP. Second, we present a new parameterization, denoted aGa_G, relating graph distance to geometric distance, which may be of independent interest. We show that the problem is para-NP-hard parameterized by aGa_G, but FPT parameterized by aGa_G on trees, as well as FPT parameterized by k+aGk+a_G. Third, we show that the recognition of k×rk\times r grid graphs is NP-hard on graphs of pathwidth 2 where k=3k=3. Moreover, when kk and rr are unrestricted, we show that the problem is NP-hard on trees of pathwidth 2, but trivially solvable in polynomial time on graphs of pathwidth 1

    Fixed-Parameter Algorithms for Computing RAC Drawings of Graphs

    Full text link
    In a right-angle crossing (RAC) drawing of a graph, each edge is represented as a polyline and edge crossings must occur at an angle of exactly 9090^\circ, where the number of bends on such polylines is typically restricted in some way. While structural and topological properties of RAC drawings have been the focus of extensive research, little was known about the boundaries of tractability for computing such drawings. In this paper, we initiate the study of RAC drawings from the viewpoint of parameterized complexity. In particular, we establish that computing a RAC drawing of an input graph GG with at most bb bends (or determining that none exists) is fixed-parameter tractable parameterized by either the feedback edge number of GG, or bb plus the vertex cover number of GG.Comment: Accepted at GD 202

    Level-Planar Drawings with Few Slopes

    Get PDF
    We introduce and study level-planar straight-line drawings with a fixed number of slopes. For proper level graphs (all edges connect vertices of adjacent levels), we give an ( log2^{2} / log log )-time algorithm that either finds such a drawing or determines that no such drawing exists. Moreover, we consider the partial drawing extension problem, where we seek to extend an immutable drawing of a subgraph to a drawing of the whole graph, and the simultaneous drawing problem, which asks about the existence of drawings of two graphs whose restrictions to their shared subgraph coincide. We present (4/3^{4/3} log )-time and (10/3^{10/3} log )-time algorithms for these respective problems on proper level-planar graphs. We complement these positive results by showing that testing whether non-proper level graphs admit level-planar drawings with slopes is NP-hard even in restricted cases

    Fast Reachability Using DAG Decomposition

    Get PDF
    We present a fast and practical algorithm to compute the transitive closure (TC) of a directed graph. It is based on computing a reachability indexing scheme of a directed acyclic graph (DAG), G = (V, E). Given any path/chain decomposition of G we show how to compute in parameterized linear time such a reachability scheme that can answer reachability queries in constant time. The experimental results reveal that our method is significantly faster in practice than the theoretical bounds imply, indicating that path/chain decomposition algorithms can be applied to obtain fast and practical solutions to the transitive closure (TC) problem. Furthermore, we show that the number of non-transitive edges of a DAG G is ? width*|V| and that we can find a substantially large subset of the transitive edges of G in linear time using a path/chain decomposition. Our extensive experimental results show the interplay between these concepts in various models of DAGs

    Upward and Orthogonal Planarity are W[1]-hard Parameterized by Treewidth

    Full text link
    Upward planarity testing and Rectilinear planarity testing are central problems in graph drawing. It is known that they are both NP-complete, but XP when parameterized by treewidth. In this paper we show that these two problems are W[1]-hard parameterized by treewidth, which answers open problems posed in two earlier papers. The key step in our proof is an analysis of the All-or-Nothing Flow problem, a generalization of which was used as an intermediate step in the NP-completeness proof for both planarity testing problems. We prove that the flow problem is W[1]-hard parameterized by treewidth on planar graphs, and that the existing chain of reductions to the planarity testing problems can be adapted without blowing up the treewidth. Our reductions also show that the known nO(tw)n^{O(tw)}-time algorithms cannot be improved to run in time no(tw)n^{o(tw)} unless ETH fails.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    Graph Algorithms and Applications

    Get PDF
    The mixture of data in real-life exhibits structure or connection property in nature. Typical data include biological data, communication network data, image data, etc. Graphs provide a natural way to represent and analyze these types of data and their relationships. Unfortunately, the related algorithms usually suffer from high computational complexity, since some of these problems are NP-hard. Therefore, in recent years, many graph models and optimization algorithms have been proposed to achieve a better balance between efficacy and efficiency. This book contains some papers reporting recent achievements regarding graph models, algorithms, and applications to problems in the real world, with some focus on optimization and computational complexity

    Planarity Variants for Directed Graphs

    Get PDF

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore