1,028 research outputs found

    Graph Analytics Accelerators for Cognitive Systems

    Get PDF
    Hardware accelerators are known to be performance and power efficient. This article focuses on accelerator design for graph analytics applications, which are commonly used kernels for cognitive systems. The authors propose a templatized architecture that is specifically optimized for vertex-centric graph applications with irregular memory access patterns, asynchronous execution, and asymmetric convergence. The proposed architecture addresses the limitations of existing CPU and GPU systems while providing a customizable template. The authors' experiments show that the generated accelerators can outperform a high-end CPU system with up to 3 times better performance and 65 times better power efficiency. © 1981-2012 IEEE

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201

    Advanced Cyberinfrastructure for Science, Engineering, and Public Policy

    Full text link
    Progress in many domains increasingly benefits from our ability to view the systems through a computational lens, i.e., using computational abstractions of the domains; and our ability to acquire, share, integrate, and analyze disparate types of data. These advances would not be possible without the advanced data and computational cyberinfrastructure and tools for data capture, integration, analysis, modeling, and simulation. However, despite, and perhaps because of, advances in "big data" technologies for data acquisition, management and analytics, the other largely manual, and labor-intensive aspects of the decision making process, e.g., formulating questions, designing studies, organizing, curating, connecting, correlating and integrating crossdomain data, drawing inferences and interpreting results, have become the rate-limiting steps to progress. Advancing the capability and capacity for evidence-based improvements in science, engineering, and public policy requires support for (1) computational abstractions of the relevant domains coupled with computational methods and tools for their analysis, synthesis, simulation, visualization, sharing, and integration; (2) cognitive tools that leverage and extend the reach of human intellect, and partner with humans on all aspects of the activity; (3) nimble and trustworthy data cyber-infrastructures that connect, manage a variety of instruments, multiple interrelated data types and associated metadata, data representations, processes, protocols and workflows; and enforce applicable security and data access and use policies; and (4) organizational and social structures and processes for collaborative and coordinated activity across disciplinary and institutional boundaries.Comment: A Computing Community Consortium (CCC) white paper, 9 pages. arXiv admin note: text overlap with arXiv:1604.0200
    corecore